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Abstract

Recently, some accelerated stochastic variance re-
duction algorithms such as Katyusha and ASVRG-
ADMM achieve faster convergence than non-
accelerated methods such as SVRG and SVRG-
ADMM. However, there are still some gaps be-
tween the oracle complexities and their lower
bounds. To fill in these gaps, this paper propos-
es a novel Directly Accelerated stochastic Vari-
ance reductIon algorithm with two Snapshots
(DAVIS) for non-strongly convex (non-SC) un-
constrained problems. Our theoretical results
show that DAVIS achieves the optimal conver-
gence rateO(1/(nS2)) and optimal gradient com-
plexity O(n+

√
nL/ε), which is identical to its

lower bound. To the best of our knowledge, this
is the first directly accelerated algorithm that at-
tains the lower bound and improves the conver-
gence rate from O(1/S2) to O(1/(nS2)). More-
over, we extend DAVIS and theoretical results to
non-SC problems with an equality constraint, and
prove that the proposed DAVIS-ADMM algorith-
m with double snapshots for each variable also
attains the optimal convergence rate O(1/(nS))
and optimal oracle complexity O

(
n + L/ε

)
for

such problems, and it is at least by a factor n/S
faster than existing accelerated stochastic algo-
rithms, where n� S in general.
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1. Introduction
Consider the following finite-sum composite convex mini-
mization problem

min
x∈Rd

{
F (x) ,

1

n

∑n

i=1
fi(x) + h(x)

}
, (1)

where each fi(·) is convex, and h(·) is convex but possibly
non-smooth. We define f(x) = 1

n

∑n
i=1fi(x). This prob-

lem arises frequently in machine learning, signal processing,
statistics, and operations research (Bubeck, 2015), such as
regularized empirical risk minimization. In many real-world
applications, the number of component functions (i.e., n) is
usually very large so that even first-order methods become
computationally burdensome due to high per-iteration com-
plexity O(nd). Stochastic gradient descent (SGD) (Robbins
& Monro, 1951) uses the gradient of only one (or a small
batch of) randomly chosen fi to estimate full gradient in
each iteration, and enjoys a significantly lower cost O(d).

In recent years, stochastic (or incremental) variance reduc-
tion methods have received extensive attention due to their
low per-iteration cost and ability to handle large-scale prob-
lems. In particular, research on variance reduction methods
(e.g., SAG (Roux et al., 2012), SDCA (Shalev-Shwartz &
Zhang, 2013), SVRG (Johnson & Zhang, 2013), SAGA
(Defazio et al., 2014), and their proximal variants, e.g.,
Prox-SVRG (Xiao & Zhang, 2014)), and stochastic variance
reduced algorithms of the alternating direction method of
multipliers (ADMM) (e.g., SAG-ADMM (Zhong & Kwok,
2014), SDCA-ADMM (Suzuki, 2014) and SVRG-ADMM
(Zheng & Kwok, 2016)) have made exciting progress, e.g.,
linear convergence for strongly convex (SC) problems.

For solving the SC problem (1), the oracle complexity (i.e.,
the number of Incremental First-order Oracle calls and Prox-
imal Oracle calls needed to find an ε-suboptimal solution) of
the stochastic variance reduction methods mentioned above
is O((n+κ) log(1/ε)), while the complexity of accelerated
deterministic methods including AGD (Nesterov, 1983) and
APG (Beck & Teboulle, 2009) is O(n

√
κ log(1/ε)), where

κ is the condition number. Obviously, the complexities
show that the variance reduction methods always converge
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Table 1. Comparison of oracle complexities (i.e., the number of first-order oracle calls and proximal oracle calls (Lan, 2020; Xie et al.,
2020)) and convergence rates of some stochastic methods for non-SC problems, where S0 :=blog2(n)c+1. Note that we regard using
reductions or proximal point variants as “Indirect” acceleration, such as Catalyst and Katyusha with reduction techniques.

Algorithms
SAGA (Defazio et al., 2014) Catalyst Katyushans Katyusha

SVRG (Johnson & Zhang, 2013) (Lin et al., 2015a) (Allen-Zhu, 2018) (Allen-Zhu, 2018)

Convergence rates O
(

1
S

)
O
(

log4(ns)

nS2

)
O
(

1
S2

)
NA

Oracle complexities O
(
n
ε
+ L

ε

)
O
(
(n+

√
nL
ε
) log2( 1

ε
)
)

O
(
n√
ε
+
√

nL
ε

)
O
(
n log( 1

ε
)+
√

nL
ε

)
Direct Yes No Yes No

Algorithms
Varag VRADA DAVIS Lower Bound

(Lan et al., 2019) (Song et al., 2020) This paper (Woodworth & Srebro, 2016)

Convergence rates O
(

1
n(S−S0+4)2

)
NA O

(
1
nS2

)
O
(

1
nS2

)
Oracle complexities O

(
n log2(n)+

√
nL
ε

)
O
(
n log2log2(n)+

√
nL
ε

)
O
(
n+

√
nL
ε

)
O
(
n+

√
nL
ε

)
Direct Yes Yes Yes –

faster than accelerated batch methods as long as κ≤O(n2).
For non-strongly convex (non-SC) problems, they seem to
yield slower convergence rates, e.g., O(1/S) for SVRG vs.
O(1/S2) for AGD and APG, where S is the length of the
outer-loop or the number of iterations.

The momentum acceleration techniques for deterministic
optimization have been widely researched, e.g., the heavy-
ball method (Polyak, 1964), Nesterov’s accelerated gradient
methods (Nesterov, 1983; 2013) and the optimized gradient
method (Kim & Fessler, 2016). Recently, there has been a
surge in interest in accelerating stochastic variance reduced
methods such as (Frostig et al., 2015; Lin et al., 2015a; Mah-
davi et al., 2013; Nitanda, 2014; Allen-Zhu, 2018; Murata
& Suzuki, 2017; Hien et al., 2019). Lin et al. (2015a) pre-
sented an indirect acceleration (Catalyst) framework, which
achieves the complexity of O((n+

√
nL/ε) log2(1/ε)) for

non-SC problems, where L is a Lipschitz constant. Here,
the methods via dummy regularization or reductions are re-
garded as indirect ones. As the direct acceleration of SVRG,
Katyusha (Allen-Zhu, 2018) introduced the idea of nega-
tive momentum (i.e., Katyusha momentum). By combining
Katyusha momentum with Nesterov’s momentum, Katyusha
achieves the complexity O((n +

√
nκ) log(1/ε)) for SC

problems, which matches the complexity lower bound for
minimizing convex finite-sum functions, proved by Lan &
Zhou (2018b). Besides, several accelerated methods were
proposed, e.g., APCG (Lin et al., 2015b), SDPC (Zhang &
Xiao, 2015), Point-SAGA (Defazio, 2016) and RPDG (Lan
& Zhou, 2018a). In particular, Allen-Zhu (2018) also proved
that Katyusha directly (i.e., Katyushans) attains the complex-
ity O(n/

√
ε+

√
nL/ε) for non-SC problems. Although by

using reduction techniques, Katyusha obtains an improved
complexity O(n log(1/ε) +

√
nL/ε), which is still worse

than the optimal oracle bound in (Woodworth & Srebro,
2016), i.e.,O(n+

√
nL/ε). More recently, Lan et al. (2019)

proposed a directly accelerated (Varag) method, which ob-
tains the complexity ofO(n log2(n)+

√
nL/ε) for non-SC

problems. However, similar to Varag, VRADA (Song et al.,
2020) has an extra log2 factor compared with the complex-
ity lower bound, Ω(n+

√
nL/ε). It is then natural to ask

whether there exists a directly accelerated stochastic method
that can attain the optimal oracle complexity.

