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Abstract—Sparsity-constrained optimization problems are common in machine learning, such as sparse coding, low-rank

minimization and compressive sensing. However, most of previous studies focused on constructing various hand-crafted sparse

regularizers, while little work was devoted to learning adaptive sparse regularizers from given input data for specific tasks. In this paper,

we propose a deep sparse regularizer learning model that learns data-driven sparse regularizers adaptively. Via the proximal gradient

algorithm, we find that the sparse regularizer learning is equivalent to learning a parameterized activation function. This encourages us

to learn sparse regularizers in the deep learning framework. Therefore, we build a neural network composed of multiple blocks, each

being differentiable and reusable. All blocks contain learnable piecewise linear activation functions which correspond to the sparse

regularizer to be learned. Furthermore, the proposed model is trained with back propagation, and all parameters in this model are

learned end-to-end. We apply our framework to multi-view clustering and semi-supervised classification tasks to learn a latent compact

representation. Experimental results demonstrate the superiority of the proposed framework over state-of-the-art multi-view learning

models.

Index Terms—Deep learning, sparse regularizer, parameterized activation function, proximal operator, multi-view learning

Ç

1 INTRODUCTION

A considerable amount of research has indicated the
importance of sparse representation in boosting the

performance of various machine learning tasks [1], [2], [3].
For example, low-rank minimization generally enforces
sparse constraints on singular values. Sparse coding models
deal with intractable nonconvex ‘0-norm minimization
problems by replacing ‘0 with its surrogate functions, such
as ‘1-norm, which leads to more tractable computations [4],
[5]. However, these previous studies put more emphases on
predefined sparse norms, resulting in hand-crafted rather
than data-driven sparse regularizers. Traditionally, most of
these methods rely on an iterative algorithm that minimizes
an objective function. The inherently sequential structure
and data-dependent time complexity result in a major limi-
tation on the efficiency of the algorithms. Meanwhile, such
optimization problems are generally non-differentiable and
thus suffer from difficulties in computing gradients, which

suggests limitations in applying existing sparse regularizers
to deep learning architectures for performance boosting and
computational acceleration.

Several attempts have shown to be encouraging for
improving learning performance when embedding some spe-
cific sparse norms into deep neural networks. For example,
based on an iterative shrinkage and thresholding algorithm
(ISTA) for the ‘1-norm regularizer [6], learned ISTA (LISTA)
[7] was proposed to train sparse codes with neural networks,
where each block was differentiable and reusable. ISTA was
further transformed into a structured deep neural network
dubbed ISTA-Net [8], which optimized an ‘1-norm based
compressive sensing reconstruction model. An ‘0 regularized
encoder [9] was also explored for constructing an effective
sparse regularization with time-unfolding feed-forward neu-
ral networks. Sprechmann et al. demonstrated a principled
way to construct learnable pursuit process architectures for
structured sparse models, which was derived from the itera-
tion of proximal gradient descent algorithms [10]. Tanaka
et al. proposed sparse recurrent neural networks to conduct
efficient energy information processing [11]. Luo et al.
mapped a temporally-coherent sparse coding to a special type
of stacked recurrent neural networks (sRNN) to learn all
parameters simultaneously [12]. These latest research results
inspire us to apply back propagation and gradient descents in
deep learning frameworks to traditional iterative algorithms.

However, from the perspective of model training, deep
neural networks (DNNs) are usually limited to conducting
back propagation and gradient descentwith differentiable reg-
ularizers. Therefore, how to build a network that can deal with
non-differentiable objective functions using differentiable
blocks in the deep learning framework is a pivotal problem.
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Differentiable programming solves this problem by reformu-
lating traditional machine learning methods, which trans-
forms the optimization process into differentiable network
structures. In this way, the model can be trained with back
propagation, and some key hyperparameters become learn-
able. Substantial studies have concentrated on this technique
[13], [14], [15]. For instance, ADMM-Net was derived from the
iterative procedures of an alternating directionmethod ofmul-
tipliers (ADMM) algorithm for optimizing an MRI model
based on compressive sensing [16]. Xie et al. proposed a differ-
entiable linearized ADMM (DLADMM) for solving convex
problems with linear constraints [17]. Bertinetto et al. taught a
deep network to use standard machine learning tools like
ridge regression to quickly learn parameters [18]. Because
proximal operators are commonly utilized in optimization
methods, existing studies have also proved the corresponding
relationships between proximal operators and activation func-
tions employed in neural networks, so that neural networks
can handle some specific optimization problems [19], [20],
[21]. Nevertheless, how to learn valid sparse regularizers via
activation functions remains unexplored. To our knowledge,
very limited research has been devoted to the general learning
framework of sparse regularizers.

In this paper, we propose an efficient deep network frame-
work dubbed deep sparse regularizer learning (DSRL), to
adaptively learn data-driven sparse regularizers. Bridged by
the proximal operator, we exploit the correspondence
between regularizers and parameterized activation functions.
Accordingly, we may learn piecewise linear activation func-
tions, which is an indirect way to learn sparse regularizers.
Because all iterative blocks inDSRL are differentiable, the pro-
posed model can be trained with back propagation. Further,
we apply DSRL to themulti-view learning task, where a fused
multi-view latent representation is reconstructed using the
proposed framework. The data-driven sparse regularizers
learned by DSRL are compared with some predefined surro-
gates of ‘0-norm to validate the effectiveness of our method.
Besides, we also compare the performance with hand-crafted
sparse surrogates, and experimental results indicate that
DSRL outperforms other sparse regularizers. Themain contri-
butions of this paper can be summarized in the following four
aspects:

1) Convert the problem of learning a sparse regularizer
into that of learning an activation function by
exploiting the correspondence between regularizers
and activation functions.

