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Abstract
Recently, linear GCNs have shown competitive
performance against non-linear ones with less
computation cost, and the key lies in their propa-
gation layers. Spectral analysis has been widely
adopted in designing and analyzing existing graph
propagations. Nevertheless, we notice that exist-
ing spectral analysis fails to explain why exist-
ing graph propagations with the same global ten-
dency, such as low-pass or high-pass, still yield
very different results. Motivated by this situation,
in this paper, we develop a new framework for
spectral analysis from a detailed spectral analy-
sis called concentration analysis. In particular,
we propose three attributes: concentration centre,
maximum response, and bandwidth for our anal-
ysis. Through a dissection of the limitations of
existing graph propagations via the above analy-
sis, we proposed a new kind of propagation layer,
Graph Gaussian Convolution Networks (G2CN),
in which the three properties are decoupled and
the whole structure becomes more flexible and
applicable on different kinds of graphs. Extensive
experiments show that we can obtain state-of-the-
art performance on various benchmark datasets
with our proposed Graph Gaussian Convolution
Networks.

1. Introduction
Graph neural networks have achieved excellent performance
on various graph-related tasks on social relationship (Li &
Goldwasser, 2019; Qiu et al., 2018; Tong et al., 2019), traf-
fic (Bogaerts et al., 2020; Cui et al., 2019; Li et al., 2018b),
recommendation (Ying et al., 2018; Feng et al., 2022), med-
ical researches and others (Zhao et al., 2019; Rathi et al.,
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2020; Jiang et al., 2021; Chen et al., 2022). GCNs mainly
consist of the graph propagation part and feature transfor-
mation part. The graph propagation part first processes the
graph signals to obtain the features with global or local
graph properties. Then the signals are fed to a neural net-
work with several or only one layer. Several works (Wu
et al., 2019; Zhu & Koniusz, 2020) have shown that even a
linear transformation layer can achieve better performance
on many benchmark datasets. Therefore, graph propagation
is the key part of a GCN model and attracts a lot of attention
these days. Among the researches on graph propagation,
graph spectral analysis has been widely adopted in design-
ing and analyzing the existing graph propagation (Wu et al.,
2019; Balcilar et al., 2020). It treats the graph propaga-
tions as graph filters on the spectrum of the graph Laplacian
and classifies various graph propagation via the spectral re-
sponse. For example, a graph filter that responds to amplify
eigenvalues and diminish large eigenvalues will be classified
as a low-pass graph filter.

However, the former spectral analysis mainly focuses on the
global tendency. These analyses cannot completely explain
why GCNs with different graph propagation will show dif-
ferent results even if their corresponding graph filter share
the same low-pass or high-pass tendency. Motivated by this,
we’d analyze the filters’ pass band since it determines the
output of the graph propagation. Since the filters’ responses
are concentrated on the passband, we called the analysis
as spectral concentration analysis to distinguish from the
previous study. And we propose three attributes called the
concentration attributes for spectral analysis on the graph
propagation contrast to the filter’s global tendency: maxi-
mum response R, bandwidth BW and band concentration
centre b in the following papers.

We analyze existing graph propagation with these attributes
and find that their different performance can be attributed
to their various concentration flexibility. Models with high
concentration flexibility can apply different graph filters on
various graphs, leading to better performance. With these
findings, we also propose our Gaussian Graph Convolution,
whose graph filters can be assumed as the combination of
several Gaussian filters. Our Gaussian graph filter decouples
the above attributes and can be easily adapted to perform as
different kinds of filters to suit the graph desire. Then we
implement our Gaussian graph filter in a linear graph model
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called Graph Gaussian Convolution Networks (G2CN). The
experiments show that our G2CN can obtain state-of-art
performance on various benchmark datasets with efficient
computation cost. We summarize the contributions of our
work as below:

1. We extend the former spectral analysis to our concen-
tration spectral analysis with our proposed concentra-
tion attributes. Compared with the former study, our
proposed one not only focuses on the graph filters
global tendency. And we can explain the different per-
formances of various graph propagation with the same
global trend.

2. We proposed Gaussian Graph Convolution and its
graph propagation formulation from the above analy-
sis. Our proposed filter enjoys sufficient concentration
flexibility and can apply to different graphs with better
performance, especially the heterophily graphs.

3. We propose the Graph Gaussian Convolution Net-
works (G2CN) with our Gaussian Graph Convolution,
an efficient linear graph model that can achieve state-
of-art performance on the node-classification tasks.

2. Related Works
Graph Neural Networks can be generally classified into
spectral-based models (Bruna et al., 2013; Henaff et al.,
2015; Li et al., 2018a), which use the eigendecomposition of
the graph Laplacian, and spatial based model, which directly
uses the graph Laplacian for graph propagation without the
decomposition, which is widely used due to its efficiency.
In this paper, we only discuss the latter propagation type.
And we can divide the graph propagation for the current
spatial-based GCNs from the spectral view into two kinds:
GCNs with designed graph filters or learnable graph filters.

2.1. GCNs with Graph Propagation Constructed by
designed Graph Filters

As for the graph propagation part in Graph Convolution Net-
works, most models utilize the designed graph filter based
on their priors on the graph information they need. For
example, GCNs (Kipf & Welling, 2017) can be regarded as
a low-pass filter (Balcilar et al., 2020; Wu et al., 2019; Xu
et al., 2019a). Furthermore, APPNP (Klicpera et al., 2019a)
utilizes the Personalized PageRank and achieves a low-pass
filter with different concentration properties compared to
GCN as discussed in the following. Due to such limita-
tions, these models show unstable performance on some
real-world datasets. These models mainly focus on the local
information on the graph and motivated many researchers
to try to combine low-pass and high-pass filters (Zhu &
Koniusz, 2020; Zhu et al., 2021) to balance the local and

global information for graph data.