This paper also considers the minimization problem (1) with
a structured regularizer h(Ax), such as graph-guided fused
Lasso (Kim et al., 2009), whereA∈Rd1×d is a given matrix.
As the generalization of Problem (1), such problems can be
formulated as the equality-constrained finite-sum problem,

min
x∈Rd,w∈Rd1

{
f(x) + h(w), s.t., Ax = w

}
, (2)

where A∈Rd1×d. In fact, the algorithm proposed in this
paper and its convergence result can be extended to the
more general problem (2) with the constraint Ax+Bw = c,
where A ∈ Rd2×d, B ∈ Rd2×d1 , c ∈ Rd2 . For the SC and
equality-constrained problem (2), Suzuki (2014) and Zheng
& Kwok (2016) proved that their variance reduction stochas-
tic ADMM methods attain linear convergence for the special
(i.e., the constraint in (2) is Ax = w) and general ADMM
forms (i.e., the constraint in (2) becomes Ax+Bw = c), re-
spectively. In SAG-ADMM and SVRG-ADMM, the conver-
gence rate O(1/S) can be guaranteed for non-SC problems,
which implies that there remains a gap in the convergence
rates of between the stochastic ADMM and accelerated
batch algorithms, i.e., O(1/S) vs. O(1/S2).

For the equality-constrained composite convex problem
(2), Xu et al. (2017) proposed a faster variant of SVRG-
ADMM with an adaptive penalty parameter scheme. Liu
et al. (2021) presented a momentum accelerated variant of
SVRG-ADMM (called ASVRG-ADMM), and Li & Lin
(2017) proposed an accelerated stochastic ADMM for solv-
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Table 2. Comparison of convergence rates and oracle complexities of the stochastic ADMM methods for solving Problem (2), where those
of ASVRG-ADMM are obtained with a boundedness assumption on the constraint sets of primal and dual variables (see Section 4.3 for
details). Note that we can easily achieve the lower bounds for Problem (2) by using (Xie et al., 2020).

Algorithms
SAGA-ADMM SVRG-ADMM ASVRG-ADMM DAVIS-ADMM Lower Bound

(Zhong & Kwok, 2014) (Zheng & Kwok, 2016) (Liu et al., 2021) This paper (Xie et al., 2020)

Convergence rates O( 1
S
) O( 1

S
) O( 1

S2 ) O( 1
nS

) O( 1
nS

)

Oracle complexities O
(
n
ε
+ L

ε

)
O
(
n
ε
+ L

ε

)
O
(
n√
ε
+
√

nL
ε

)
O
(
n+ L

ε

)
O
(
n+ L

ε

)
Boundedness assumption No No Yes No –

ing a four-composite minimization problem. However, there
also exist some similar gaps between the convergence rates,
as well as the oracle complexities, of the existing methods
and the optimal convergence rate.

Motivations: (I) For solving the non-SC problem (1) (e.g.,
`1-norm regularized problems), Katyusha (Allen-Zhu, 2018)
and Varag (Lan et al., 2019) attain the oracle complexities of
O(n/

√
ε+

√
nL/ε) and O(n log2(n) +

√
nL/ε), respec-

tively. However, the lower bound of the oracle complexity
is O(n +

√
nL/ε) (Woodworth & Srebro, 2016). That

is, there are some gaps between the convergence results
in (Allen-Zhu, 2018; Lan et al., 2019) and the lower bound1.

(II) Although by adding a SC proximal term into non-SC
problems as in (Frostig et al., 2015; Lin et al., 2015a; Allen-
Zhu, 2018), one can achieve faster convergence, this may
hurt the performance of the algorithms in both theory and
practice (Allen-Zhu & Yuan, 2016). The difficulty for the in-
direct methods is that it is really hard to choose the proximal
parameter properly. Can we design a simple algorithm
for Problem (1) to close the gap in theory?

(III) Moreover, for solving the non-SC structure-regularized
problem (2), Table 2 shows that there is a big gap of con-
vergence rates between prior works and the lower bound in
(Xie et al., 2020). Can we obtain the optimal convergence
rate in both theory and practice?

Our Main Contributions: To fill in the gaps, we propose a
novel directly accelerated stochastic variance reduced gradi-
ent (DAVIS) method, which has two snapshots and new mo-
mentum accelerated rules with a new compensated stochas-
tic gradient operator. We prove that DAVIS obtains an op-
timal convergence rate, O(1/(nS2)). Moreover, we prove
that the oracle complexity of DAVIS is O(n +

√
nL/ε),

which is identical to the lower bound in (Woodworth & S-
rebro, 2016). That is, our oracle complexity is by a factor
1/
√
ε lower than Katyusha, and by a factor log2(n) better

than Varag, as shown in Table 1. To the best of our knowl-
edge, this is the first directly accelerated method that attains

1A work by Li (Li, 2021) appeared on arXiv, and can match the
lower bound in (Woodworth & Srebro, 2016) for non-SC problems
for a very wide range of ε.

the optimal complexity bound for the non-SC problem (1).

To answer the above-mentioned question, we also extend
DAVIS to solve Problem (2) with a structured regularizer.
For important emerging equality-constrained non-SC prob-
lems (e.g., graph-guided fused Lasso (Kim et al., 2009)),
the best-known convergence rate of existing accelerated
stochastic ADMM methods such as (Liu et al., 2021) is
O(1/S2) in the case with an assumption of boundedness on
the constraint sets of primal and dual variables (see details
in Section 4.3) or O(1/S) in the case without the assump-
tion of boundedness. Our second main result is that we
propose a directly accelerated stochastic ADMM (DAVIS-
ADMM) algorithm, and prove that it attains the optimal rate
of O(1/(nS)) without the assumption of boundedness, as
shown in Table 2. Moreover, DAVIS-ADMM attains the
optimal gradient complexity O

(
n+ L/ε

)
, which matches

the lower bound in (Xie et al., 2020). To the best of our
knowledge, this is the first method that obtains the optimal
theoretical result for stochastic ADMMs.

2. Related Work
Throughout this paper, ‖·‖ denotes the Euclidean norm. We
mostly focus on two types of problems (1) and (2), where
each component function is L-smooth.

Assumption 2.1 (Smoothness). Each component function
fi(·) is L-smooth, i.e., for all x, y∈Rd,

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖.

2.1. Stochastic Variance Reduction Methods for
Unconstrained Optimization

In recent years, stochastic variance reduction methods such
as (Roux et al., 2012; Shalev-Shwartz & Zhang, 2013; John-
son & Zhang, 2013; Defazio et al., 2014; Xiao & Zhang,
2014) have received extensive attention. Variance reduced
gradient estimators such as SVRG (Johnson & Zhang, 2013)
and SAGA (Defazio et al., 2014) use gradient information
from previous iterates to construct a better estimate of the
gradient at the current iterate xk. In particular, the popu-
lar SVRG estimator (i.e., ∇̃fik(xk)) in (Johnson & Zhang,
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2013; Zhang et al., 2013) uses the gradient at the snapshot x̃
to progressively reduce the variance of the SGD estimator,
∇fik(xk), where ik is chosen uniformly at random from
{1, 2, . . . , n}. Therefore, the SVRG estimator has been
widely used in most stochastic variance reduced methods
including Katyusha (Allen-Zhu, 2018) and Varag (Lan et al.,
2019). More recently, there is a surge of interest in acceler-
ating stochastic variance reduced methods such as Katyusha
and Varag for solving unconstrained optimization problems.
By using negative momentum and both proximal descent
and mirror descent steps, Katyusha (Allen-Zhu, 2018) can
obtain improved convergence rates. In contrast, Varag (Lan
et al., 2019) only requires the solution of one sub-problem
instead of the two for Katyusha. More recently, VRADA
(Song et al., 2020) can match the lower bound for non-SC
problems up to a log2log2(n) factor.

2.2. Stochastic Optimization for Structured
Regularization Problems

To solve the equality-constrained problem (2), the alternat-
ing direction method of multipliers (ADMM) is an efficient
optimization method. However, ADMM and its determinis-
tic variants suffer from a high per-iteration computational
cost for large-scale problems. Thus, several stochastic AD-
MMs such as (Wang & Banerjee, 2012; Ouyang et al., 2013)
have recently been proposed. The formulation (2) with the
constraint Ax+By = c is the general form of the ADMM
(Boyd et al., 2011). With the constraint Ax = w, Problem
(2) is a simpler optimization problem, e.g., generalized Las-
so (Tibshirani & Taylor, 2011), which is called the special
ADMM form. Together with the dual variable λ, the update
steps of stochastic ADMMs are

wk=arg min
w

{
h(w)+φk(xk−1, w)

}
,

xk=arg min
x

{
xT ∇̃fik(xk−1)+

‖x−xk−1‖2Q
2ηk

+φk(x,wk)
}
,

λk = λk−1 +Axk − wk,

where φk(x,w) = β
2 ‖Ax−w + λk−1‖2, β>0 is a penalty

parameter, ηk>0 is a parameter, and ‖x‖2Q=xTQx with a
given positive semi-definite matrix Q (Ouyang et al., 2013).

