
Training Neural Networks by Lifted Proximal
Operator Machines

Jia Li , Mingqing Xiao , Cong Fang , Yue Dai, Chao Xu, and Zhouchen Lin , Fellow, IEEE

Abstract—We present the lifted proximal operator machine (LPOM) to train fully-connected feed-forward neural networks. LPOM

represents the activation function as an equivalent proximal operator and adds the proximal operators to the objective function of a

network as penalties. LPOM is block multi-convex in all layer-wise weights and activations. This allows us to develop a new block

coordinate descent (BCD) method with convergence guarantee to solve it. Due to the novel formulation and solving method, LPOM

only uses the activation function itself and does not require any gradient steps. Thus it avoids the gradient vanishing or exploding

issues, which are often blamed in gradient-based methods. Also, it can handle various non-decreasing Lipschitz continuous activation

functions. Additionally, LPOM is almost as memory-efficient as stochastic gradient descent and its parameter tuning is relatively easy.

We further implement and analyze the parallel solution of LPOM. We first propose a general asynchronous-parallel BCD method with

convergence guarantee. Then we use it to solve LPOM, resulting in asynchronous-parallel LPOM. For faster speed, we develop the

synchronous-parallel LPOM. We validate the advantages of LPOM on various network architectures and datasets. We also apply

synchronous-parallel LPOM to autoencoder training and demonstrate its fast convergence and superior performance.

Index Terms—Neural networks, lifted proximal operator machines, block multi-convex, block coordinate descent, parallel implementation

Ç

1 INTRODUCTION

NEURAL networks (NNs) are powerful models that have
achieved great success in many applications including

image recognition [1], speech recognition [2], natural lan-
guage understanding [3], and building the Go game learn-
ing system [4]. However, since their objective functions are
highly non-convex, the training of NNs remains a challenge,
which includes the ill-conditioned Hessian and the exis-
tence of many saddle points and local minima [5].

As the predominant method in NN training, the gradient-
based methods mainly include the vanilla stochastic gradient
descent (SGD) [6] and SGD with adaptive learning rates and
momentum terms like Nesterovmomentum [7], AdaGrad [8],
RMSProp [9], Adam [10], andAMSGrad [11]. SGDand its var-
iants use a small mini-batch training samples to estimate the
full-batch gradient. So the weight update of each step is

simple. Moreover, the estimated gradients have noise. This
helps to escape saddle points [12]. Despite the great success of
gradient-basedmethods, they have several critical drawbacks
as well. The major flaw is that they suffer from the vanishing
or exploding gradient issue, which slowsdown or destabilizes
the training. Some approaches have been developed to remit
such an issue, e.g., the introduction of rectified linear units
(ReLUs), batch normalization (BN) [13], or residual networks
(ResNets) [14]. However, the problem of computing the gra-
dients of a nested objective function still persists. Also, their
parameter tuning is difficult, e.g., setting the learning rates
and stopping criteria [15]. Furthermore, they cannot handle
non-differentiable activation functions directly (e.g., binarized
neural networks [16]) and cannot update the weights across
layers in parallel [15]. For more details on the limitations of
SGD,we refer the readers to [17] and [15].

Due to the limitations of SGDdiscussed above, there is very
active research in developing new training methods for NNs.
A notable approach is to introduce auxiliary variables associ-
ated with the network activations and formulate the training
of anNNas an equality constrained optimizationproblem [18].
Then this approach solves the resulted constrained problem
with standard optimization methods. Another advantage of
this approach is that it may be implemented in parallel, and
thus may be capable of solving distributed large-scale prob-
lems. Several methods of this kind of approach have been pro-
posed and they differ in how to relax the constraints and add
penalties to the objective function. Carreira-Perpinan and
Wang [18] used quadratic penalties to approximately enforce
the equality constraints and solved a series of unconstrained
minimization problems. Zeng et al. [19] also used quadratic
penalties to approximately enforce the equality constraints but
introduced one more block of auxiliary variables for each
layer. Motivated by alternating direction method of multi-
pliers (ADMM) [20], Taylor et al. [17] and Zhang et al. [21]

� Jia Li is with the Key Laboratory ofMachine Perception (MOE), School of Elec-
tronics Engineering and Computer Science, Peking University, Beijing
100871, China, and also with the School of Artificial Intelligence, Beijing Nor-
malUniversity, Beijing 100875, China. E-mail: jiali.gm@gmail.com.

� Mingqing Xiao and Chao Xu are with the Key Laboratory of Machine Per-
ception (MOE), School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China.
E-mail: mingqing_xiao@pku.edu.cn, xuchao@cis.pku.edu.cn.

� Cong Fang is with the University of Pennsylvania, Philadelphia, PA
19104 USA. E-mail: fangcong@pku.edu.cn.

� Yue Dai is with the College of Software, Beihang University, Beijing
100083, China. E-mail: daiyue@buaa.edu.cn.

� Zhouchen Lin is with the Key Laboratory of Machine Perception (MOE),
School of Electronics Engineering and Computer Science, Peking Univer-
sity, Beijing 100871, China, and also with the Pazhou Lab, Guangzhou
510330, China. E-mail: zlin@pku.edu.cn.

Manuscript received 1 July 2019; revised 24 Sept. 2020; accepted 21 Dec. 2020.
Date of publication 31 Dec. 2020; date of current version 5 May 2022.
(Corresponding author: Zhouchen Lin.)
Recommended for acceptance by N. Le Roux.
Digital Object Identifier no. 10.1109/TPAMI.2020.3048430

3334 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 6, JUNE 2022

0162-8828 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2956-2846
https://orcid.org/0000-0002-2956-2846
https://orcid.org/0000-0002-2956-2846
https://orcid.org/0000-0002-2956-2846
https://orcid.org/0000-0002-2956-2846
https://orcid.org/0000-0001-6191-7726
https://orcid.org/0000-0001-6191-7726
https://orcid.org/0000-0001-6191-7726
https://orcid.org/0000-0001-6191-7726
https://orcid.org/0000-0001-6191-7726
https://orcid.org/0000-0002-5076-7897
https://orcid.org/0000-0002-5076-7897
https://orcid.org/0000-0002-5076-7897
https://orcid.org/0000-0002-5076-7897
https://orcid.org/0000-0002-5076-7897
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
mailto:jiali.gm@gmail.com
mailto:mingqing_xiao@pku.edu.cn
mailto:xuchao@cis.pku.edu.cn
mailto:fangcong@pku.edu.cn
mailto:daiyue@buaa.edu.cn
mailto:zlin@pku.edu.cn

adopted the augmented Lagrangian approach to obtain a
sequence satisfying the nonlinear equality constraints. How-
ever, the introduced Lagrange multipliers require more mem-
ory and ADMM is not designed to deal with nonlinear
equality constraints. Zhang and Brand [22] and Askari et al.
[23] used the equivalent representations of the activation func-
tions, which eliminate the nonlinear constraints. However, the
method in [22] is limited to the ReLU activation function.
While the formulation in [23] can handle general activation
functions, its solvingmethod needs to be tailored for each acti-
vation function and the presented solving method is for ReLU
only. Also, the two methods cannot compete with SGD in
speed or error rate.Moreover, in the test phase, they needed to
solve optimization problems to predict the labels of new sam-
ples, which is computationally unaffordable. In comparison,
SGD uses feed-forward passes to predict labels, i.e., propagat-
ing activations from the input to the output layer and making
the prediction using the activation of the output layer.
Recently, Gu et al. [24] presented a follow-up work of [23].
Their formulation (see (4) and (9) in [24]) is equivalent to ours
(see (19) or (20)). However, their solving method is not as effi-
cient and general as ours (see the last paragraph of Section 4.1).

The main contributions of this paper can be summarized
as follows.

� We develop a new optimization method to train fully-
connected feed-forward NNs, which we call the lifted
proximal operator machine (LPOM).1 LPOM allows
us to infer new samples using simple feed-forward
passes, which is the same as SGD. Moreover, LPOM is
block multi-convex, i.e., it is convex w.r.t. layer-wise
weights or activations while keeping the remaining
weights and activations fixed. In contrast, most of the
existing NN training methods do not have this prop-
erty. This is very beneficial for the training ofNNs.

� Accordingly, we propose a new block coordinate
descent (BCD) method to solve LPOM and prove its
convergence. Our BCD solving method only uses the
mapping of the activation function itself and does not
use its derivative. Thus it avoids the gradient vanish-
ing or exploding problem, which is well-known in
gradient-based methods. Also, LPOM is applicable to
various non-decreasing Lipschitz continuous activa-
tion functions, which can be saturating (e.g., sigmoid
and tanh) and non-differentiable (e.g., ReLU and leaky
ReLU). Moreover, LPOM needs no more auxiliary

variables than layer-wise activations. So it requires
almost the same memory as that of SGD, which also
stores all activations for gradient calculations. Addi-
tionally, it is easy to tune the penalty parameters in
LPOM.

� We implement and analyze the parallel solution
of LPOM in both asynchronous and synchronous
ways. We first propose a general asynchronous-
parallel BCD method. We prove its convergence and
use it to solve LPOM, resulting in asynchronous-
parallel LPOM. The obtained conclusion is also the
foundation of synchronous-parallel LPOM. Then we
propose synchronous-parallel LPOM and show that it
achieves satisfactory speedup over serial LPOMwith-
out suffering degradation in performance.

Since SGD is the commonly used NN training method, we
use it as our main competitor. As shown in Table 1, LPOM
exhibits some favorable properties as compared to SGD. Cur-
rently, we implement LPOM only on fully-connected NNs.
Convolutional neural networks (CNNs) are the most popular
feed-forward networks. However, since we have not inter-
preted pooling operators and skip-connections, we will
implement LPOM on CNNs in the future. We note that most
of the existing non-gradient based methods also focus on
fully-connectedNNsfirst [17], [18], [19], [21], [22], [23].

