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Abstract
Spiking Neural Network (SNN) is a promising energy-

efficient AI model when implemented on neuromorphic
hardware. However, it is a challenge to efficiently train
SNNs due to their non-differentiability. Most existing meth-
ods either suffer from high latency (i.e., long simulation
time steps), or cannot achieve as high performance as Ar-
tificial Neural Networks (ANNs). In this paper, we propose
the Differentiation on Spike Representation (DSR) method,
which could achieve high performance that is competitive to
ANNs yet with low latency. First, we encode the spike trains
into spike representation using (weighted) firing rate cod-
ing. Based on the spike representation, we systematically
derive that the spiking dynamics with common neural mod-
els can be represented as some sub-differentiable mapping.
With this viewpoint, our proposed DSR method trains SNNs
through gradients of the mapping and avoids the common
non-differentiability problem in SNN training. Then we an-
alyze the error when representing the specific mapping with
the forward computation of the SNN. To reduce such error,
we propose to train the spike threshold in each layer, and
to introduce a new hyperparameter for the neural models.
With these components, the DSR method can achieve state-
of-the-art SNN performance with low latency on both static
and neuromorphic datasets, including CIFAR-10, CIFAR-
100, ImageNet, and DVS-CIFAR10.

1. Introduction
Inspired by biological neurons that communicate using

spikes, Spiking Neural Networks (SNNs) have recently re-
ceived surging attention. This promise depends on their en-
ergy efficiency on neuromorphic hardware [7,31,35], while
deep Artificial Neural Networks (ANNs) require substantial
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power consumption.

However, the training of SNNs is a major challenge
[43] since information in SNNs is transmitted through
non-differentiable spike trains. Specifically, the non-
differentiability in SNN computation hampers the effec-
tive usage of gradient-based backpropagation methods. To
tackle this problem, the surrogate gradient (SG) method
[15,33,40,46,53] and the ANN-to-SNN conversion method
[4, 10, 38, 39, 50] have been proposed and yielded the best
performance. In the SG method, an SNN is regarded as a re-
current neural network (RNN) and trained by the backprop-
agation through time (BPTT) framework. And during back-
propagation, gradients of non-differentiable spike functions
are approximated by some surrogate gradients. Although
the SG method can train SNNs with low latency (i.e., short
simulation time steps), it cannot achieve high performance
comparable to leading ANNs. Besides, the adopted BPTT
framework needs to backpropagate gradients through both
the layer-by-layer spatial domain and the temporal domain,
leading to a long training time and high memory cost of
the SG method. The high training costs further limit the
usage of large-scale network architectures. On the other
hand, the ANN-to-SNN conversion method directly deter-
mines the network weights of an SNN from a corresponding
ANN, relying on the connection between firing rates of the
SNN and activations of the ANN. The conversion method
enables the obtained SNN to perform as competent as its
ANN counterpart. However, intolerably high latency is typ-
ically required, since only a large number of time steps can
make the firing rates closely approach the high-precision ac-
tivation values of ANNs [21, 38]. Overall, SNNs obtained
by the two widely-used methods either cannot compete their
ANN counterparts, or suffer from high latency.

In this paper, we overcome both the low performance and
high latency issues by introducing the Differentiation on
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Table 1. Comparison of the ANN-to-SNN conversion, surrogate
gradient (SG), and DSR method with respect to latency, perfor-
mance with low latency, and applicability on neuromorphic data.

Conversion SG DSR
Latency High Low Low

Performace w/ Low Medium HighLow Latency
Neuromorphic Non-appli- Appli- Appli-

Data cable cable cable

Spike Representation (DSR) method to train SNNs. First,
we treat the (weighted) firing rate of the spiking neurons as
spike representation. Based on the representation, we show
that the forward computation of an SNN with common spik-
ing neurons can be represented as some sub-differentiable
mapping. We then derive the backpropagation algorithm
while treating the spike representation as the information
carrier. In this way, our method encodes the temporal
information into spike representation and backpropagates
through sub-differentiable mappings of it, avoiding calcu-
lating gradients at each time step. To effectively train SNNs
with low latency, we further study the representation error
due to the SNN-to-mapping approximation, and propose to
train the spike thresholds and introduce a new hyperparam-
eter for the spiking neural models to reduce the error. With
these methods, we can train high-performance low-latency
SNNs. And the comparison of the properties between the
DSR method and other methods is illustrated in Tab. 1. For-
mally, our main contributions are summarized as follows:

1. We systematically study the spike representation for
common spiking neural models, and propose the DSR
method that uses the representation to train SNNs
by backpropagation. The proposed method avoids
the non-differentiability problem in SNN training and
does not require the costly error backpropagation
through the temporal domain.