2.2. GCNs with the Graph Propagation Constructed by
learnable Filters

Without considering the priors on the possible graphs filters,
GCNs with learnable filters try to approximate any filter
function for different graph datasets using the generaliza-
tion ability of the neural network, such as GPR-GNN (Chien
et al., 2020), ChebNet (Defferrard et al., 2016), BernNet (He
et al., 2021) and others (Bianchi et al., 2021). These mod-
els use the combination of a series of polynomial bases
they choose to approximate an arbitrary filter function, like
Chebyshev polynomials and Bernstein polynomials. For
this count, these models can obtain better results compared
with traditional GCNs on many graph datasets, especially
the heterophily ones.

3. On the Spectral Concentration Analysis of
Graph Propagation

In this section, we first propose three concentration at-
tributes: maximum response, concentration centre and band-
width for spectral analysis on graph propagation. Our spec-
tral analysis with these attributes discusses the weaknesses
and advantages of different graph propagation in the fol-
lowing. Our analysis can explain why models like GCN,
APPNP and Heat Diffusion’s graph filters with the same
spectral tendency still show different performance on node
classification tasks.

3.1. Notations and Preliminaries on Graph Propagation

For a graph defined as G = (V,A), where V = {v1, ..., vn}
denotes the vertex set of n nodes which contains a subset
labeled nodes Vl ⊂ V for training and unlabeled nodes
Vu = V\Vl to predict in the node classification task. A ∈
Rn×n is the adjacent matrix where aij denotes the edge
weight between node vi and vj . The degree matrix D =
Diag(d1, .., dn) of A is a diagonal matrix with its i−th
diagonal entry as di =

∑
j aij . Each node vi is represented

by a d-dimensional feature vector xi ∈ Rd and we use
X ∈ Rn×d = [x1, ..,xn]

⊤ to denote the feature matrix
and use a one-hot vector yi ∈ {0, 1}C to denote the label
of i-th node of C classes. In our paper, we only discuss
the normalized graph Lapalacian matrix defined as L =
I−D−1/2AD−1/2 ∈ Sn

+ for convenience. The results can
easily be extended to other types of Laplacian. Its eigen-
decomposition can be depicted as UΛU⊤, where Λ is the
diagonal matrix consists of L’s eigenvalues, and U ∈ Rn×n

is made by the eigenvectors of the Laplacian matrix.

Then we define the graph Fourier transform of a graph singal
x as x̂ = U⊤x and its inverse is x = Ux̂. Thus the graph
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propagation for signal x with kernel g can be defined as:

H = g ∗G x = U
(
(U⊤g)⊙Ux

)
= UĜU⊤X, (1)

where Ĝ = diag(ĝ1, ..., ĝ2) denotes the spectral kernel co-
efficients. Exactly computing the graph convolution on a
random kernel g is complicated due to the eigendecompo-
sition for graph’s Laplacian consumes unaffordable com-
putation complexity. For this count, as we illustrate in the
following, current works with spatial convolution usually
use the polynomial functions g(L) to approximate different
kernels:

H = g(L)x = Ug(Λ)U⊤X, (2)

where g(Λ) = Diag (g(λ1), ..., g(λn)) and we call g the
graph filter function for above graph propagation Eqn. (2).
Then GCNs with such graph propagation can be considered
as filtering the graph signals by the corresponding eigen-
values for Laplacian. Those g preserve small λ can be
regarded as low-pass filters while those who keep large λ
are high-pass filters. Apart from the graph filters global
tendency, we also analyzed the concentrated properties via
the concentration attributes defined as follows.

3.2. Concentration Attributes on Graph Propagation

First, we’d like to define the graph filters maximum response
and the concentration centre:

Definition 3.1. The maximum response Rg for graph filter
g is denoted as:

Rg = max
λ∈[0,2]

|g(λ)|, (3)

since the eigenvalues of the graph Laplacian L lies in [0, 2].

And the concentration centre can be defined as:

Definition 3.2. Then we define b as the centre for graph
filter g if,

g(b) = Rg, (4)

Then we give the definition for the graph filter’s bandwidth.

Definition 3.3. The bandwidth BWg for a given graph filter
g(λ) can be defined as:

BWg =

∫ 2

0

I(g(λ),
R√
2
)dλ,

where I(g(λ), Rg√
2
) is a indicator function:

I(γ1, γ2) =
{
1, if γ1 ≥ γ2
0, if γ1 ≤ γ2

,

for γ1, γ2 ∈ R.

The above attributes tell which spectrum the graph filter will
amplify to diminish. And different graph filters enjoy unique
concentration attributes and lead to different performances,
as we discussed. The bandwidth and concentration centre
should be flexible to ensure the proper graph propagation for
a different dataset, while the maximum response should be
bounded for stable training. Then we try to dissect existing
graph propagations via our spectral concentration analysis.