2 RELATED WORK

In this section, we review some non-gradient based NN train-
ingmethods, which aremost related to ourwork.We summa-
rize themain notations used throughout the paper in Table 2.

Consider a standard feed-forward NN with n layers for
supervised learning, where the first layer is the input layer
and the nth layer is the output layer. Let X1 2 Rn1�m be a
batch of training samples, where n1 is the dimension of the
training samples and also the number of neurons in the
input layer, and m is the batch size. Let D 2 Rc�m be the
labels of X1, where c is the number of classes. Let Wi be
the weight matrix between the ith layer and the ðiþ 1Þth
layer, where we stack an additional column to Wi and an
all-one row to Xi and omit the corresponding bias. Let fð�Þ
be the element-wise activation function (e.g., sigmoid, tanh,
and ReLU). Let ‘ð�; �Þ be the loss function (e.g., mean
squared error (MSE) or cross-entropy). With the help of
these notations, the batch training problem of the NN can
be formulated as the following minimization:

min
fWig

‘ fðWn�1fð� � �fðW 2fðW 1X1ÞÞ � � �ÞÞ; D� �
: (1)

In the above formulation, the objective function of the NN is
nested, where the output of the ith layer is the input of the

TABLE 1
The Property Summary of LPOM as Compared to SGD

Property SGD LPOM

Memory Equal
Gradient Yes* No
Parallelizability No Yes
Parameter tuning Hard Easy
Activation function Differentiable and Non-saturating Can be non-differentiable or saturating

*denotes that it has the vanishing or exploding gradient issues, which has to be addressed by extra empirical tricks.

1. We filed a patent on the LPOM formulation in Nov. 2017, which
corresponds to Section 3, and filed another patent on the solving
method of LPOM in Oct. 2018, which corresponds to Section 4. The pre-
liminary version of this work has been presented at AAAI 2019 [25].

LI ET AL.: TRAINING NEURAL NETWORKS BY LIFTED PROXIMAL OPERATOR MACHINES 3335

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

ðiþ 1Þth layer for i ¼ 1; . . . ; n� 1. Problem (1) can be solved
by SGD. It computes the gradients of fWign�1

i¼1 using back-
propagation and then updates fWign�1

i¼1 by gradient descent.
To make problem (1) more computationally tractable, the

most common approach is introducing the activation of
each layer as a block of auxiliary variables. Then problem (1)
can be equivalently rewritten as an equality constrained
minimization problem [18]

min
fWig;fXig

‘ðXn;DÞ

s.t. Xi ¼ fðWi�1Xi�1Þ; i ¼ 2; 3; . . . ; n;
(2)

where Xi is the activation of the ith layer,Xn is also the out-
put of the NN, and the other notations are the same as those
in (1). In comparison to problem (1), the objective function
of problem (2) is not nested. So we may use more elegant
optimization methods to solve it. We want to note that
when using SGD to solve problem (1), it also needs to record
the activations fXigni¼2 to compute the gradients.

Carreira-Perpinan and Wang [18] proposed the method
of auxiliary coordinates (MAC) to approximately solve
problem (2). Rather than directly solving (2), MAC relaxes
the equality constraints by using quadratic penalties and
solves unconstrained problems of the form

min
fWig;fXig

‘ðXn;DÞ þ m

2

Xn
i¼2

kXi � fðWi�1Xi�1Þk2F ; (3)

where m > 0 gradually increases with the iterations. In
order to decouple the nonlinear activations and obtain more
efficient solving methods for subproblems, Zeng et al. [19]
introduced a new block of auxiliary variables for each layer
to problem (2) and suggested the following problem:

min
fWig;fXig;fUig

‘ðXn;DÞ

s.t. Ui ¼ Wi�1Xi�1; Xi ¼ fðUiÞ; i ¼ 2; 3; . . . ; n:
(4)

Following the MAC method, instead of directly solving the
above, they optimized the following problems of the form:

min
fWig;fXig;fUig

‘ðXn;DÞ

þm

2

Xn
i¼2

ðkUi �Wi�1Xi�1k2F þ kXi � fðUiÞk2F Þ:
(5)

Taylor et al. [17] also tried to optimize problem (4). Inspired
by ADMM [20], they only added a Lagrange multiplier to the
constraint of the output layer, rather than adding a Lagrange
multiplier to each equality constraint, which yields

min
fWig;fXig;fUig;M

‘ðUn;DÞ

þhUn;Mi þ b

2
Un �Wn�1Xn�1

�� ��2
F

þ
Xn�1

i¼2

mi

2
ðkUi �Wi�1Xi�1k2F þ kXi � fðUiÞk2F Þ;

(6)

where M is the Lagrange multiplier and b > 0 and mi > 0
are constants. Note that the output layer uses the linear acti-
vation function (i.e., fðxÞ ¼ x). So they only heuristically
used the ADMM. Also inspired by ADMM, Zhang et al. [21]
used an alternative variable splitting scheme

min
fWig;fXig;fUig

‘ðXn;DÞ

s.t. Ui�1 ¼ Xi�1; Xi ¼ fðWi�1Ui�1Þ; i ¼ 2; 3; . . . ; n:

(7)

As in ADMM, they added a Lagrange multiplier for each
constraint in (7). Then the augmented Lagrangian problem
becomes

min
fWig;fXig;fUig;fAig;fBig

‘ðXn;DÞ

þm

2

Xn
i¼2

Ui�1 �Xi�1 þAi�1
�� ��2

F

�

þ Xi � fðWi�1Ui�1Þ þBi�1
�� ��2

F

�
;

(8)

whereAi andBi are the Lagrangemultipliers. However, prob-
lem (7) contains nonlinear equality constraints and ADMM is
designed to handle linearly constrained problems.

Zhang and Brand [22] developed a new approach only to
solve problem (2) using the ReLU activation function. Most
notably, they represented the ReLU activation function as a
convex minimization problem. Namely, they reinterpreted
the equality constraint in problem (2) using the ReLU acti-
vation function as the following problem:

Xi ¼ fðWi�1Xi�1Þ
¼ maxðWi�1Xi�1;0Þ
¼ argmin

Ui�0

kUi �Wi�1Xi�1k2F ;
(9)

where max is an element-wise maximum operator. Accord-
ing to the interpretation, they approximated problem (2)
using the ReLU activation function as follows:

min
fWig;fXig

‘ðXn;DÞ þ
Xn
i¼2

mi

2
kXi �Wi�1Xi�1k2F

s.t. Xi � 0; i ¼ 2; 3; . . . ; n:

(10)

TABLE 2
Summary of the Main Notations Used in This Paper

Notation Definition

1 All-one column vector
0 All-zero matrix
jaj Absolute value of a scalar a
XT Transpose of vector or matrix X
f�1 Inverse of function f
f 0ðxÞ Derivative of univariate function f at x
rf Gradient of multivariate function f
Xy Pseudo-inverse of matrixX
kxk2 l2-norm of vector x
� Element-wise multiplication
jXj Amatrix with the absolute values ofX
kXkF Frobenius norm of matrixX
kXk1 l1-norm of matrixX
kXk1 l1-norm of matrixX
kXk2 l2-norm (spectral norm) of matrixX
hX; Y i Inner product ofX and Y

3336 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 6, JUNE 2022

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

Unlike the MAC and the ADMM based methods, this relax-
ation does not include nonlinear equality constraints. More-
over, problem (10) is block multi-convex, i.e., it is convex
w.r.t. each block of variables when the remaining blocks are
fixed. They proposed a new BCD method to solve it. How-
ever, in the test time, they had to solve problem (10) with
fixed fWign�1

i¼1 or retrain Wn�1 in the output layer. Askari
et al. [23] followed the idea proposed by Zhang and
Brand [22]. They demonstrated how to convert more gen-
eral activation functions as convex minimization problems.
However, their trained weights can only be used to initia-
lize feed-forward NNs for SGD. Gu et al. [24] presented a
follow-up work of [23]. Their formulation is equivalent to
that of LPOM. However, their solving method needs to
solve constrained problems for updating layer-wise activa-
tions, which is not efficient. Also, their solving method
needs to be tailored for every activation function, so it is not
general. Notably, based on the fact that the composition of
convolution and average pooling is also linear, they incor-
porated an empirical trick to extend their formulation to
directly handle convolution and average pooling.

3 LIFTED PROXIMAL OPERATOR MACHINE

In this section, we introduce the idea of LPOM and discuss
its advantages over existing NN training methods.