Another possible solution is primal-dual hybrid gradien-
t methods such as (Zhu & Chan, 2008; Goldstein et al.,
2015). Note that we mainly focus on accelerating stochastic
ADMM and refrain from discussing dual and primal-dual
stochastic algorithms. Some researchers have adopted the
variance reduced techniques mentioned above for ADMM,
e.g., (Zhong & Kwok, 2014; Suzuki, 2014; Zheng & K-
wok, 2016). More recently, together with variance reduction
techniques, some momentum accelerated stochastic ADMM
algorithms (Li & Lin, 2017; Xu et al., 2017; Liu et al., 2021)
have been proposed for solving Problem (2).

3. A Direct Optimal Stochastic Variance
Reduction Algorithm

In this section, we propose a directly accelerated stochastic
variance reduction gradient (DAVIS) algorithm for solving
the non-SC problem (1). We first present a novel double
snapshot acceleration framework for stochastic optimiza-
tion, in which we need to compute the full gradient at the
first snapshot and define a new update rule of the second
snapshot in each outer loop. Moreover, we design a new
stochastic variance reduction gradient estimator for each
inner loop of our accelerated algorithm. Finally, we analyze
the convergence properties of DAVIS, which show that it
attains the optimal convergence rate O(1/(nS2)) and the
optimal oracle complexity O(n+

√
nL/ε).

3.1. Main Ideas of DAVIS

As discussed above, there still exist some gaps between
the oracle complexities of the directly accelerated algo-
rithms (e.g., Katyusha and Varag) and the lower bound
in (Woodworth & Srebro, 2016). Let x∗ be an optimal
solution of Problem (1) and x̃0 be a given starting vec-
tor, the convergence result of the directly accelerated ver-
sion (i.e., Katyushans) of Katyusha (Allen-Zhu, 2018) is
O(F (x̃0)−F (x∗)

S2 + L‖x∗−x̃0‖2
nS2 ). In order to achieve the opti-

mal convergence rate O(1/(nS2)), we need to accelerate
the rate of the first term fromO(1/S2) toO(1/(nS2)), and
thus Algorithm 1 mainly includes a new extra snapshot and
its update rule in each outer loop, one new stochastic gradi-
ent estimator and new momentum acceleration rules in each
inner loop. Therefore, our accelerated algorithm attains the
optimal convergence rate O(1/(nS2)) without restarting
and without using any reduction techniques.

As most stochastic variance reduction methods including
Katyusha (Allen-Zhu, 2018) and Varag (Lan et al., 2019),
each epoch of our algorithms including Algorithm 1 consists
of m inner-iterations, e.g., m=2n as suggested in (Johnson
& Zhang, 2013). In each outer loop of the proposed algorith-
m, we need to compute the full gradient at the first snapshot
point, and design a new update rule for the second snapshot
point. In each inner loop of our algorithm, we define a new
compensated stochastic variance reduction gradient estima-
tor, and then present a new momentum acceleration scheme.
More details are given below.

3.2. New Scheme of Double Snapshots in Outer Loop

In the s-th outer loop of Algorithm 1, we design two snap-
shot points x̃s−1 and xs−1, both of which remain unchanged
in all the inner loops inside the same outer loop. The first
snapshot point x̃s−1 takes the same role as in most variance
reduction methods such as SVRG and Katyusha. That is,
we need to compute the full gradient of f(·) at x̃s−1 in each
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Algorithm 1 DAVIS for Problem (1)
Input: The number S of epochs, the numberm of iterations

per epoch.
Initialize: x̃0, z1

0 = 0, θ1 = 1, and η.
1: for s = 1, 2, . . . , S do
2: zs−1 =prox

η
θs

h (x̃s−1−mη
θs
∇f(x̃s−1));

3: xs−1 = θsz
s−1+(1−θs)x̃s−1;// The second snapshot

4: Compute the full gradient at the second snapshot
point (i.e., xs−1), ∇f(xs−1) = 1

n

∑n
i=1∇fi(x

s−1);
5: for k = 1, 2, . . . ,m do
6: Update ysk via (4);
7: Pick ik uniformly at random from {1, 2, . . . , n};
8: ∇̃ik(ysk) =∇fik(ysk−1)−∇fik(xs−1)+∇f(xs−1)+

mθs
η

(
zs−1 − x̃s−1

)
;

9: zsk = Prox-SGrad(ysk);
10: xsk = θs

m (zsk − psk) + ysk;
11: end for
12: x̃s= 1

m

∑m
k=1x

s
k, θs+1= 2

s+2 , zs+1
0 =zsm;

13: end for
14: Output: x̃S .

outer loop, which is used to gradually reduce the variance of
the SVRG estimator. Moreover, we design a novel update
rule for the second snapshot point xs−1 as follows:

xs−1 = θsz
s−1 + (1− θs)x̃s−1, (3)

where θs is a parameter (e.g., θs= 2
s+1 ), and the auxiliary

variable zs−1 is obtained by solving the following problem:

zs−1=argmin
z

{
h(z)+

〈
∇f(x̃s−1), z

〉
+

θs
2mη

‖z−x̃s−1‖2
}
.

Here, η is a learning rate. Clearly, zs−1 is obtained by
performing one deterministic gradient descent step from the
snapshot point x̃s−1, which requires no gradient calculations.
For the second snapshot point xs−1, we give its upper bound
in Lemma 3.3 in Section 3.4.

3.3. New Stochastic Update Schemes in Inner Loop

In this subsection, we first define a new compensated s-
tochastic variance reduction gradient estimator for the pro-
posed algorithm, and then we design a new momentum
acceleration update rule.

3.3.1. COMPENSATED STOCHASTIC GRADIENT
ESTIMATOR

Before giving our new stochastic momentum acceleration
scheme for our algorithm, we first define a new compensated
gradient estimator.

Definition 3.1 (Compensated stochastic gradient estimator).
We define a new compensated stochastic variance reduction

gradient estimator for our DAVIS algorithm as follows:

∇̃ik(x) = ∇fik(x)−∇fik(xs−1)+∇f(xs−1)︸ ︷︷ ︸
SVRG estimator

+mθs(z
s−1 − x̃s−1)/η︸ ︷︷ ︸

Compensated estimator

.

It is clear that our stochastic variance reduction gradient
estimator consists of two terms, i.e., the SVRG estimator
independently proposed in (Johnson & Zhang, 2013; Zhang
et al., 2013) and a new compensated estimator. Note that
the new compensated term is introduced into the proposed
gradient estimator ∇̃ik(x), and plays a key role to offset the
residual term in the upper bound of Lemma 3.3 (see the
discussion in Section 3.4 for details).

3.3.2. MOMENTUM ACCELERATION

We first define a new proximal stochastic gradient decent
scheme for our algorithm.

Definition 3.2 (Prox-SGrad). The proximal stochastic gra-
dient decent (Prox-SGrad) is defined as:

Prox-SGrad(x)

, argmin
z

{
h(z) + 〈∇̃ik(x), z〉+mθs

2η
‖z−δsk‖2

}
= prox

η
mθs

h

(
δsk −

η

mθs
∇̃ik(x)

)
,

where δsk = psk + 2(zs−1−x̃s−1), and psk is defined below,

and prox
η
mθs

h (·) is the standard proximal operator as in (Xiao
& Zhang, 2014; Allen-Zhu, 2018).

