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Abstract
Recently, certifiable robust training methods via
bound propagation have been proposed for train-
ing neural networks with certifiable robustness
guarantees. However, no neural architectures with
regular convolution and linear layers perform bet-
ter in the certifiable training than the plain CNNs,
since the output bounds for the deep explicit mod-
els increase quickly as their depth increases. And
such a phenomenon significantly hinders certifi-
able training. Meanwhile, the Deep Equilibrium
Models (DEQs) are more representative and ro-
bust due to their equivalent infinite depth and con-
trollable global Lipschitz. But no work has been
proposed to explore whether DEQ can show ad-
vantages in certified training. In this work, we
aim to tackle the problem of DEQ’s certified train-
ing. To obtain the output bound based on the
bound propagation scheme in the implicit model,
we first involve the adjoint DEQ for bound ap-
proximation. Furthermore, we also use the weight
orthogonalization method and other tricks speci-
fied for DEQ to stabilize the certifiable training.
With our approach, we can obtain the certifiable
DEQ called CerDEQ. Our CerDEQ can achieve
state-of-the-art performance compared with mod-
els using regular convolution and linear layers on
ℓ∞ tasks with ϵ = 8/255: 64.72% certified error
for CIFAR-10 and 94.45% certified error for Tiny
ImageNet.

1. Introduction
Although deep neural networks (DNNs) have achieved great
success in various areas, the discovery of the adversarial
examples (Szegedy et al., 2013; Goodfellow et al., 2014) has
raised concerns about the security of DNNs and hinders their
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Figure 1. The certified error of CNNs with BN of different depth,
the models are trained on CIFAR-10 and evaluated under ϵ =
8/255.

development in safety-critical areas like autonomous driving
(Cao et al., 2019) and medical diagnosis (Ma et al., 2020).
Many training algorithms (Madry et al., 2018; Wang et al.,
2019; 2020; Wu et al., 2020; Bai et al., 2021b; Huang et al.,
2021; Wang & Wang, 2022) have been proposed to solve
such a problem, which use adversarial examples for training
to enhance the robustness. However, the robustness obtained
by such methods doesn’t have theoretical guarantees.

Except for these researches, works (Wong & Kolter, 2018;
Chen et al., 2021; Katz et al., 2017) have been proposed
to theoretically evaluate their certified robustness by calcu-
lating the worst output for all possible input perturbations
within the given region. Besides evaluation tasks, certified
robust training methods have been proposed for CNNs by
minimizing the certified robust loss obtained by calculating
the upper bound for loss of the worst-case for given input
perturbations. In order to find a tighter upper bound for the
certified loss, works (Dvijotham et al., 2018; Gowal et al.,
2018; Mirman et al., 2018b; Zhang et al., 2018; Shi et al.,
2021) have been proposed for CNNs to obtain the output
bounds of DNNs for efficient training. However, as the
approximated output bounds overgrow with the increment
of the layers, the result for certifiably training a deep model
is unsatisfactory, as shown in Figure 1.
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For this account, the well-designed CNN structures
like WideResNet (Zagoruyko & Komodakis, 2016) and
ResNeXt (Xie et al., 2017) cannot show their advantages
against plain CNN models on these tasks as shown in Shi
et al. (2021). Such a phenomenon implies that explicit
DNNs models may not suit the certified tasks since these
models need deep layers to be representative, while the
depth will make the certified training harder.

Recently, DEQ (Bai et al., 2019) has been proposed as a
potential alternative to classical DNNs. For a given sample
x, a DEQ layer uses the equilibrium state as output via the
following fixed point equation:

z = σ(Wz+Ux+ b), (1)

where z is the equilibrium state of DEQ for input x, we
call W as fusion weights in the following and U,b are
learnable parameters with respect to the input x and σ is
ReLU function. We call Ux the DEQ’s extractor part in
the following. After stacking (Winston & Kolter, 2020a;
Bai et al., 2020; Li et al., 2022) a few DEQ layers, DEQ
model can provide competitive results on machine learning
tasks with constant memory usage. Instead of explicitly
forwarding the input features layer by layer, DEQ’s forward
process reaches the output state by solving the fixed point
iterations via the root-finding methods only if Eqn (1) can
converge to an equilibrium point. Since DEQ’s forward
process is equivalent to forwarding the weight-tied neural
layer for infinite times, we can also regard a DEQ layer as
an weight-tied explicit module with infinite layers.

Since DEQ’s generalization ability is not attributed to its
explicit depth, we wonder whether it can perform better in
certifiable training cases. However, no research has been
done to implement the certifiable training methods on DEQ
and explore whether DEQ is more suitable for the certified
robustness problem or not. In this paper, we manage to
propose a way to certifiably train a DEQ model. The main
contributions of our paper are listed below:

1. Firstly, we propose an approach to efficiently calculate
the output bound for the implicit DNN models via an
adjoint DEQ. Then we can implement certified training
on DEQ.

2. Secondly, we propose an orthogonalization method for
DEQ in certified training, ensuring the convergence of
DEQ and enhancing the DEQ’s performance in certi-
fied training.

3. Thirdly, we convert some essential tricks of the state-
of-the-art Fast-IBP (Shi et al., 2021) training methods
for explicit models to their DEQ version, like new
initialization methods.

With our proposed certified training method, we can ob-
tain a certifiable robust DEQ called CerDEQ. CerDEQ
can achieve state-of-the-art performance on the certified
tasks compared with other explicit models. Significantly,
CerDEQ achieves 32.8% certified accuracy quickly with
only 70 training epochs and 35.3% certified accuracy for
200 epochs on CIFAR-10 with ϵ = 8/255, demonstrating
that CerDEQ is more suitable for certified training and be
more stable under the certifiable tasks. Furthermore, our
CerDEQ can achieve 5.55% certified accuracy on Tiny Ima-
geNet with ϵ = 8/255, nearly 20% improvement compared
with the explicit models.