2. We propose to train the spike thresholds and introduce
a new hyperparameter for the spiking neural models
to reduce the representation error. The two techniques
greatly help the DSR method to train SNNs with high
performance and low latency.

3. Our model achieves competitive or state-of-the-art
(SOTA) SNN performance with low latency on the
CIFAR-10 [26], CIFAR-100 [26], ImageNet [8], and
DVS-CIFAR10 [29] datasets. Furthermore, the exper-
iments also prove the effectiveness of the DSR method
under ultra-low latency or deep network structures.

2. Related Work
Many works seek biological plausibility in training

SNNs [5, 24, 28] using derivations of the Hebbian learning
rule [20]. However, this method cannot achieve competi-
tive performance and cannot be applicable on complicated

datasets. Besides the brain-inspired method, SNN learning
methods can be mainly categorized into two classes: ANN-
to-SNN conversion [10–12,17,18,23,25,38,39,50] and di-
rect training [1, 2, 13–15, 22, 32, 33, 40, 46, 47, 49, 51–53].
We discuss both the conversion and direct training method,
then analyze the information representation used in them.

ANN-to-SNN Conversion The feasibility of this conver-
sion method relies on the fact that the firing rates of an SNN
can be estimated by activations of an ANN with correspond-
ing architecture and weights [38]. With this method, the
parameters of a target SNN are directly determined from
a source ANN. And the performance of the target SNN is
supposed to be not much worse than the source ANN. Many
effective techniques have been proposed to reduce the per-
formance gap, such as weight normalization [39], tempo-
ral switch coding [17], rate norm layer [12], and bias shift
[10]. Recently, the conversion method has achieved high-
performance ANN-to-SNN conversion [10,30,50], even on
ImageNet. However, the good performance is at the ex-
pense of high latency, since only high latency can make
the firing rates closely approach the high-precision activa-
tion. This fact hurts the energy efficiency of SNNs when
using the conversion method. Furthermore, the conversion
method is not suitable for neuromorphic data. In this pa-
per, we borrow the idea of ANN-SNN mapping to design
the backpropagation algorithm for training SNNs. How-
ever, unlike usual ANN-to-SNN conversion methods, the
proposed DSR method can obtain high performance with
low latency on both static and neuromorphic data.

Direct Training Inspired by the immense success of gra-
dient descent-based algorithms for training ANN, some
works regard an SNN as an RNN and directly train it with
the BPTT method. This scheme typically leverages surro-
gate gradient to deal with the discontinuous spike functions
[2,33,46,53], or calculate the gradients of loss with respect
to spike times [32, 48, 54]. Between them, the surrogate
gradient method achieves better performance with lower la-
tency [15, 53]. However, those approaches need to back-
propagate error signals through time steps and thus suffer
from high computational costs during training [9]. Further-
more, the inaccurate approximations for computing the gra-
dients or the “dead neuron” problem [40] limit the training
effect and the use of large-scale network architectures. The
proposed method uses spike representation to calculate the
gradients of loss and need not backpropagate error through
time steps. Therefore, the proposed method avoids the com-
mon problems for direct training. A few works [44,45] also
use the similar idea of decoupling the forward and back-
ward passes to train feedforward SNNs; however, they nei-
ther systematically analyze the representation schemes nor
the representation error, and they cannot achieve compara-
ble accuracy as ours, even with high latency.
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Information Representation in SNNs In SNNs, infor-
mation is carried by some representation of spike trains
[34]. There are mainly two representation schemes: tempo-
ral coding and rate coding. These two schemes treat exact
firing times and firing rates, respectively, as the information
carrier. Temporal coding is adopted by some direct training
methods that calculate gradients with respect to spike times
[32, 48, 54], or few ANN-to-SNN methods [17, 42]. With
temporal coding, those methods typically enjoy low energy
consumption on neuromorphic chips due to sparse spikes.
However, those methods either require chip-unfriendly neu-
ron settings [17, 42, 54], or only perform well on simple
datasets. Rate coding is adopted by most ANN-to-SNN
methods [10–12, 18, 25, 38, 39, 50] and many direct train-
ing methods [45, 49]. The rate coding-based methods typi-
cally achieve better performances than those with temporal
coding. Furthermore, recent progress shows the potential
of rate-coding based methods on low latency or sparse fir-
ing [49], making it possible to reach the same or even better
level of energy efficiency as temporal coding scheme. In
this paper, we adopt the rate coding scheme to train SNNs.