Next we design a new momentum acceleration scheme in
each inner loop, and first give a new update rule for ysk at
the k-th iteration of the s-th epoch:

ysk =
θs
m
psk +

(
1− θs

m

)
xs−1. (4)

Here psk = zsk−1−zs−1+x̃s−1 is designed to get a structured
recursive form (i.e., ‖x∗−zsk−1‖2−‖x∗−zsk‖2) in our upper
bound of one-iteration in Lemma 3.4 below. Moreover, we
define the following momentum acceleration update rule for
xsk:

xsk =
θs
m

(zsk − psk) + ysk, (5)

where zsk = Prox-SGrad(ysk). We give the following upper
bound for our stochastic updates in one iteration (e.g., the
k-th iteration) of Algorithm 1.

3.4. Optimal Convergence Guarantees

In this subsection, we analyze the convergence property
of our DAVIS algorithm. Theorem 3.6 below shows that
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DAVIS can improve the best-known convergence rate of
some accelerated methods (e.g., Katyusha) from O(1/S2)
to O(1/(nS2)) for the non-SC problem (1). We also sup-
pose that the distance between an initial point x̃0 and an
optimal solution x∗ can be bounded by a constant c, i.e.,
‖x∗ − x̃0‖ ≤ c, which is a basic condition (see Appendix B
for our proof sketch and detailed proofs).

3.4.1. CORE LEMMAS

The proof of our main result relies on the one-iteration
inequality in Lemma 3.5 below, which is a key lemma to
obtain our theoretical result in Theorem 3.6. Lemma 3.5
consists of two key upper bounds in Lemmas 3.3 and 3.4.
By using our double snapshot scheme in each outer loop of
Algorithm 1, we can obtain the following result.

Lemma 3.3 (Upper bound of double snapshot update). Sup-
pose that Assumption 2.1 holds. Let {xs} be the sequence
generated by our double snapshot scheme in Algorithm 1,
we have

F (xs−1)− F (x∗) ≤ (1−θs)(F (x̃s−1)− F (x∗)) +Rs

+
θ2
s

2mη

(∥∥x∗−x̃s−1
∥∥2−

∥∥x∗ −zs−1
∥∥2)

,

whereRs =
(
θ2s
2η −

θ2s
2mη

)
‖zs−1−x̃s−1‖2.

Note that the upper bound in Lemma 3.3 has an additional
term, which may be positive but we shall cancel it by using
the upper bound of our stochastic update schemes in Lem-
ma 3.4 below. Using our stochastic momentum accelerated
scheme in each inner loop, we give the following result.

Lemma 3.4 (Upper bound of one-iteration). Suppose
that Assumption 2.1 holds. Let {xsk, zsk} be the sequence
generated by Algorithm 1. then

E[F (xsk)−F (x∗)] ≤ θ
2
s

2η

(∥∥x∗−zsk−1

∥∥2 − ‖x∗−zsk‖2
)
+ Cs

+E
[(

1− θs
m

)(
F (xs−1)−F (x∗)

)]
,

where Cs =
( θ2s

2mη −
θ2s
2η

)
‖zs−1 − x̃s−1‖2.

Remark 1. In Lemma 3.4, the term Csk is produced by our
gradient estimator, and is used to compensate the additional
termRs in Lemma 3.3 (i.e.,Rs+Cs = 0). As we expected,
the designed stochastic descent step can be used to counter-
act the additional term, as shown in the detailed proof for
Lemma 3.5 below.

Using Lemmas 3.3 and 3.4, we give the following upper
bound of one iteration in Algorithm 1.

Lemma 3.5 (Upper bound of one-epoch). Suppose that
Assumption 2.1 holds. Let {xsk} be the sequence generated

by Algorithm 1. Then we have

E[F (x̃s)− F (x∗)] ≤
(

1−θs
) (
F (x̃s−1)− F (x∗)

)
+

θ2
s

2mη

(
‖x∗−x̃s−1‖2−‖x∗−x̃s‖2

)
.

3.4.2. OPTIMAL CONVERGENCE RESULTS

We can obtain the inequality of one-epoch by using Lem-
ma 3.5, and telescope the inequality over all epochs to obtain
the following result.

Theorem 3.6. Suppose that each component function fi(·)
is L-smooth. Let x̃s = 1

m

∑m
k=1x

s
k (i.e., the average point

of the previous epoch), then the following result holds

E[F (x̃s)−F (x∗)] ≤ O
(L‖x∗− x̃0‖2

mS2

)
.

Choosingm = Θ(n), Algorithm 1 achieves an ε-suboptimal
solution using at most O(n+

√
nL/ε) iterations.

Remark 2. Theorem 3.6 shows that DAVIS achieves
the optimal convergence rate O(1/(nS2)), while most ex-
isting directly accelerated methods including (Allen-Zhu,
2018; Zhou et al., 2018) attain the rate O(1/S2). In par-
ticular, Algorithm 1 also attains the optimal oracle com-
plexity O(n +

√
nL/ε), which matches the lower bound

in (Woodworth & Srebro, 2016). In contrast, the complexi-
ties of Katyusha (Allen-Zhu, 2018), Varag (Lan et al., 2019)
and VRADA (Song et al., 2020) are O(n/

√
ε +

√
nL/ε),

O(n log2(n) +
√
nL/ε) and O(n log2log2(n) +

√
nL/ε),

respectively. In other words, DAVIS has both the optimal
oracle complexity and optimal convergence rate for solv-
ing Problem (1). To the best of our knowledge, this is the
first time that the optimal complexity bound is obtained
through a directly accelerated algorithm for general convex
finite-sum optimization in the literature.

3.5. Comparison with Existing Algorithms

There are some main differences between our DAVIS algo-
rithm and existing accelerated stochastic algorithms such as
Katyusha (Allen-Zhu, 2018), Varag (Lan et al., 2019), and
VRADA (Song et al., 2020).

• One vs two snapshots: Both snapshots (i.e., x̃s and
xs) are introduced into our update rules in (4) and
(5), while only one snapshot x̃s is applied in most
algorithms such as Katyusha, Varag and VRADA. Sim-
ilarly, we use double snapshots for each variable in
equality-constrained problems.

• SVRG estimator vs our compensated estimator: Most
accelerated algorithms such as Katyusha, Varag and
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VRADA use the SVRG estimator proposed in (John-
son & Zhang, 2013; Zhang et al., 2013). In contrast,
our gradient estimator is introduced to compensate the
residual term in Lemma 3.3, and thus is one of main
contributions of this paper.

• Negative momentum vs compensated momentum:
Both Varag and Katyusha use the negative momen-
tum proposed in (Allen-Zhu, 2018). By combining
with our defined gradient estimator, we also design a
new momentum accelerated rule in (5) to achieve an
optimal convergence rate. Note that θs can be defined
as: θs = 2

s+1 satisfying 1
θ2s−1
≥ 1−θs

θ2s
. Different from

Katyushans, the coefficient of our momentum is θs/m,
which can reduce the impact of the variance bound on
the upper bound of one iteration in Lemma 3.4 from
O(1) to O(1/m). Moreover, both Varag and DAVIS
only require the solution of one subproblem in each
iteration instead of two subproblems in Katyusha.

4. An Optimal Stochastic ADMM Algorithm
for Equality Constrained Optimization

In this section, we propose a novel directly accelerated
stochastic variance reduction ADMM (DAVIS-ADMM) al-
gorithm with double-snapshots to solve Problem (2) (see
Algorithm 2 for the details of DAVIS-ADMM). The pro-
posed DAVIS-ADMM algorithm improves the best-known
convergence rate from O(1/S2) to O(1/(nS)) . We first let
Qs=γI− ηβ

θs
ATA with γ ≥ ηβ‖ATA‖2 + 1 to ensure that

Qs � I , where ‖·‖2 is the spectral norm, and ‖C‖2 is the
spectral norm of a matrix C.

4.1. Double-Snapshot Scheme in DAVIS-ADMM

Existing stochastic variance reduction ADMMs such as
SVRG-ADMM (Zheng & Kwok, 2016) and ASVRG-
ADMM (Liu et al., 2021) use the three snapshots x̃s, w̃s and
λ̃s, while three additional snapshots xs, ws and λ

s
are also

designed for our DAVIS-ADMM algorithm. Note that all
the snapshots in our DAVIS-ADMM algorithm are updated
only in outer loop. More specifically, the update rules of
the first three snapshots are defined as: x̃s = 1

m

∑m
k=1x

s
k,

w̃s= θs
m2

∑m
k=1w

s
k+
(
1− θs

m

)
ws−1. And the update rules of

the three new snapshots in our DAVIS-ADMM are given as
follows:

xs−1 = θsz
s−1 + (1− θs)x̃s−1,

ws−1 = θsp
s−1 + (1− θs)w̃s−1,

λ
s−1

= Azs−1 − ps−1 + λ
s−2

.