2. Related Works
2.1. Methods for Certified Training

The widely used way to train a robust neural network can
be viewed as solving the following min-max optimization
problem:

min
θ

E
[
max
δ∈∆(ϵ)

L(fθ(x+ δ, y))

]
, (2)

where fθ stands for the neural architecture parameterized
by θ, x denotes the data, y denotes the label. δ is the per-
turbation that constrained by ϵ. In this paper, we set the
perturbation constraint as a ℓ∞ ball with radius ϵ. The
empirical adversarial training algorithms use optimization
methods like projected gradient methods to obtain δ for the
inner optimization problem and then use it to do the outer
minimizing problem for training. However, such an empiri-
cal way can not guarantee that δ will converge to the inner
problem’s solution. In contrast, the certified training tries to
compute upper bounds for the inner maximization problem,
which can provably cover the worst-case perturbation.

Since the upper bound in the certified training needs to be
calculated for each training iteration, many works (Raghu-
nathan et al., 2020; Wong & Kolter, 2018; Mirman et al.,
2018a; Dvijotham et al., 2018; Wang et al., 2018) are not
suitable due to their high computation cost for large models.
To obtain cheap and tight output bounds, Gowal et al. (2018)
proposed a more efficient method called the interval bound
propagation (IBP), which is widely used. In order to make
the IBP bound tighter and quicker, CROWN-IBP and its
variants (Zhang et al., 2018; Xu et al., 2020) are proposed
with tighter relaxation bounds to improve the performance.
Based on IBP and CROWN-IBP, methods (Balunovic &
Vechev, 2019; Lyu et al., 2021; Shi et al., 2021) are proposed
to further improve the performance by adding adversarial
perturbations, proposing different warming-up schedules
or regularizers. These methods significantly improve the
benchmark for certified training. However, as our following
illustration, these methods are designed for explicit mod-
els and will encounter problems for implicit models. In
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this paper, we propose a certified training scheme for DEQ
based on Shi et al. (2021)’s work (we call it FastIBP in the
following), which can efficiently achieve the state-of-the-art
certifiable robustness for explicit models.

Besides the above methods for the deterministic certified
robustness, there are works using the randomization based
methods like random smoothing for probabilistic certified
defenses (Cohen et al., 2019; Li et al., 2018; Lecuyer et al.,
2019; Salman et al., 2019; Kou et al., 2022). However,
these methods need a lot of time on sampling during testing,
and it is usually for ℓ2 perturbations and can hardly be
implemented on ℓ∞ perturbations (Yang et al., 2020; Blum
et al., 2020; Kumar et al., 2020).

2.2. Robustness for Deep Equilibrium Models

Deep Equilibrium Models (Bai et al., 2019; 2020; Winston
& Kolter, 2020b) are new types of implicit models that
perform like a neural network with infinite depth. It can
achieve comparable performance with efficient memory cost.
Furthermore, as illustrated in (Xie et al., 2021), DEQ also
enjoys some advantages on models’ interpretability.

Moreover, Pabbaraju et al. (2020) have shown that the Lip-
schitz constant for DEQ is controllable and more robust
against some easy adversarial examples. Chen et al. (2021)
and Müller et al. (2021) propose methods for evaluating
DEQ’s verifiable robustness and also demonstrate that DEQ
enjoys advantages on the certifiable robustness when they
are naturally trained compared with DNNs. However, these
methods are not computation-friendly and cannot be used
for certified training.

3. The Proposed Certified Training Method for
DEQ Models

3.1. Bound Approximation with Adjoint DEQ

Like explicit models, we need to obtain the output bound
for our DEQ layer by layer to get the final bounds
fθ(x+ δ), fθ(x+ δ) for our model. Then we can obtain
the upper bound for Eqn (2)’s inner part and use it for train-
ing. For this account, we need to find the output bound of a
DEQ layer’s output z with respect to changes of the input x.

In order to obtain the output bound for DEQ, we need solve
the following equations:

z∗i := max
∥δ∥∞≤ϵ

{e⊤i z∗ : z∗ = σ(Wz∗ +U(x+ δ) + b)},

z∗i := min
∥δ∥∞≤ϵ

{e⊤i z∗ : z∗ = σ(Wz∗ +U(x+ δ) + b)},

where δ is the perturbation bounded by ϵ, z∗i denotes the i-th
element for the equilibrium state z∗ and ei is a unit vector.
As illustrated in Chen et al. (2021), the above problems are
non-convex and solving the problem using their proposed

method will cost a lot of time.

However, we can use an adjoint DEQ network to obtain the
outputs’ upper bound and lower bound since DEQ can be
unrolled into the following type:

z(1) = σ(Wz(0) +Ux+ b),

......

z(k+1) = σ(Wz(k) +Ux+ b).

(3)

If we treat the whole structure as a weight-tied deep neural
network, then we can obtain the bound for the model using
the interval bound propagation method:

z(1) = σ(U+x+U−x+ b),

z(1) = σ(U−x+U+x+ b),

......

z(k+1) = σ(W+z
(k+1) +W−z

(k+1) +U+x+U−x+ b),

z(k+1) = σ(W−z
(k+1) +W+z

(k+1) +U+x+U−x+ b),
(4)

where (z0, z0) set to be (0, 0), W+ = max{W, 0},W− =
min{W, 0},U+,U− denotes the matrix W,U with their
negative and positive values truncated to 0.