3. Proposed Differentiation on Spike Represen-
tation (DSR) Method

3.1. Spiking Neural Models
Spiking neurons imitate the biological neurons that com-

municate with each other by spike trains. In this paper,
we adopt the widely used integrate-and-fire (IF) model and
leaky-integrate-and-fire (LIF) model [3], both of which are
simplified models to characterize the process of spike gen-
eration. Each IF neuron or LIF neuron ‘integrates’ the re-
ceived spike as its membrane potential V (t), and the dy-
namics of membrane potential can be formally depicted as

IF:
dV (t)

dt
= I(t), V < Vth, (1)

LIF: τ
dV (t)

dt
= −(V (t)− Vrest) + I(t), V < Vth, (2)

where Vrest is the resting potential, τ is the time constant,
Vth is the spike threshold, and I is the input current which is
related to received spikes. Once the membrane potential V
exceeds the predefined threshold Vth at time tf , the neuron
will fire a spike and reset its membrane potential to the rest-
ing potential Vrest. The output spike train can be expressed
using the Dirac delta function s(t) =

∑
tf
δ(t− tf ).

In practice, discretization for the dynamics is required.
The discretized model is described as:

U [n] = f(V [n− 1], I[n]), (3a)
s[n] = H(U [n]− Vth), (3b)
V [n] = U [n]− Vths[n], (3c)

where U [n] is the membrane potential before resetting,
s[n] ∈ {0, 1} is the output spike, n = 1, 2, · · · , N is the

time step index and N is the latency, H(x) is the Heaviside
step function, and f is the membrane potential update func-
tion. In the discretization, both V [0] and Vrest are set to be
0 for simplicity, and therefore Vth > 0. The function f(·, ·)
for IF and LIF models can be described as:

IF: f(V, I) = V + I, (4)

LIF: f(V, I) = e−
∆t
τ V +

(
1− e−

∆t
τ

)
I, (5)

where ∆t < τ is the discrete step for LIF model. In prac-
tice, we set ∆t to be much less that τ . Different from other
literature [10, 16, 46], we explicitly introduce the hyperpa-
rameter ∆t to ensure a large feasible region for τ , since the
discretization for LIF model is only valid when the discrete
step τ > ∆t [16]. For example, τ = 1 is allowed in our
setting, while some other works prohibit it since they set
∆t = 1. We use the “reduce by subtraction” method [45,49]
for resetting the membrane potential in Eq. (3c). Combing
Eqs. (3a) and (3c), we get a more concise update rule for
the membrane potential:

V [n] = f(V [n− 1], I[n])− Vths[n]. (6)

Eq. (6) is used to define the forward pass of SNNs.

3.2. Forward Pass
In this paper, we consider L-layer feedforward SNNs

with the IF or LIF models. According to Eqs. (4) and (6),
the spiking dynamics for an SNN with the IF model can be
described as:

Vi[n] = Vi[n− 1] + V i−1
th Wisi−1[n]− V i

ths
i[n], (7)

where i = 1, 2, · · · , L is the layer index, s0 are the input
data to the network, si are the output spike trains of the ith

layer for i = 1, 2, · · · , L, and Wi are trainable synaptic
weights from the (i − 1)th layer to the ith layer. Spikes are
generated according to Eq. (3b), and V i−1

th Wisi−1[n] are
treated as input currents to the ith layer. Furthermore, the
spike thresholds are the same for all IF neurons in one par-
ticular layer. Similarly, according to Eqs. (5) and (6), the
spiking dynamics for an SNN with the LIF model can be
shown as:

Vi[n] = exp(−∆t

τ i
)Vi[n− 1]

+ (1− exp(−∆t

τ i
))∆tV i−1

th Wisi−1[n]− V i
ths

i[n],

(8)

where ∆t is set to be a positive number much less than τi,
and it appears to simplify the analysis on spike representa-
tion schemes in Sec. 3.3. In Eqs. (7) and (8), we only con-
sider fully connected layers. However, other neural network
components like convolution, skip connection, and average
pooling can also be adopted.

The input s0 to the SNN can be both neuromorphic data
or static data (e.g., images). While neuromorphic data are
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Figure 1. The pipeline of proposed DSR method. The left part
shows the forward computation of an SNN. The right shows the er-
ror backpropagation through the sub-differentiable mapping gWi .

naturally adapted to SNNs, for static data, we repeatedly
apply them to the first layer at each time step [38, 49, 53].
With this method, the first layer can be treated as the spike-
train data generator. We use the spike trains sL as the output
data of the SNN, whose setting is more biologically plausi-
ble than prohibiting firing for the last layer and using the
membrane potentials as the network output [27, 44].

3.3. Spike Representation

In this subsection, we show that the forward computation
for each layer of an SNN with the IF or LIF neurons can
be represented as a sub-differentiable mapping using spike
representation as the information carrier. And the spike
representation is obtained by (weighted) firing rate coding.
Specifically, denoting by si the output spike trains of the ith

layer, the relationship between the SNN and the mapping
can be expressed as

Rep(si) ≈ gWi(Rep(si−1)), i = 1, 2, · · · , L, (9)

where Rep(si) is the spike representation of si, Wi are
the SNN parameters for the ith layer, and gWi is the sub-
differentiable mapping also parameterized by Wi. Then
the SNN parameters Wi can be learned through gradients
of gWi . The illustration of the SNN-to-mapping represen-
tation is shown in Fig. 1.