2) Provide the conditions that a learnable activation
function should satisfy to yield a valid regularizer.
We further propose two-stage projections such that
the conditions can be satisfied when learning the
activation function.

3) Propose an end-to-end deep data-driven regularizer
learning scheme. Via the parameterized activation
functions, the outputs are guaranteed to be appropri-
ately sparse for the given specific task at the best.

4) We apply the proposed method to multi-view clus-
tering and semi-supervised classification. It achieves
superior performance on eight real-world datasets
compared with specific regularizers and other state-
of-the-art methods.

2 RELATED WORK

A large amount of research has recognized the critical role
played by sparse representation. However, most previous
studies concentrated on hand-crafted sparsity. Several com-
monly used sparse surrogates are shown in Table 1 [27]. These
defined sparse regularizers are non-decreasing and noncon-
vex on ð0;1Þ, as illustrated in Fig. 1. Some of these regular-
izers are lower semicontinuous. Specifically, ‘p-norm is
widely used in multiple kernel learning to promote sparse
kernel combinations so that the constructed model is more
interpretable and scalable [28]. Laplace function is leveraged
to conduct a homotopic approximation of the ‘0 minimization
problem in compressive sensing [25]. These sparse surrogates
are also applied to rank regularized optimization problems

argmin
X

J ðXÞ ¼ rankðXÞ þ fðXÞ; (1)

where fð�Þ is generally a differentiable loss function.
Because solving the problem with a rank constraint is diffi-
cult and even NP-hard, this problem is then transformed
into

argmin
X

J ðXÞ ¼
Xn
i¼1

gðsiðXÞÞ þ fðXÞ; (2)

where siðXÞ is the ith singular value of X 2 Rn�m and gð�Þ is
a surrogate of ‘0-norm as listed in Table 1 [27]. On the basis
of predefined surrogate functions, Lu et al. proposed an iter-
atively reweighted nuclear norm (IRNN) algorithm to solve
nonconvex nonsmooth rank optimizations [29]. Zhang et al.
further handled nonconvex nonsmooth rank minimization
problems with closed-form solutions of ‘p-norm when p ¼ 1

2
and 2

3 [30]. Dan et al. studied low-rank recovery models with
the ‘p-norm loss and provided a better approximation guar-
antee [31]. In general, these hand-crafted sparse surrogates
tend to approximate specific sparsity and are often sensitive
to predefined hyperparameters, which may lead to subopti-
mal performance. Moreover, due to the particular proper-
ties of various surrogates, a specific surrogate function may
not be applicable to a wide range of application scenarios,
which poses the difficulty in selecting a suitable surrogate.

ManyDNNs require sparseweights or outputs, and a num-
ber of recent studies [32], [33] also suggested that large-scale
DNNs usually contained lots of redundant parameters, which
resulted in a waste of computational resources and a high risk
of overfitting. There have been several attempts to encourage
the sparsity of weights or outputs in DNNs. For instance,
sparse autoencoders [34] only allowed a small number of
hidden units to be active at once with Kullback-Leibler

TABLE 1
Several Specified Definitions of gð�Þ for Sparse Surrogates

Penalty Formula of gðxÞ, x � 0, � � 0

‘p-norm [22] gðxÞ ¼ �xp, 0 < p < 1

Logarithm [23] gðxÞ ¼ �
log ðgþ1Þ log ðgxþ 1Þ

Geman [24] gðxÞ ¼ �x
xþg

Laplace [25] gðxÞ ¼ �ð1� expð� x
g
ÞÞ

ETP [26] gðxÞ ¼ � 1�expð�gxÞ
1�expð�gÞ
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divergence. Tartaglione et al. exploited a simple thresholding
approach to promote the sparse property of network parame-
ters [35]. Liu et al. pruned redundant connections to generate
sparse layers [36]. Bhowmik et al. addressed the problem of
sparse spike deconvolution from noisy measurements within
a Bayesian paradigm, where the sparsity was measured by
‘1-norm [37].Wang et al. presented a deep structuredmodel to
learn a non-linear function, where the regularization term for
the proximal operator was fixed as ‘1-norm [38]. Mahapatra
et al. [39] solved the sparse signal reconstruction problemusing
a feed-forward deep neural network, which was regularized
with ‘1-norm sparsity and generalized the ISTA framework.
Srinivas et al.proposed a newmethod to control the number of
activated neurons,which led to a highly sparse neural network
model [40]. Ma et al. used an integrated transformed noncon-
vex ‘1 regularizer to promote the sparsity of parameters [41].
Generally, most of these existing works on DNNs promoted
sparsity with hand-crafted sparsity penalties or defined
thresholding functions. Some of them were based on an
unfolded ISTA framework or only handled ‘1-norm sparsity.
Besides, to the best of our knowledge, very limited research
has been done for learning deep sparse regularizers adap-
tively. In this paper, we address data-driven sparse regularizer
learning problems from the viewpoint of activation functions,
which is beyond the ISTA learning framework and not limited
to certain specific sparse regularizers.

3 PROPOSED METHOD

To learn sparse regularizers adaptively in a data-driven
manner, we first construct a connection between sparse reg-
ularizers and activation functions via proximal operators.
By the connection, learning a sparse regularizer is equiva-
lently transformed into learning a parameterized activation
function in a deep neural network. Accordingly, a block-
wise neural network is designed to learn a data-driven
sparse regularizer. Fig. 2 illustrates the structure of the pro-
posed framework.