If the sequences Eqn (4) can converge, we can rewrite the
above fixed-point iterations as the following DEQ model,(
z∗

z∗

)
= σ

((
W+ W−
W− W+

)(
z∗

z∗

)
+

(
U+x+U−x+ b
U+x+U−x+ b

))
(5)

And the output of the above DEQ model (we called adjoint
DEQ) can be used as the bound for the original DEQ’s
upper bound and lower bound with respect to the input’s
perturbation as demonstrated in the following proposition:
Proposition 3.1. If the fusion weight matrix for the adjoint
DEQ (5) satisfies the following condition:∥∥∥∥(W+ W−

W− W+

)∥∥∥∥
2

< 1,

then its output z∗, z∗ are the upper bound and the lower
bound of the original DEQ (z∗ = σ(Wz∗ +Ux+ b))
with respect to the perturbations on input x:

z∗ ≤ min
x≤x≤x

z(x)
∗
,

z∗ ≥ max
x≤x≤x

z(x)
∗
,

where we use z∗(x) to denote the output of DEQ with re-
spect to the input x.

For this account, we can do certified training for DEQ to
enhance its robustness only if we can ensure the convergence
of both DEQ and its adjoint DEQ model. Furthermore,
since the equilibrium points for the contractive mappings
are unique, we can use the root-finding algorithms for the
adjoint DEQ instead of unrolling for the forward procedure.
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3.2. Strict Weight Normalization is Required in
Certified Training

The convergence of a DEQ layer can be ensured by con-
straining its weight matrix’s spectral norm since a DEQ
layer like Eqn (1) is contractive if ∥W∥2 < 1. However,
ensuring the convergence of a DEQ and its adjoint one si-
multaneously needs stricter constraints.

Proposition 3.2. For any matrix W, following property
always holds:∥∥∥∥(W+ W−

W− W+

)∥∥∥∥
2

= max(∥W∥2, ∥|W|∥2).

where |W| is the matrix whose entries are the absolute
values of W.

For this account, not all DEQ with ∥W∥2 < 1 can obtain the
output bounds through the above method unless its adjoint
DEQ is contractive. We need to make some constraints

on
(
W+ W−
W− W+

)
to make the whole structure contractive,

so that we can use the adjoint DEQ model to obtain the
output bound for the certified training. A straight-forward
way to ensure the convergence of DEQ and its adjoint one
at the same time is directly scaling the weight matrix with
max(∥W∥2, ∥|W|∥2) as its scaling factor.

However, as illustrated in former works (Anil et al., 2019),
strictly constraints model’s Lipschitz will induce the degen-
eration of weights. As our latter experiments show, such
though naive scaling will reduce the rank of DEQ’s learnable
weights W and hinder model’s representation ability.

3.3. Weight Orthogonalization in DEQ

In order to alleviate the harmful effects stated above, we
project our weights to their nearest orthogonal matrix in
DEQ after each update. Then the singular values for our
weights are encouraged to be the same to avoid too small
ones, which may lead to the degeneration of the weight
matrix. In this paper, we use Björck orthogonormaliza-
tion (Björck & Bowie, 1971) after each training iteration for
our DEQ.

Björck orthogonalization is a widely used iterative method
to approximate the nearest orthogonal approximation of a
given matrix. We do an order-2 Björck orthogonalization in
experiments iteratively to obtain the orthogonal approxima-
tion for the fusion weight W of our CerDEQ. The iteration
can be formulated as follows:

Ak+1 =
15

8
Ak − 5

4
Ak(A

⊤
k Ak) (6)

+
3

8
Ak(A

⊤
k Ak)(A

⊤
k Ak) (7)

where A0 = W⊤ and A⊤
K is the orthogonal approxima-

tion for our weight W with K iterations. The sufficient
conditions for this method’s convergence are listed in the
following Lemma:

Lemma 3.3. (Björck & Bowie, 1971) If Ak+1 is calculated
by Eqn (7) and the following condition is satisfied,

∥I−WW⊤∥2 < 1,

then limk→∞Ak = P and P is the solution for the follow-
ing problem:

min
Q⊤Q=Im

∥Q−W⊤∥F ,

where Q,W⊤ ∈ Rn×m with m ≤ n. In other words, P is
the nearest orthogonal matrix for given matrix W⊤.

For this account, we need to scale the weight to ensure that
all its singular values are less than 1 before the orthogo-
nalization. As for the scaling factor, we use the following
matrix norm inequalities to approximate:

σmax ≤
√
mn∥W∥max,

where σmax denotes the largest singular value of matrix
W ∈ Rm×n while ∥W∥max denotes its largest absolute
value. However, only orthogonalizing the weight matrix W
cannot ensure the convergence of the adjoint DEQ. There-
fore we scale the orthogonal weights for the second time to
ensure the convergence for the certified training due to the
following proposition.

Proposition 3.4. For an matrix O ∈ Rm×n and OO⊤ =
Im with m ≤ n, following property always holds:

1 ≤
∥∥∥∥(O+ O−

O− O+

)∥∥∥∥
2

≤
√
m ≤

√
n.

In practice, m,n denote output channel number and input
channel number multiplying the convolution kernel size for
weight W. Thereby, we have m ≤ n. For convenience,
we scale the weight matrix by

√
n to ensure adjoint DEQ’s

convergence and Eqn (8) established in the latter section.
Because of the weight is orthogonalized, our CerDEQ can
still perform well after the strict scaling. In the following,
we experimentally indicate the superiority of our approach
over other weight normalization methods in DEQs for natu-
ral tasks (Bai et al., 2020; Gu et al., 2020).

3.4. Initialization for CerDEQ’s Extractor Part

Inspired by the IBP initialization method proposed by Shi
et al. (2021) for certified training, we are going to propose a
new initialization to stabilize DEQ’s certified training. Since
the fusion weight matrix W for DEQ is orthogonalized, we
only need to initialize weight U for DEQ’s extractor part.
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Since DEQ needs to reach the equilibrium for Eqn (1), the
IBP initialization of U for explicit models cannot ensure
the expectation of DEQ’s output and input bound to be
almost the same. Therefore, we need to calculate the new
initialization schemes for DEQ. With ∆in,∆out denoting
the distribution of DEQ’s input and output elements, we
have the following proposition with the same setting as the
IBP initialization.