3.1 Reformulation by Proximal Operator

LPOM aims to solve problem (2). The basic idea of LPOM is
as follows. Consider a simplified version of problem (2)
with only a single constraint

min
x;y

sðxÞ; s.t. x ¼ fðyÞ; (11)

where x and y are univariate. We first construct a function
hðx; yÞ, such that x ¼ fðyÞ ¼ argminxhðx; yÞ. Then we relax
problem (11) as the following problem:

min
x;y

sðxÞ þ mhðx; yÞ; (12)

where m > 0 is a penalty parameter.
We first describe the construction of hðx; yÞ for prob-

lem (11). The proximal operator [26]

proxfðyÞ ¼ argmin
x

fðxÞ þ 1

2
ðx� yÞ2; (13)

is a basic operation to update variables in an optimization
algorithm. So we consider using it to construct hðx; yÞ. Here
we assume that the activation function f is non-decreasing.
Then f�1ðxÞ ¼ fyjx ¼ fðyÞg is a convex set. f�1ðxÞ is a sin-
gleton fyg iff f is strictly increasing at fðyÞ. Define

fðxÞ ¼
Z x

0

ðf�1ðyÞ � yÞdy:

Note that fðxÞ is well defined, if allowed to take value ofþ1,
even if f�1ðyÞ is non-unique for some y between 0 and x. Any-
way, we do not explicitly use f�1, f , and g (to be defined later)
in the computation. It is easy to show that the optimality con-
dition of (13) is 0 2 ðf�1ðxÞ � xÞ þ ðx� yÞ. So the solution to

(13) is exactly x ¼ fðyÞ. Hence, we may choose hðx; yÞ ¼
fðxÞ þ 1

2 ðx� yÞ2, where fðxÞ is a univariate function.
Below we consider the original problem (2). We first

extend the above hðx; yÞ to the matrix form hðX;Y Þ, where
X and Y are matrices of the same size. Since we already
have hðx; yÞ, an element-wise function hðX;Y Þ is the most
desired. Let the subscript kl refer to the ðk; lÞth entry of a
matrix. We define hðX; Y Þ ¼ P

k

P
l hðXkl; YklÞ. In order to

get a more compact representation of hðX;Y Þ, for a matrix
X ¼ ðXklÞ, we define fðXÞ ¼ ðfðXklÞÞ. Namely, matrix X is
an array of entries denoted by Xkl. fðXÞ is an element-wise
function on X, i.e., it is a matrix with the same size as X and
its ðk; lÞth entry is fðXklÞ. Then we have

hðX;Y Þ ¼
X

k

X
l
h Xkl; Yklð Þ

¼
X

k

X
l

fðXklÞ þ 1

2
Xkl � Yklð Þ2

� �

¼ 1T fðXÞ1þ 1

2
kX � Y k2F :

Accordingly, the matrix form of the proximal operator in
(13) for problem (2) becomes

argmin
Xi

hðXi;Wi�1Xi�1Þ

�1T fðXiÞ1þ 1

2
kXi �Wi�1Xi�1k2F ;

(14)

where Xi and Wi�1Xi�1 play the roles of x and y in (13),
respectively. Similarly, we can show that the optimality con-
dition of problem (14) forXi is

0 2 f�1ðXiÞ �Wi�1Xi�1; (15)

where f�1ðXiÞ is also defined element-wise. So the optimal
solution to (14) is Xi ¼ fðWi�1Xi�1Þ, which is exactly the
constraint in problem (2). Thus we may relax problem (2)
naively as

min
fWig;fXig

‘ðXn;DÞ

þ
Xn
i¼2

mi 1T fðXiÞ1þ 1

2
kXi �Wi�1Xi�1k2F

	

:

(16)

However, since the recursion constraints in (2) are not inde-
pendent, there is a fundamental difference between prob-
lem (11) and problem (2). Namely, Xi appears in both
Xi ¼ fðWi�1Xi�1Þ and Xiþ1 ¼ fðWiXiÞ for i ¼ 2; . . . ; n� 1.
So it also appears in both hðXi;Wi�1Xi�1Þ and
hðXiþ1;WiXiÞ. In order to correctly approximate problem (2),
Xi ¼ fðWi�1Xi�1Þ and Xiþ1 ¼ fðWiXiÞ should both satisfy
the optimality condition of

min
Xi

mihðXi;Wi�1Xi�1Þ þ miþ1hðXiþ1;WiXiÞ

forXi, which is as follows:

02miðf�1ðXiÞ �Wi�1Xi�1Þ
þmiþ1ðWiÞT ðWiXi �Xiþ1Þ; i ¼ 2; . . . ; n� 1:

(17)

It is also the optimality condition of problem (16) for Xi.
Unfortunately, we can see thatXi ¼ fðWi�1Xi�1Þ andXiþ1 ¼
fðWiXiÞ do not both satisfy the above!

LI ET AL.: TRAINING NEURAL NETWORKS BY LIFTED PROXIMAL OPERATOR MACHINES 3337

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

In order for Xi ¼ fðWi�1Xi�1Þ and Xiþ1 ¼ fðWiXiÞ to
both satisfy the optimality condition of the relaxed problem
w.r.t.Xi, we need to modify (17) as

02miðf�1ðXiÞ �Wi�1Xi�1Þ
þmiþ1ðWiÞT ðfðWiXiÞ �Xiþ1Þ; i ¼ 2; . . . ; n� 1:

(18)
This corresponds to the following problem:

min
fWig;fXig

‘ðXn;DÞ þ
Xn
i¼2

mi

	
1T fðXiÞ1

þ1T gðWi�1Xi�1Þ1þ 1

2
kXi �Wi�1Xi�1k2F

;

(19)

where

gðxÞ ¼
Z x

0

ðfðyÞ � yÞdy:

Similarly, gðXÞ is an element-wise function for a matrix X.
Problem (19) is the final formulation of LPOM. Note that
the recursion constraints in (2) ensure that fXigni¼2 match
the feed-forward pass of the network. The introduction of g
leads to correct reformulation and also allows us to use sim-
ple feed-forward process to infer new samples. We want to
highlight that this is non-trivial and non-obvious. We give
the fðxÞ’s and gðxÞ’s of some representative activation func-
tions in Table 3.

3.2 Advantages of LPOM

We denote F ðW;XÞ as the objective function of LPOM
in (19). Then we have the following theorem:

Theorem 1. Suppose that ‘ðXn;DÞ is convex in Xn and f is
non-decreasing. Then F ðW;XÞ is block multi-convex, i.e., it is
convex in eachXi andWi while keeping the other blocks of var-
iables fixed.

Proof. F ðW;XÞ can be equivalently rewritten as

F ðW;XÞ ¼ ‘ðXn;DÞ þ
Xn
i¼2

mi 1T ~fðXiÞ1
�

þ 1T ~gðWi�1Xi�1Þ1� hXi;Wi�1Xi�1i
�
;

(20)

where ~fðxÞ ¼ R x
0 f�1ðyÞdy and ~gðxÞ ¼ R x

0 fðyÞdy. Since
both f and f�1 are non-decreasing, both ~fðxÞ and ~gðxÞ
are convex. It is easy to show that 1T ~gðWi�1Xi�1Þ1 is con-
vex inXi�1 whenWi�1 is fixed and convex inWi�1 when
Xi�1 is fixed. The term hXi;Wi�1Xi�1i in F ðW;XÞ is lin-
ear in one block when the other two blocks are fixed. The
proof is completed. tu
The above theorem allows us to use BCD methods to

solve LPOM. Since each subproblem is convex, we can
obtain the optimal solutions for updatingXi andWi. In con-
trast, the subproblems in the penalty and the ADMM based
methods are all nonconvex.

When compared with ADMM based methods [17], [21],
LPOM does not contain Lagrange multipliers and needs no
more auxiliary variables than fXigni¼2. Moreover, our solv-
ing method of LPOM does not need additional auxiliary
variables (see Section 4). So LPOM has much less variables
than ADMM based methods and hence needs less memory.
Actually, since SGD needs to save fXigni¼2, the memory cost
of LPOM is almost the same as that of SGD.2

When compared with the penalty methods [18], [19], the
optimality conditions of LPOM are simpler. For example, the
optimality conditions for fXign�1

i¼2 and fWign�1
i¼1 in LPOM

are (18) and

ðfðWiXiÞ �Xiþ1ÞðXiÞT ¼ 0; i ¼ 1; . . . ; n� 1; (21)

while those for MAC are

ðXi � fðWi�1Xi�1ÞÞ
þ ðWiÞT ½ðfðWiXiÞ �Xiþ1Þ�f0ðWiXiÞ	 ¼ 0;

i ¼ 2; . . . ; n� 1:

(22)

and

½ðfðWiXiÞ �Xiþ1Þ�f0ðWiXiÞ	ðXiÞT ¼ 0; i ¼ 1; . . . ; n� 1:

(23)

TABLE 3
The fðxÞ and gðxÞ of Several Commonly Used Activation Functions

Note that 0 < a < 1 for the leaky ReLU function and a > 0 for the exponential linear unit (ELU) function. We use MATLAB’s default functions finverse and
int to compute the inverse and indefinite integral of a function, respectively. We only use fðxÞ and do not use f�1ðxÞ, fðxÞ, and gðxÞ in our computation.

2. We implement SGD and LPOM using MATLAB. At the end of
each epoch training in Table 5, we sum up all variables’ memory
usages. SGD and LPOM use the identical memory (628.431 MB).

3338 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 6, JUNE 2022

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

We can see that the optimality conditions for MAC have an
extra f0ðWiXiÞ, which is nonlinear. The optimality condi-
tions for [19] can be found in Appendix A of the Supple-
mentary Material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2020.3048430. They also have an extra
f0ðUiÞ. This may imply that the solution sets of MAC and
[19] are more complex than those of LPOM. So it may be
easier for LPOM to find good solutions.

When comparedwith the equivalent representations of the
activation functions methods [22], [23], the formulation and
the solving method of LPOM can handle much more general
activation functions than [22] and [23], respectively. Note that
a solving method is general means that it is identical for all
feasible activation functions.Moreover, when theweights of a
network are trained, the introduction of g in LPOM allows us
to apply a feed-forward process to predict the label of a test
sample. In comparison, Zhang and Brand [22] only consid-
ered the ReLU activation function. To get the potential label of
a test sample, they had to solve an optimization problem or
retrain the output layer. Although the formulation in [23] is
applicable to general activation functions, its solving method
is not general and the presented solving method is for ReLU
only. Moreover, the formulation of Askari et al. [23] is incor-
rect as its optimality conditions for fXign�1

i¼2 and fWign�1
i¼1 are

0 2miðf�1ðXiÞ �Wi�1Xi�1Þ � miþ1ðWiÞTXiþ1;

i ¼ 2; . . . ; n� 1;

and

Xiþ1ðXiÞT ¼ 0; i ¼ 1; . . . ; n� 1;

respectively. We can see that the recursive equality con-
straints in (2) do not satisfy the above. Furthermore, some-
how Askari et al. [23] added extra constraints Xi � 0 for any
activation function. So their formulation cannot approxi-
mate the original problem (2) well. This may explain why
the results of Askari et al. [23] are not good. Actually, they
can only initialize the weights of feed-forward NNs with
ReLU activations for SGD.

