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ABSTRACT
Epilepsy is a chronic neurological disease that affects many people
in the world. Automatic epileptic seizure detection based on elec-
troencephalogram (EEG) signals is of great significance and has
been widely studied. The current deep learning epilepsy detection
algorithms are often designed to be relatively simple and seldom
consider the characteristics of EEG signals. In this paper, we propose
a promising epilepsy detection model based on convolutional trans-
former networks. We demonstrate that integrating convolution and
transformer modules can achieve higher detection performance.
Our convolutional transformer model is composed of two branches:
one extracts time-domain features from multiple inputs of channel-
exchanged EEG signals, and the other handle frequency-domain
representations. Experiments on two EEG datasets show that our
model offers state-of-the-art performance. Particularly on the CHB-
MIT dataset, our model achieves 96.02% in average sensitivity and
97.94% in average specificity, outperforming other existing methods
with clear margins.
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Figure 1: The waveform graph sampled from the PKU1st EEG
dataset.

1 INTRODUCTION
Epilepsy, caused by abnormal discharges of brain nerve cells, is
one of the most common neurological disorders [15]. According to
the World Health Organization Report, there are around 50 million
people worldwide suffering from epilepsy. Electroencephalography
(EEG, as shown in Figure 1), which can record brain wave signals,
has been widely used for epilepsy diagnosis and treatment [3].
Specialized medical knowledge is required to analyze those EEG
signals. However, the amount of EEG signals is often too huge
for trained neurologists to efficiently analyze [13]. Therefore, the
development of automated epilepsy detection algorithms to reduce
the burden on physicians has become a valuable research direction
[17].

To achieve automatic detection of epilepsy, many machine learn-
ing methods have been proposed. The current epilepsy detection
methods are mainly divided into two categories, one is based on
manual feature engineering, and the other is based on deep learn-
ing. The former category of methods uses various signal processing
methods to extract discriminant features, and then sends them
to the binary classifier to determine the ictal session. Commonly
used EEG signal processing methods include fourier transform
and wavelet transform [7] [8], as well as other signal processing
methods such as the local mean decomposition [19] (LMD) and
the empirical mode decomposition (EMD) [14]. These processed
features will be sent to classifiers such as SVM and random forest
to obtain classification results [10].
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However, these feature engineering methods are often compli-
cated and cumbersome, and the effect is not good enough. Epilepsy
detection methods based on deep learning mainly use convolutional
neural networks (CNNs) [22] [20] and LSTM [1]. Hu [9] used a Bi-
LSTM with some time-frequence features. Acharya [2] proposed
a deep CNN consisting of 13 layers for automatic seizure detec-
tion. The current deep learning algorithms are often designed to be
relatively simple and seldom take into account the characteristics
of EEG signals. There is still a lot of room for exploration in this
direction.

Transformer models are not only widely used in the field of natu-
ral language processing [21] [5] , but also make significant progress
in the field of computer vision [6] [23] . The EEG segment data is a
time series in essence and is also image-like, which is suitable for
processing with transformer models. However, transformer mod-
els have not been successfully used for epilepsy detection yet in
the literature. In this paper, we propose a novel epileptic seizure
detection model based on the transformer networks and achieve
state-of-the-art results on two datasets. The contributions of this
paper are listed as follow:

• We propose to use the transformer model on epilepsy detec-
tion tasks for the first time, and show that a hybrid approach
combining convolution with transformer blocks works best.

• We propose an end-to-end seizure detection model, MFCvT,
based on convolutional transformer. This model, designed
for levaraging the multi-channel characteristics of EEG, uses
mutil-view gated inputs and Fourier transform to improve
the seizure detection performance.

2 METHODOLOGY
In this section, we propose the convolutional transformer model
CNViT and its extended model MFCvT.

2.1 The CNVIT Model
Directly applying the vision transformer models such as ViT [6]
and CvT [23] to the epilepsy detection task does not perform well
in the experiment. This is because the transformer models have
a larger hypothesis space and requires more data to train. How-
ever, the amount of EEG data is often insufficient when comparing
with the huge number of parameters in transformers, so that the
transformer models cannot be trained well. On the other hand,
the convolutional neural network models such as CW-SRNet [11]
achieve good results in epilepsy detection tasks, while the alter-
nating use of convolution and transformer block in the CvT [23]
model performs poorly. We found that it would be better to directly
use multi-stage convolutional layers to extract the representation
information of epileptic seizures. Based on this insight, we design
a network CNViT (Convolutional Vision Transformer) that first
uses multi-layer convolution to extract features, and then adopts
transformer blocks. The model architecture of CNViT is shown in
Figure 2.