We first use weighted firing rate coding to derive the
formulae of spike representation Rep(si) and the sub-
differentiable mapping gWi for the LIF model. Then we
briefly introduce the formulae for the IF model, which are

simple extensions of those for the LIF model. Training
SNNs based on the spike representation schemes is de-
scribed in Sec. 3.4.

3.3.1 Spike Representation for the LIF Model

We first consider the LIF model defined by Eqs. (3a) to (3c)
and (5). To simplify the notation, define λ = exp(−∆t

τ ).

We further define Î[N ] =
∑N

n=1 λN−nI[n]∑N
n=1 λN−n as the weighted

average input current until the time step N , and define
â[N ] =

Vth

∑N
n=1 λN−ns[n]∑N

n=1 λN−n∆t
as the scaled weighted firing

rate. Here we treat â[N ] as the spike representation of the
spike train {s[n]}Nn=1 for the LIF model. The key idea is to
directly determine the relationship between Î[N ] and â[N ]
using a (sub-)differentiable mapping.

In detail, combining Eqs. (5) and (6), and multiplying
the combined equation by λN−n, we have

λN−nV [n] = λN−n+1V [n− 1]

+ (1− λ)λN−nI[n]− λN−nVths[n].
(10)

Summing Eq. (10) over n = 1 to N , we can get

V [N ] = (1− λ)

N∑
n=1

λN−nI[n]−
N∑

n=1

λN−nVths[n]. (11)

Dividing Eq. (11) by ∆t
∑N

n=1 λ
N−n and then rearrange

the terms, we have

â[N ] =
(1− λ)Î[N ]

∆t
− V [N ]

∆t
∑N

n=1 λ
N−n

. (12)

Note that we can further approximate 1−λ
∆t in Eq. (12) by 1

τ ,
since lim

∆t→0

1−λ
∆t = 1

τ and we set ∆t ≪ τ . Then we have

â[N ] ≈ Î[N ]

τ
− V [N ]

∆t
∑N

n=1 λ
N−n

. (13)

Eq. (13) is the basic formula to determine the map-
ping from Î[N ] to â[N ]. Note that in Eq. (13), the term

V [N ]

∆t
∑N

n=1 λN−n cannot be directly determined only given

Î[N ]. However, taking â[N ] ∈ [0, Vth

∆t ] into considera-
tion and assuming Vth is small, we can ignore the term

V [N ]

∆t
∑N

n=1 λN−n in Eq. (13), and further approximate â[N ]
as

lim
N→∞

â[N ] ≈ clamp

(
lim

N→∞

Î[N ]

τ
, 0,

Vth

∆t

)
, (14)

where clamp(x, a, b) ≜ max(a,min(x, b)). Detailed
derivation and mild assumptions for Eq. (14) are shown in
the Supplementary Materials. Applying Eq. (14) to feed-
forward SNNs with multiple LIF neurons, we have Propo-
sition 1, which is used to train SNNs.
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Proposition 1. Consider an SNN with LIF neurons de-

fined by Eq. (8). Define â0[N ] =
∑N

n=1 λN−n
i s0[n]∑N

n=1 λN−n
i ∆t

and

âi[N ] =
V i
th

∑N
n=1 λN−n

i si[n]∑N
n=1 λN−n

i ∆t
,∀i = 1, 2, · · · , L, where λi =

exp(−∆t
τ i ). Further define sub-differentiable mappings

zi = clamp

(
1

τ i
Wizi−1, 0,

V i
th

∆t

)
, i = 1, 2, · · · , L.

If lim
N→∞

âi[N ] = zi for i = 0, 1, · · · , L − 1, then âi+1[N ]

approximates zi+1 when N → ∞.

3.3.2 Spike Representation for the IF Model

We then consider the IF model defined by Eqs. (3a) to
(3c) and (4). Define Ī[N ] = 1

N

∑N
n=1 I[n] as the aver-

age input current until the time step N , and define a[N ] =
1
N

∑N
n=1 Vths[n] as the scaled firing rate. We treat a[N ] as

the spike representation of the spike train {s[n]}Nn=1 for the
IF model. We can use similar arguments shown in Sec. 3.3.1
to determine the relationship between Î[N ] and â[N ] as

lim
N→∞

a[N ] = clamp
(

lim
N→∞

Ī[N ], 0, Vth

)
. (15)

Detailed assumptions and derivation for Eq. (15) are shown
in the Supplementary Materials. With Eq. (15), we can have
Proposition 2 to train feedforward SNNs with the IF model.