When compared with gradient-based methods, such as
SGD, LPOM can handle any non-decreasing Lipschitz con-
tinuous activation function without computational difficul-
ties, including being saturating (e.g., sigmoid and tanh) and
non-differentiable (e.g., ReLU and leaky ReLU) and could
update the layer-wise weights and activations in parallel
(see Section 5). In contrast, gradient-based methods can
only handle limited activation functions (e.g., ReLU, leaky
ReLU, and softplus), in order to avoid the gradient vanish-
ing or exploding issues, and they do not easily parallelize
over layers when computing the gradients and activations.
Moreover, gradient-based methods need much parameter
tuning, which is not easy [15], while the tuning of penalty
parameters mi’s in LPOM is much simpler.

4 SOLVING LPOM

The block multi-convexity (Theorem 1) motivates a BCD
method to solve LPOM. Namely, we updateXi orWi by fix-
ing all other blocks of variables. We summarize the whole
solving process in Algorithm 1, where the optimization is

performed using a mini-batch of training samples. We can
prove the convergence of Algorithm 1.3 Below we give the
details of the algorithm, which is serial.

Algorithm 1. Solving LPOM

Input: training dataset, batch sizem1, iteration no.s S andK1.
for s ¼ 1 to S do
Randomly choosem1 training samplesX1 andD.

a Solve fXign�1

i¼2 by iterating Eq. (26) forK1 times.

b SolveXn by iterating Eq. (29) forK1 times.

c Solve fWign�1

i¼1 by applying Algorithm 2 to (31).
end for

Output: fWign�1
i¼1 .

4.1 Updating fXigni¼2

We first describe the update of fXigni¼2. We update fXigni¼2

from i ¼ 2 to n successively, just like the feed-forward pro-
cess of NNs. For i ¼ 2; . . . ; n� 1, with fWign�1

i¼1 and other
fXjgnj¼2;j6¼i fixed, problem (19) reduces to

min
Xi

mi 1T fðXiÞ1þ 1

2
kXi �Wi�1Xi�1k2F

	

þmiþ1 1T gðWiXiÞ1þ 1

2
kXiþ1 �WiXik2F

	

:

(24)

Its optimality condition is

0 2miðf�1ðXiÞ �Wi�1Xi�1Þ
þ miþ1ððWiÞT ðfðWiXiÞ �Xiþ1ÞÞ: (25)

Based on fixed-point iteration [27] and in order to avoid
using f�1, we may updateXi by iterating

Xi;tþ1 ¼ f Wi�1Xi�1 � miþ1
mi

ðWiÞT ðfðWiXi;tÞ �Xiþ1Þ
� �

;

(26)

until convergence, where the superscript t is the iteration
number. The convergence analysis is as follows:

Theorem 2. Suppose that f is differentiable and jf0ðxÞj � k. If
r < 1, then the iteration is convergent and the convergent rate

is linear, where r ¼ miþ1
mi

k2
ffi
jðWiÞT jjWij

��� ���
1
jðWiÞT jjWij

��� ���
1

r
.

Note that the choice of r in the above theorem is quite
conservative. So in our experiments, we do not obey the
choice as long as the iteration converges.

When consideringXn, problem (19) reduces to

min
Xn

‘ðXn;DÞ þ mn 1T fðXnÞ1þ 1

2
kXn �Wn�1Xn�1k2F

	

:

(27)

Assume that ‘ðXn;DÞ is differentiable w.r.t. Xn. Then the
optimality condition is

0 2 @‘ðXn;DÞ
@Xn þ mnðf�1ðXnÞ �Wn�1Xn�1Þ: (28)

3. The proofs of theorems can be found in the Supplementary Mate-
rial, available online.

LI ET AL.: TRAINING NEURAL NETWORKS BY LIFTED PROXIMAL OPERATOR MACHINES 3339

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3048430
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3048430

Also by fixed-point iteration, we may update Xn by
iterating

Xn;tþ1 ¼ f Wn�1Xn�1 � 1
mn

@‘ðXn;t;DÞ
@Xn

� �
; (29)

until convergence. The convergence analysis is as follows:

Theorem 3. Suppose that fðxÞ is differentiable and jf0ðxÞj�k

and @2‘ðX;DÞ
@Xkl@Xpq

� ���� ������ ���
1
�h. If t < 1, then the iteration is conver-

gent and the convergent rate is linear, where t ¼ kh
mn

.

If ‘ðXn;DÞ is the MSE loss function, i.e., ‘ðXn;DÞ ¼
1
2 kXn �Dk2F , then @2‘ðX;DÞ

@Xkl@Xpq

� ���� ������ ���
1
¼ 1. So we have mn > k.

It is worth noting that f and g in (19) are integrals. Their
expressions are very complex and may be not analytic (see
Table 3). So it is best to use their derivatives rather than
themselves in the computation. However, the derivative of
f includes f�1 (see (25) and (28)). We argue that it is better
to avoid using f�1 when updating fXigni¼2. The reasons are
as follows. For a commonly used activation function f, the
domain of f�1 (or equivalently the range of f) is usually not
ð�1;þ1Þ. So we need to constrain the input of f�1 in the
computation. This results in constrained problems and can-
not be solved as efficiently as the unconstrained ones. The
other big disadvantage of using f�1 is that it may not be
single-valued (See Table 3). This can impose great difficulty
in computation and ensuring convergence. Moreover, dif-
ferent f�1 may have a different domain. Since one has to tai-
lor the update of fXigni¼2 for each f�1, the whole solving
method cannot be applicable to general activation functions.
This is the reason why the solving methods in [23] and [24]
need to be tailored for every activation function. Since we
only use f and do not use f�1, our approach has no such
limitation. So our solving method is more practical than
those in [23] and [24].

4.2 Updating fWign�1
i¼1

The update of fWign�1
i¼1 is fully parallel. When fXigni¼2 are

fixed, problem (19) reduces to

min
Wi

1T gðWiXiÞ1þ 1

2
kWiXi �Xiþ1k2F ; i ¼ 1; . . . ; n� 1:

(30)

The above problem for solving Wi is independent of the
other problems for fWjgn�1

j¼1;j 6¼i. So it can be solved in paral-
lel. We rewrite (30) as

min
Wi

1T ~gðWiXiÞ1� hXiþ1;WiXii; (31)

where ~gðxÞ ¼ R x

0 fðyÞdy, as introduced before. Suppose that
fðxÞ is b-Lipschitz continuous, which is true for almost all
used activation functions. Then ~gðxÞ is b-smooth

j~g0ðxÞ � ~g0ðyÞj ¼ jfðxÞ � fðyÞj � bjx� yj: (32)

We solve problem (31) by APG [28] by locally linearizing
ĝðWÞ ¼ ~gðWXÞ. However, since the Lipschitz constant of
the gradient of ĝðWÞ, which is bkXk22, can be very large, the
convergence can be slow. So we develop a variant of APG
that is tailored for solving (31) much more efficiently.

From an optimization perspective, problem (31) can be
expressed more generally as

min
x

GðxÞ�’ðAxÞ þ cðxÞ; (33)

where both ’ðyÞ and cðxÞ are convex and ’ðyÞ is L’-smooth:
kr’ðxÞ � r’ðyÞk�L’kx� yk; 8x; y: Assume that the follow-
ing minimization

xkþ1 ¼ argmin
x

hr’ðAykÞ; Aðx� ykÞi þ L’

2
kAðx� ykÞk2 þ cðxÞ

(34)

is easy to solve for any given yk. We propose Algorithm 2 to
solve (33), which is derived from the proof of its conver-
gence theorem

Theorem 4. If we use Algorithm 2 to solve problem (33), then
the convergence rate is at least Oðk�2Þ

GðxkÞ �Gðx�Þ þ L’

2
kzkk2� 4

k2
Gðx1Þ �Gðx�Þ þ L’

2
kz1k2

	

;

where zk ¼ A½uk�1xk�1 � xk þ ð1� uk�1Þx�	 and x� is any
optimal solution to problem (33).

Algorithm 2. Solving Problem (33)

Input: x0, x1, u0 ¼ 0, k ¼ 1, iteration no.K2.
for k ¼ 1 toK2 do
Compute uk via 1� uk ¼

ffiffiffiffiffi
uk

p ð1� uk�1Þ.
Compute yk via yk ¼ ukxk �

ffiffiffiffiffi
uk

p ðuk�1xk�1 � xkÞ.
Update xkþ1 via (34).
end for

Output: xk.

When we consider solving problem (31), the instantiation
of subproblem (34) becomes

Wi;tþ1 ¼ argmin
W

fðY i;tXiÞ; ðW � Y i;tÞXi

 �

þ b

2
kðW � Y i;tÞXik2F � hXiþ1;WXii:

(35)

It is a least-square problem and its solution is

Wi;tþ1 ¼ Y i;t � 1

b
ðfðY i;tXiÞ �Xiþ1ÞðXiÞy; (36)

where Y i;t plays the role of yk in Algorithm 2.

5 PARALLEL SOLUTION OF LPOM

The solving method presented in the previous section is
serial. In this section, we investigate the parallel solution of
LPOM.