(6)

Let φs(z, p) = 1
2m‖Az − p + λ

s−2‖2, the auxiliary vari-
ables are defined as follows: ps−1 = arg minp

{
h(p) +

Algorithm 2 DAVIS-ADMM for Problem (2)
Input: S and m.
Initialize: x̃0, w̃0, λ

0
, z1

0 , θ1 = 1, and η.
1: for s = 1, 2, . . . , S do
2: Update the snapshots xs−1, ws−1 and λ

s−1
via (6);

3: Compute the full gradient at the snapshot xs−1,
∇f(xs−1) = 1

n

∑n
i=1∇fi(x

s−1);
4: for k = 1, 2, . . . ,m do
5: wsk=arg minw

{
h(w)+ β

2m‖Az
s
k−1−w+λsk−1‖2

}
;

6: ysk = θs
mp

s
k +

(
1− θs

m

)
xs−1;

7: Pick ik uniformly at random from {1, 2, . . . , n};
8: ∇̂Ik(ysk) = gIk(ysk) + mθs

η Qs(z
s−1− x̃s−1);

9: zsk = arg minz

{
〈∇̂Ik(ysk), z〉+ φsk (z, wsk)

10: +mθs
2η ‖z−p

s
k−2(zs−1− x̃s−1)‖2Qs

}
;

11: xsk = θs
mz

s
k+(1−θsm )xs−1, λsk= Azsk−wsk+λsk−1;

12: end for
13: zs+1

0 = zsm,λs+1
0 = λsm, θs =

√
θ4s−1+4θ2s−1−θ

2
s−1

2 ,
x̃s= 1

m

∑m
k=1 x

s
k, w̃s= θs

m2

∑m
k=1w

s
k+
(
1− θs

m

)
ws−1.

14: end for
15: Output: x̃S , w̃S .

β
2φ

s(zs−2, p)
}

, and zs−1 = arg minz
{〈
∇f(x̃s−1), z

〉
+

θs
2mη‖z − x̃

s−1‖2Qs + φs(z, ps−1)
}

.

4.2. Stochastic Update Rules in Inner Loop

Like Algorithm 1, DAVIS-ADMM uses the same momen-
tum accelerated rules in (4) and (5) for ysk and xsk. Unlike ex-
isting accelerated algorithms, the weight in DAVIS-ADMM
is θs/m. Then we can remove the constraint (i.e., θs ≤
1− Lη

1−Lη ) for θs in (Liu et al., 2021). That is, the initial val-
ue is set to θ1 =1 for our DAVIS-ADMM, while that in (Liu
et al., 2021) requires to satisfy the condition θ1≤1− Lη

1−Lη ,
which is a reason that DAVIS-ADMM improves the conver-
gence rate from O(1/S) to O(1/nS), as shown in Table 2.

The update rule of θs is θs=(
√
θ4
s−1+ 4θ2

s−1−θ2
s−1)/2, and

let φsk (z, w) = β
2m‖Az − w + λsk−1‖2. For the equality-

constrained problem (2), the mini-batch compensated s-
tochastic gradient estimator ∇̂Ik(x) is defined as follows.

Definition 4.1 (Mini-batch compensated stochastic gradient
estimator for Problem (2)).

∇̂Ik(x) = gIk(x) +
mθs
η
Qs(z

s−1−x̃s−1),

where gIk(x) = ∇fIk(x) − ∇fIk(xs−1) + ∇f(xs−1), and
Ik ⊂ {1, 2, . . . , n} is a randomly chosen mini-batch of size
b. Compared with the gradient estimator in Definition 3.1,
an additional matrix Qs is introduced into the estimator.
When b = 1, the estimator becomes ∇̂ik(x).
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4.3. Optimal Convergence Rate for Problem (2)

We analyze the convergence property of DAVIS-ADMM.
Let x∗ be an optimal solution of Problem (2), w∗ and λ∗

be the corresponding solutions, we give the convergence
criterion (Zheng & Kwok, 2016) for our analysis.

Definition 4.2 (Convergence criterion). Given a constan-
t δ ≥ 0, a nonnegative convergence criterion is defined
as: φ(x̃S, w̃S) = P (x̃S, w̃S)+δ‖Ax̃S − w̃S‖ ≥ 0, where
P (x,w) = f(x) − f(x∗) − ∇f(x∗)T(x − x∗) + h(w) −
h(w∗)−∇̂h(w∗)T(w−w∗), and ∇̂h(w) is the (sub)gradient
of h(·) at w.

Previous work such as (He & Yuan, 2012; Azadi & S-
ra, 2014) requires the assumption of boundedness on the
constraint sets of primal and dual variables (i.e., suppose
x ∈ X and λ ∈ Λ, where X and Λ are compact con-
vex sets with diameters DX = supx1,x2∈X ‖x1−x2‖ and
DΛ = supλ1,λ2∈Λ ‖λ1−λ2‖, respectively) when proving
the convergence of ADMMs, and ASVRG-ADMM (Liu
et al., 2021) obtains the convergence rate O(1/S2) with the
boundedness assumption. However, we can remove such as-
sumption, which is in fact a strong assumption, and provide
the following convergence result (see Appendix C for our
proof sketch and detailed proofs).

Theorem 4.3. Suppose Assumption 2.1 holds. Let the con-
stant c1 = 2‖ATA‖2‖x∗− x̃0‖2 + 2‖λ∗− λ

0‖2 + 8δ2 +
10‖λ∗‖2 and choose m = Θ(n), then

E
[
φ(x̃S , w̃S)

]
≤ O

(2φ(x̃0, w̃0) + ‖x∗−x̃0‖2Q1
/η

n(S+1)
+

c1β

n(S+1)

)
.

Remark 3. Theorem 4.3 shows that without the bounded-
ness assumption, the convergence rate of DAVIS-ADMM
is O(1/(nS)), while the best-known convergence result as
in (Liu et al., 2021) with a strong boundedness assumption
is O(1/S2), as shown in Table 2. That is, DAVIS-ADMM
improves the best-known convergence rate from O(1/S2)
to O(1/(nS)) without the boundedness assumption, which
matches the lower bound in (Xie et al., 2020). The up-
per bound in Theorem 4.3 only relies on the constant c1,
while the theoretical result of ASVRG-ADMM (Liu et al.,
2021) requires that X and Λ are bounded with the diame-
ters DX and DΛ. Moreover, our DAVIS-ADMM algorithm
and convergence results can be extended to the determinis-
tic setting. When the mini-batch size is b=n, and m= 1,
DAVIS-ADMM degenerates to its deterministic version, and
the convergence rate of our deterministic DAVIS-ADMM
algorithm becomesO(1/S), which is consistent with the op-
timal convergence rate of accelerated deterministic methods
such as (Ouyang & Xu, 2020).
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Figure 1. Comparison of all the methods for solving `1-norm regu-
larized logistic regression problems on Adult and Covtype.

5. Experimental Results
In this section, we evaluate the performance of our algo-
rithms for solving the non-SC problems (1) and (2), and the
detailed experimental setup is given in Appendix D.

5.1. `1-Norm Regularized Logistic Regression

We first apply Algorithm 1 to solve the binary non-strongly
convex `1-norm regularized logistic regression problem,

min
x

{ 1

n

n∑
i=1

log (1 + exp (−biaTi x)) + λ‖x‖1
}
,

where ai ∈ Rd, bi ∈ {−1,+1}, i = 1, 2, . . . n. We also
compare our DAVIS algorithm with the state-of-the-art ac-
celerated methods such as SVRG++ (Allen-Zhu & Yuan,
2016), Katyusha (Allen-Zhu, 2018) and Varag (Lan et al.,
2019). The experimental results of all the accelerated meth-
ods on Adult and Covtype are shown in Figure 1, where
the regularization parameter is 10−5. We observe that our
DAVIS consistently outperforms other accelerated methods,
which empirically verifies our theoretical result.