3.3. Dissecting Existing Deisgned Graph Propagations

Graph Convolutional Networks (GCN). Firstly, we dissect
GCN (Kipf & Welling, 2017) via our concentration spectral
analysis. The graph propagation for GCN can be formulated
as:

Hgcn = (2I− L)
K
X (5)

where K ∈ Z+ is the propagation steps for SGC. Its graph
filter can be formulated as ggcn(λ) = (2 − λ)K , which is
also a low-pass filter, whose concentration centre is 0 with
Rgcn = 2K . And its bandwidth can be formulated as:

BWgcn = 2− 21−
1

2K . (6)

One can see that the bandwidth of GCN and its latter
works (Wu et al., 2019; Xu et al., 2018) are determined by
its propagation steps. Therefore, the bandwidth for GCN’s
graph filter is limited and such defects restrict its perfor-
mance since it cannot flexibly implement low-pass filters
with different bandwidths as the graph desires.

Personalized PageRank (PPR). Then Klicpera et al.
(2019a) proposed the personalized PageRank (PPR) graph
propagation, trying to make the graph filter more flexible.
Its graph propagation tries to approximate:

Hppr = (I− (1− α)(I− L))−1X, (7)

with α ∈ (0, 1) to ensure the inverse exists. Its graph filter
is gppr = 1

1−(1−α)(1−λ) and its concentration centres are
both fixed at λ = 0 with Rppr = 1

α and also a low pass
filter. The bandwidth for PPR can be formulated as:

BWppr =
(
√
2− 1)α

1− α
. (8)

Since the bandwidth for PPR can continuously change with
different α, models with PPR propagation are more flexible
than original GCN and enjoy better performance. Whereas
when BWppr → 0, α → 0 and its maximum response will
explode Rppr = 1

α → ∞. Therefore, we cannot choose a
narrow PPR filter in practice, although the bandwidth for
PPR can vary from 0 to ∞ in theory.

Frequency Adaptation GCN (FAGCN). The spectral filter
for FAGCN (Bo et al., 2021) is the combination of :

hFAGCNL
(λ) = (1− λ+ ϵ)2,

hFAGCNH
(λ) = (λ− 1 + ϵ)2,

(9)
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with ϵ ∈ [0, 1]. From the above equation, one can see the
center of FAGCN’s base filters are fixed at 0 or 2 like GCN.
Their bandwidth are BWFAGCN = (21/4 − 1)(1 + ϵ) ∈
[0.19, 0.38] and maximum responses are (1+ ϵ)2 which are
less flexible than ours.

Auto-Regressive Moving Average (ARMA). The spectral
filter for ARMA (Bianchi et al., 2021) is the combination
of:

hARMAK
(µ) =

bK
1− aKµ

, (10)

with µ = (λmax − λmin)/2 − λ, λ is eigenvalue of graph
Laplacian, |aK | < 1 and bK . It is a low-pass filter when
aK > 0 with fixed center λ = 0 and it is a high-pass
filter when aK < 0 with fixed center λ = 2. In most
cases, λmax = 2 and λmin = 0, then maximum response
is bK

1−|aK | with bandwidth BWARMA = (
√
2−1)(1−|aK |)

|aK |
which performs like APPNP but less flexible than ours.

Heat Kernels (HK). Apart from the above models, an-
other widespread designed graph propagation is the heat ker-
nel propagation (Klicpera et al., 2019b; Wang et al., 2021)
which is inspired by the heat diffusion. Such propagation
tries to approximate the following graph propagation:

HHK = e−TLX, (11)

where T ∈ R+ is the diffusion factor and its graph filter
is an exponential function gdgc(λ) = e−Tλ. Its maximum
response is fixed to be 1 with fixed centre λ = 0. And the
bandwidth for HK is:

BWHK =
log(

√
2)

T
. (12)

The above formula shows that the bandwidth of DGC is
flexible and can be easily controlled by T , and the fixed
maximum response can also stabilize the training procedure.
Thereby, as illustrated in (Klicpera et al., 2019b; Wang et al.,
2021), heat kernels can show better performance against the
above graph propagations on most datasets. However, the
unflexible concentration centre for the above models also
hinders their performance on many datasets since these low-
pass models will permanently cut off the graph information
corresponding to large eigenvalues of the graph Laplacian.

3.4. Dissecting Graph Propagation with Learnable
Graph Propagations

To approximate the graph filters with different concentration
centres, many graph models combine a series of polynomial
bases with learnable weights as their graph propagation.
Although these models can theoretically approximate every
filter with proper weight for each basis, different properties
for the basis will infect the difficulties of weight training
and lead to different performances. Thereby, this section
discusses the concentration attributes for a single filter basis.

Chebshev Polynoimals. ChebNet (Defferrard et al., 2016)
which utilizes the Chebyshev Polynomials to approximate
various graph filters, whose i−th basis can be formulated
as:

C(i) = 2C(2)C(s−1) −Cs−2 (13)

with C(0) = 0 and C(1) = 2L
λmax

and its propagation for
i−th basis is Hi

Cheb = C(i)X. Although we cannot give
the closed-form formula for the concentration centre and
bandwidth for its i−th basis, its concentration centre and
bandwidth are determined by its index i. We left the de-
tailed calculation of these attributes for ChebNet filters in
the Appendix E. The bases for ChebNet have more than one
concentration centre lies in [0, 2] and relies on the compli-
cated weights to approximate the usually used filters like
Comb Filters as experiment shows in (He et al., 2021).