5.1 Asynchronous-Parallel LPOM

As presented in Section 4, the original method to solve
LPOM is BCD. So it is natural to use asynchronous-parallel
BCD (async-BCD) [29], [30] to solve LPOM in parallel. How-
ever, the existing async-BCD mainly uses gradient descent
to update each block only once, while in LPOM the gradient
w.r.t. Xi involves the inverse of activation function, which
is the reason why LPOM uses fixed-point iteration instead

3340 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 6, JUNE 2022

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

(see (26) and (29)). So the existing async-BCD actually does
not apply. In the following, we propose a new async-BCD
method.

Suppose the optimization problem is

min
fzig

F ðz1; . . . ; znÞ: (37)

Our async-BCD goes as follows: If zi is chosen to be
updated, it is updated as

zkþ1
i ¼ argmin

zi

F z1; . . . ; zi�1; zi; ziþ1; . . . ; znð Þ

þ g

2
kzi � zki k2;

(38)

where zj’s, j 6¼ i, take the latest value that is available to zi.
Note that such values of zj’s may be older than the really
latest values of zj’s that is being computed, due to, say,
communication delay. The proximal term g

2 kzi � zki k2 is nec-
essary to guarantee the convergence of our async-BCD.

To analyze the convergence of our async-BCD, we make
the following assumptions.

Assumption 1. F ðzÞ � F ðz1; . . . ; znÞ has coordinate Lipschitz
continuous gradients, i.e., for all i 2 f1; . . . ; ng, we have

riF ðzÞ � riF ð�zÞk k � Likz� �zk:

Assumption 2. The staleness in information is bounded, i.e.,

k� tijðkÞ � D; k ¼ 0; 1; . . .;

where tijðkÞ is the time of zj that is available to update zi at
time k.4

We note that both assumptions are standard for analyz-
ing asynchronous algorithms [29], [30]. Now we claim the
convergence guarantee for our async-BCD.

Theorem 5. Suppose that F ðzÞ is block multi-convex. Under
Assumptions 1 and 2, by setting the proximity parameter g in

(38) as: g
2 þ L2

2g ðDþ 1Þ � L2

2g ðDþ 1Þ2 > 0; where L ¼
maxfLig, we have riF ðzkÞ�� �� ! 0; 8i 2 f1; . . . ; ng:
Since g > 0, we have g > L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðDþ 1Þp

based on the
above theorem. So the choice of g depends on the estima-
tions of D and L. Our async-BCD can be applied to solve
LPOM, resulting in async-LPOM. For async-LPOM, we may
set D to be the number of CPU cores. Suppose that fðxÞ is
b-Lipschitz continuous (defined in (32)), we may set L as
L ¼ b maxfkW 2k22; . . . ; kWn�1k22; kX1k22; . . . ; kXn�1k22g. The
theoretical estimate of g is very large. In practice, we choose
g by gradually increasing its value until async-LPOM con-
verges. However, async-LPOM does not fully exploit the
properties of problem (19) that each Xi is only related to
Xi�1 andXi and fWign�1

i¼1 can be updated with full paralleli-
zation. So async-LPOM is not as fast as we expected. This
motivates us to consider developing synchronous-parallel
LPOM (sync-LPOM), which better exploits the characteris-
tics of LPOM.

5.2 Synchronous-Parallel LPOM

We first analyze the serial LPOM in Algorithm 1. When
fXigni¼2 are fixed, the update of each Wi is independent of
other Wj’s, j 6¼ i (see (30)). So step
c in Algorithm 1 can be
done with full parallelization. We generate n� 1 threads,
each thread solving for each Wi independently. With
fWign�1

i¼1 fixed, the update of Xi (i2f2; . . . ; n� 1g) is related
toXi�1 andXiþ1 (see (26)), and the update ofXn is related to
Xn�1 (see (29)). So we only need to synchronously parallelize
steps
a and
b .

We parallelize the update ofXi as follows. We create n� 1
threads. Each thread iterates Eq. (26) or Eq. (29) to updateXi.
This step is executed by each thread independently and
simultaneously. When all the threads finish the step, we
repeat the procedure for more times until the maximum time
is reached. However, we notice the coupling when updating
adjacentXi’s (see (26) and (29)). Decoupling the blocks facili-
tates the convergence of a parallel algorithm. Maximizing the
degree of parallelism is also pursued by a parallel algorithm.
Then the odd-even alternating scheme to update Xi’s is the
only choice that can have both maximum parallelism and
minimum coupling. Namely, we first synchronously update
the odd subsequence fX3;X5; . . .g. Then with the updated
fX3;X5; . . .g, we synchronously update the even subse-
quence fX2;X4; . . .g. Besides, inspired by the momentum
used in SGD, we take previous values of eachXi into consid-
eration,5 resulting in a moving average of the updated
sequence of Xi. The whole algorithm of sync-LPOM is sum-
marized in Algorithm 3. Note that sync-LPOM is a special
case of async-LPOM, where the order of blocks to be updated
is allowed to be non-random. So the conclusion of Theorem 5
also applies to sync-LPOM.

Algorithm 3. Synchronously Solving LPOM

Input: training dataset, batch size m1, 0 < n < 1, iteration no.s
S,K1,K2, andK3.
for s ¼ 1 to S do
Randomly choosem1 training samplesX1 andD.
// update fXigni¼2.
for k ¼ 1 toK1 do
// update the odd subsequence.
Thread i 2 f3; 5; . . .g executes the following steps:
Solve ~Xi;kþ1 by iterating Eqs. (26) or (29) forK3

times using fXi�1;k; Xi;k;Xiþ1;kg
or fXn�1;k; Xn;kg.
Xi;kþ1 ¼ n ~Xi;kþ1 þ ð1� nÞXi;k.

// update the even subsequence.
Thread i 2 f2; 4; . . .g executes the following steps:
Solve ~Xi;kþ1 by iterating Eqs. (26) or (29) forK3

times using fXi�1;kþ1; Xi;k;Xiþ1;kþ1g
or fXn�1;kþ1; Xn;kg.
Xi;kþ1 ¼ n ~Xi;kþ1 þ ð1� nÞXi;k.

end for
// update fWign�1

i¼1 .
Thread i2f1; . . . ; n� 1g executes the following step:
SolveWi by iterating Eq. (36) forK2 times.

end for
Output:fWign�1

i¼1 .

4. Note that in this paper we follow the convention in [31]. k is a
global counter: whenever a block is updated, k increases by 1.

5. In order to be consistent with sync-LPOM, serial LPOM also uses
this update rule in the experiments.

LI ET AL.: TRAINING NEURAL NETWORKS BY LIFTED PROXIMAL OPERATOR MACHINES 3341

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

6 EXPERIMENTS

In this section, we conduct extensive experimental evalua-
tions for the proposed LPOM as well as sync-LPOM. We
first evaluate the performance of LPOM on image classifica-
tion tasks. We also conduct ablation studies to analyze
LPOM. We then investigate the computation efficiency and
performance of sync-LPOM on autoencoder training tasks.

The reasons why we test sync-LPOM on the autoencoder
training tasks are as follows. First, currently LPOM and sync-
LPOM are only applicable to fully-connected feed-forward
NNs. Second, our primary aim is to evaluate the speedup of
sync-LPOM. However, sync-LPOM cannot be accelerated if
there exists layers with dominant computation. For example,
with a 784-10-10-10 network, the update of X2 is 16 times
slower than those of X3 and X4. Both the serial LPOM and
sync-LPOM will be dominated by updating X2. So sync-
LPOM will not have speedup over serial LPOM. As a result,
sync-LPOM favours the equal-width networks, which are not
common in classification networks. This motivates us choos-
ing autoencoders. Third, deep autoencoders are challenging,
because they have to reconstruct their inputs under the con-
straint that one layer is very low-dimensional. The difficulty
mainly comes from the network architectures rather than the
datasets used. Training autoencoders on benchmark datasets
is considered as a standard problem for evaluating optimiza-
tion methods on feed-forward NNs [18], [32]. For the above
reasons, we test sync-LPOM with various autoencoder archi-
tectures and datasets.

6.1 Results of LPOM

We test LPOM by comparing with three representative gradi-
ent-basedmethods (SGD, Adam [10], andAMSGrad [11]) and
three non-gradient based methods [17], [23], [24]. The other
non-gradient based methods do not train fully-connected
feed-forwardNNs for classification tasks (e.g., using skip con-
nections [22], training autoencoders [18], and learning for
hashing [21]). So we do not compare with them. For simplic-
ity, we use the MSE loss function. Since several methods [23],
[24] only present the solving methods for ReLU, we use the
ReLU activation function as well. Unlike [23] and [24], we do
not use any regularization on the weights fWign�1

i¼1 because it
usually does not help to decrease the training loss. We run
LPOM and three gradient-based methods with the same
inputs and random initializations [33]. We implement LPOM,
SGD, Adam, and AMSGrad with MATLAB. For LPOM, we
set mi ¼ 2 in (19) for all the networks. For SGD, the learning

rate is set to be the largest feasible value andmultiply by 0.1 at
the half and three quarters of the total epochs. For Adam and
AMSGrad, we carefully tune the parameters to achieve the
best performance. For [23] and [24], we use the source codes
with default parameter settings provided by the authors.
For [17], we read the results fromFig. 1b of the paper.