5.2. Graph-Guided Fused Lasso

We also evaluate the performance of DAVIS-ADMM for
solving the graph-guided fused Lasso problem:

min
x

{ 1

n

n∑
i=1

fi(x) +λ‖Ax‖1
}
,

where fi(·) is the logistic loss function, λ≥0 is the regular-
ization parameter, A = [G; I], and G is the sparsity pattern
of the graph obtained by sparse inverse covariance selection
as in (Banerjee et al., 2008).

Figure 2 shows the experimental results of SVRG-ADMM
(Zheng & Kwok, 2016), ASVRG-ADMM (Liu et al., 2021)
and DAVIS-ADMM. All the results show that the accelerat-
ed methods (i.e., ASVRG-ADMM and DAVIS-ADMM) out-
perform the non-accelerated stochastic ADMM method, i.e.,
SVRG-ADMM. In particular, DAVIS-ADMM converges
much faster than the other methods, which is consistent with
our convergence guarantee.
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Figure 2. Comparison of all the methods for solving graph-guided
fused Lasso problems on Adult and Covtype, where the regulariza-
tion parameter is λ = 10−5.

6. Conclusions
In this paper, we proposed two efficient directly optimal
stochastic variance reduction algorithms for unconstrained
and equality-constrained finite-sum problems, respective-
ly. The proposed algorithms have simple update rules, and
thus their per-iterations have similar computational costs as
existing accelerated methods (e.g., Katyusha and ASVRG-
ADMM) for the two classes of optimization problems, re-
spectively. In particular, we theoretically analyzed the con-
vergence properties of our algorithms, and our theoretical
results show that our algorithms obtain the optimal conver-
gence rates and optimal oracle complexities for both non-SC
unconstrained and equality-constrained problems, respec-
tively. They are also identical to the lower bounds provided
in (Woodworth & Srebro, 2016; Xie et al., 2020). That is,
our algorithms are a factor n faster than both existing ac-
celerated algorithms (e.g., Katyusha) for Problem (1), i.e.,
O(1/nS2) vs. O(1/S2), and a factor n

S faster than accel-
erated stochastic ADMM algorithms for Problem (2), i.e.,
O(1/nS) vs. O(1/S2).

Our directly accelerated algorithms (including DAVIS and
DAVIS-ADMM) can be easily extended to solve more com-
plex problems, e.g., the stochastic nested composition opti-
mization problem (Wang et al., 2017). As our future work,
our method can allow the applications of non-uniform sam-
pling and non-Euclidean Bregman distance for solving more
different types of optimization problems.
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Appendix for “Kill a Bird with Two Stones: Closing the Convergence Gaps in
Non-Strongly Convex Optimization by Directly Accelerated SVRG with Double

Compensation and Snapshots”

Appendix A: Preliminaries
Before giving the convergence analysis of our algorithms, we first present the following property and lemma.

Lemma 4. ((Allen-Zhu, 2018)) The variance reduction stochastic gradient estimator proposed in (Johnson & Zhang, 2013;
Zhang et al., 2013) is defined as:

∇̃fik(xsk) = ∇fik(xsk)−∇fik(xs−1) +∇f(xs−1).

Suppose that each fi(x) is convex and L-smooth, then the following inequality holds

E
[∥∥∥∇̃fik(xsk)−∇f(xsk)

∥∥∥2]
≤ 2L

[
f(xs−1)− f(xsk) + 〈∇f(xsk), xsk − xs−1〉

]
.

(7)

The convergence analysis for the proposed algorithms requires the above upper bound on the term E[‖∇̃fik(xsk)−∇f(xsk)‖2]
as in (Allen-Zhu, 2018). Moreover, we need to extend the expected variance upper bound in Lemma 4 to the mini-batch
setting (see Lemma 7 below).

Property 1. Given any x1, x2, x3, x4 ∈ Rd, then we have

〈x1 − x2, x1 − x3〉 =
1

2

(
‖x1 − x2‖2 + ‖x1 − x3‖2 − ‖x2 − x3‖2

)
〈x1 − x2, x3 − x4〉 =

1

2

(
‖x1 − x4‖2 − ‖x1 − x3‖2 + ‖x2 − x3‖2 − ‖x2 − x4‖2

)
.

Appendix B: Proofs for Section 3
In this section, we give detailed proofs for the convergence analysis of DAVIS (i.e., Algorithm 1), which mainly include the
proofs for Lemmas 3.3, 3.4 and 3.5, and Theorem 3.6 in Section 3.4 in the main paper.

Now we sketch the proof of Theorem 3.6 as follows: The proof of Theorem 3.6 relies on telescoping the upper bound of
one-epoch in Lemma 3.5. Moreover, Lemmas 3.3 and 3.4 in the main paper play a key role for obtaining the upper bound
of one-epoch in Lemma 3.5. That is, we first give the upper bound in Lemma 3.3 by using the proposed double snapshot
scheme in Algorithm 1, and the residual termR is also produced. For each inner loop of Algorithm 1, we obtain the upper
bound of one-iteration in Lemma 3.5 by using both the proposed momentum acceleration scheme and the compensated
stochastic gradient estimator. As a result, the compensated term C is introduced in the upper bound in Lemma 3.4, which can
be used to offset by the residual termR in Lemma 3.3. Therefore, we obtain a tight upper bound of one-epoch in Lemma
3.5 by using Lemmas 3.3 and 3.4.
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Proof of Lemma 3.3 (Upper bound of double snapshot update)

Proof. We first recall the following iteration scheme of our deterministic gradient descent step,

zs−1 = arg min
z

{
h(z) +

〈
∇f(x̃s−1), z

〉
+

θs
2mη

∥∥z − x̃s−1∥∥2} ,
and zs−1 is required to satisfy the following optimal condition,

∇f(x̃s−1) + ξ +
θs
mη

(zs−1 − x̃s−1) = 0, (8)

where ξ ∈ ∂h(zs−1) is a sub-gradient of h(·) at zs−1.

Since f(·) is L-smooth, and xs−1 = θsz
s−1 + (1− θs)x̃s−1, the following results hold

F (xs−1) = h(xs−1) + f(xs−1)

≤ h(xs−1) + f(x̃s−1) +
〈
∇f(x̃s−1), xs−1 − x̃s−1

〉
+
L

2
‖xs−1 − x̃s−1‖2

≤ h(xs−1) + f(x̃s−1) + θs
〈
∇f(x̃s−1), x∗ − x̃s−1

〉
+
θ2s
2η
‖zs−1 − x̃s−1‖2

− θs
〈
∇f(x̃s−1), x∗ − zs−1

〉
= h(xs−1) + f(x̃s−1) + θs

〈
∇f(x̃s−1), x∗ − x̃s−1

〉
+
θ2s
2η
‖zs−1 − x̃s−1‖2

+ θs

〈
ξ +

θs
mη

(zs−1 − x̃s−1), x∗ − zs−1
〉

≤ θsF (x∗) + (1− θs)F (x̃s−1) +
θ2s

2mη

(
‖x∗ − x̃s−1‖2 − ‖x∗ − zs−1‖2

)
+
θ2s
2η
‖zs−1 − x̃s−1‖2,

(9)

where the first inequality holds due to the smoothness of f(·), the third equality holds due to the optimal condition in Eq. (8)
and Property 1, and the last inequality holds due to the convexities of h(·) and f(·), and the following fact that

θ2s
mη

〈
zs−1 − x̃s−1, x∗ − zs−1

〉
=

θ2s
2mη

(
‖x∗ − x̃s−1‖2 − ‖x∗ − zs−1‖2 − ‖zs−1 − x̃s−1‖2

)
.

Note that the above equality holds due to Property 1.

Therefore, we have

F (xs−1)− F (x∗)

≤ (1− θs)(F (x̃s−1)− F (x∗))+
θ2s

2mη

(
‖x∗ − x̃s−1‖2 − ‖x∗ − zs−1‖2

)
+Rs.