3.1 Correspondence Between Sparse Regularizers
and Activation Functions

Proximal operators are widely used in various machine
learning optimization problems. We start with a univariate
proximal operator, i.e.,

ProxgðyÞ ¼ argmin
x

J ðxÞ ¼ 1

2
ðx� yÞ2 þ gðxÞ; (3)

where gð�Þ can be a sparse regularizer. It was proved in [27]
that �ðyÞ � ProxgðyÞ is a non-decreasing function of y. Thus
it can serve as an activation function of a neural network.

On the other hand, given a non-decreasing function �ðxÞ,
we can define

gðxÞ ¼
Z x

0

ð��1ðyÞ � yÞdy

¼
Z x

0

��1ðyÞdy� 1

2
x2;

(4)

where �ðyÞ : R ! R is a univariate function and ��1ðyÞ is the
inverse function of �ðyÞ. Note that if ��1ð�Þ is not single-val-
ued, gðxÞ is still well defined. It was proved in [21] that the
proximal operator of such a gðxÞ, defined in (3), is exactly
�ðxÞ, because the optimality condition of (3) is 0 2
ð��1ðxÞ � xÞ þ ðx� yÞ. Thus we have shown the correspon-
dence between �ðxÞ and gðxÞ via the proximal operator. If gðxÞ
is a sparse regularizer, then �ðxÞ has to map a neighborhood
of 0 to 0 (see Fig. 2 of [27]). Namely, 0 2 ��1ð0Þ. Therefore,
gðxÞ ¼ 0, and is nonnegative on ð0;1Þ. These conditions will
be used for learning valid sparse regularizers.

As an example, by considering a commonly used ‘1 regu-
larizer bjxj, we can check that argminx

1
2 ðx� yÞ2 þ bjxj ¼

�uðyÞ, in which

�uðxÞ ¼
x� b; b � x;
0; �b � x < b;
xþ b; x < �b;

8<
: (5)

where u ¼ fbg can be a learnable parameter set with b � 0.
With the above analysis, learning a sparse regularizer

gðxÞ is transformed into learning an activation function �ðxÞ
that is non-decreasing and maps a neighborhood of 0 to 0.
Because it is difficult for the activation function of only one
parameter to learn a suitable sparse regularizer with the
given data, we employ piecewise linear functions to approx-
imate the learnable activation function, consisting of more
learnable parameters. Particularly, an activation function of
two sets of learnable parameters ðu1; u2Þ is defined as

�ðu1;u2ÞðxÞ ¼

w2ðx� b2Þ þ w1ðb2 � b1Þ; b2 � x;
w1ðx� b1Þ; b1 � x < b2;
0; �b1 � x < b1;
w1ðxþ b1Þ; �b2 � x < �b1;
w2ðxþ b2Þ þ w1ðb1 � b2Þ; x < �b2;

8>>>><
>>>>:

(6)

where x 2 R, 0 � b1 � b2 and w1; w2 > 0 are learnable
parameters with u1 ¼ ðw1; b1Þ and u2 ¼ ðw2; b2Þ. Noting that
the form of the activation function is not limited to two
parameter sets, we consider (6) as an example, which is a
trade-off between computational complexity and learning
accuracy to achieve desired performance in practical

Fig. 1. Illustration of some popular hand-crafted sparse regularizers (For ‘p-norm, p ¼ 0:5. For all penalties, � ¼ 1:0, g ¼ 0:5). All these sparse regular-
izers share some common properties: nonconvex and non-decreasing on ð0;1Þ.
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applications. With this definition, the inverse function
��1
ðu1;u2ÞðyÞ is computed by

��1
ðu1;u2ÞðyÞ ¼

y�w1ðb2�b1Þ
w2

þ b2; w1ðb2 � b1Þ � y;
y
w1

þ b1; 0 � y < w1ðb2 � b1Þ;
½ � b; b	; y ¼ 0;
y
w1

� b1; �w1ðb2 � b1Þ � y < 0;
y�w1ðb2�b1Þ

w2
� b2 y < �w1ðb2 � b1Þ:

8>>>>>><
>>>>>>:

(7)

Therefore, the sparse regularizer learned by a parameter-
ized activation function is derived on the basis of (4):

gðxÞ ¼
ð 1
2w2

� 1
2Þx2 þ ðb2 � w1ðb2�b1Þ

w2
Þx

þ w1ðw1�w2Þ
2w2

ðb2 � b1Þ2; x � w1ðb2 � b1Þ;
ð 1
2w1

� 1
2Þx2 þ b1x; 0 � x < w1ðb2 � b1Þ;

gð�xÞ; x < 0:

8>>><
>>>:

(8)

It is observed from the formula that the learned sparse regu-
larizer gðxÞ is symmetric about the y-axis. When x ¼ 0, gðxÞ
is exactly equal to 0.