6.1.1 Comparison With Gradient-Based Methods

We conduct experiments on the MNIST [34], CIFAR-10 [35],
and ImageNet [36] datasets. The MNIST dataset has 60,000
training images and 10,000 test images associated with
labels from 10 classes. We use 28�28 ¼ 784 raw pixels as
the inputs and do not use any pre-processing or data aug-
mentation. For all the compared methods, in each epoch the
entire training samples are passed through once. The net-
work architecture may affect the performance. Since over-
parameterization greatly facilitates gradient-based methods
when training [37], [38], we perform the comparisons with
overparameterized networks. Following [19], we use a 784-
2048-2048-2048-10 feed-forward network. We run all the
methods for 100 epochs with a fixed batch size 100. The train-
ing and the test accuracies are shown in Figs. 1a and 1b. We
can see that the final training accuracies of all the methods are
approximately equal to 100 percent. However, the test accu-
racy of LPOM is comparable with or slightly better than those
of Adam, AMSGrad, and SGD. The final test accuracies are:
Adam 98.1 percent, AMSGrad 98.5 percent, SGD 98.5 percent,
and LPOM98.6 percent.

The CIFAR-10 dataset has 50,000 training and 10,000 test
color images associated with labels from 10 classes. We use
32� 32� 3 ¼ 3072 raw pixels as the inputs. As in [19], we
use a 3072-4000-1000-4000-10 feed-forward network. We
normalize each color image by subtracting the training data-
set’smeans of the red, green, and blue channels, respectively.
We do not use any data augmentation. We run all the meth-
ods for 100 epochs with a fixed batch size 100. The training
and the test accuracies are shown in Figs. 1c and 1d. We can
see that only the training accuracy of LPOM is approximately
equal to 100 percent. The gradient-based methods do not
achieve zero training loss. This may be because the used net-
work has a low-dimensional hidden layer, making it hard
to optimize. When comparing the test accuracy, we can see
that LPOM is able to match or beat the other methods. The
final test accuracies are: Adam 53.5 percent, AMSGrad
54.7 percent, SGD 54.7 percent, and LPOM 54.7 percent.
Notice that LPOM attains nearly perfect training accuracy

Fig. 1. Comparison of LPOM and three gradient-based methods on the MNIST and the CIFAR-10 datasets. The inset figures in (a), (b), and (d) show
the accuracies for the final 30 epochs in detail. Images in this paper are best viewed in color.

3342 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 6, JUNE 2022

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

but the test accuracy is comparable to other methods that
havemuch lower training accuracy.Wewant to note that the
situation is not an overfitting problem. First, overfitting is
used to evaluate the performance of a trainable model rather
than an optimization method. So the definition of overfitting
does not apply. Second, if a model achieves a comparable or
better training accuracy but the test accuracy is much worse
than other models, we may consider that it overfits the train-
ing dataset. While the network trained by LPOM has a better
training accuracy, its test accuracy is comparable to or
slightly better than the networks trained by other methods.
So the phenomenon of overfitting does not apply to this situ-
ation. Third, LPOM is anNNoptimizationmethod. So its pri-
mary goal is fitting the training dataset. The test accuracy
depends strongly on the type and amount of weight regulari-
zation used during training, which is an important issue in
practice. Since we focus on optimization, weight regulariza-
tion is outside the scope of our discussion.

The ImageNet dataset has 1,281,167 training images and
50,000 validation images from 1,000 classes. The images in the
ImageNet dataset are typically 224� 224� 3 pixels. For fast
experimentation, we use the ImageNet32x32 dataset [39]
instead, which can be downloaded from the official website of
the ImageNet project.6 The ImageNet32x32 dataset preserves
the complexity of the original ImageNet dataset and is widely
adopted in automated machine learning (AutoML). It is a
downsampled version of the ImageNet dataset with a size of
32� 32� 3 pixels. It has the same number of images and clas-
ses as the ImageNet dataset. We take all validation images as
the test set. We use the same pre-processing for each image
as for the CIFAR-10 images. We use the raw pixels as the
inputs and do not use any data augmentation. We run all the
methods for 100 epochs with a fixed batch size 100. We use a
3072-1024-1024-1024-1000 feed-forward network. The training
and the test accuracies are shown in Fig. 2. We can see that
LPOM achieves the best training and test accuracies. The final
training accuracies are: Adam 0.102 percent, AMSGrad
0.611 percent, SGD 1.112 percent, and LPOM 17.916 percent.
The final test accuracies are: Adam 0.100 percent, AMSGrad
0.318 percent, SGD 0.596 percent, and LPOM 2.064 percent.
These accuracies are very low compared to those reported in
the literature. The reasons are as follows. First, we use a fully-
connected NN rather than a CNN. Second, a lower resolution
of the images makes the classification task much more diffi-
cult. Third, finding the optimal depth and hidden layer

widths of a fully-connected NN that fits for ImageNet32x32
requires much effort, which is not the goal of our paper, and
we did not find such references in the literature, so we only
choose a relatively simple one. Fourth, we do not use data
augmentation to enhance test performance. Fifth, we do not
use extra learning tricks for all the compared methods, e.g.,
weight regularization, BN, andmomentum.

6.1.2 Comparison With Other Non-Gradient Based

Methods

We first compare with [23] and [24] using the same architec-
tures on the MNIST dataset. As in [23], we run all the meth-
ods for 17 epochs with a fixed batch size 100. We do not use
any pre-processing or data augmentation. Table 4 summa-
rizes the test accuracies of the three methods, where the best
values are in boldface. Since the formulation in [24] is equiva-
lent to that of LPOM,we can see that [24] and LPOMwith the
ReLU activation function perform much better than [23].
This complies with our analysis in Section 3.2. Despite using
equivalent formulations, LPOM still outperforms [24], which
demonstrates the superiority of our solvingmethod.

Following the settings of dataset and network architecture
in [17], we test LPOM on the Street View House Numbers
(SVHN) dataset [40]. Table 5 summarizes the test accuracies
of SGD, [17], [23], [24], and LPOM, where the best values are
in boldface. We can see that LPOM achieves the best perfor-
mance. This further testifies to the advantage of LPOM.

6.1.3 Ablation Studies of LPOM

We perform ablation studies of LPOM to evaluate the effects
of the penalty parameters mi’s in (19) and the activation
function used. We use the MSE loss function and the MNIST
dataset without using any pre-processing or data augmenta-
tion. We use a 784-400-200-100-50-10 feed-forward network,
which is the deepest network in [23]. For all the cases, we
use the identical source code and random initializations [33].
For each case, we run LPOM for 20 epochs with a fixed
batch size 100.

Fig. 2. Comparison of LPOM and three gradient-based methods on the
ImageNet32x32 dataset.

TABLE 4
Comparison of Test Accuracies of LPOM, [23], and [24] on the

MNIST Dataset Using Different Networks

Hidden
Layers

300 300-100 500-150 500-200-
100

400-200-100-
50

[23] 71:6% 72:2% 72:7% 73:8% 80:3%
[24] 97:2% 95:5% 95:9% 96:3% 96:1%
LPOM 97:8% 97:6% 97:8% 97:9% 97:9%

For each network, the “Hidden Layers” denotes the network architecture of its
hidden layers. For example, “300-100” means that the network has two hidden
layers. The first and the second hidden layers have 300 and 100 neurons,
respectively.

TABLE 5
Comparison of Test Accuracies of LPOM, SGD, [17], [23],

and [24] on the SVHN Dataset

Methods SGD [17] [23] [24] LPOM

Accuracy 95:0% 96:5% 97:5% 98:2% 98:5%
6. http://image-net.org/download-images

LI ET AL.: TRAINING NEURAL NETWORKS BY LIFTED PROXIMAL OPERATOR MACHINES 3343

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

http://image-net.org/download-images

We test LPOM with all the activation functions shown in
Table 3. We set a ¼ 0:01 and a ¼ 1 for the leaky ReLU and
ELU activation functions, respectively. For the penalty
parameters mi’s in (19), we set mi ¼ m for every activation
function, where m2f2; 5; 10; 20; 50; 100g. The reason why
we do not tune different mi’s will be given later. Table 6
shows the final training and test accuracies of LPOM with
various m and activation functions. We can see that LPOM
with every activation function remains stable over a signifi-
cantly large range of m. This further confirms that the
parameter setting of LPOM is very easy. For the classifica-
tion task, LPOM with the sigmoid, tanh, ReLU, or leaky
ReLU activation function performs better than the rest two
functions when m�50. In Fig. 3, we compare the behavior
of LPOM with mi ¼ 5 for different activation functions. It
can be seen that LPOMwith the ReLU or leaky ReLU activa-
tion function converges faster.

Our empirical parameter setting for LPOM (i.e., setting
mi ¼ m in (19)) actually has a theoretical ground. Gu et al. [24]
developed a variable scaling strategy to prove that our param-
eter setting for LPOM is theoretically guaranteed for the ReLU
activation function. Namely, we can theoretically reduce the
penalty parameters mi’s in (19) to only one parameter m for
ReLU. Actually, the variable scaling strategy works only for
the positive homogeneous functions. Namely, fð�xÞ ¼ �fðxÞ
for all � � 0. Such functions can bewritten as

fðxÞ ¼ ax; x�0;
bx; x < 0:

�
; (39)

where a > 0 and b�0. We provide the proof in Appendix G
of the Supplementary Material, available online. The form
in (39) includes the linear, ReLU, and leaky ReLU activation
functions. Our empirical setting mi ¼ m in (19) has not been
theoretically proven for all feasible activation functions,
e.g., ELU, softplus, sigmoid, and tanh. However, we want
to note that the positive homogeneous activation functions
are the most popular in practice. The ELU and softplus acti-
vation functions are smooth approximations to the positive
homogeneous counterparts. So using a single parameter m

also roughly applies to ELU and softplus. As for the sig-
moid and tanh activation functions, we can see from Table 6
that they also works very well when setting mi ¼ m in (19).
So we argue that using a single penalty parameter in LPOM
should suffice for most of the commonly used activation
functions. Finally, we want to highlight that Theorem 3
gives a theoretical reference for choosing mn. For example,
when using the MSE loss function and the tanh activation
function, we should set mn > 1 for LPOM. Overall, we may
conclude that the tuning of penalty parameters in LPOM is
very simple.