(10)

This completes the proof.
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Proof of Lemma 3.4 (Upper Bound of One-iteration)

In this subsection, we will prove the upper bound for our stochastic gradient descent step in each inner loop of Algorithm 1.
We first recall the main update rules and the optimal condition in our stochastic gradient descent step (i.e., for a fixed k).

Let gsk=∇fik(ysk)−∇fik(xs−1) +∇f(xs−1), our compensated stochastic variance reduction gradient estimator is rewritten
as follows:

∇̃ik(ysk) = gsk +
mθs
η

(
zs−1 − x̃s−1

)
.

And the update rule of zsk is

zsk , arg min
z

{
h(z) +

〈
∇̃ik(ysk), z

〉
+
mθs
2η

∥∥z − psk − 2(zs−1 − x̃s−1)
∥∥2} ,

which implies that zsk is required to satisfy the following optimal condition:

∇̃ik(ysk) + ζsk +
mθs
2η

[
zsk − psk − 2(zs−1 − x̃s−1)

]
= 0, (11)

where ζsk ∈ ∂h(zsk).

Moreover, the main update rules of our stochastic gradient descent step are defined as follows:

ysk =
θs
m
psk+

(
1− θs

m

)
xs−1,

xsk =
θs
m

(zsk − psk) + ysk

=
θs
m
zsk+

(
1− θs

m

)
xs−1.

(12)

Below we give the detailed proof of Lemma 3.4 in the main paper.

Proof of Lemma 3.4:
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Proof. Using the smoothness of f(·), we get

E[F (xsk)]

≤ E
[
h(xsk) + f(ysk) + 〈∇f(ysk), xsk − ysk〉+

L

2
‖xsk − ysk‖

2

]
a
= E

[
h(xsk) + f(ysk) +

〈
∇f(ysk),

θs
m

(zsk − psk)

〉
+
Lθ2s
2m2
‖zsk − psk‖

2

]
= E

[
h(xsk) + f(ysk) +

θs
m

〈
∇̃ik(ysk), zsk − psk

〉]
+ E

[〈
∇f(ysk)− ∇̃ik(ysk),

θs
m

(zsk − psk)

〉
+
Lθ2s
2m2
‖zsk − psk‖

2

]
= E

[
h(xsk) + f(ysk) +

θs
m

〈
∇̃ik(ysk), x∗ − psk

〉
− θs
m

〈
∇̃ik(ysk), x∗ − zsk

〉]
+ E

[〈
∇f(ysk)− ∇̃ik(ysk),

θs
m

(zsk − psk)

〉
+
Lθ2s
2m2
‖zsk − psk‖

2

]
b
= E

[
h(xsk) + f(ysk) +

θs
m

〈
∇̃ik(ysk), x∗ − psk

〉]
+
θ2s
2η

(
‖x∗ − psk − 2(zs−1 − x̃s−1)‖2 − ‖x∗ − zsk‖2 − ‖zsk − psk − 2(zs−1 − x̃s−1)‖2

)
+ E

[
θs
m
〈ζsk, x∗ − zsk〉

]
+ E

[〈
∇f(ysk)− ∇̃ik(ysk),

θs
m

(zsk − psk)

〉
+
Lθ2s
2m2
‖zsk − psk‖

2

]
= E

[
f(ysk) +

θ2s
2η

(
‖x∗ − psk − 2(zs−1 − x̃s−1)‖2 − ‖x∗ − zsk‖2 − ‖zsk − psk − 2(zs−1 − x̃s−1)‖2

)]
+ E

[
h(xsk) +

θs
m
〈ζsk, x∗ − zsk〉

]
︸ ︷︷ ︸

A1

+E
[
θs
m

〈
∇̃ik(ysk), x∗ − psk

〉]
︸ ︷︷ ︸

A2

+ E
[〈
∇f(ysk)− ∇̃ik(ysk),

θs
m

(zsk − psk)

〉]
︸ ︷︷ ︸

A3

+
Lθ2s
2m2
‖zsk − psk‖

2
,

(13)

where the first inequality follows from the smoothness of f(·) (i.e., f(xsk) ≤ f(ysk) + 〈∇f(ysk), xsk − ysk〉+ L
2 ‖x

s
k − ysk‖

2);

the equality a
= holds due to the fact that xsk = θs

m (zsk − psk) + ysk; and the equality b
= holds due to the optimal condition in

Eq. (11) and Property 1, that is,

θs
m

〈
−∇̃ik(ysk), x∗ − zsk

〉
=
θ2s
η

〈
zsk − psk − 2(zs−1 − x̃s−1), x∗ − zsk

〉
+
θs
m
〈ζsk, x∗ − zsk〉

=
θ2s
2η

[
‖x∗ − psk − 2(zs−1 − x̃s−1)‖2 − ‖x∗ − zsk‖2 − ‖zsk − psk − 2(zs−1 − x̃s−1)‖2

]
+
θs
m
〈ζsk, x∗ − zsk〉 .

Next we need to bound the terms A1, A2, and A3 in the inequality (13). And we first bound the term A1. Using the update
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rule of xsk in Algorithm 1, we have

A1 = E
[
h(xsk) +

θs
m
〈ζsk, x∗ − zsk〉

]
= E

[
h

(
θs
m
zsk+

(
1− θs

m

)
xs−1

)
+
θs
m
〈ζsk, x∗ − zsk〉

]
≤ E

[
θs
m
h(zsk) +

(
1− θs

m

)
h(xs−1)

]
+ E

[〈
ζsk,

θs
m

(x∗ − zsk)

〉]
≤ E

[
θs
m
h(zsk)+

(
1− θs

m

)
h(xs−1)

]
+

θs
m

E[h(x∗)−h(zsk)]

= E
[(

1− θs
m

)
h(xs−1)+

θs
m
h(x∗)

]
,

(14)

where the first inequality holds due to the convexity of h(·), and the second inequality follows from the facts that ζsk ∈∂h(zsk)
and 〈ζsk, x∗ −zsk〉 ≤ h(x∗)− h(zsk).

Using the definitions of ∇̃ik(ysk), psk and Property 1, the term A2 in the inequality (13) is rewritten as follows:

A2 = E
[
θs
m

〈
∇̃ik(ysk), x∗ − psk

〉]
=
θs
m

〈
∇f(ysk) +

mθs
η

(zs−1 − x̃s−1), x∗ − psk
〉

=
θs
m
〈∇f(ysk), x∗ − psk〉+

θ2s
2η

E
[
‖x∗ − zsk−1‖2 − ‖x∗ − psk − 2(zs−1 − x̃s−1)‖2 + ‖zs−1 − x̃s−1‖2

]
.

(15)

Furthermore, we give the upper bound of the term A3 in the inequality (13) as follows:

A3 = E
[
θs
m

〈
∇f(ysk)− ∇̃ik(ysk), zsk − psk

〉]
=
θs
m

E
[〈
∇f(ysk)− ∇̃ik(ysk), zsk − psk − 2(zs−1 − x̃s−1)

〉]
+
θs
m

E
[〈
∇f(ysk)− ∇̃ik(ysk), 2(zs−1 − x̃s−1)

〉]
a
=
θs
m

E
[〈
∇f(ysk)− ∇̃ik(ysk), zsk − psk − 2(zs−1 − x̃s−1)

〉]
− 2θ2s

η
‖zs−1 − x̃s−1‖2

b
≤ η

2m2

∥∥∥∇f(ysk)− ∇̃ik(ysk)
∥∥∥2 +

θ2s
2η
‖zsk − psk − 2(zs−1 − x̃s−1)‖2− 2θ2s

η
‖zs−1 − x̃s−1‖2

c
≤ 1

m

[
f(xs−1)− f(ysk) + 〈∇f(ysk), ysk − xs−1〉

]
+
θ2s
2η
‖zsk − psk − 2(zs−1 − x̃s−1)‖2− 3θ2s

2η
‖zs−1 − x̃s−1‖2,

(16)

where the equality a
= holds due to the definition of the gradient estimator in Definition 1 and the facts that E[∇f(ysk)−gsk] = 0
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and

θs
m

E
[〈
∇f(ysk)− ∇̃ik(ysk), 2(zs−1 − x̃s−1)

〉]
=
θs
m

E
[〈
∇f(ysk)− gsk −

mθs
η

(
zs−1 − x̃s−1

)
, 2(zs−1 − x̃s−1)

〉]
=− 2θ2s

η
‖zs−1 − x̃s−1‖2.