For the sake of theoretic strictness and better interpretabil-
ity, it is required that w1; w2 > 0, 0 � b1 � b2, gðxÞ � 0 and
gðxÞ is non-decreasing when x � w1ðb2 � b1Þ. Then the condi-
tions become [refer to Section A of Appendix, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2021.3082632]:

w1 > 0; 1 � w2 > 0;

b2 � b1 � max 0;
w1 � 1

w1
b2

� �
:

(9)

Directly projecting parameter set Q ¼ ðw1; w2; b1; b2Þ onto (9)
is also difficult. We may first project ðw1; w2Þ and then project
ðb1; b2Þ after fixing ðw1; w2Þ. The projection of ðw1; w2Þ is for-
mulated as w1 ¼ maxfw1; �g and w2 ¼ minfmaxfw1; �g; 1g,
where � is a small positive value.After fixing ðw1; w2Þ, we proj-
ect ðb1; b2Þ onto Sb ¼ fðb1; b2Þjb2 � b1 � maxf0; w1�1

w1
b2gg. To

be exact, when 0 < w1 � 1, the projection Projðb1; b2Þ of
ðb1; b2Þ ontoSb is

Projðb1; b2Þ ¼
ðb1; b2Þ; b1 � 0; b2 � 0; b1 � b2;
ð0; b2Þ; b1 < 0; b2 > 0;
ð0; 0Þ; b2 � minf0;�b1g;
ðb1þb2

2 ; b1þb2
2 Þ; b1 � jb2j:

8>><
>>:

(10)

When w1 > 1, the projection of ðb1; b2Þ onto Sb becomes

Projðb1; b2Þ ¼
ðb1; b2Þ; b2 � 0; w1�1

w1
b2 � b1 � b2;

ðr1b1 þ r2b2; r2b1 þ r3b2Þ; w1
1�w1

b2 < b1 < w1�1
w1

b2;

ð0; 0Þ; b2 � 0; b1 � w1
1�w1

b2;

ð0; 0Þ; b2 � minf0;�b1g;
ðb1þb2

2 ; b1þb2
2 Þ; b1 � jb2j;

8>>>>><
>>>>>:

(11)

where the parameter set fr1; r2; r3g is given as r1 ¼ðw1�1Þ2
w2
1
þðw1�1Þ2 , r2 ¼

w1ðw1�1Þ
w2
1
þðw1�1Þ2 and r3 ¼ w2

1

w2
1
þðw1�1Þ2 .

3.2 Implicitly Learnable Deep Sparse Regularizer

Generic optimization problems with learnable sparse regu-
larizers gð�Þ can be written as

min
X

J ðXÞ ¼ fðXÞ þ gðXÞ; (12)

where gðXijÞ ¼
R Xij

0 ð��1
Q ðyÞ � yÞdy for any i 2 f1; . . . ; ng and

j 2 f1; . . . ;mg with Q to be learned by the theory in Sec-
tion 3.1. The function fðXÞ is differentiable, and its gradient
is Lipschitz continuous. The iteration rule of the proximal
gradient method for solving Problem (12) is as follows:

Xðkþ1Þ ¼ argmin
X

fðXðkÞÞ þ hrfðXðkÞÞ;X� XðkÞi

þL

2
jjX� XðkÞjj2F þ gðXÞ

¼ argmin
X

L

2
X� XðkÞ þ 1

L
rfðXðkÞÞ

����
����
2

F

þgðXÞ;

(13)

where L is the Lipschitz constant ofrfð�Þ, i.e.,

jjrfðXÞ � rfðYÞjjF � LjjX� YjjF ; (14)
for any X;Y 2 Rn�m. Denoting W ¼ XðkÞ � 1

LrfðXðkÞÞ, the
optimization problem above is exactly

Fig. 2. Framework of the proposed DSRL method. It consists of multiple unfolded blocks in which a basic block is made up of several differentiable
units, as demonstrated in the blue shapes.
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Proxg
L
ðWÞ ¼ argmin

X

1

2
jjX�Wjj2F þ 1

L
gðXÞ; (15)

where Proxg
L
ð�Þ is the proximal operator that is related to the

regularizer 1
L gð�Þ. With these notations, the updating rule of

Xðkþ1Þ can be

Xðkþ1Þ ¼ Proxg
L

XðkÞ � 1

L
rfðXðkÞÞ

� �
: (16)

Based on the above analysis, we propose an end-to-end
deep learning framework that learns data-driven sparse
regularizers. Each unit of the proposed framework is struc-
tured as a single differentiable block, as demonstrated in
Fig. 2. Each block accepts the output from the previous
block as an input, and feeds the calculated value to the next
block. Consequently, the proposed method can be imple-
mented with a block-wise neural network architecture. Spe-
cifically, the ith block computes the output with

ZðiÞ ¼ Xði�1Þ � 1

L
rfðXði�1ÞÞ; (17)

XðiÞ ¼ �QðZðiÞÞ; (18)

where �Qð�Þ is the activation function parameterized by the
set Q. DSRL is comprised of t differentiable blocks of the
learnable parametersQ and L, which can be learned end-to-
end by back propagation [refer to Section B of Appendix,
available in the online supplemental material]. Algorithm 1
illustrates the proposed DSRL in detail, which can theoreti-
cally approximate any sparse regularizer gðxÞ in (12). Com-
pared with hand-crafted regularizers that are challenging
and time-consuming for parameter selection, the proposed
DSRL is more flexible to varying data because of its adap-
tive optimization of learnable parameters. It learns potential
sparse regularizers in a data-driven way, which may
steadily improve the performance of given tasks.