Proposition 3.5. If we independently initialize each element
of Ui following the normal distribution N (0, σ2) and W
is row-orthogonal with ∥W∥2 ≤ 1√

n
, then we bound the

difference gain of the DEQ layers’ output and input bound
by the following equation:

E [∆out]

E [∆in]
≤ nuE(|U|)

2−
√
n∥W∥2

≤ nuE(|U|), (8)

with U ∈ Rm×nu and W ∈ Rm×n.

When U’s elements are initialized following the normal

distribution, we can get E(|U|) =
√

2
πσ. For this account,

we use normal distribution with zero mean and σ =
√
π√

2nu

for U’s initialization to make the difference of gain E[z∗−z∗]
E[x −x ]

less than 1.

3.5. Batch Normalization Layer for DEQ’s Training

As illustrated in Fast-IBP, adding Batch Normalization lay-
ers can reduce the inactive neurons of DEQ during the cer-
tified training and is essential for performance. Thereby,
we also use Batch Normalization for DEQ’s extractor parts
for this account. Nevertheless, for the equilibrium state z∗,
we cannot use Batch Normalization because we cannot ob-
tain the inner running mean and variance during the bound
propagation. Because BN layers can be regarded as a linear
layer with bias during the evaluation period, we use biased
convolution or linear layer with learnable channel scaling
factors γ for DEQ to imitate the original BN layer as the
replacement for BN layers. During training, we bounded the
learnable scaling factors γ in (0, 1) to ensure convergence.

3.6. Training Objectives for CerDEQ

Like other certified training, the base training objective for
our CerDEQ is:

Lc = Lϵ(fθ,x, y), where Lϵ ≥ max
∥δ∥≤ϵ

L(fθ(x+ δ), y, ϵ). (9)

Like Gowal et al. (2018), we also use the loss for natural
samples Ln in training. And we add the bound tightness
regularizer Lt and relu regularizers Lr proposed by Shi et al.
(2021) with their settings. These regularizers aim to reduce
the inactive neurons and diminish the layer’s output bound

growth. Thereby, they will stabilize the certified training
process for both explicit models and DEQs.

The final training objective for our DEQ’s certified training
can be formulated as:

L =
1

1 + λn
(Lc + λnLn) + λ(Lt + Lr),

where λn is a balancing parameter for the certified loss and
clean loss. λ = λ0(1 − ϵnow/ϵ) is a balancing parameter
only exists during the warmup period, during which the
target budget ϵnow gradually increases from 0 to ϵ for the
bound calculation. Following the above strategies, we can
efficiently train a DEQ with satisfactory certifiable robust-
ness, which we called CerDEQ in the following.

3.7. Comparison with IBP-MonDEQ

The differences between the concurrent work IBP-MonDEQ
(Wei & Kolter, 2022) and ours are as follows:

1. Our orthogonalization and normalization can suit their
convergence condition but their parameterization can
not make the weights to be orthogonal and lead
to worse performance as our following experiments
shows in Sec 4.4.

2. Compared with their work, we also designed the initial-
ization method, scaling module and other stabilizing
tricks specified for our CerDEQ.

3. IBP-MonDEQ’s paramterization need another hyper-
parameter m but ours does not.

4. Apart from that, our CerDEQ converges quicker than
IBP-MonDEQ (200 vs. 280 epochs) with state-of-the-
art results (64.98% vs. 66.87% for certified error).

5. Our work is suitable for many DEQ models like MDEQ
while their work is designed for MonDEQ.

4. Experiments
In this section, we try to demonstrate the effectiveness of our
proposed method for training a certified deep equilibrium
model and the advantages of CerDEQ via experiments on
CIFAR-10 and Tiny ImageNet.

4.1. Settings

We adopt two datasets, CIFAR-10 and Tiny ImageNet, to
demonstrate the effectiveness of our method. We mainly
consider three deep models with regular convolution and
linear layers for comparison: a 7-layer feedforward convo-
lution network with BN (CNN-7-BN), Wide-ResNet and
ResNeXt, which are the widely used models for the certifi-
able tasks. We stack three DEQ layers for our CerDEQ on
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CIFAR-10, consisting of two convolutional DEQ layers for
downsampling and one linear DEQ layer. As for Tiny Im-
ageNet, whose input size is larger than CIFAR-10, we add
a downsampling convolution DEQ layer for our CerDEQ
model. We change the channel number of our CerDEQ in
order to ensure that it contains the same learnable param-
eters as CNN-7 for fairness. As for the perturbation radii,
we set ϵ = 8/255 for CIFAR-10 and ϵ = 8/255, 1/255 for
Tiny ImageNet.

Like other certified training schemes, we gradually increase
ϵnow from 0 to ϵ with the same smoothed schedules as
widely used in other works (Xu et al., 2020) as a warmup for
epochs. And then, we use the target ϵ for the rest of the train-
ing. As for the iteration number for the orthogonalization,
we set the iteration number for Björck orthogonalization to
be 5 in all experiments.

We use the Anderson Acceleration Algorithm (Walker & Ni,
2011) and Phantom Gradient Method (Geng et al., 2022) for
DEQ’s forward and backward propagations. As for training,
we adopt Adam optimizer (Kingma & Ba, 2017) with a
learning rate starting from 0.0005. All the experiments are
run on the PyTorch platform with GTX1080Ti. Other hyper-
parameters for the experiments can be found in Appendix E.

4.2. Certified Robustness Compared with Other Models

Firstly, we are going to show that the DEQ can quickly
achieve better certified robustness via experiments. We train
our CerDEQ for 70 epochs in total on CIFAR-10 with 2
epochs natural training. The results are listed in Table 1.

Model Standard Error Certified Error
CNN-7 56.64± 0.48% 68.81± 0.24%

WideResNet 56.74± 0.40% 68.79± 0.29%
ResNeXt 59.33± 0.40% 70.62± 0.59%

CerDEQ (ours) 53.43± 0.33% 67.21± 0.12%

Table 1. The comparison of different models’ certified robustness
under ϵ = 8/255 on CIFAR-10. The results are obtained for 5
trials. The explicit models are trained by the Fast-IBP methods for
the same epochs.