Proposition 2. Consider an SNN with IF neurons defined
by Eq. (7). Define a0[N ] = 1

N

∑N
n=1 s

0[n] and ai[N ] =
1
N

∑N
n=1 V

L
ths

i[n],∀i = 1, 2, · · · , L. Further define sub-
differentiable mappings:

zi = clamp
(
Wizi−1, 0, V i

th

)
, i = 1, 2, · · · , L.

If lim
N→∞

a0[N ] = z0, then lim
N→∞

ai[N ] = zi.

3.4. Differentiation on Spike Representation

In this subsection, we use the spike representation for the
IF and the LIF models to drive the backpropagation training
algorithm for SNNs, based on Propositions 1 and 2. And
the illustration can be found in Fig. 1.

Define the spike representation operator r(·) with
spike train s = (s[1], · · · , s[N ]) as input, such that
r(s) = 1

N

∑N
n=1 Vths[n] for the IF model, and r(s) =

Vth

∑N
n=1 λN−ns[n]∑N

n=1 λN−n∆t
for the LIF model, where λ =

exp(−∆t
τ ). With the spike representation, we define the

final output of the SNN as oL = r(sL), where sL is the
output spike trains from the last layer and r(·) is defined
element-wise. We use cross-entropy as the loss function ℓ.

The proposed DSR method backpropagates the gradient
of error signals based on the representation of spike trains
in each layer, oi = r(si), where i = 1, 2, · · · , L is the layer

index. By applying chain rule, the required gradient ∂ℓ
∂Wi

can be computed as

∂ℓ

∂Wi
=

∂ℓ

∂oi

∂oi

∂Wi
,

∂ℓ

∂oi
=

∂ℓ

∂oi+1

∂oi+1

∂oi
, (16)

where ∂oi+1

∂oi and ∂oi

∂Wi can be computed with Propositions 1
and 2. Specifically, from Sec. 3.3, we have

oi = r(si) ≈ clamp(Wi r(si−1), 0, bi), i = 1, 2, · · · , L, (17)

where bi = V i
th for the IF model, and bi =

V i
th

∆t for the LIF
model. Therefore, we can calculate ∂oi+1

∂oi and ∂oi

∂Wi based
on Eq. (17). The pseudocode of the proposed DSR method
can be found in the Supplementary Materials.

With the proposed DSR method, we avoid two com-
mon problems in SNN training. First, this method does
not require backpropagation through the temporal domain,
improving the training efficiency when compared with the
BPTT type methods, especially when the number of time
steps is not ultra-small. Second, this method does not need
to handle the non-differentiability of spike functions, since
the signals are backpropagated through sub-differentiable
mapping. Although there exists representation error due to
finite time steps, we can reduce it, as described in Sec. 4.

4. Reducing Representation Error
Propositions 1 and 2 show that the (weighted) firing rate

can gradually estimate or converge to the output of a sub-
differentiable mapping. And Sec. 3.4 shows that we can
train SNNs by backpropagation using spike representation.
However, in practice we want to simulate SNNs with only
a small number of time steps, for the sake of low energy
consumption. The low latency will further introduce repre-
sentation error that hinders effective training. In this subsec-
tion, we study the representation error and propose to train
the spike threshold and introduce a new hyperparameter for
the neural models to reduce the error.

The representation error er can be decomposed as er =
eq + ed, where eq is the “quantization error” and ed is the
“deviation error”. The quantization error eq exists due to
the imperfect precision of the firing rate, when assuming
the same input currents at all time steps. For example, it
can only take value in the form n

N for the IF neuron, where
n ∈ N and N is the number of time steps. And the deviation
error eq exists due to the inconsistency of input currents at
different time steps. For example, when the average input
current is 0, the output firing rate is supposed to be 0; how-
ever, it can be significantly larger than 0 if the input currents
are positive during the first few time steps.

From the statistical perspective, the expectation for ed
is 0, assuming i.i.d. input currents at different time steps.
Therefore, the “deviation error” ed will not affect training
too much when using stochastic optimization algorithms.
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Figure 2. The firing rate of the IF neuron approximates the clamp
function given unchanged input currents. Spike generating of IF
neurons w/ or w/o introducing a new hyperparameter for spiking
neurons is controlled by Eqs. (3b) and (20), respectively. Here we
set the threshold θ = 1 and the latency N = 5.

Next, we dig into eq with the IF model and then propose
methods to reduce it. Similar arguments can be derived for
the LIF model. When given unchanged input currents I∗ at
all time steps to the IF neuron, the scaled average firing rate
a[N ] = 1

N

∑N
n=1 Vths[n] can be determined as

a[N ] =
Vth

N
· clamp

(⌊
NI∗

θ

⌋
, 0, N

)
, (18)

shown as the red curve in Fig. 2, where ⌊·⌋ is the floor
rounding operator. Inspired by Eq. (18), we propose two
methods to reduce the quantization error.