Algorithm 1. Deep Sparse Regularizer Learning (DSRL)

Input: A differentiable function fðXÞ and the number of blocks t.
Output: Learned parameter setQ.
1: Initialize the data matrix ~X 2 Rn�m;
2: Initialize learnable parameter setQð0Þ and Lð0Þ;
3: Initialize counter k = 0;
4: while not convergent do
5: The parameterQðkÞ is projected onto the convex set S,

denoted byQðkÞ;
6: Update Zð0Þ ¼ ~X� 1

LðkÞ rfð~XÞ;
7: Update Xð0Þ ¼ �

QðkÞ ðZð0ÞÞ;
8: for i ¼ 1; . . . ; t do
9: Update ZðiÞ ¼ Xði�1Þ � 1

LðkÞ rfðXði�1ÞÞ;
10: Update XðiÞ ¼ �

QðkÞ ðZðiÞÞ;
11: end for
12: UpdateQðkþ1Þ and Lðkþ1Þ with back propagation and

loss function J ð~X;XðtÞÞ ¼ 1
2 k~X� XðtÞk2F ;

13: Update counter k ¼ kþ 1;
14: end while
15: return The learned parameter setQ.

The computational complexity of the proposed method is
linearly related to the block number t for forward propaga-
tion. Because a small t value often achieves acceptable

performance (as described in Section 4.7), the speed of the pro-
posed DSRL method is relatively fast. After training, the
parameters of the activation functions are learned, and we
obtain a reconstructed sparse output by one-time forward
propagation.

4 EXPERIMENTAL ANALYSIS

In this section, comprehensive experiments on publicly avail-
able real-world datasets are conducted to validate the superi-
ority of the learned sparse regularizer by DSRL in terms of
multi-view clustering and semi-supervised classification.

Consider multi-view data X ¼ fXigvi¼1 with Xi 2 Rn�di ,
where n and v are the sample and view numbers, and di is
the feature number of the ith view data. Consequently, the
multi-view clustering task is to learn a cluster indicator y 2
f0; 1gn from the given multi-view data with a certain crite-
rion lossðfXigvi¼1; yÞ. Due to varying dimensions of different
viewdata, we attempt to learn an optimal affinitymatrix from
the evaluated multi-view similarity matrices W ¼ fWigvi¼1 of
X ¼ fXigvi¼1. In order to verify the superiority of the proposed
learnable sparse regularizer method, we formulate the multi-
view clustering task in the following simple form:

argmin
aa;W

1

2
W�

Xv
j¼1

ajWj

�����
�����
2

F

þgðWÞ;

subject to 0 � aa � 1;aaT1 ¼ 1;

(19)

where aa ¼ ½a1; . . . ;av	 2 Rv is a v-dimensional column vector
representing the weights of all views, and gð�Þ is a sparse regu-
larizer yet to be learned. The fused affinity matrix of the multi-
view data is represented as a convex hull of all views, and the
representation coefficients are learned adaptively from the
optimization objective. Since the view number v tends to be
small, a separate algorithm can be developed to compute the
optimal value of aa. Adaptive weights can be optimized by the
ADMM algorithm. In particular, suppose that vecð�Þ is the
matrix vectorization operator, then the optimization subprob-
lemwith respect to aa is written as

min
a

1

2
k½vecðW1Þ; . . . ; vecðWvÞ	aa� vecðWÞk2F ;

subject to 0 � aa � 1;aaT1 ¼ 1:
(20)

While keeping the weighted vector aa, we compute the
optimal solution W ¼ Proxgð

Pv
j¼1 ajWjÞ. Because fðWÞ ¼

1
2 jjW� Pv

j¼1 ajWjjj2F is differentiable, we can apply the pro-
posed DSRL framework to learning an optimal data-driven
sparse regularizer gðWÞ.

As to the multi-view semi-supervised classification task,
with a fixed value of aa, we formulate the problem as

argminW
1

2
W�

Xv
j¼1

ajWj

�����
�����
2

F

þ m

2
Tr YT ðD�WÞY� �

þ n

2
kY� Lk2F þ gðWÞ;

(21)

where D ¼ ½Dij	n�n is a diagonal matrix with Dii ¼
Pn

j¼1

Wij, m > 0 and n > 0 are fixed regularization parameters,
and L ¼ ½Lij	n�c is the matrix to indicate the limited number
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of labeled data points. Specifically, Lij ¼ 1 if the ith data
point belongs to the jth class, and Lij ¼ 0 otherwise. Conse-
quently, Y is the predictive class assignment indicator
matrix that can be computed by

Y ¼ Iþ m

n
ðD�WÞ

	 
�1
L: (22)

Actually, the optimalY can also be solvedwith some learnable
methods for computational acceleration, but we pay greater
attention to the learned sparse regularizer and thus adopt a
straightforward closed-form solution. Because fðWÞ ¼
1
2 W�Pv

j¼1 ajWj

��� ���2
F
þ m

2 Tr YT ðD�WÞY� �þ n
2 kY� Lk2F in

(21) is differentiable, DSRL is also applicable to solving this
problem.

4.1 Datasets

In this subsection, eight publicly available datasets are used to
validate the effectiveness of the proposedDSRLmethod. These
datasets are derived from real-world image applications, rang-
ing from images to videos. Several sample images are ran-
domly collected from the test datasets, as demonstrated in
Fig. 3. It is suggested that the input images are captured at var-
ied viewing angles, illumination and resolution variations,
which motivates us to extract multi-view low-level features
using feature descriptors for each dataset. Here we provide
more details for the feature extractors of these test datasets.

ALOI. This dataset includes a collection of object images
taken under varied light conditions and rotation angles.1

The four commonly used features are 64-D RGB color histo-
grams, 64-D HSV color histograms, 77-D color similarities,
and 13-D Haralick features.