Bernstein Polynoimals. BernNet (He et al., 2021) which
sum the Bernstein bases with weights for their network, the
graph propagation for i−th basis for an order-K BernNet
graph propagation can be formulated as follows:

HK,i
Bern =

1

2K

(
K
k

)
(2I− L)K−kLk, (14)

whose corresponding graph filter can be simplified as (2−
λ)K−iλi. Its concentration centre of with order K is 2i

K ,
which cannot continuously change since K ∈ Z+. But
when comparing with ChebNet, each Berstein filters only
have one concentration centre, which makes the weights’
training easier and leads to better performance.

The concentration centre and bandwidth for each bernstein
basis is fixed by its index i and order K as we show in the
Appendix. When the objective filter is similar to their bases,
the approximation is easy. And single concentration centre
for each basis make it easier to approximate different filters
compared with ChebNet. Since real-world graphs usually
needs passbands of low or high frequency with various band-
widths, BernNet needs a complicated linear transformation
layer to train a complicated weight and then they can obtain
a complicated weights for bases during training. Thereby,
the BernNet is not efficient and cannot easily adapt on dif-
ferent graphs. We summarized the analysis above as a Table
in Appendix.

4. The proposed G2CN models.
4.1. Gaussian Graph Filters and their proposed

From the above analysis, one can see that models with better
flexibility like Heat Kernel propagation and BernNet per-
form better than the others since they can easily approximate
unique filters adapted to different graphs. However, as we
stated above, these models are not flexible enough as the
concentration center and bandwidth for bernstein basis are
unchangeable and Heat Kernel based propagation always
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performs as a low-pass filter. Therefore, we’d like to con-
struct a series of bases with better concentration flexibility
and combine them to approximate unique filters for different
graphs.

A proper graph filter should have flexible concentration
attributes which means that its concentration centre and
bandwidth can change smoothly and its maximum response
is bounded, then it can easily adapted to various graphs. To
build such a graph filter, we use the a series of Gaussian
bases as our graph filter. We propose our Gaussian Graph
Convolution inspired from the close form for graph heat
diffusion. The graph propagation for a single Gaussian
basis concentrated at b can be formulated as follows:

HG = e−T (L−bI)2X, (15)

with b ∈ [0, 2] and its maximum response 1. Then for its
corresponding Gaussian filter, we can obtain its bandwidth
as follows:

Proposition 4.1. For the Gaussian filter denoted as:

gGT,b
(λ) = e−T (λ−b)2 ,

with b ∈ [0, 2] and T is the hyper-parameter related the
bandwidth. It’s bandwidth is:

BWgT,b
=


b, b <

√
log

√
2

T

2

√
log

√
2

T ,

√
log

√
2

T ≤ b ≤ 2−
√

log
√
2

T

2− b, b > 2−
√

log
√
2

T


The proposition can be quickly proved by calculating the
gGT,b

(λ) ≤ 1√
2

with λ ∈ [0, 2]. From the above results, we
can demonstrate the advantages for the Gaussian filter. Like
heat kernel filters, Gaussian filters decoupled the three con-
centration attributes. For this count, we can flexibly choose
different Gaussian filters and combine them to achieve our
graph filter with the desired pass-band. We can choose T for
different graph propagation to different approximated filters
with various bandwidths and choose b to change the concen-
tration centre smoothly. Empirical results show that such
flexibility enables our G2CN to perform as different graph
filters and show satisfying results on real-world datasets.

Analysis via the function approximation perspective. As
the following lemma shows, all square-integrable functions
can approximate f with a series of Gaussian kernels.

Lemma 4.2. (Calcaterra & Boldt, 2008) For any f ∈ L2R
and any ϵ > 0 there exists T > 0 and b > 0 and N ∈ N
and θi ∈ R such that:∥∥∥∥∥f(x)−

N∑
i=0

θne
−T (x−nb)2

∥∥∥∥∥ ≤ ϵ.

We can obtain the above conclusion based on the findings
proposed in (Calcaterra & Boldt, 2008). Thereby, we can
approximate the most practical filters with proper series
Gaussian filter. The above results demonstrate the expres-
sive power of our proposed Gaussian Graph Convolution.

4.2. Formulation of the Gaussian Filter in Graph and
our G2CN

To achieve the Gaussian filter in the graph propagation,
we propose two formulations for the approximated graph
propagation as listed below:

G2CN-Taylor Firstly, we can obtain dissecting the Gaussian
filter as graph propagation by K−order Taylor expansion:

H = gGT,b
(L)X ≈

K∑
k=0

T k

k!
(L− bI)

2k
X, (16)

where K here denotes the propagation times, which only
influences the accuracy of the approximation.

G2CN-Euler Since the equivalent graph filter gGT,b
can

also be regarded as the close form solution for the following
differential system at t = 1:

∂X(t)

∂t
= −T (L− bI)2X(t), (17)

with X(0) = X. Then we can use the forward Euler method
to solve the graph propagation with the step size equal to
1/K.

X

(
i

K

)
= X

(
i− 1

K

)
− T

K
(L− bI)2X

(
i− 1

K

)
,

with i = 0, ...,K to obtain the final state H ≈ X(1). We
only need to store the state i/K after the i-th iteration with
such a scheme. And since the matrix-matrix multiplication
is too expansive, we iteratively use matrix-vector multipli-
cation in practice.

Using the above methods, we can obtain the equivalent
graph propagation for the graph filter concentrated at b.
Since one Gaussian filter can only respond to the eigen-
values around the basis, we can combine features obtained
by Gaussian filters with different concentration centre as
follow:

H =

N∑
i=0

θigGTi,bi
(L)X, (18)

where N denotes the bases number we used, and θi are
learnable weights balancing Gaussian filters with different
concentration centres and bandwidth.