Training the Spike Threshold From Fig. 2 and Eq. (18),
we observe that using small spike thresholds can reduce the
quantization error. However, it also weakens the approxi-
mation capacity of the SNNs, since the scaled (weighted)
firing rate will be in a small range then. Inspired by acti-
vation clipping methods for training quantized neural net-
works [6], in this paper, we treat the spike threshold of
each layer as parameters to be trained, and include an L2-
regularizer for the thresholds in the loss function to balance
the tradeoff between quantization error and approximation
capacity. To train the spike thresholds using backpropaga-
tion, we calculate the gradients with respect to them based
on the spike representation introduced in Sec. 3.3. For ex-
ample, using Eq. (15), for one IF neuron with average input
current I∗ and steady scaled firing rate a∗, we have

∂a∗

∂Vth
=

{
1, if I∗ > Vth,
0, otherwise. (19)

Then we can calculate the gradient of the loss function with
respect to the threshold by the chain rule. A similar cal-
culation applies to LIF neurons. In practice, since we use
mini-batch optimization methods to train SNNs, the gradi-
ent for each threshold is proportional to the batch size by the
chain rule. Thus, we scale the gradient regarding different
batch sizes and spiking neural models.

Introducing a new hyperparameter for the neural mod-
els We can introduce a new hyperparameter for spiking
neurons to control the neuron firing to reduce the quantiza-
tion error. Formally, we change Eq. (3b) to

s[n] = H(U [n]− αVth) (20)

to get a new firing mechanism, where α ∈ [0, 1] is a hyper-
parameter. For the IF model with the new firing mechanism
and α = 0.5, using the same notation as in Eq. (18), the
scaled firing rate becomes

a[N ] =
Vth

N
· clamp

([
NI∗

θ

]
, 0, N

)
, (21)

shown as the green curve in Fig. 2, where [·] is the round-
ing operator. From Fig. 2, we can see that the maximum
absolute quantization error is halved when using this mech-
anism. Furthermore, since α = 0.5 makes the average ab-
solute quantization error minimized, α = 0.5 is the best
choice for the IF model. On the other hand, for the LIF
model, the best choice for α changes when setting different
latency N , so we choose different α in our experiments to
minimize the average absolute quantization error.

5. Experiments
We first evaluate the proposed DSR method and com-

pare it with other works on visual object recognition bench-
marks, including CIFAR-10, CIFAR-100, ImageNet, and
DVS-CIFAR10. We then demonstrate the effectiveness of
our method when the number of time steps becomes smaller
and smaller, or the network becomes deeper and deeper.
We also test the effectiveness of the methods for reduc-
ing representation error. Please refer to the Supplementary
Materials for experiment details. Our code is available at
https://github.com/qymeng94/DSR.

5.1. Comparison to the State-of-the-Art
The comparison on CIFAR-10, CIFAR-100, ImageNet,

and DVS-CIFAR10 is shown in Tab. 2.
For the CIFAR-10 and the CIFAR-100 datasets, we use

pre-activation ResNet-18 [19] as the network architecture.
Tab. 2 shows that the proposed DSR method outperforms
all other methods on CIFAR-10 and the CIFAR-100 with
20 time steps for both the IF and the LIF models, based on
3 runs of experiments. Especially, our method achieves ac-
curacies that are 5%-10% higher on CIFAR-100 when com-
pared to others. Furthermore, the obtained SNNs have sim-
ilar or even better performance compared to ANNs with the
same network architectures. Although some direct training
methods use smaller time steps than ours, our method can
also achieve better performances than others when the num-
ber of time steps N = 15, 10, and 5, as shown in Fig. 3a.

For the ImageNet dataset, we also use the pre-activation
ResNet-18 network architecture. To accelerate training, we
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Table 2. Performance on CIFAR-10, CIFAR-100, ImageNet, and DVS-CIFAR10. For the first three datasets, we categorize the methods
into 4 classes: ANN, the ANN-to-SNN method, the direct training method, and our proposed method. Different types of methods are
separated by horizontal lines. We bold the best result for the LIF model, and underline the best result for the IF model.