Caltech101-7/Caltech101-20. Caltech101 is a popular object
recognition dataset with 101 classes of images.2 We follow a
previous work [42] in selecting the widely used subsets Cal-
tech101-7 and Caltech101-20. Six extracted features are
available: 48-D Gabor, 40-D wavelet moments (WM), 254-D
CENTRIST, 1,984-D histogram of oriented gradients (HOG),
512-D GIST and 928-D LBP features.

MNIST. This is a well-known dataset of handwritten dig-
its.3 Three types of features are extracted from all test

images: 30-D IsoProjection, 9-D Linear Discriminant Analy-
sis, and 9-D Neighborhood Preserving Embedding features.

NUS-WIDE. As a web image dataset for object recogni-
tion,4 we select eight classes of six feature sets: 64-D color
histogram, 225-D block-wise color moments, 144-D color
correlogram, 73-D edge direction histogram, 128-D wavelet
texture and 500-D bag of words from SIFT descriptors.

MSRC-v1. It is an image dataset with eight object classes,
each with 30 images.5 Following [43], we select seven classes
composed of trees, buildings, airplanes, cows, faces, cars
and bicycles. Five visual feature sources are extracted from
each image: 24-D color moment, 576-D HOG, 512-D GIST,
256-D local binary pattern, and 256-D CENTRIST features.

ORL. This database contains ten different face images,
each of 40 subjects, which are taken at various times with
different lighting and facial expressions.6

Youtube. This is a video dataset containing 2,000 instances
in 10 topics, alongwith six views of both visual and audio fea-
tures, which are the 2,000-D cuboids histogram, 1,024-D hist
motion estimate, 64-D HOG features, 512-D MFCC features,
64-D volume streams, and 647-D spectrogram streams.7

A summary of these eight test datasets for comparative
experiments is presented in Table 2, including the numbers
of samples, features, views and data types.

4.2 Performance Evaluation

For clustering tasks, three well-known evaluation metrics are
applied to the comparative experiments, including clustering
accuracy (ACC), normalized mutual information (NMI), and
adjusted rand index (ARI). Given sample xi for any i 2
f1; . . . ; ng, the predicted clustering label and the real label are
denoted as pi and qi, respectively. TheACC is defined as

ACC ¼
Pn

i¼1 d qi;map pið Þð Þ
n

; (23)

where dða; bÞ ¼ 1 if a ¼ b, and dða; bÞ ¼ 0 otherwise. Here,
mapð�Þ is the best permutation mapping that matches the
predicted clustering labels to the ground truths. Denote the
predictive clustering result as ~C ¼ f~Cig~ci¼1 and the ground
truth as C ¼ fCjgcj¼1, then NMI is calculated by

NMI ¼
P~c

i¼1

Pc
j¼1 j~Ci \ Cjjlog nj~Ci\Cjj

Cij j Cjj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP~c
i¼1 j~Cijlog

~jCij
n

	 
 Pc
j¼1 Cj

�� ��log Cjj j
n

� �s : (24)

ARI characterizes the agreement between two partitions C
and ~C, defined as

ARI ¼
P

ij

nij

2

� �
� P

i

ai
2

� �P
j

bj
2

� �
 �
=

n
2

� �
1
2

P
i

ai
2

� �
þP

j

bj
2

� �
 �
� P

i

ai
2

� �P
j

bj
2

� �
 �
=

n
2

� � ;

(25)

Fig. 3. Several sample images from the test image datasets.

1. https://elki-project.github.io/datasets/multi_view
2. http://www.vision.caltech.edu/Image_Datasets/Caltech101/
3. http://yann.lecun.com/exdb/mnist/

4. https://lms.comp.nus.edu.sg/wp-content/uploads/2019/
research/nuswide/NUS-WIDE.html

5. http://riemenschneider.hayko.at/vision/dataset/task.php?
did=35

6. http://cam-orl.co.uk/facedatabase.html
7. http://archive.ics.uci.edu/ml/datasets
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where ½nij	 ¼ j~Ci \ Cjj, ai ¼ j~Cij and bj ¼ jCjj. Higher values
of all these metrics indicate better performance.

As for multi-view semi-supervised learning, we compute
its classification accuracy for the performance evaluation.
All experiments are repeated ten times, with accuracy
means and standard deviations taken as the final results.

4.3 Parameter Setup

So as to validate the effectiveness and efficiency of the pro-
posed DSRL method, several popular state-of-the-art meth-
ods are used for performance comparisons of multi-view
clustering (K-Means, MLAN [44], SwMC [42], MSC-IAS
[45], MCGC [46] and BMVC [47]) and semi-supervised clas-
sification (KNN, SVM, AdaBoost, MVAR [48], MLAN [44]
and HLR-M2VS [49]).

Here, we clarify some of the parameter settings used in the
compared methods. All methods are tuned using their default
settings if feasible. For other open hyperparameters, we adopt
the following settings. The number of the nearest neighbors
for MSC-IAS is fixed as 3, while the dimension of the intact
space is fixed as 500. For MCGC, the regularization parameter
b is set to 0.1. For MLAN, the number of adaptive neighbors
ranges within [1,10]. For BMVC, we randomly generate 10

percentmulti-view training data for non-linear anchor embed-
ding. For MVAR, the trade-off weight for each view is fixed at
� = 1000, while the redistribution parameter over the views is
set at r = 2. For HLR-M2VS, two weighted factors are tuned as
�1 ¼ 0:2 and �2 ¼ 0:4.