The CNViT model is divided into two stages. In the first stage,
we use a eight-layer convolutional neural network to extract the
features of epileptic EEG segments, and then flatten the obtained
feature map to output a sequence 𝑆 = (𝑠1, 𝑠2, ..., 𝑠𝑛), where 𝑠𝑖 is the
value of a pixel in the feature map. The sequence 𝑆 will be used as

Figure 2: The Architecture of The CNViT Model

Input 𝑋𝑋1

Input 𝑋𝑋0

Input 𝑋𝑋𝑖𝑖

Input 𝑋𝑋𝐾𝐾

Gate 𝐺𝐺𝑖𝑖

C
o

nvo
lutio

n

C
o

nvo
lutio

n

C
o

nvo
lutio

n

...

...
...

Mutil-layer-Convolution

......
......

Input 𝑋𝑋0

Flatten

...
...

...
...

𝑋𝑋𝐺𝐺1

𝑋𝑋𝐺𝐺𝑖𝑖

𝑋𝑋𝐺𝐺𝐾𝐾

...

...

Tran
sfo

rm
er  B

lo
ck

... Tran
sfo

rm
er  B

lo
ck

M
LP

FFT
ViT model

M
LP

Map 

So
ftm

ax

O
u

tp
u

t

frequency signal

Gated

Mutil-layer-Convolution Gated

......

Add

Figure 3: The Architecture of The MFCVT Model

the input of the second stage of the transformer module. For each 𝑠𝑖 ,
we consider it to be a value of a certain type of feature, and map it to
a new semantic space through an embedding layer. At the same time
the order of the sequence is encoded by position, and the encoding
of each position is represented by a one-dimensional embedding.
Then the position encoding is directly added to the feature map
embedding of the previous step. These embeddings will be sent to
the transformer blocks in the next stage. Empiracally, we found
that the detection effect of deeper and narrower structures will be
better. We finally selected six consecutive transformer blocks. The
output of the last transformer block is sent to an MLP classification
network to output the classification prediction results.

The experimental results of this model are shown in the table 1 .
It can be seen that the transformer model with this structure can
do better than the original optimal convolutional network on the
epilepsy detection task.

2.2 The MFCVT Model
In this subsection, we further propose two improvements based
on the CNViT model. For an EEG segment, when we arbitrarily
change the order between EEG channels, theoretically it should not
change the result of the model to determine whether the epilepsy is
onset. But when we use the convolution network, the convolution
operation is related to the image position information. The electrical
channel order may affect the results of the convolutional network.
At the same time, when an epileptic seizure occurs, there will be
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partial connections between neighbouring brain regions. Certain
adjacent brain regions may have similar phenomena at the same
time during an epileptic seizure. In the presence of specific signals,
the convolution operation captures the information of adjacent
regions, which means that the order of EEG channels has an impact
on the convolutional network. We propose to take this impact into
account by adopting multiple channel order inputs.

The convolutional network actually extracts more features in
the time domain, but during epileptic seizures, the frequency of
brain waves will change significantly. We hope that the model can
explicitly consider the characteristics of this frequency change, so
we introduce the discrete Fourier transform method into the model
to directly extract the frequency domain features.

Based on the above two points, we propose a model MFCvT
(Convolutional transformer network with multiple gated inputs
and Fourier transform) with stronger seizure detection capabilities.
The architecture of MFCvT is shown in the figure 3.

