
1

Learning Deep Sparse Regularizers with
Applications to Multi-View Clustering and

Semi-Supervised Classification
(Appendix)

Shiping Wang, Zhaoliang Chen, Shide Du and Zhouchen Lin, Fellow, IEEE

A. Conditions for Equation (9)

Associated with the explicit form (8) of

g(x) =

(1
2w2
− 1

2)x
2 + (b2 − w1(b2−b1)

w2
)x+ w1(w1−w2)

2w2
(b2 − b1)2, x ≥ w1(b2 − b1),

(1
2w1
− 1

2)x
2 + b1x, 0 ≤ x < w1(b2 − b1),

g(−x), x < 0

(1)

to be learned, more details for the deduction of conditions (9) for the learned parameters are provided. We consider the
following two cases:

Case 1: Suppose 0 ≤ x < w1(b2 − b1), it is evident that we have g(x) =
(

1
2w1
− 1

2

)
x2 + b1x ≥ 0 when w1 ∈ (0, 1]. If

w1 ∈ (1,+∞), the condition for g(x) ≥ 0 becomes(
1

2w1
− 1

2

)
(w1(b2 − b1))2 + b1(w1(b2 − b1)) ≥ 0, (2)

this is,

(w1 − 1)b2 − (w1 + 1)b1 ≤ 0. (3)

Case 2: Suppose x ≥ w1(b2 − b1), because 1
2w2
− 1

2 < 0 when w2 ∈ (1,+∞), it can be verified that g(x) < 0 when x is
large enough. Therefore we only consider w2 ∈ (0, 1]. It is required that g(x) is non-decreasing for x ∈ [w1(b2 − b1),+∞),
leading to ∇g(x) ≥ 0. According to the expression of g(x) given in (8), we obtain

∇g(x) =
(

1

w2
− 1

)
x+

(
b2 −

w1(b2 − b1)
w2

)
. (4)

Together with w2 ∈ (0, 1], we know that ∇g(x) is also non-decreasing when x ≥ w1(b2 − b1). Therefore, ∇g(x) ≥ 0 for
x ∈ [w1(b2 − b1),+∞) is equivalent to ∇g(x)|x=w1(b2−b1) ≥ 0, resulting in(

1

w2
− 1

)
w1(b2 − b1) +

(
b2 −

w1(b2 − b1)
w2

)
= −w1(b2 − b1) + b2 ≥ 0, (5)

which indicates b1 ≥ w1−1
w1

b2. Because g(x) is non-decreasing and g(w1(b2− b1)) ≥ 0 when b1 ≥ w1−1
w1

b2, we have g(x) ≥ 0
in this case. Simultaneously,

b1 ≥
w1 − 1

w1
b2 >

w1 − 1

w1 + 1
b2, (6)

which also guarantees that Inequality (3) holds.
In summary, combing w1, w2 > 0, b2 ≥ b1 > 0 from the aforementioned analyses, the conditions for making g(x) nonnegative

become

w1 > 0, 1 ≥ w2 > 0,

b2 ≥ b1 ≥ max

{
0,
w1 − 1

w1
b2

}
.

(7)

2

B. Gradients of Learnable Parameters in DSRL

The learnable parameters of the proposed DSRL framework is updated via back propagation, where the loss function is defined
as the form

J (X̃,X(t)) =
1

2
‖X̃−X(t)‖2F . (8)

We need to optimize parameters Θ = [w1, w2, b1, b2] and L according to their gradients. Here, we provide the gradients of
these parameters to be learned. For convenience, we denote X(i) = [X

(i)
pq]n×m for any i ∈ {1, · · · , t}, and

X(t) , X(t)

(
X(t−1),Θ

)
= X(t)

(
X(t−1)

(
X(t−2),Θ

)
,Θ
)
= X(t)

(
X(t−1)

(
· · ·X(1)

(
X(0),Θ

)
,Θ
)
,Θ
)

(9)

where X(i)(X(i−1),Θ) = ξΘ
(
X(i−1) − 1

L∇f(X(i−1))
)
. According to the chain rule of multi-variable functions, we know

dJ
dΘ

=
dX(t)

dΘ

dJ
dX(t)

, (10)

where dJ
dX(t)

= X(t)−X̃ is an n×m matrix, dX(t)

dΘ is an n×m×4 tensor, and dJ
dΘ ∈ R4 is a column vector. The multiplication

between the tensor dX(t)

dΘ and the matrix dJ
dX(t)

means the tensor contraction. It is worth pointing out that

dX(t)

dΘ
=
dX(t)