As for the proposed DSRL method, the activation func-
tion defined in (6) is employed. We set the block number as
t ¼ 10. The learning rate is fixed as lr ¼ 0:02 for clustering
and lr ¼ 0:05 for semi-supervised classification. The initiali-
zation for the parameterized activation function is tuned as
w1 ¼ w2 ¼ 1:0, b1 ¼ 1:0 and b2 ¼ 2:0. All methods are run on
a computer with an i5-9500 CPU and 8GB RAM.

4.4 Multi-View Clustering

Fig. 4 shows the learned sparse regularizer gðxÞ ¼ R x
0 ð��1

ðu1;u2ÞðyÞ � yÞdy by the activation function �ðu1;u2ÞðxÞ of DSRL on all
test datasets for clustering tasks. The learned parameterQ dif-
fers in varied datasets, as a result of learning sparse regular-
izers in a data-driven manner. All the learned parameters of
the activation functions obey (9).Weobserve that all the curves
of the learned regularizers are symmetric about the y-axes, and
gðxÞ ¼ 0 when x ¼ 0. In all test datasets, the learned sparse
regularizer functions are nonnegative and monotonically

Fig. 4. The learned sparse regularizer gðxÞ ¼ R x
0 ð��1

ðu1 ;u2ÞðyÞ � yÞdy on test datasets for multi-view clustering. All learned parameters �ðu1 ;u2ÞðxÞ of the
activation functions are listed under each subfigure, with the points x ¼ 
w1ðb2 � b1Þmarked in red.

TABLE 2
A Brief Description of the Test Datasets
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increasing on ðw1ðb2 � b1Þ;1Þ, but theymay not bemonotoni-
cally increasing on ð0; w1ðb2 � b1ÞÞ, which is drastically differ-
ent from hand-crafted sparse regularizers. It can be seen from
these figures that all learned sparse regularizers are differen-
tiable except at x ¼ 0. Note that DSRL does not need to
approximate any hand-crafted sparse regularizer. Instead, it
aims to learn task-specific sparse regularizers for given data.
Therefore, the curves of learned gðxÞ differ from those of
hand-crafted sparse regularizers. However, these regularizers
share some common characteristics: nonconvex, nondecreas-
ing on ð0;1Þ, and gð0Þ ¼ 0.

Table 3 presents the clustering accuracy on all test datasets
with various surrogate functions gðxÞ in terms of ACC, NMI
and ARI. The baseline method records the performance of
directly solving fðWÞwithout sparse regularizers. To provide
a fair comparison for all the defined sparse regularizers, both
� and g range in ð0; 1:0	. As for the ‘p-norm, the p value ranges
in ð0; 1Þ. From the experimental results, we have the observa-
tion that the performance of these specific regularizers is com-
parable in some datasets. At the same time, the proposed
DSRL method achieves better performance than manually
designed gðxÞ. Table 3 also provides the sparsity of the
learned gðxÞ, where the sparsity is defined as the proportion
of near zero outputs (x � 0:01). Notice that the input data are
sparse for relatively large-scale datasets since the Gaussian
kernel and nearest neighbors are used for affinity matrix

evaluation. All methods still yield sparser outputs success-
fully in most datasets, and significantly promote the sparsity
in all datasets except ALOI and Caltech101-7. Nonetheless, it
can be seen that excessive sparseness may lead to decreased
clustering performance, and DSRL improves the clustering
performancewith suitable sparse outputs. These observations
indicate that the parameterized activation functions succeed
in learning a data-driven sparse representation of the similar-
ity matrices, and thus such learned sparse regularizers are
more robust when applied to various datasets. Distinct from
traditional hand-crafted sparse regularizers, DSRL can learn a
more suitable sparse regularizer that is tailored for a given
dataset. In other words, DSRL can learn a data-driven sparse
regularizer, which intuitively provides strong generalization
capability in practical applications.

Table 4 compares the clustering performance of DSRL and
several state-of-the-art methods in terms of ACC, NMI and
ARI. An example of visualization for clustering results in the
MNIST dataset is demonstrated in Fig. 5. It can be observed
that most of the multi-view clustering methods achieve better
performance than single-viewK-Means clustering. The exper-
imental results also suggest that the proposed approach gains
high accuracy and is effective on all test datasets. DSRL per-
forms the best according to all metrics on seven of the eight
test datasets. For theMNIST dataset, the proposedmodel also
achieves the second best performance by all evaluation

TABLE 3
Clustering Accuracy (Mean% and Standard Deviation%) and Sparsity (Proportion of Near Zero Outputs) of the Proposed DSRL

Method and Hand-Crafted Sparse Surrogates gðxÞ Defined in Table 1, Where the Best Performance is Highlighted in Bold
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metrics. Overall, these results validate the feasibility and
superiority of the proposedDSRLmethod.

4.5 Multi-View Semi-Supervised Classification

As an application to multi-view semi-supervised learning, we
conduct experiments with 10 percent randomly generated
labeled data. The learned sparse regularizers gðxÞ used for
semi-supervised classification are illustrated in Fig. 6. It can be
seen from this figure that although the learned parameters

differ from those in clustering scenarios, they share some com-
mon properties. We also compare the performance of DSRL
and various defined sparse regularizers, as shown in Table 5.
Unlike clustering tasks, it is noticed that the original affinity
matrix without sparse constraints leads to poor performance
for semi-supervised classification. All methods yield sparser
outputs than those in clustering tasks, and obtainmore signifi-
cant improvements in classification accuracy. Although DSRL
does not always generate the sparsest outputs, it achieves the

TABLE 4
Clustering Accuracy (Mean% and Standard Deviation%) of All Compared Multi-View Clustering Methods,

Where the Best Performance is Highlighted in Bold and the Second Best is Underlined

Fig. 5. Visualization for multi-view clustering results in dataset MNIST. Here, the high-dimensional input data are projected onto a two-dimensional
subspace using t-SNE, then the corresponding data points are marked in varying colors according to their predictive labels.
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Fig. 6. The learned sparse regularizer gðxÞ ¼ R x

0 ð��1
ðu1 ;u2ÞðyÞ � yÞdy on test datasets for multi-view semi-supervised classification. All learned parame-

ters �ðu1;u2ÞðxÞ of the activation functions are listed under each subfigure, with the points x ¼ 
w1ðb2 � b1Þmarked in red.