6.2 Results of Sync-LPOM

We implement serial LPOM, sync-LPOM, SGD, Adam, and
AMSGrad in C++. No regularization is used on the weights
fWign�1

i¼1 . We use the MSE loss function and the ReLU acti-
vation function. A smaller value of training or test loss iden-
tifies a better performance. For all the methods, we use the
identical inputs, random initializations [33], and batch size
(here is 100). For sync-LPOM, we use POSIX Threads as the
parallel programming framework. For both LPOM and
sync-LPOM, we set mi ¼ 20. For SGD, the learning rate is
set to be the largest feasible value and multiply by 0.1 at the
half and three quarters of the total epochs. For Adam and
AMSGrad, we tune the parameters to achieve the best per-
formance. All the experiments are carried out on a single
Intel(R) Core(TM) i7-8700 CPU 3.20 GHz computer with 12
cores. As in [32], we test on three gray-scale image datasets,
which is summarized in Table 7. The Curves dataset con-
sists of synthetic curves, the MNIST dataset contains hand-
written digits, and the Faces dataset is the augmented Oli-
vetti face dataset.

6.2.1 Computation Efficiency on CPUs

The encoding and decoding times for all the methods are
equal. So we only compare the time cost in the training.
We conduct three groups of experiments on the MNIST
dataset.

For programming convenience, we assign each layer to
one CPU core, which reduces the interferences between

TABLE 6
The Training and the Test Accuracies of LPOM on the MNIST

Dataset With Varying m and Activation Function Used

m sigmoid tanh ReLU leaky ReLU ELU softplus

2 0.9993 0.9987 0.9984 1.0000 0.9477 0.9769
5 0.9989 0.9973 0.9969 0.9998 0.9748 0.9829

Training 10 0.9983 0.9976 0.9967 0.9996 0.9809 0.9812
Acc. 20 0.9965 0.9918 0.9971 0.9991 0.9804 0.9807

50 0.9887 0.9915 0.9973 0.9991 0.9832 0.9358
100 0.9735 0.9856 0.9971 0.9981 0.9811 0.9582

2 0.9769 0.9758 0.9761 0.9790 0.9378 0.9618
5 0.9784 0.9745 0.9761 0.9796 0.9590 0.9672

Test 10 0.9752 0.9748 0.9745 0.9780 0.9663 0.9632
Acc. 20 0.9738 0.9696 0.9745 0.9760 0.9674 0.9661

50 0.9662 0.9716 0.9743 0.9767 0.9721 0.9282
100 0.9598 0.9678 0.9746 0.9756 0.9707 0.9512

We set mi ¼ m in (19).

Fig. 3. Comparison of LPOM with various activation functions. The pen-
alty parameters mi ’s in (19) are all fixed at 5.

TABLE 7
Experimental Settings of Autoencoder Training

Dataset #Training #Test Encoder Dimensions

MNIST 60,000 10,000 784-500
784-1024-500

Curves 20,000 10,000 784-400-200-100-50-25-6
MNIST 60,000 10,000 784-1000-500-250-30
Faces 103,500 41,400 625-2000-1000-500-30

3344 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 6, JUNE 2022

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

the updates of different layers and thus can better com-
pare the speedup performance. Accordingly, for sync-
LPOM, the ideal number of cores is equal to the number
of network layers. We first test the speedup of sync-
LPOM with ideal CPU cores on various equal-width
autoencoders (here the dimension is 784). The layer
speedup ratio is defined as

layer speedup ratio ¼ serial time per epoch

parallel time per epoch
:

The training time and the layer speedup ratio are shown in
Figs. 4a and 4b, respectively. We can see that the training
time of sync-LPOM increases more slowly than serial
LPOMwith increasing hidden layers, and the layer speedup
ratio is nearly linear.

Then with fixed depth and width (here is 784) of autoen-
coders, we test the speedup of sync-LPOM with varying
numbers of CPU cores. The core speedup ratio here is
defined as

core speedup ratio ¼ serial time per epoch

parallel time per epoch using d CPU cores
:

The results are shown in Figs. 4c and 4d. Let n be the num-
ber of layers. When d�n=2, we can see that all the core
speedup ratios grow linearly with increasing CPU cores.
When d > n=2, the core speedup ratios become constant

(see Fig. 4d). The reason is as follows. Due to the odd-even
alternating scheme of sync-LPOM for updating Xi, we only
need n=2 cores to synchronously update Xi. Synchronously
updating Wi requires n� 1 cores. However, updating Xi is
more expensive than updating Wi. So the core speedup
ratio with n=2 cores is competitive with n cores.

In Fig. 4e, we plot the training loss against the running
time for Adam, AMSGrad, SGD, LPOM, and sync-LPOM
with the autoencoder 784-1024-500-1024-784 [41]. For SGD,
the learning rate multiplies 0.1 at the 300th and 450th
epochs. We can see that sync-LPOM converges the fastest
and achieves the lowest training loss.

6.2.2 Optimization Performance

We test sync-LPOM with two shallow and three deep
autoencoders considered in [32], [41]. Table 7 gives the used
datasets, the sizes of the training and the test sets, and the
tested encoder network architectures. Note that we use
symmetric autoencoders, where the decoder architecture is
the mirror image of the encoder. We run all the methods for
100 epochs. For SGD, the learning rate multiplies 0.1 at the
50th and 75th epochs.

The training and the test losses with the single-layer and
the multi-layer autoencoders are shown in Figs. 5a and 5b,
respectively. We can see that sync-LPOM indeed has the best
performance. Adam and AMSGrad achieve lower training

Fig. 4. Results of the speedup experiments. (a) and (b) are the training time and the speedup ratio with a variety of layers, respectively. (c) and (d) are
the training time and the speedup ratio with a variety of CPU cores, respectively. (e) are curves of the training loss versus the running time.

Fig. 5. Comparison of Adam, AMSGrad, SGD, and sync-LPOM with single-layer, multi-layer, and deep autoencoders. The first row is the training
losses, while the second row is the test losses. The architectures are given in Table 7. The numbers in boldface denote the real speedup ratios of
sync-LPOM over SGD with respective autoencoders.

LI ET AL.: TRAINING NEURAL NETWORKS BY LIFTED PROXIMAL OPERATOR MACHINES 3345

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

and test losses than SGD in the first several epochs. However,
they are inferior to SGD at the end of training. Some recon-
structed samples withmulti-layer autoencoders on the test set
are shown in Fig. 6. We can see that sync-LPOM has the best
reconstruction performance. Deep autoencoder problems are
more difficult than the shadow ones. The training and the test
losses are shown in Figs. 5c, 5d, and 5e. It can be seen that on
the Curves and the MNIST datasets, sync-LPOM is slightly
better than SGD. However, when considering the Faces data-
set, we can see that sync-LPOM is significant better than SGD,
Adam, andAMSGrad.

6.2.3 Discussions

We also test the real speedups of sync-LPOM over SGD with
the five autoencoders shown in Table 7. For each antoencoder,
we first run sync-LPOM for 50 epochs and record its running
times and training losses. We denote its time and loss sequen-
ces as ft1i g50i¼1 and fe1i g50i¼1, respectively. Let e

1
j be the first ele-

ment in fe1i g50i¼1 that is less than or equal to e150 þ 0:05, which is
called as the initial stable point. Then we run SGD until its
training loss e2k is less than or equal to e1j . We denote the corre-
sponding running time as t2k. Then the real speedup ratio of
sync-LPOM over SGD is defined as: t2k=t

1
j , where a value

greater than 1 means that sync-LPOM is faster than SGD to
achieve a satisfactory training loss. If SGD runs 20 times lon-
ger than t1j but its loss is still higher than e1j , we terminate SGD
and mark the real speedup ratio as: > 20x. The real speedup
ratio with each autoencoder is shown below the correspond-
ing figure in Fig. 5, which is in boldface. We can see that sync-
LPOM achieves superior speedups over SGD with various
autoencoders.

We want to note that we do not compare with parallel
SGD. The reasons are as follows. First, LPOM is paralle-
lizable across data or layers. We only utilize its layer par-
allelization. Implementing data parallelization is more or
less an engineering work. So we do not work on this.
Since the parallel SGD in [42] is data-parallel, we do not
include it for comparison. Second, async-SGD and sync-
SGD may achieve speedup, but their performances are
much worse than SGD [43]. Third, we never claim that
sync-LPOM is faster than SGD in one epoch. We only claim
that it is faster than SGD to achieve a relatively low training
loss. So we use serial SGD as our competitor, which is
more reasonable.

That sync-LPOM (or LPOM) achieves lower training and
test losses than SGD is because it properly lifts the dimen-
sion of the problem and solves the lifted problem instead.
So it can easily move to good points in the higher dimen-
sional space. In contrast, SGD directly optimizes the prob-
lem. So the optimization path is restricted by the loss
landscape, which is extremely complex. So we credit the
success of sync-LPOM (or LPOM) to “the blessing of
dimensionality.”

7 CONCLUSION

In this work we have developed LPOM to train fully-
connected feed-forward NNs. By rewriting the activation
function as an equivalent proximal operator, LPOM formu-
lates the training of an NN as a block multi-convex model.
This leads to our novel BCD solving method with conver-
gence guarantee. Due to the formulation and solving
method, LPOM avoids the gradient vanishing or exploding
problem and is applicable to general non-decreasing Lip-
schitz continuous activation functions. Moreover, it does
not require more auxiliary variables than the layer-wise
activations and its parameter tuning is relatively simple. It
could also be solved in parallel. We first present a new
async-BCD method with convergence guarantee. Then we
use it to solve LPOM and obtain async-LPOM. For faster
speed, we develop the sync-LPOM. Our experimental res-
ults show that LPOM works better than SGD, Adam, AMS-
Grad, [17], [23], and [24] on fully-connected feed-forward
NNs. We also verify the efficiency and effectiveness of
sync-LPOM on various autoencoder training problems.
Future work includes extending LPOM to train convolu-
tional and recurrent neural networks and applying LPOM
to network quantization.