From the results above, one can see that our training method
and construction for CerDEQ is effective since we can
achieve around 3% higher natural accuracy and almost 2%
higher certified accuracy on CIFAR-10. The superiorities
are attributed to DEQ’s better generalization ability. And
CerDEQ’s controllable bounds compared with other explicit
networks shown in Figure 3 also stabilize the certified train-
ing and make it enable to achieve satisfactory performance
quickly. These characteristics make its certified training
much easier than the state-of-the-art neural networks.

Apart from CIFAR-10, we also evaluate the robustness of

CerDEQ on Tiny ImageNet for 80 epochs training in total
with 2 epochs natural training in the beginning. The results
are listed in Table 2.

Model Standard Error Certified Error
CNN-7 74.29% 82.36%

WideResNet 74.59% 82.75%
ResNeXt 78.91% 85.78%

ℓ∞-dist Net 78.18% 83.69%
CerDEQ 73.51% 82.16%

Table 2. The comparison of different model’s standard error and
certified error under ϵ = 1/255 on Tiny ImageNet. The explicit
models are trained by the Fast-IBP method and the result for ℓ∞-
dist net is copied directly from their paper.

One can see that our CerDEQ consistently achieves better
performance compared with other models. ℓ∞-dist Net is a
network with ℓ∞ neurons” proposed by Zhang et al. (2021).
The results above also imply that the explicit models are
not suitable for the certified training since WideResNet and
ResNeXt can not achieve better results than CNN, which is
the opposite of their natural and adversarial training results.

4.3. Training with Longer Epochs or Larger Radius

In addition to the short training schedule, we also finish
the experiments on CIFAR-10 with 200 epochs to find out
whether the certified DEQ can obtain state-of-the-art perfor-
mance. The results are listed in Table 3.

Model Standard Error Certified Error
CNN-7-BN 51.72± 0.40% 65.58± 0.24%
WideResNet 51.95± 0.32% 65.91± 0.14%

ResNeXt 53.68± 0.33% 66.91± 0.40%
CerDEQ (ours) 50.34± 0.33% 64.98± 0.26%
CerDEQ (best) 49.97% 64.72%

Table 3. The comparison of different model’s certified robustness
under ϵ = 8/255 on CIFAR-10. The results are obtained for 5
trivials. The explicit models are trained by the Fast-IBP methods.

From the table, one can see that our CerDEQ can consis-
tently show state-of-the-art performance. Trained by our
approach, our CerDEQ offers over 1% higher standard ac-
curacy with 0.5% higher certified accuracy for 5 trials with
longer training epochs. The best trial for our CerDEQ even
achieves 64.72% certified error with only 200 epochs train-
ing. Furthermore, we also notice that WideResNet and
ResNeXt still perform worse in the certified training sce-
nario compared with plain CNNs. The results also demon-
strate the superiority of implicit models as they can consis-
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tently perform better in different scenarios.

Furthermore, we also finish the experiments on Tiny Im-
ageNet with ϵ = 8/255. It is a challenging task even for
the empirical adversarial training methods. We train our
certified DEQ with ϵ = 8/255 for 80 epochs and list the
results in Table 4.

Model Standard Error Certified Error
CNN-7 (Crown-IBP) 90.76% 95.98%

CNN-7 (Fast-IBP) 89.69% 95.44%
ℓ∞-dist Net 88.99% 94.22%

CerDEQ (ours) 87.98% 94.45%

Table 4. The comparison of the best results for different model’s
certified robustness under ϵ = 8/255 on Tiny ImageNet.

The results for other models in Table 4 are directly copied
from Zhang et al. (2022). They finish the experiments for
their ℓ∞-dist Net and CNN-7 following Crown-IBP and
Fast-IBP’s repo with larger ϵ. From the table, one can see
that our CerDEQ can achieve almost 20% improvement no
matter under the natural or certified evaluation scenario or
not compared with the explicit CNN model. Compared with
the ℓ∞-dist Net, which uses “ℓ∞ distance neurons” instead
of traditional convolution or linear layers, our CerDEQ can
achieve the comparable certified robustness with a signifi-
cantly better natural performance. But we note that ℓ∞-dist
Net needs thousands of epochs to converge due to its neu-
rons, while our CerDEQ only needs 80 epochs for the Tiny
ImageNet task. From the above experiments, we can con-
clude that our CerDEQ enjoys advantages on the certifiable
robustness tasks.

4.4. Ablation Studies on Our Weight Orthogonalization

Firstly, we conduct experiments to evaluate whether our
proposed weight orthogonalization method for DEQ can
genuinely improve its performance on certified training. We
finish the certified training for DEQs with weight normal-
ization and spectral normalization to ensure their conver-
gence. These methods are widely used for DEQ (Bai et al.,
2020; Gu et al., 2020) to ensure the convergence in natural
tasks. For fairness, we use the same approach and hyper-
parameters as our CerDEQ for their certified training. The
results are listed in Table 5.

From Table 5, one can see that DEQs with weight normaliza-
tion or spectral normalization perform worse in the certified
training than explicit models listed in Table 1. However, our
CerDEQ enjoys over 3% higher clean accuracy and over 2%
higher certified accuracy compared with DEQs with other
normalization methods under the certified evaluations by
utilizing our weight orthogonalization method. Such results
demonstrate that our weight orthogonalization method can

Model Standard Error Certified Error
DEQ+WN 56.34± 0.32% 69.84± 0.13%
DEQ+SN 57.43± 0.41% 68.66± 0.15%
CerDEQ 53.43± 0.33% 67.21± 0.12%

Table 5. The comparison of DEQ’s certified robustness trained by
different methods under ϵ = 8/255 on CIFAR-10. “WN” and
“SN” here denote the weight normalization and spectral normal-
ization methods to ensure the convergence of DEQ and its adjoint
DEQ.

effectively boost the performance of DEQ under natural and
certified robustness cases.