TABLE 5
Classification Accuracy (Mean% and Standard Deviation%) and Sparsity (Proportion of Near Zero Outputs) of the Proposed Method
DSRL and Compared Hand-Crafted Sparse Surrogates gðxÞ Defined in Table 1, Where the Best Performance is Highlighted in Bold

TABLE 6
Classification Accuracy (Mean% and Standard Deviation%) of All Compared Semi-Supervised Classification Methods,

Where the Best Performance is Highlighted in Bold and the Second Best is Underlined
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best performance on all datasets with considerable sparseness,
which partially suggests the importance and necessity of data-
driven learning for sparse regularizers. Moreover, it was diffi-
cult and time-consuming to select suitable hyperparameters
for these defined sparse regularizers in the experiments, and
DSRL solves this problem by learning sparse regularizers
adaptively. Table 6 compares DSRL with other state-of-the-art
semi-supervised classification methods, indicating that DSRL
outperforms the others in seven of the eight test datasets. Fur-
ther, we compare the performance of all methods as the ratio
of labeled data ranges in f0:05; 0:10; . . . ; 0:80g in Fig. 7. Over-
all, DSRL performs best on all test datasets, and gains higher
accuracy with very limited numbers of labeled data points.
The desired performance in semi-supervised classification fur-
ther validates the effectiveness of the proposedDSRLmethod.

4.6 Runtime Analyses

In this subsection, we compare the runtimes of all defined
sparse surrogates and the proposed DSRL method in Fig. 8.
The runtimes of all methods are related to the input data
dimensions, therefore these methods run faster on theMSRC-
v1 and ORL datasets. As to other datasets with more samples,
these methods require more time to yield sparse outputs. The
time costs of hand-crafted sparse surrogates are comparable,

and the experimental results indicate that DSRL outperforms
other methods in terms of computational cost. Especially
when used for semi-supervised classification, DSRL only
takes less than half of the time required by other sparse surro-
gates. This can account for why we adopt a higher learning
rate in semi-supervised classification than in clustering tasks,
suggesting that DSRL converges faster to produce optimal
sparse outputs in this sense.

4.7 Parameter Sensitivity

In this subsection, we examine the convergence and robust-
ness of the proposed DSRL method. Its loss values with var-
ious numbers of iterations on different test datasets are
demonstrated in Fig. 9. We observe that the loss objective
value of DSRL gradually decreases as the number of itera-
tions increases. Eventually, when the iteration number is
large enough, it becomes stable with slight fluctuations,
which suggests that it approaches convergence.

The performance of DSRL for clustering tasks with various
numbers of blocks is reported in Fig. 10 in terms of ACC, NMI
and ARI. In all figures, the block number ranges in f2; 4; . . . ;
24g, and the learning rate lr is fixed as 0.02. Several significant
observations can be made. First, a small block number t leads
to an acceptable result, which indicates that a smaller block
number can be set to speed up computation. Second, the three
performance evaluation metrics increase with block number
for most datasets, becoming stable with slight fluctuations at
t > 10. This is an empirical explanation for why we fix t ¼ 10
in previous experiments to obtain acceptable results. Third,
the influence of block number is not significant on some data-
sets such as ALOI, Caltech101-7, NUS-WIDE and Youtube,
however, overall the experimental results follow our previous
observations.We also demonstrate the influence of block num-
bers for multi-view semi-supervised classification in Fig. 11. In
this case, the classification performance is more robust to the
block number, and the experiments further validate our previ-
ous analyses.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed an effective neural networkmodel
dubbed DSRL for learning data-driven sparse regularizers
adaptively, which was a block-wise deep neural network
with learnable activation functions. In this model, we

Fig. 7. Performance of all compared methods in semi-supervised classi-
fication tasks as the ratio of labeled data ranges in f0:05; 0:10; . . . ; 0:80g.

Fig. 8. Runtime comparison for all sparse surrogates and DSRL in (a) clustering and (b) semi-supervised classification.
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exploited the correspondence between sparse regularizers
and parameterized activation functions via proximal
operators, where sparse regularizers could be obtained from
the integration of activation functions. This provided a solid

theoretical justification for DSRL. The proposed DSRL
method was demonstrated to be capable of solving optimiza-
tion problems with adaptive sparse regularizers, which were
not limited to hand-crafted sparseweights or outputs. Finally,
we compared the performance of DSRL with those of hand-
crafted sparse regularizers on eight real-world multi-view
datasets. DSRL achieved superior performance in terms of
multi-view clustering and semi-supervised classification.
This approach is expected to provide some insights on learn-
ing adaptive sparse regularizers for variousmachine learning
tasks. Currently, the learned sparse regularizers are only for
entrywise sparsity. In future work, we will further explore
learnablemultivariate sparse regularizers.
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