ACKNOWLEDGMENTS

The work of Z. Lin was supported by the NSF of China
(Grants 61625301 and 61731018), Major Scientific Research
Project of Zhejiang Lab (Grants 2019KB0AC01 and
2019KB0AB02), Beijing Academy of Artificial Intelligence,
and Qualcomm. The work of J. Li was supported by the NSF
of China (Grants 61802269 and 61972132) and the Fundamen-
tal Research Funds for the Central Universities. The work of
C. Xuwas supported by theNSF of China (Grant 61876007).

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[2] G. Hinton et al., “Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research
groups,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97,
Nov. 2012.

[3] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” J.
Mach. Learn. Res., vol. 12, no. Aug, pp. 2493–2537, 2011.

[4] D. Silver et al., “Mastering the game of Go with deep neural net-
works and tree search,”Nature, vol. 529, no. 7587, 2016, Art. no. 484.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, vol. 1.
Cambridge, MA, USA: MIT Press, 2016.

[6] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088,
1986, Art. no. 533.

Fig. 6. Reconstructions using multi-layer autoencoders trained on the
MNIST dataset. The top row is original images. The following rows are
the results of autoencoders trained by Adam, AMSGrad, SGD, and
sync-LPOM, respectively.

3346 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 6, JUNE 2022

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

[7] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the
importance of initialization and momentum in deep learning,”
in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 1139–1147.

[8] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn.
Res., vol. 12, pp. 2121–2159, 2011.

[9] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gra-
dient by a running average of its recent magnitude,” COURSERA:
Neural Netw. Mach. Learn., vol. 4, no. 2, pp. 26–31, 2012.

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. Int. Conf. Learn. Representations, 2015.

[11] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of
Adam and beyond,” in Proc. Int. Conf. Learn. Representations,
2018.

[12] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points-
online stochastic gradient for tensor decomposition,” in Proc. Conf.
Learn. Theory, 2015, pp. 797–842.

[13] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int.
Conf. Mach. Learn., 2015, pp. 448–456.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[15] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, andA. Y. Ng,
“On optimization methods for deep learning,” in Proc. 28th Int.
Conf. Mach. Learn., 2011, pp. 265–272.

[16] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2016, pp. 4107–4115.

[17] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and
T. Goldstein, “Training neural networks without gradients: A
scalable ADMM approach,” in Proc. 33rd Int. Conf. Mach. Learn.,
2016, pp. 2722–2731.

[18] M. Carreira-Perpinan and W. Wang, “Distributed optimization of
deeply nested systems,” in Proc. Int. Conf. Artif. Intell. Statist.,
2014, pp. 10–19.

[19] J. Zeng, T. T.-K. Lau, S. Lin, and Y. Yao, “Global convergence of
block coordinate descent in deep learning,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 7313–7323.

[20] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method
with adaptive penalty for low-rank representation,” in Proc. Adv.
Neural Inf. Process. Syst., 2011, pp. 612–620.

[21] Z. Zhang, Y. Chen, and V. Saligrama, “Efficient training of very
deep neural networks for supervised hashing,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 1487–1495.

[22] Z. Zhang and M. Brand, “Convergent block coordinate
descent for training Tikhonov regularized deep neural
networks,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1721–1730.

[23] A. Askari, G. Negiar, R. Sambharya, and L. E. Ghaoui, “Lifted
neural networks,” 2018, arXiv:1805.01532.

[24] F. Gu, A. Askari, and L. E. Ghaoui, “Fenchel lifted networks: A
Lagrange relaxation of neural network training,” in Proc. Int. Conf.
Artif. Intell. Statist., 2020, vol. 108, pp. 3362–3371.

[25] J. Li, C. Fang, and Z. Lin, “Lifted proximal operator machines,” in
Proc. AAAI Conf. Artif. Intell., 2019, vol. 33, pp. 4181–4188.

[26] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends
Optim., vol. 1, no. 3, pp. 127–239, 2014.

[27] E. Kreyszig, Introductory Functional Analysis With Applications,
vol. 1. New York, NY, USA: Wiley, 1978.

[28] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2,
pp. 183–202, 2009.

[29] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu, “A com-
prehensive linear speedup analysis for asynchronous stochas-
tic parallel optimization from zeroth-order to first-order,” in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 3054–3062.

[30] T. Sun, R. Hannah, and W. Yin, “Asynchronous coordinate
descent under more realistic assumptions,” in Proc. Adv. Neural
Inf. Process. Syst., 2017, pp. 6182–6190.

[31] D. P. Bertsekas and J. N. Tsitsiklis, Eds.,Parallel and Distributed
Computation: Numerical Methods. Upper Saddle River, NJ, USA:
Prentice-Hall, 1989.

[32] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimension-
ality of data with neural networks,” Science, vol. 313, no. 5786,
pp. 504–507, 2006.

[33] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proc. Int. Conf. Artif. Intell.
Statist., 2010, pp. 249–256.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[35] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Master’s Thesis, Dept. Comput. Sci., Univ. Toronto, 2009.

[36] O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[37] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds
global minima of deep neural networks,” in Proc. Int. Conf. Mach.
Learn., 2019, pp. 1675–1685.

[38] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep
learning via over-parameterization,” in Proc. Int. Conf. Mach.
Learn., 2019, pp. 242–252.

[39] P. Chrabaszcz, I. Loshchilov, and F. Hutter, “A downsampled var-
iant of ImageNet as an alternative to the CIFAR datasets,” 2017,
arXiv:1707.08819.

[40] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature
learning,” in Proc. NIPS Workshop Deep Learn. Unsupervised Feature
Learn., 2011, Art. no. 5.

[41] J. Feng and Z.-H. Zhou, “AutoEncoder by forest,” in Proc. AAAI
Conf. Artif. Intell., 2018, pp. 2967–2973.

[42] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized sto-
chastic gradient descent,” in Proc. Adv. Neural Inf. Process. Syst.,
2010, pp. 2595–2603.

[43] S. Zheng et al., “Asynchronous stochastic gradient descent with
delay compensation,” in Proc. 34th Int. Conf. Mach. Learn., 2017,
vol. 108, pp. 4120–4129.

[44] D. P. Bertsekas, Nonlinear Programming: 2nd Edition. Belmont, MA,
USA: Athena Scientific, 1999.

[45] Y. Xu and W. Yin, “A block coordinate descent method for regu-
larized multiconvex optimization with applications to nonnega-
tive tensor factorization and completion,” SIAM J. Imag. Sci.,
vol. 6, no. 3, pp. 1758–1789, 2013.

[46] G. H. Golub and C. F. Van Loan,Matrix Computations, vol. 3. Balti-
more,MD,USA: The JohnsHopkins University Press, 2012.

[47] Y. Nesterov, Ed., Introductory Lectures on Convex Optimization: A
Basic Course. Berlin, Germany: Springer, 2004.

Jia Li received the PhD degree in computer sci-
ence from Beijing Jiaotong University, China, in
2017. He was a postdoctoral researcher at
Peking University, China from 2018 to 2020. He
is currently a lecturer at the School of Artificial
Intelligence, Beijing Normal University, China.
His research interests include machine learning,
computer vision, and image processing.

Mingqing Xiao received the BS degree in com-
puter science and technology and the double BS
degree in psychology from Peking University,
China, in 2020. He is currently working toward
the PhD degree from the School of Electronics
Engineering and Computer Science, Peking Uni-
versity, China. His research interests include
machine learning and computer vision.

LI ET AL.: TRAINING NEURAL NETWORKS BY LIFTED PROXIMAL OPERATOR MACHINES 3347

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

Cong Fang received the PhD degree from Peking
University, China, in 2019. He was a postdoctoral
researcher at Princeton University, Princeton,
New Jersey from 2019 to 2020. He is currently
a postdoctoral researcher at the University of
Pennsylvania, Philadelphia, Pennsylvania. His
research interests include optimization, machine
learning, computer vision, and pattern recognition.

Yue Dai is currently working toward the under-
graduate degree from the College of Software,
Beihang University, China, where he is working
for a double degree in mathematics. His research
interests include machine learning and computer
vision.

Chao Xu received the BE degree from Tsinghua
University, China, in 1988, the MS degree from the
University of Science and Technology of China,
China, in 1991, and the PhD degree from the Insti-
tute of Electronics, Chinese Academy of Sciences,
China, in 1997. Between 1991 and 1994 he was
employed as an assistant professor with the Uni-
versity of Science and Technology of China, China.
Since 1997, he has been with the School of EECS,
Peking University, China where he is currently a
professor. His research interests include image

and video coding, processing and understanding. He has authored or
coauthoredmore than 80 publications and five patents in these fields.

Zhouchen Lin (Fellow, IEEE) received the PhD
degree from Peking University, China, in 2000.
He is currently a professor at the Key Laboratory
of Machine Perception, School of EECS, Peking
University, China. His research interests include
computer vision, image processing, machine
learning, pattern recognition, and numerical opti-
mization. He has been area chairs of CVPR,
ICCV, NIPS/NeurIPS, AAAI, IJCAI, ICLR, and
ICML many times, and will be the program co-
chair of ICPR 2022. He is associate editors of the

International Journal of Computer Vision and Optimization Methods and
Software. He is fellows of IAPR and IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

3348 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 6, JUNE 2022

Authorized licensed use limited to: Peking University. Downloaded on May 07,2022 at 00:04:54 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