In order to further explore the reason for the improvements,
we draw the singular values of the weights for the final
linear DEQ layer with spectral normalization or with our
orthogonalization. The curves are shown in Figure 2. From
the figure, one can notice that DEQs with spectral normal-
ization will lead the weights to be “inactive” (the relative
singular value larger smaller than 10−4) and the rank of
weights become lower after training than DEQ with our
orthogonalization. Thereby, DEQs with spectral normaliza-
tion will perform as a model with fewer channels. For this
reason, vanilla DEQs with spectral or weight normalization
perform worse in the certified training scenario. And the
curve for DEQ with our orthogonalization also indicates that
our method can effectively alleviate such a phenomenon.
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10 2

10 1
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Figure 2. The relative singular value
(

σi
σmax

)
distribution of the

certified trained DEQ with Orthogonalization or Spectral Normal-
ization to ensure their convergence.

4.5. The Relationship between Bound and Model Depth

In this section, we will experimentally explore why implicit
models can consistently preserve their generalization abil-
ities in certified training tasks while other state-of-the-art
robust explicit models cannot. In order to explore that, we
draw the increment curve for final layer’s output bounds’
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norm divided by the norm of input bounds before classifica-
tion with respect to the increments of the models’ depth (or
iteration). The results are in Figure 3.
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Figure 3. The relative output bound increment for plain CNN net-
work and DEQ with respect to its depth (iteration).

From the above figures, one can see that the output bounds
of the explicit models explode with the increment of the
model’s depth, but the output bounds for CerDEQ will con-
verge as their iteration increases. Explicit models need more
layers to ensure their generalization ability, while larger
output bounds caused by depth will increase the difficulty
for the certified training. Therefore, explicit models’ gener-
alization ability and hardness for their certified training are
trade-offs. And this reason leads ResNeXt and WideResNet
to perform worse than CNN-7 in the above experiments.
Fortunately, CerDEQ does not encounter such a trade-off
and can show better performance under different evaluations
trained by our methods. This phenomenon also indicates the
importance of studies for DEQs or other implicit models.

4.6. Ablation Studies on Explicit Models with
Orthogonal Normalization

In addition to the explorations on the orthogonalization
effect for the DEQ’s training, we also finish experiments
for CNN-7 with and without our orthogonalization for 200
epochs training to further explore the influence of weight
orthogonalization, listed in Table 6. The experiment settings
for CNN is the same as our CerDEQ.

The table shows that using orthogonalization to project
weights in explicit models will not benefit the performance
or hinder its certified training. The phenomenon is reason-
able since explicit models do not need a strict Lipshictz con-
stant to ensure convergence, and constraints on the weights
will influence the network’s generalization ability. From the
experiment, we can get two conclusions. First, the CerDEQ
structure is superior to the explicit models on the certified
tasks because it can perform better even with strict con-

Model Stand-Err Cert-Err PGD-Err
CNN 52.73% 66.75% 63.7%

Orth-CNN 69.59% 71.66% 66.2%
CerDEQ 49.97% 64.72% 62.1%

Table 6. The comparison of CNN, Orth-CNN (trained with orthog-
onalization) and CerDEQ evaluated in natural cases (Stand-Err),
certifiable cases (Cert-Err) and adversarial cases (PGD-Err) based
on PGD-20 attack with ϵ = 8/255 on CIFAR-10.

straints on weights. Secondly, the orthogonalization only
alleviates the negative impact of the strict constraints on
the weights instead of completely solving the problem since
they are harmful in CNNs. We leave the further modifica-
tions on CerDEQ for certified tasks as our future work.

4.7. Ablation Studies on Our Initialization Methods

In this section, we are going to validate whether our initial-
ization problem can help the output bound be tighter at the
start of training through experiments. Therefore, we com-
pare the first five epochs of CerDEQ’s training on CIFAR-10
with our initialization and IBP initialization proposed by
Fast-IBP. We draw figures for the relative bound increment
∆final

∆input
in the end of each epoch shown in Figure 4.
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Figure 4. The output bound after the first five training epochs on
CIFAR-10 for CerDEQ initialized by different methods. ∆input

denotes the bound on the input image and ∆final stands for final
output bound for our CerDEQ before the classification layer.

The figure indicates that our initialization can make
CerDEQ’s final output bound tighter during the early train-
ing process, which will help the CerDEQ’s early training
stage.

4.8. Ablation studies on the Jacobian Regularization
methods.

Jacobian Regularization (Bai et al., 2021a) can stablize
DEQ’s training on clean samples. In order to test its per-
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formance on the certified training scenario, we add Jaco-
bian Regularization in CerDEQ training in the following
table (denoted as CerDEQ+Jac). With Jacobian regulariza-
tion, CerDEQ’s performance is slightly better.

Model Standard Error Certified Error
CerDEQ 53.43± 0.33% 67.21± 0.12%

CerDEQ+Jac 53.05± 0.27% 67.31± 0.25%

Table 7. The comparison of CerDEQ and CerDEQ with Jacobian
Regularization method on CIFAR-10 with ϵ = 8/255.

However, the forward convergence time for CerDEQ trained
with Jacobian regularization is almost the same as vanilla
CerDEQ. Such phenomenon may be caused by our orthogo-
nalization method can also stabilize the Jacobian matrix.

4.9. Ablation study on Backward Propoagation Methods

We’ve finished experiments for pure anderson method and
Phantom gradient for backward on CIFAR-10 for 70 epochs.
The results are listed in the following table. Using Phantom
Gradient may lead to higher certified accuracy while using
Anderson method can obtain better performance on natural
examples.