The whole structure of G2CN. After combining our Gaus-
sian Graph Convolution, we can obtain the graph informa-
tion filtered by the graph spectral filter we desired. As
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shown in (He et al., 2021), the node classification mainly
needs graph information centred on the high-frequency or
low-frequency part in practice, we only adopt two Gaussian
filters for our G2CN with fixed centre b = 0 and b = 2
and different T for the following equations. Since the high
flexibility makes the weights training much easier, we only
use a linear layer for classification after the propagation for
computational efficiency. Then we finally get our G2CN.

4.3. Numerical Analysis on above two G2CN type

In this section, we’d like to compare to type of G2CN from
the perspective of their approximated error from their closed-
form solution which can be defined as:

eT,K,b
M = ∥HM − e−T (bI−L)2X∥, (19)

with M is ”Eu” or ”Ta” to denote G2CN-Euler and G2CN-
Taylor and ∥ · ∥ denotes the operator norm. Then the numer-
ical error for the Taylor method is:

Theorem 4.3. For a single G2CN-Taylor’s graph filter with
order K with width factor T and bias b, the approximated
error eT,K,b

Ta compared with its closed-from e−T (bI−L)2X
is:

eT,K,b
Ta ≤ (T∥bI− L∥2)K+1

(K + 1)!
∥X∥. (20)

And the numerical error for Euler method is:

Theorem 4.4. For a single G2CN-Euler’s graph filter with
order K with width factor T and bias b, if 2T < K the
approximated error eT,K,b

T compared with its closed-from
e−T (bI−L)2X can be bounded by:

eT,K,b
Eu ≤ T 2∥bI− L∥42

K
∥X∥. (21)

From the above results, one can see that the increase of
K can reduce the numerical error for the Euler method.
However, when K < T∥bI− L∥22 the error for the Taylor
expansion will increase first as K increases and then de-
crease when K is larger enough and will return a smaller
error than the Euler method when K is large enough. There-
fore, we recommend the G2CN Euler when K is small due
to the limited computation complexity. And as the results
demonstrate, we only recommend the G2CN-Taylor when
K is significantly large compared with T , G2CN-Taylor
will return a better approximation in this scenario.

5. Experiments
5.1. Homophily and Heterophily Datasets

The graph node classification datasets can be divided into ho-
mophily graphs and heterophily graphs with the homophily
principle (McPherson et al., 2001). Homophily principle

states that contact between similar nodes occurs at a higher
rate than among dis-similar nodes. In recent work, Pei
et al. (2020) designs an index denoted by H to measure the
homophily in a graph:

H(G) =
1

|V |
∑
v∈V

Number of neighbors of v ∈ V that have the same label as v
Number of neighbors of v

.

Lower H indicates a strong heterophilic graph, where nodes
with distinct labels are more likely to link together. As ?
states, the homophilic graphs need low-pass filters for a
satisfactory performance while heterophilic graphs need
other passbands in graph filters for generalization.

In our work, we conduct experiments on five widely used
benchmark homophylic graphs as others (Wang et al., 2021)
to demonstrate our Gaussian filter achieve the compara-
ble state-of-the-art performance compared with other low-
pass graph filters, including the standard citation graphs
Cora, CiteSeer and PubMed (Sen et al., 2008; Yang et al.,
2016) and the Amazon co-purchase graphs Computers and
Photo (McAuley et al., 2015; Shchur et al., 2018).

Then we finish the experiments for five benchmark het-
erophilic graphs used in (Pei et al., 2020), including
Wikipedia graphs Chameleon and Squirrel(Rozemberczki
et al., 2021), the Actor co-occurrence graph and the WebKB
graphs Texas and Cornell (Pei et al., 2020). Experiments on
heteophilc graphs demonstrate the superiority of our G2CN
models compared with other linear or non-linear graph mod-
els due to the flexibility of the Gaussian Graph Filters we
used. More rigorously, we also conduct the comparison on
a large scale node classification dataset, OGB-Arxiv (?). An
overview summary of characteristics of the datasets is given
in Table 1.

5.2. Experimental Settings

Firstly, we experiment on the semi-supervised node classi-
fication task for standard citation networks with the stan-
dard data split as in (Wang et al., 2021; Kipf & Welling,
2017; Veličković et al., 2018; Xu et al., 2019a;b; Poli et al.,
2019) with the same setting as DGC. Furthermore, we also
evaluate the performance of the homophilic Amazon co-
purchase graph Computers and Photo for fully supervised
node classification tasks with the same setting as BernNet,
who randomly split the node sets into train/validation/test
set ratio 60%/20%/20%.

Then for the heterophilic graphs, we use the same setting as
BernNet and finish the experiments on the fully-supervised
node classification tasks for these graphs. We compare
G2CN with three baseline models: GCN (Kipf & Welling,
2017) ,GAT (Veličković et al., 2018), APPNP (Klicpera
et al., 2019a), BernNet (He et al., 2021), SGC (Wu et al.,
2019), DGC (Wang et al., 2021). We directly tuned the
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Table 1. Datasets statistics

Dataset Cora Citeseer Pubmed Computers Photo Chameleon Squirrel Actor Texas Cornell OGB-Arxiv

#Nodes 2708 3327 19717 13752 7650 2277 5201 7600 183 183 169343
#Edges 5278 4552 44324 245861 119081 36101 217073 26659 295 309 1166243
#Features 1433 3703 500 767 745 2325 2089 932 1703 1703 128
#Classes 7 6 3 10 8 6 5 5 5 5 40

H 0.83 0.71 0.79 0.47 0.59 0.25 0.22 0.24 0.06 0.11

hyper-parameters for non-linear models follows the same
steps as He et al. (2021) stated and the channel numbers hid-
den layers for non-linear models are 64. As for linear GCNs,
we performed a hyper-parameter search for linear models’
hyper-parameter (T and weight decay) on the validation
set as used in DGC for 1000 trials. We choose K = 200
for DGC and K = 100 for our G2CN to ensure the same
propagation steps with graph Laplacian for fairness.