For a raw EEG fragment sample 𝑋0 ∈ R𝐶×𝑇 , We get multiple
inputs (𝑋1, 𝑋2, ..., 𝑋𝐾 ) by randomly shuffling the order of EEG chan-
nels, where 𝐾 is the number of shuffles. Each 𝑋𝑖 is modified EEG
fragment sample obtained by randomly swapping the channel di-
mensions of 𝑋0. For each input sample 𝑋𝑖 , we use an eight-layer
convolutional neural network to obtain its feature map. After the
feature map is flattened, a one-dimensional vector 𝑋𝐹𝑖 (𝑖 = 1, ..., 𝐾)
can be obtained. After feeding the 𝐾 ways into the convolutional
network we can get a set (𝑋𝐹1, 𝑋𝐹2, ..., 𝑋𝐹𝐾 ) . Because different
EEG channel sequences may have good or bad effects on the results
and we cannot know in advance which sequence is better, we add
a gating module here to dynamically learn the importance of each
channel. The gating module consists of a set of multiple gating
vectors (𝑔1, 𝑔2, ..., 𝑔𝐾 ). Each gating vector 𝑔𝑖 is a learnable vector of
the same dimension as 𝑋𝐹𝑖 . After passing 𝑔𝑖 through the sigmoid
function we get a vector 𝐺𝑖whose value is between 0 and 1. Then
we let multiply 𝑋𝐹𝑖 and 𝐺𝑖 to get the vector 𝑋𝐺𝑖 .

The vector set (𝑋𝐺1, 𝑋𝐺2, ..., 𝑋𝐺𝐾 ) is obtained after the same
processing as above for the K-way input, which will be the input to
the following transformer blocks. Specifically, we first use an em-
bedding layer to do a semantic space transformation, then feed the
obtained multiple embeddings directly into the transformer blocks.
Since there is no positional sequence relationship between multi-
ple paths, we do not need to add position encoding here. Like the
CNViT model mentioned above, here we use six consecutive trans-
former blocks. Before they pass the softmax of the classification
layer, we can get the vector 𝑙𝑜𝑔𝑖𝑡𝑠𝐺 .

The above is the main part of the MFCvT model. In order to
combine the frequency domain features to improve the model per-
formance, we add the auxiliary branche to the network. For the
above-mentioned original EEG segment input 𝑋0, we perform one-
dimensional discrete Fourier transform on each channel to obtain
the frequency domain signal 𝑋𝐹 , where 𝑋𝐹 and 𝑋0 have the same
dimensions. Next, we feed the frequency domain signal 𝑋𝐹 into the
ViT [6] network, and the patch for ViT [6] model is set as 1 × 𝐶 .
Before passing through the softmax of the classification layer, we
can get the vector 𝑙𝑜𝑔𝑖𝑡𝑠𝐹 . Since the vector 𝑙𝑜𝑔𝑖𝑡𝑠𝐺 and the vec-
tor 𝑙𝑜𝑔𝑖𝑡𝑠𝐹 have the same dimensions, we use the direct weighted

fusion method to get the final logits

𝑙𝑜𝑔𝑖𝑡𝑠 = 𝑙𝑜𝑔𝑖𝑡𝑠𝐺 ∗ (1 − 𝛼) + 𝑙𝑜𝑔𝑖𝑡𝑠𝐹 ∗ 𝛼
where 𝛼 is the weighting factor. This logits can output the probabil-
ity value of classification prediction through the sigmoid layer. In
the next experiments, we can see that the MFCvT model achieves
the best results in experiments on multiple datasets.

3 EXPERIMENTS
In this section, we compare our models with other state-of-the-art
methods for seizure detection.

3.1 Experimental Setup
Dataset. We use the popular CHB-MIT benchmark dateset and
the dataset collected from The Peking University First Hospital
(referred as PKU1st dataset). The CHB-MIT EEG dataset, gath-
ered at the Boston Children’s Hospital [18], is one of the largest
and most used public datasets for epilepsy. This dataset consists
of long-duration multi-channel EEG recordings from 23 pediatric
patients with intractable seizures. The details of the mit dataset
are described in [9] [11]. We split the continuous EEG into many
two second segments. By means of the dataset seizure annotation,
we can easily distinguish between interictal and ictal phase. The
PKU1st dataset was collected from the department of Pediatrics of
Peking University First Hospital. We use data from 18 patients with
a similar composition to the MIT dataset. Mixed and single-patient
experiments were performed on each dataset. A single-patient ex-
periment operates on a single person’s data that is partitioned into
training set and test set, while in a mixed experiment the data from
all patients are randomly divided into training and test sets. In all
experiments we compare averaged metrics.