Backward Method Standard Error Certified Error
Phantom 53.43± 0.33% 67.21± 0.12%
Anderson 52.84± 0.17% 67.53± 0.26%

Table 8. The comparison of CerDEQ trained with Pure Anderson
or Phantom Gradient backward propagation mathod on CIFAR-10
with ϵ = 8/255.

4.10. The Computational Cost for CerDEQ’s Training

In this section, we list the longest training time of one epoch
during the certified training for WideResNet, ResNeXt and
CerDEQ in Table 9.

Model Training Method Time

WideResNet Fast-IBP 450s
Crown-IBP 600s

ResNeXt Fast-IBP 650s
Crown-IBP 900s

CerDEQ Ours 877s

Table 9. The longest time of one epoch during certified training on
Tiny ImageNet for each model on GTX-1080Ti.

The table shows that the computational complexities are
comparable against the widely used certified training meth-
ods for explicit models. The additional computation time
is due to the following. Firstly, the implicit models need to

implement the root-finding algorithms to obtain the equilib-
rium. Secondly, we use the iterative Björck orthogonaliza-
tion to make the weights orthogonal, which will consume a
lot of time. We leave the acceleration as future work.

5. Conclusion
In this paper, we propose a complete approach for DEQ’s
certified training for the first time. Trained by our approach,
CerDEQ can achieve state-of-the-art performance against
other explicit models in the certified tasks. Our work also
demonstrates that DEQ is more suitable for the certified
training than explicit models, since its output bound will
not explode like other explicit models. The superiority of
our model also implies that analyzing implicit models for
certified training is a promising way for the certifiable tasks.
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A. Proof for Proposition 3.1
We list the proof for Proposition 3.1 as follows:

Proof. When
∥∥∥∥(W+ W−

W− W+

)∥∥∥∥
2

< 1, DEQ layer f(z, z) with formulation:

f(z, z) = σ

((
W+ W−
W− W+

)(
z
z

)
+

(
h
h

))
(10)

with

h = U+x+U−x+ b,

h = U−x+U+x+ b,

is a contractive mapping. Therefore, the fixed point (z, z) = f(z, z) is unique. Then we discuss the propagation from the
view of the fixed point iteration: (

z(k+1)

z(k+1)

)
= σ

((
W+ W−
W− W+

)(
z(k+1)

z(k+1)

)
+

(
h
h

))
(11)

with limk→∞ z(k) = z∗ and limk→∞ z(k) = z∗. Then we need to prove that for every h chosen from [h,h], since from
IBP’s proof h ≤ h(x) ≤ h holds for every x ∈ [x,x] The DEQ’s output z∗ = σ(Wz∗ + h) (we denote z∗(h) at h as h)
satisfies the following inequality:

z(k) ≤ z∗(h) ≤ z(k) (12)

Start from k = 1 and z(0) = z(0) = z(0) = 0, then we can get:

z(1) = σ(h) ≤ z(1)(h) = σ(h) ≤ σ(h) = z(1) (13)

since h ≤ h ≤ h. And Since z(1) ≤ z(1) ≤ z(1), we can get the following equations:

W−z
(1) ≤ W−z

(1)(h) ≤ W−z
(1) (14)

W+z
(1) ≤ W+z

(1)(h) ≤ W+z
(1) (15)

(16)

Then adding Eqn (14), Eqn (15) and h ≤ h ≤ h, and use the ReLU’s monotonicity we can get the inequality for k = 2:

σ(W−z
(1) +W+z

(1) + h) ≤ σ(Wz+ h) ≤ σ(W−z
(1) +W+z

(1) + h), (17)

then we get z(2) ≤ z(2) ≤ z(2) for k = 2. With the same procedure, we can extend the results to every k > 0:

z(k) ≤ z(k)(h) ≤ z(k) (18)

Since limk→∞

[
z(k), z(k)(h), zk

]
= [z∗, z∗(h), z∗], we can finish our proposition:

z∗ ≥ z∗(h) ≥ z∗, (19)

for h ∈ [h,h] which means the inequality holds for every x ∈ [x,x].
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B. Proof for Proposition 3.2
The proof for Proposition 3.2 is as follows:

Proof. Multiplying the orthogonal matrix 1√
2

(
I I
I −I

)
from

(
W+ W−
W− W+

)
’s left and right, we can get:

1

2

(
I I
I −I

)(
W+ W−
W− W+

)(
I I
I −I

)
=

1

2

(
W W
|W| |W|

)(
I I
I −I

)
=

(
W 0
0 |W|

)

Since orthogonal matrix won’t change the spectral norm, we can prove our proposition:∥∥∥∥(W+ W−
W− W+

)∥∥∥∥
2

=

∥∥∥∥(W 0
0 |W|

)∥∥∥∥
2

= max (∥W∥2, ∥|W|∥2) (20)

then the proof is finished

C. Proof for Proposition 3.4
The proof for Proposition 3.4 is as follows:

Proof. From Proposition 3.4, we can get that:∥∥∥∥(O+ O−
O− O+

)∥∥∥∥
2

= max(∥|O|∥2, ∥O∥2) ≤ ∥O∥F , (21)

Since OO⊤ = I, then ∥O∥2 = 1. Thereby,

1 ≤
∥∥∥∥(O+ O−

O− O+

)∥∥∥∥
2

, (22)

then since Wi,:W
⊤
i,: = 1 for i = 0, ...,m− 1 because of the orthogonality, we can get

∥O∥F =

√√√√m−1∑
i=0

n−1∑
j=0

W 2
ij =

√√√√m−1∑
i=0

Wi,:W⊤
i,: =

√
m, (23)

and since m < n, we finally proved our proposition:

1 ≤
∥∥∥∥(O+ O−

O− O+

)∥∥∥∥
2

≤
√
m ≤

√
n, (24)

D. Proof for Proposition 3.5
The proof for Porposition 3.5 is as follows:

Proof. We would like to finish the proof from the fixed point iteration view in the following. And we discuss the scenario
for DEQ linear fusion layer or 1× 1 convolution in the following, which implies m = n for weight matrix W. And the
conclusion can easily extend to widely used 3× 3 convolution because we can reformulate the 3× 3 convolution as linear
layers by vectorizing the input and obtain the same results.
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Since W is obtained following our orthogonalization and scaling, its adjoint DEQ is contractive and can be regarded as
iteratively solving the following functions.(

z(k)

z(k)

)
= σ

((
W+ W−
W− W+

)(
z(k−1)

z(k−1)

)
+

(
h
h

))
, (25)

with (z(0), z(0)) = (0, 0).