We use Adam optimizer (Kingma & Ba, 2014) for training
with 100 epochs for semi-supervised tasks and 1000 epochs
for fully-supervised tasks as BernNet for fair with lr=0.5 for
our model and report results averaged over ten random runs.
And we use G2CN-Euler with 2T < K in the following
since its performance is more stable when T is large.

5.3. Experimental Results on Homophily Datasets.

The test results for homophily datasets are shown in Ta-
ble 2. The results show that our G2CN can show compa-
rable performance on the semi-supervised citation graphs.
Furthermore, one can see that our G2CN enjoys an evi-
dent advantage on the fully-supervised graph tasks for large
graphs. The empirical results demonstrate that our G2CN
can return better graph signals output by our graph filters
on homophilic graphs, which mainly depend on the graph’s
low-frequent composition.

We notice that BernNet perform worse than our G2CN
on the homophilic graphs. The proper passband for these
graphs shown in Table 3 can explain such phenomenon.

The table shows that The bandwidth for each bernstein basis
in BernNet is not flexible. For example, the pass band for
the last three filters of a BernNet (K = 10) is [1.3, 1.92],
[1.61, 1.92], [1.93, 2.0]. Due to such reason, BernNet needs
to rely on complicated weighted parameter to approximate
the narrow high-pass filter stated in G2CN and it will make
the learning task much harder. Thereby, it cannot utilize
proper high-frequency graph information as ours which
leads to worse results than ours.

5.4. Experimental Results on Heterophily Datasets

Apart from the homophilic graphs, we also conduct exper-
iments on the heterophilic graphs. The results are shown

Table 2. Test accuracy (%) comparison on common used citation
graphs with semi-supervised scheme (above) and Amazon co-
purchase graphs with fully-supervised scheme (blow). The results
are averaged over 10 runs.

Type Dataset Cora CiteSeer Pubmed

Nonlinear
GCN 81.5 70.3 79.0
GAT 83.0 72.5 79.0
APPNP 83.3 71.8 80.1

Linear
SGC 81.1 71.9 78.9
DGC 83.3 73.3 80.3
G2CN 82.7 73.8 80.4

Type Dataset Computers Photo

Nonlinear

GCN 83.32 ± 0.33 88.26 ± 0.73
GAT 83.32 ± 0.39 90.94 ± 0.68
APPNP 85.32 ± 0.32 88.51 ± 0.31
BernNet 87.64 ± 0.44 94.50 ± 0.40

Linear
SGC 84.74 ± 0.27 86.48 ± 0.41
DGC 89.54 ± 0.64 94.89 ± 0.50
G2CN 91.46 ± 0.35 95.29 ± 0.48

Table 3. Bandwidth for DGC and G2CN (Bandwidth for two Gaus-
sian filters with b = 0, 2) Computers and Photo.

Datasets DGC G2CN

Computers 0.21 (0.35, 0.15)
Photo 0.23 (0.37, 0.12)

in Table 4. Compared with the homophilic graphs, the ad-
vantages for our G2CN over the low-pass models is more
evident since the heterophilic graphs need the graph sig-
nals with different frequency for their tasks. Compared
with BernNet, our G2CN can still show better performance
on these models except Actor. The above results can also
demonstrate the superiority of our proposed model.

Understandings via our Concentration Analysis From
the experimental results, one can see that our G2CN or
BernNet shows significant performance on Chameleon and
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Table 4. Test accuracy (%) comparison on heterophily datasets. Reported results are averaged over 10 runs.

Dataset GCN GAT APPNP FAGCN ARMA DGC BernNet G2CN

Chameleon 42.98 ± 1.41 47.62 ± 0.83 43.07 ± 1.55 63.3 ± 1.41 55.1 ± 1.32 67.08 ± 1.58 54.11 ± 1.73 73.61 ± 0.89
Squirrel 28.41 ± 0.57 27.33 ± 0.81 31.71 ± 0.47 39.7 ± 0.67 35.5 ± 0.81 50.51 ± 0.81 41.35 ± 0.81 66.91 ± 1.13
Actor 33.23 ± 1.16 33.93 ± 2.47 39.66 ± 0.55 40.11 ± 0.77 40.79 ± 0.89 40.35 ± 0.73 41.79 ± 1.01 41.44 ± 0.76
Texas 77.38 ± 3.28 80.82 ± 2.13 90.98 ± 1.64 96.5 ± 0.47 92.3 ± 0.66 94.74 ± 0.33 96.22 ± 0.79 96.72 ± 0.73
Cornell 65.90 ± 4.43 78.21 ± 2.95 91.81 ± 1.96 93.3 ± 1.21 93.4 ± 1.13 92.45 ± 1.21 92.29 ± 2.74 94.11 ± 1.81

Squirrel, while on Cornell, Actor and Texas, the difference
is not significant compared with low-pass graph models. To
explain such a phenomenon, we calculate the bandwidth of
DGC and G2CN in Table 5.