3.2 Measurements
In our experiments, four statistical indicators are used for the per-
formance evaluation of the proposed method. Some indicators are
defined as follows:

Sensitivity (Sen) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , (1)

Specificity (Spe) =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 , (2)

Accuracy (Acc) =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (3)

where 𝑇𝑃 is true positive, 𝐹𝑃 is false positive, 𝑇𝑁 is true negative
and 𝐹𝑁 is false negative. We also use 𝐴𝑈𝐶(Area under the ROC
Curve) for performance evaluation. In clinical practice, the most
concerned indicator is Sensitivity.

3.3 Results
We compare our transformer models with other epilepsy detection
models. CW-SRNet [11] is currently the best performing CNN-based
epilepsy detection model. Table 1 shows the comparison results of
various transformer models. It can be seen that the direct use of the
classic visual transformermodel (ViTmodel [6] and CvTmodel [23])
is not as useful as the CNN model, and the sensitivity of the CvT
model 84.72% is even far lower than the 94.17 of the CNNmodel. The
CNViT model, which we designe first to use convolution to extract
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features and then use transformer, slightly exceeds CNN with a
sensitivity of 94.47%, indicating that this transformer structure is
more suitable for epilepsy detection tasks. Our final MFCvT model
achieves 96.71% sensitivity, 97.23% specificity, 97.15% accuracy and
99.54% AUC, significantly outperforming other models.

The results of the single-person experiment on the CHB-MIT
dataset are shown in Table 2. OurMFCvTmodel achieves an average
sensitivity of 96.02%, specificity of 97.94%, accuracy of 97.56% and
AUC of 99.37%, which is the best performing model on the CHB-
MIT dataset.

The results of the 18-person mixed experiment of the PKU1st
dataset are shown in Table 3. The CNN model CW-SRNet [11]
achieves 87.64% sensitivity, and our MFCvT model achieves 90.12%
sensitivity, 96.14% specificity, 94.74% accuracy and 97.99% AUC, the
best performance on this dataset ’s model. The results of the single-
person experiment on the PKU1st dataset are shown in Table 4.
Our MFCvT model achieves an average sensitivity of 86.45%,better
than CNNs and other transformer models.These experiments fully
demonstrate the effectiveness of our model.

Table 1: Results on the Mixed CHB-MIT Dateset

Method Sen (%) Spe (%) Acc (%) AUC (%)

CW-SRNet [11] 94.17 96.76 96.08 98.78

ViT [6] 92.18 94.73 94.31 97.96

CvT [23] 84.72 95.28 93.53 96.54

CNViT 94.47 97.03 96.61 99.02

MFCvT 96.71 97.23 97.15 99.54

Table 2: Single Patient Results on the CHB-MIT Dataset

Method Sen (%) Spe (%) Acc (%) AUC (%)

Dyadic WT [16] 92.60 99.90 - -

Discrete WT [4] 91.71 92.89 92.30 -

CNN+MIDS [22] 74.08 92.46 - -

Bi-LSTM [9] 93.61 91.85 - -

CE-STNet [12] 92.41 96.05 95.96 -

CW-SRNet [11] 94.48 96.94 96.45 99.03

MFCvT (Ours) 96.02 97.94 97.56 99.37

4 CONCLUSION
In this paper, we propose a seizure detection model based on con-
volutional transformer. Our MFCvT model, designed for the multi-
channel characteristics of EEG, uses mutil-view gated inputs and
fourier transform to improve the seizure detection performance.

Table 3: Results on the Mixed PKU1st Dateset

Method Sen (%) Spe (%) Acc (%) AUC (%)

CW-SRNet [11] 87.64 95.35 93.56 97.06

ViT [6] 84.54 92.44 90.61 94.54

CvT [23] 64.16 89.17 83.4 85.50

CNViT 87.41 92.82 96.48 96.48

MFCvT 90.12 96.14 94.74 97.99

Table 4: Single Patient Results on the PKU1st Dataset

Method Sen (%) Spe (%) Acc (%) AUC (%)

CW-SRNet [11] 86.45 97.65 96.21 97.53

ViT [6] 82.85 96.68 94.97 94.88

CvT [23] 74.19 96.89 93.25 93.94

CNViT 87.02 96.44 95.21 96.12

MFCvT 88.43 97.16 95.79 97.63

The proposed method achieves an an average sensitivity of 96.02%
on the single patient setting of CHB-MIT dataset, which offers the
state-of-the-art results. These experiments convincingly prove the
effectiveness of our proposed epilepsy detection model.
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