Firstly, from (Shi et al., 2021), one can get the following results for the explicit models for the bounds of a linear layer g,g,
we have the following results:

E
[
σ(g)− σ(g)

]
=

1

2
E
[
g − g

]
, (26)

where σ is the ReLU function.

And the expectation on DEQ’s extraction part’s (Ux+ b) bound difference can be formulated E [∆h] = nuE [|U |]E [∆in].
We use ∆

(k)
out to denote z(k) − z(k) at k−th iteration with ∆

(0)
out = 0. Then from the above fixed point iteration view, we can

get:

E
[
∆

(1)
out

]
= E

[
σ(h)− σ(h)

]
=

1

2
E [∆h] . (27)

And for k > 1, we can obtain the following results by treating each iteration as an explicit layer:

E
[
∆

(k)
out

]
= E

[
σ(W+z

(k−1) +W−z
(k−1) + h)− σ(W+z

(k−1) +W−z
(k−1) + h)

]
, (28)

=
1

2
E
[
W+(z

(k−1) − z(k−1))−W−(z
(k−1) − z(k−1)) + (h− h)

]
(29)

=
1

2
E
[
|W|∆(k−1)

out

]
+

1

2
E [∆h] , (30)

≤ 1

2
max

i=1,...,m

n∑
j=1

|W|ijE
[
∆

(k−1)
out

]
+

1

2
E [∆h] . (31)

The inequality Eqn (29) is founded since we assume the elements for the layer’s output enjoys the same distribution because
the inputs and weights are all random. Such assumption is also used in other work (Shi et al., 2021). Then with the following
inequality:

n∑
j=0

|Aij | ≤ max
i=0,...,m

n∑
j=0

|Aij | = ∥A∥∞ ≤
√
n∥A∥2. (32)

Then the inequality Eqn (29) can be rewritten as:

E
[
∆

(k)
out

]
≤1

2

√
n∥W∥2E

[
∆

(k−1)
out

]
+

1

2
E [∆h] , (33)

≤
(
1

2

√
n∥W∥2

)k−1

E
[
∆

(1)
out

]
+ (

1

2
+

√
n∥W∥2
4

+ ...+
(
√
n∥W∥2)k−2

2k−2
)E [∆h] . (34)

Since
√
n∥W∥2 ≤ 1 by our scaling and limk→∞ ∆k

out = z∗ − z∗ = ∆out since the adjoint DEQ is contractive and has
unique fixed point. And E

[
∆

(1)
out

]
= 1

2E [∆h] < ∞. We can complete our proof:

E [∆out] ≤
1

2

∞∑
i=0

(√
n∥W∥2
2

)i

E [∆h] , (35)

≤ 1

2
(
1−

√
n∥W∥2

2

)E [∆h] , (36)

=
nuE [|U |]E [∆in]

2−
√
n∥W∥2

(37)

≤nuE [|U |]E [∆in] (38)
(39)

Then we get that E[∆out]
E[∆in]

≤ nuE [|U |]. And the proof is completed.
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E. Hyper-parameter setting for different dataset for our CerDEQ.
We list the hyper-parameters for our CerDEQ training as follows:

DataSet Total Epoch Target ϵ ϵ-schedule Length lr Decay Decay Factor Init lr λn λ0

CIFAR-10 70 8/255 40 50, 60, 67 0.1 0.0005 0.25 0.75
200 8/255 90 140, 160, 180 0.2 0.0005 0.25 0.5

TINY ImageNet 80 1/255 35 50, 60, 67 0.2 0.0005 0.25 1.25
80 8/255 40 50, 60, 70 0.2 0.0005 0.25 1.25

Table 10. The hyper-paramters for CerDEQ’s certified training for CIFAR-10 and Tiny ImageNet.

F. Complete list of CNN-7’s certified training results on CIFAR-10.

Model Method Standard Error Certified Error
CNN (Gowal et al., 2018) 50.51% 68.44%
CNN (Zhang et al., 2018) 54.02% 66.94%
CNN (Xu et al., 2020) 53.71% 66.41%
CNN (Lyu et al., 2021) 51.94% 65.08%
CNN (Shi et al., 2021) 51.06% 65.03%

CerDEQ CerDEQ 49.97% 64.72%

Table 11. The comparison of different methods for CNN-7-BN’s certified robustness and our CerDEQ under ϵ = 8/255 on CIFAR-10.

G. Ablation Studies on Hyperparameter λ0 and λn

In this section, we are going to discuss the influence of the hyper-parameter λ0 and λn as shown in Figure 5. We finish the
experiments on CIFAR-10 for 70 epochs with the hyper-parameters as listed in Table 11 only changing λ0 or λn. As for λ0,
one can see from (a) and (b) that the performance under natural and certified evaluation will first improve then degenerate as
λ0 increases. And although the increase of λn will enhance its natural performance, the certified accuracy will first increase
and then decrease as λn increases. Thereby, a proper λn and λ0 can help CerDEQ achieve a satisfactory trade-off between
natural accuracy and certified accuracy.
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(a) λ0’s influence on natural accuracy
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(b) λ0’s influence on certified accuracy
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(c) λn’s influence on natural accuracy
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(d) λn’s influence on certified accuracy

Figure 5. The natural accuracy and certified accuracy with respect to different λ0 or λn.