Table 5. Bandwidth for DGC and G2CN (Bandwidth for two Gaus-
sian filters with b = 0, 2) for heterophilic Squirrel and Cornell.

Datasets DGC G2CN

Texas 2 (1.13, 0.16)
Actor 2 (2.0, 0.27)
Cornell 2 (2.0, 0.08)
Squirrel 0.09 (0.12, 0.37)
Chameleon 0.07 (0.11, 0.27)

The table shows that the Texas, Actor and Cornell mainly
need to apply an all-pass filter. For this count, APPNP and
DGC can also perform better than GCN and GAT since
the bandwidth for APPNP and DGC is more flexible than
GCN and GAT. As for Chameleon and Squirrel datasets, the
best bandwidth adapted for DGC and G2CN demonstrates
that they need a comb graph filter with narrow pass-bands.
Therefore, graph models cannot perform well since they
lack high-frequent graph signals. As for BernNet, as il-
lustrated in the former, BernNet needs complicated weight
to approximate graph filters, making its training procedure
much harder. Empirical results demonstrate the effective-
ness of our G2CN and the rationality of our concentration
spectral analysis since we can use it to understand different
models’ performance on various datasets.

5.5. Performance on Large Scale Datasets

Apart from the above datasets, we also finish experiments
for our G2CN on OGB-Arxiv. Since the OGB-Arxiv dataset
is large and hard, we replace the linear layer with 2-layer
MLP after the output of our Gaussian graph filters. The
results are listed in Table 6. From the table, one can see that
our G2CN+MLP can outperform the DGC+MLP and SGC
on the large scale dataset. The results on the large graph
OGB-Arxiv demonstrate the effectiveness of our G2CN.

Table 6. Test accuracy (%) comparison on the large scale dataset
OGB-Arxiv. OOM: out of memory.

Method Accuracy

GCN OOM
BernNet OOM
SGC 68.9
DGC+MLP 71.2

G2CN+MLP 71.6

5.6. Computation Time for Different Models

We list the computation time for different models trained
on large graphs for 1000 epochs in Table 7. The mod-
els are evaluated on a single RTX-3070 and Intel I5-
10400 (2.90GHz). As a linear GCN, DGC and G2CN is
much faster than non-linear GCNs like GCN and BernNet.
Our G2CN is only slightly slower compared with DGC.
Since our G2CN needs an additional weighted summation
for the outputs of two filters, our model is slightly slower
than DGC.

Table 7. Comparison of total training time for diffferent models
trained for 1000 epochs. The figures in the brackets are prepro-
cessing times (s) and those outside the brackets are total times (s).
The K for DGC and G2CN are 200 and 100, and G2CNn denotes
our G2CN with n Gaussian graph filters.

Model Pubmed Computers Photo

BernNet 59.33s(-) 107.1s(-) 53.33s(-)
DGC 1.04s(19ms) 2.01s(20ms) 1.40s(19ms)

G2CN 1.24s(18ms) 2.27s(21ms) 1.56s(19ms)

5.7. Ablation Studies on Spectral Response Curve For
Selected Dataset

In this section, we draw the approximated spectral response
curve of our G2CN’s Gaussian graph filter for selected
datasets as shown in Figure 1. The curve depicts whether
our Gaussian graph filter amplifies or diminishes the signals
corresponding to eigenvalue λ. From the above figures, one
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can see that same as our former analysis. Pubmed needs a
low-pass filter while Computers and Squirrel needs comb
filters with narrow bands and filters. And Squirrel mostly
rely on its graph signals with high frequency for classifica-
tion which is the same as Chameleon listed in the Appendix.
Since our G2CN can easily approximate such filter, our out-
performs other datasets with significant advantages. Cornell
is more likely to be an all-pass filter. We left the curves for
other graphs in the Appendix F.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

1

2

3

4

5

6

7

Re
sp

on
se

(a) Pubmed

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

0.2

0.4

0.6

0.8

1.0

Re
sp

on
se

(b) Computers

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.0

0.2

0.4

0.6

0.8

1.0

Re
sp

on
se

(c) Squirrel

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.5

0.6

0.7

0.8

0.9

1.0

Re
sp

on
se

(d) Cornell

Figure 1. G2CN’s equivalent graph filters for selected real-world
datasets.

6. Conclusions
In this work, we first proposed three attributes called con-
centration attributes to analyze the spectral properties for
different graph models called concentration spectral anal-
ysis. Our analysis can explain why various graph models
will show different results even if their global tendency is
the same. Furthermore, we analyzed the graph filters’ weak-
nesses and advantages for different models. We notice that
these models’ concentration attributes are not flexible, mak-
ing it hard to apply proper graph filters for different graphs.
We then proposed our Gaussian graph filters and our G2CN
using this filter. The concentration attributes for our G2CN
is much more flexible and can easily apply proper filters
for different graphs. Empirical results also demonstrate the
superiority of our model.
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A. Proof for Theorem 4.3
The proof for Theorem 4.3 is as follows:

Proof. From the definition, the approximated error for G2CN-Taylor is:

eT,K,b
Ta =

∥∥∥HTa − eT (bI−L)2X
∥∥∥
2

(22)

=

∥∥∥∥∥
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Then Theorem 4.3 is proved.