Method Network Neural Model Time Steps Accuracy

C
IF

A
R

-1
0

ANN 1 PreAct-ResNet-18 / / 95.41%
ANN-to-SNN [10] ResNet-20 IF 128 93.56%
ANN-to-SNN [18] VGG-16 IF 2048 93.63%
ANN-to-SNN [50] VGG-like IF 600 94.20%
Tandem Learning [45] CIFARNet IF 8 90.98%
ASF-BP [44] VGG-7 IF 400 91.35%
STBP [46] CIFARNet LIF 12 90.53%
IDE [49] CIFARNet-F LIF 100 92.52%± 0.17%
STBP-tdBN [53] ResNet-19 LIF 6 93.16%
TSSL-BP [52] CIFARNet LIF w/ synaptic model 5 91.41%

DSR (ours) PreAct-ResNet-18 IF 20 95.24%± 0.17%
PreAct-ResNet-18 LIF 20 95.40%± 0.15%

C
IF

A
R

-1
00

ANN 1 PreAct-ResNet-18 / / 78.12%
ANN-to-SNN [10] ResNet-20 IF 400-600 69.82%
ANN-to-SNN [18] VGG-16 IF 768 70.09%
ANN-to-SNN [50] VGG-like IF 300 71.84%
Hybrid Training [37] VGG-11 LIF 125 67.84%
DIET-SNN [36] VGG-16 LIF 5 69.67%
IDE [49] CIFARNet-F LIF 100 73.07%± 0.21%

DSR (ours) PreAct-ResNet-18 IF 20 78.20%± 0.13%
PreAct-ResNet-18 LIF 20 78.50%± 0.12%

Im
ag

eN
et

ANN 1 PreAct-ResNet-18 / / 70.79%
ANN-to-SNN [39] ResNet-34 IF 2000 65.47%
ANN-to-SNN [18] ResNet-34 IF 4096 69.89%
Hybrid training [37] ResNet-34 LIF 250 61.48%
STBP-tdBN [53] ResNet-34 LIF 6 63.72%
SEW ResNet [15] SEW ResNet-34 LIF 4 67.04%
SEW ResNet [15] SEW ResNet-18 LIF 4 63.18%
DSR (ours) PreAct-ResNet-18 IF 50 67.74%

D
V

S-
C

IF
A

R
10

ASF-BP [44] VGG-7 IF 50 62.50%
Tandem Learning [45] 7-layer CNN IF 20 65.59%
STBP [47] 7-layer CNN LIF 40 60.50%
STBP-tdBN [53] ResNet-19 LIF 10 67.80%
Fang et al. [16] 7-layer CNN LIF 20 74.80%

DSR (ours) VGG-11 IF 20 75.03%± 0.39%
VGG-11 LIF 20 77.27%± 0.24%

1 Self-implemented results for ANN.

adopt the hybrid training technique [36, 37]. And consid-
ering the data complexity and the 1000 classes, we use a
moderate number of time steps to achieve satisfactory re-
sults. Our proposed method can outperform the direct train-
ing methods even if they use larger network architectures.
Although some ANN-to-SNN methods have better accu-
racy, they use much more time steps than ours.

For the neuromorphic DVS-CIFAR10, we adopt the
VGG-11 architecture [41] and conduct 3 runs of experi-

ments for each neural model. It can be found in Tab. 2
that the proposed method outperforms other SOTA methods
with low latency using both the IF and the LIF models.

5.2. Model Validation and Ablation Study

Effectiveness of the Proposed Method with Low Latency
We validate that the proposed method can achieve compet-
itive performances even with ultra-low latency, as shown in
Fig. 3a. Each model is trained from scratch. From 20 to
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Figure 3. (a) Accuracies achieved by DSR method on CIFAR-10
with low latency. The PreAct-ResNet-18 network architecture is
used. Results are based on 3 runs of experiments. (b) Accuracies
achieved by DSR method on CIFAR-10 with different network ar-
chitectures. The number of time steps is 20. Narrow network ar-
chitectures are used.

5 time steps, our models only suffer from less than 1% ac-
curacy drop. The results for 5 time steps also outperform
other SOTA shown in Tab. 2. More training details can be
found in the Supplementary Materials.

Effectiveness of the Proposed Method with Deep Net-
work Structure Many SNN learning methods cannot
adapt to deep network architectures, limiting the potential
of SNNs. The reason is that the error for gradient ap-
proximation or ANN-to-SNN conversion will accumulate
through layers, or the methods are computationally expen-
sive for large-scale network structures. In this part, we
test the proposed method on CIFAR-10 using pre-activation
ResNet with different depths, namely 20, 32, 44, 56, 110
layers. Note that the channel size is smaller than the PreAct-
ResNet-18, since the deep networks with large channel size
as in PreAct-ResNet-18 perform not much better and are
harder to train even for ANNs. More details about network
architectures can be found in the Supplementary Materials.
Results are shown in Fig. 3b. The figure shows that our
method is effective on deep networks (>100 layers), and
performs better with deeper network structures. This in-
dicates the great potential of our method to achieve more
advanced performance when using very deep networks.