(
X(t−1),Θ

)
dΘ

=
∂X(t)

∂Θ
+
dX(t−1)

dΘ

∂X(t)

∂X(t−1)
, (11)

where dX(t)(Θ)

dΘ and dX(t−1)

dΘ are n ×m × 4 tensors, ∂X(t)

∂X(t−1)
is an n ×m × n ×m four-order tensor, and the multiplication

between tensors also means tensor contraction. For any i ∈ {1, · · · , t}, the gradient of X(i)(Θ) can be calculated via the
coordinate-wise derivatives of

∂
[
X(i)(Θ)

]
pq

∂w1
=

b2 − b1, b2 ≤ [Z(i)]pq,

[Z(i)]pq − b1, b1 ≤ [Z(i)]pq < b2,
0, −b1 ≤ [Z(i)]pq < b1,

[Z(i)]pq + b1, −b2 ≤ [Z(i)]pq < −b1,
b1 − b2, [Z(i)]pq < −b2,

∂
[
X(i)(Θ)

]
pq

∂w2
=

[Z(i)]pq − b2, b2 ≤ [Z(i)]pq,
0, −b2 ≤ [Z(i)]pq < b2,

[Z(i)]pq + b2, [Z(i)]pq < −b2,

(12)

∂
[
X(i)(Θ)

]
pq

∂b1
=

−w1, b1 ≤ [Z(i)]pq,
0, −b1 ≤ [Z(i)]pq < b1,
w1, [Z(i)]pq < −b1,

∂
[
X(i)(Θ)

]
pq

∂b2
=

w1 − w2, b2 ≤ [Z(i)]pq,
0, −b2 ≤ [Z(i)]pq < b2,

w2 − w1, [Z(i)]pq < −b2,
(13)

where Z(i) = X(i−1) − 1
L∇f(X(i−1)), X(i)(Θ) ∈ Rn×m and Z(i) ∈ Rn×m with each entry as

[
X(i)(Θ)

]
pq

and [Z(i)]pq ,
for all p ∈ {1, · · · , n} and q ∈ {1, · · · ,m}. Furthermore, for any i ∈ {1, · · · , t}, we can compute the [p, q, j, k]-th entry of
∂X(i)

∂X(i−1)
by

[
∂X(i)

∂X(i−1)

]
pqjk

=
∂
[
ξΘ(Z(i))

]
pq

∂
[
X(i−1)

]
jk

=

w2
∂[Z(i)]pq

∂[X(i−1)]jk
, b2 ≤ [Z(i)]pq,

w1
∂[Z(i)]pq

∂[X(i−1)]jk
, b1 ≤ [Z(i)]pq < b2,

0, −b1 ≤ [Z(i)]pq < b1,

w1
∂[Z(i)]pq

∂[X(i−1)]jk
, −b2 ≤ [Z(i)]pq < −b1,

w2
∂[Z(i)]pq

∂[X(i−1)]jk
, [Z(i)]pq < −b2.

(14)

For the updating rule of the variable L to be learned, we still have

dJ
dL

=
dX(t)

dL

dJ
dX(t)

, (15)

where dX(t)

dL is regarded as an n × m × 1 tensor for simplicity. Analogously, it is also noted that X(i) is a parameterized
function of L, then

dX(t)

dL
=
dX(t)

(
X(t−1), L

)
dL

=
∂X(t)

∂L
+
dX(t−1)

dL

∂X(t)

∂X(t−1)
. (16)

3

For any i ∈ {1, · · · , t}, while keeping X(i−1), the gradient of X(i) can be represented as the following form

∂
[
X(i)(L)

]
pq

∂L
=

w2∇f(X(i−1))/L

2, b2 ≤ [Z(i)]pq,
w1∇f(X(i−1))/L

2, b1 ≤ [Z(i)]pq < b2,
0, −b1 ≤ [Z(i)]pq < b1,

w1∇f(X(i−1))/L
2, −b2 ≤ [Z(i)]pq < −b1,

w2∇f(X(i−1))/L
2, [Z(i)]pq < −b2.

(17)

Correspondingly, the total derivatives of J with respect to Θ and L can be computed recursively using the components as
given above. Actually, we did not implement the above derivatives as the deep learning platform (e.g., PyTorch) can compute
them automatically via automated differentiation.