B. Proof for Theorem 4.4
The proof for Theorem 4.4 is as follows:

Proof. The Euler Scheme is to solve the following differential equation at t = 1:{
dXt

dt = −T (bI− L)2Xt,
X0 = X,

(30)

with step size 1/K for K steps. Then consider a general Euler forward scheme for our problem:

X̂(k + 1) = ˆX(k) − hL2
b,T X̂

(k), k = 0, ...,K − 1, X(0) = X, (31)

with X̂(k) denotes approximated X(k/K) by the forward Euler, h = 1
K and Lb,T =

√
T (bI−L). Then we denote the error

at step k as:
ek = X(k) − X̂(k), (32)

then the approximated error is eT,K,b
Eu = eK , and the truncation error of the Euler forward finite difference (Eqn (31)) at step

k as:

T(k) =
X(k+1) −X(k)

h
+ L2

b,TX
(k), (33)

which can be reformulated as follows:

X(k+1) = X(k) + h(T(k) − Lb,TX
(k)). (34)

Then subtract Eqn 34 by Eqn 31, we can obtain:

e(k+1) = (I− hL2
b,T )e

(k) + hT(k), (35)
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whose norm can be upper bounded as:∥∥∥e(k+1)
∥∥∥
2
≤

∥∥I− hL2
b,T

∥∥
2

∥∥∥e(k)∥∥∥
2
+ h

∥∥∥T(k)
∥∥∥ . (36)

Since Lb,T = (bI− L) with b ∈ [0, 2] and the eigenvalue of the symmetric matrix L also lies in [0, 2], Then the eigenvalue
of L2

b,T lies in [0, 4T ] and eigenvalue of hL2
b,T lies in [0, 2] since h = T/K < 0.5. Thereby, the spectral norm of I− hL2

b,T

is upper bounded by 1. Then with M = max0≤k≤K−1 ∥T(k)∥2 be the upper bound on the truncation error, we have:∥∥ek+1
∥∥
2
≤ ∥e(k)∥(k)2 + hM. (37)

Since e(0) = X(0) − X̂(0) = 0, we have the following formula by induction:∥∥∥e(K)
∥∥∥
2
≤ KhM = M. (38)

Then since dX(k)

dt = −LX(k) and applying Taylor’s theorem, there exists δ ∈ [kh, (k + 1)h] such that the truncation error
T(k) in Eqn 33 follows:

T(k) =
h

2
L4
b,TXδ. (39)

Furthermore, since
∥Xδ∥2 =

∥∥∥e−TδL2
bX0

∥∥∥ ≤ ∥X∥2. (40)

Thereby, we can bound the truncated error:

∥T(k)∥2 =
h

2
∥Lb∥4∥Xδ∥2 ≤ h

2
∥Lb∥4∥X∥2, (41)

Finally, we have ∥∥∥eT,K,b
Eu

∥∥∥
2
=

∥∥∥e(K)
∥∥∥
2
≤ M ≤ T 2

2K
∥bI− L∥4∥X∥2. (42)

Then we complete the proof.

C. Bandwidth and Concentration Centers for Graph filters approximated by Polynomial Bases.
We list the bandwidth of each bernstein basis for BernNet with K = 10 listed in Table 8.

Table 8. Concentration Attributes for Bernstein Basis.

Index 0 1 2 3 4 5 6 7 8 9 10

Concentration Center 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
PassBand [0.0, 0.069] [0.079, 0.390] [0.219, 0.635] [0.381, 0.855] [0.555, 1.062] [0.741, 1.258] [0.938, 1.445] [1.145, 1.619] [1.365, 1.781] [1.610, 1.921] [1.931, 2.0]

Maximum Response 1 0.387 0.301 0.267 0.251 0.246 0.251 0.267 0.301 0.387 1

D. Ablation Study on the Propagation Stpes K.
We also finish the experiments on Photo with different propagation times K for our G2CN Euler to explore K’s influence.
The results are shown in Figure 2. Same to our analysis stated in Theorem 4.3, as K increases, the approximated error will
decrease and the performance will increase and finally converge.

E. Summary for our concentration analysis on different graph propagation.
We summarize the concentration attributes for different graph propagation as follows:

F. Response Curve for Other Graphs
We list the response curve for the rest Graphs as follows:
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Figure 2. Test Accuracy with respect to different propagation times for our G2CN on Photo.

Table 9. Concentration attributes for different graph propagation.

Graph Propagation Kernel (Or Basis) R b BW

GCN (2I− L)K 2K 0 2− 21−
1

2K

PPR (I− (1− α)(1− L))−1 1
α 0 (

√
2−1)α
1−α

ARMA bK
1−aKµ

bK
1−|aK | 0 or 2 (

√
2−1)(1−|aK |)

|aK |

FAGCN
(1− λ+ ϵ)2

(λ− 1 + ϵ)2
(1 + ϵ)2 0 or 2 (21/4 − 1)(1 + ϵ) ∈ [0.19, 0.38]

Heat Kernel e−TL 1 0 log(
√
2)

T

ChebNet
C(0) = I

C(1) = 2L/λmax − I

C(k) = 2C(2)C(s−1) −C(s−2)

1
[0, 2]
1,−1
....

2

2−
√
2

....

BernNet 1
2K

(
K
k

)
(2I− L)K−kLk Appendix C 2

K Appendix C

Graph Gaussian e−T (b−L)2 1 b Proposition 4.1
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(d) Computers
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(e) Squirrel
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(f) Cornell
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(g) Photo
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DGCv2 Texas Response

(h) Texas
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(i) Actor
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(j) Chameleon

Figure 3. G2CN’s equivalent graph filters for selected real-world datasets.