Ablation Study on Methods to Reduce Representation
Error We conduct the ablation study on the representa-
tion error reduction methods, namely training the thresh-
old and introducing a new hyperparameter for the neural
models. The models are trained on CIFAR-10 with PreAct-
ResNet-18 structure and 20 time steps, and the results are
shown in Tab. 3. The experiments imply that the represen-
tation error significantly hinders training and also demon-
strate the superiority of the two methods to reduce the rep-
resentation error. Note that the threshold training method
also helps stabilize training, since the results become unsta-
ble for large thresholds without this method (e.g., the stan-
dard deviation is 1.84% when Vth = 6). Furthermore, the
average accuracy of not using both methods is better than
the one of only using the firing mechanism modification,
maybe due to the instability of the results when Vth is large.

Table 3. Ablation study on the representation error reduction
methods on CIFAR-10. The PreAct-ResNet-18 architecture with
the IF model is used, and results are based on 3 runs of experi-
ments. ‘F’ means firing mechanism modification, and ‘T’ means
threshold training.

Setting Accuracy
DSR, init. Vth = 6 95.24%± 0.17%

DSR w/o F, init. Vth = 6 92.88%± 0.25%
DSR w/o T, Vth = 6 90.45%± 1.84%
DSR w/o T, Vth = 2 90.47%± 0.12%

DSR w/o F&T, Vth = 6 92.59%± 0.81%

6. Conclusion and Discussions
In this work, we show that the forward computation of

SNNs can be represented as some sub-differentiable map-
ping. Based on the SNN-to-mapping representation, we
propose the DSR method to train SNNs that avoids the non-
differentiability problem in SNN training and does not re-
quire backpropagation through the temporal domain. We
also analyze the representation error due to the small num-
ber of time steps, and propose to train the thresholds and
introduce a new hyperparameter for the IF and LIF models
to reduce the representation error. With the error reduction
methods, we can train SNNs with low latency by the DSR
method. Experiments show that the proposed method could
achieve SOTA performance on mainstream vision tasks, and
show the effectiveness of the method when dealing with
ultra-low latency or very deep network structures.

Societal impact and limitations. As for societal im-
pact, there is no direct negative societal impact since this
work only focuses on training SNNs. In fact, the develop-
ment of high-performance low-latency SNNs allows SNNs
to replace ANNs in some real-world tasks. This replace-
ment will alleviate the huge energy consumption by ANNs
and reduce carbon dioxide emissions. As for limitations,
the DSR method may suffer from a certain degree of per-
formance drop when the latency is extremely low (e.g., with
only 2 or 3 time steps), since the method requires relatively
accurate spike representation to conduct backpropagation.
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[42] Christoph Stöckl and Wolfgang Maass. Optimized spiking
neurons can classify images with high accuracy through tem-
poral coding with two spikes. Nature Machine Intelligence,
pages 1–9, 2021. 3

[43] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kher-
adpisheh, Timothée Masquelier, and Anthony Maida. Deep
learning in spiking neural networks. Neural Networks,
111:47–63, 2019. 1

[44] Hao Wu, Yueyi Zhang, Wenming Weng, Yongting Zhang,
Zhiwei Xiong, Zheng-Jun Zha, Xiaoyan Sun, and Feng Wu.
Training spiking neural networks with accumulated spiking
flow. In AAAI, 2021. 2, 4, 7

[45] Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou
Li, and Kay Chen Tan. A tandem learning rule for effective
training and rapid inference of deep spiking neural networks.
TNNLS, 2021. 2, 3, 7

[46] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping
Shi. Spatio-temporal backpropagation for training high-
performance spiking neural networks. Frontiers in neuro-
science, 12:331, 2018. 1, 2, 3, 7

[47] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Lup-
ing Shi. Direct training for spiking neural networks: Faster,
larger, better. In AAAI, 2019. 2, 7

[48] Timo C Wunderlich and Christian Pehle. Event-based back-
propagation can compute exact gradients for spiking neural
networks. Scientific Reports, 11(1):1–17, 2021. 2, 3

[49] Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen
Wang, and Zhouchen Lin. Training feedback spiking neural
networks by implicit differentiation on the equilibrium state.
In NeurIPS, 2021. 2, 3, 4, 7

[50] Zhanglu Yan, Jun Zhou, and Weng-Fai Wong. Near lossless
transfer learning for spiking neural networks. In AAAI, 2021.
1, 2, 3, 7

[51] Yukun Yang, Wenrui Zhang, and Peng Li. Backpropagated
neighborhood aggregation for accurate training of spiking
neural networks. In ICML, 2021. 2

[52] Wenrui Zhang and Peng Li. Temporal spike sequence learn-
ing via backpropagation for deep spiking neural networks. In
NeurIPS, 2020. 2, 7

[53] Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li.
Going deeper with directly-trained larger spiking neural net-
works. In AAAI, 2021. 1, 2, 4, 7

[54] Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chan-
drasekaran, and Arindam Sanyal. Temporal-coded deep
spiking neural network with easy training and robust perfor-
mance. In AAAI, 2021. 2, 3

12453