Note that the equality
b
≤ in (16) follows from the Young’s inequality, and the inequality

c
≤ in (16) holds due to the following

fact

η

2m2
E
[∥∥∥∇f(ysk)− ∇̃ik(ysk)

∥∥∥2]
=

η

2m2
E
[
‖∇f(ysk)− gsk‖

2
]

+
θ2s
2η

E
[∥∥zs−1 − x̃s−1∥∥2]

+
θs
2m

E
[
〈∇f(ysk)− gsk, zs−1 − x̃s−1〉

]
=

η

2m
E
[
‖∇f(ysk)− gsk‖

2
]

+
θ2s
2η

∥∥zs−1 − x̃s−1∥∥2
≤ 1

m

[
f(xs−1)− f(ysk) + 〈∇f(ysk), ysk − xs−1〉

]
+
θ2s
2η

∥∥zs−1 − x̃s−1∥∥2 ,
where the first equality holds due to the definition of our gradient operator, the second equality holds due to the fact
E[∇f(ysk)−gsk] = 0, and the inequality follows from Lemma 4 with the setting η ≤ 1/L (i.e., Lη ≤ 1).

Combing the equality (15) and the inequality (16), we have

A2 +A3

≤
〈
∇f(ysk),

θs
m

(x∗ − psk) +
1

m
(ysk − x̃s−1)

〉
+
θ2s
2η
‖zsk − psk − 2(zs−1 − x̃s−1)‖2 − θ2s

η
‖zs−1 − x̃s−1‖2

+
θ2s
2η

(
‖x∗ − psk − zs−1 + x̃s−1‖2−

∥∥x∗ − psk − 2(zs−1 − x̃s−1)
∥∥2)

≤ θs
m
f(x∗) +

(
1− θs

m

)
f(xs−1)− f(ysk)

+
θ2s
2η
‖zsk − psk − 2(zs−1 − x̃s−1)‖2 − θ2s

η
‖zs−1 − x̃s−1‖2

+
θ2s
2η

(
‖x∗ − psk − zs−1 + x̃s−1‖2−

∥∥x∗ − psk − 2(zs−1 − x̃s−1)
∥∥2) ,

(17)

where the first inequality follows from the update rule of ysk= θs
mp

s
k+
(
1− θs

m

)
xs−1 and the following fact that〈

∇f(ysk),
θs
m

(x∗ − psk) +
1

m
(ysk − xs−1)

〉
=

〈
∇f(ysk),

θs
m
x∗ +

(
1− θs

m
− 1

m

)
xs−1 +

1

m
ysk − ysk

〉
+

1

m

[
f(xs−1)− f(ysk)

]
≤ f

(
θs
m
x∗ +

(
1− θs

m
− 1

m

)
xs−1 +

1

m
ysk

)
− f(ysk) +

1

m

[
f(xs−1)− f(ysk)

]
≤ θs
m
f(x∗) +

(
1− θs

m

)
f(xs−1)− f(ysk).

(18)
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Note that the first inequality in (18) holds due to the property of f (i.e., 〈∇f(x), y − x〉 ≤ f(y) − f(x)), and the last
inequality in (18) follows from the convexity of f(·).

Using the above analysis and combining the inequalities (13), (14) and (18), we have

E[F (xsk)− F (x∗)]

≤
(

1− θs
m

)[
F (xs−1)− F (x∗)

]
−
(
θ2s
2η
− θ2s

2mη

)
‖zs−1 − xs−1‖2

+
θ2s
2η

E
(
‖x∗ − zsk−1‖2 −

∥∥x∗ − psk − 2(zs−1 − x̃s−1)
∥∥2)

+
θ2s
2η

E
(
‖x∗ − psk − 2(zs−1 − x̃s−1)‖2 − ‖x∗ − zsk‖2

)
=

(
1− θs

m

)[
F (xs−1)− F (x∗)

]
+ Cs

+
θ2s
2η

E
(
‖x∗ − zsk−1‖2 − ‖x∗ − zsk‖

2
)
,

(19)

This completes the proof.

Proof of Lemma 3.5 (Upper Bound of One-epoch):

Proof. Using the one-iteration upper bound in Lemma 3.4, we have

E[F (xsk)− F (x∗)]

≤
(

1− θs
m

)[
F (xs−1)− F (x∗)

]
+ Cs +

θ2s
2η

(
‖x∗ − zsk−1‖2 − ‖x∗ − zsk‖

2
)
.

Summing the above inequality over k = 1, · · · ,m, and using x̃s = 1
m

∑m
k=1 x

s
k and F (x̃s) ≤ 1

m

∑m
k=1 F (xsk), we have

E[F (x̃s)− F (x∗)] ≤
(

1− θs
m

)[
F (xs−1)− F (x∗)

]
+ Cs

+
θ2s

2mη

(
‖x∗ − zs0‖2 − ‖x∗ − zsm‖

2
)
.

(20)

Furthermore, using Lemma 3.3, we have

F (xs−1)− F (x∗)

≤(1− θs)(F (x̃s−1)− F (x∗)) +
θ2s

2mη

(
‖x∗ − x̃s−1‖2 − ‖x∗ − zs−1‖2

)
+Rs.

(21)

By the above analysis, the upper bound of one-epoch can be obtained as follows:

E[F (x̃s)− F (x∗)]

≤ (1− θs)[F (x̃s−1)− F (x∗)] +
θ2s

2mη

(
‖x∗ − x̃s−1‖2 − ‖x∗ − x̃s‖2

)
.

(22)

This completes the proof.
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Proof of Theorem 3.6

In this subsection, we prove the convergence property of DAVIS (i.e., Algorithm 1). Theorem 3.6 shows that DAVIS
improves the convergence rate of some accelerated methods (e.g., Katyusha) from O(1/S2) to O(1/(nS2)) for the non-SC
problem (1). That is, the result shows that DAVIS has both the optimal oracle complexity, O(n+

√
nL/ε), and the optimal

convergence rate, O(1/(nS2)).

Proof of Theorem 3.6:

Proof. Using the update rule of θs (i.e., θs = 2
s+1 ) for Algorithm 1, we have 1

θ2s−1
≥ 1−θs

θ2s
. Therefore, we telescope the

inequality (22) in Lemma 3.5 for all s = 1, 2, . . . , S, and we have

1

θ2S
E
[
F (x̃S)− F (x∗)

]
≤ (1− θ1)

θ21

[
F (x̃0)− F (x∗)

]
+

θ21
2mη

∥∥x∗ − x̃0∥∥2 .
Since θ1 = 1,

1

θ2S
E
[
F (x̃S)− F (x∗)

]
≤ 1

2mη

∥∥x∗ − x̃0∥∥2 . (23)

Since θs = 2
s+1 , we have

E
[
F (x̃S)− F (x∗)

]
≤ O

(∥∥x∗ − x̃0∥∥2
mS2η

)
. (24)

In other words, by choosing m = Θ(n), the total oracle complexity of our algorithm is O(n+
√
nL/ε).

This completes the proof.

Appendix C: Theoretical Analysis for DAVIS-ADMM
In this section, we analyze the convergence properties of the proposed DAVIS-ADMM algorithm (i.e., Algorithm 2). Similar
to Theorem 3.6, the proof of Theorem 4.3 for DAVIS-ADMM relies on the one-epoch inequality in Lemma 10 below.
To prove Lemma 10, we first give the upper bound in Lemma 6 below by using our snapshot scheme in Algorithm 2.
Furthermore, by using our stochastic momentum iteration rules in Algorithm 2, we can obtain the upper bounds in Lemmas
8 and 9 below. Thus, we can obtain the upper bound of one-epoch in Lemma 10 by using Lemmas 6, 8 and 9.

Upper bound of double snapshot update for DAVIS-ADMM

Before giving the proof of Lemma 6, we first present the following lemma (Zheng & Kwok, 2016).

Lemma 5. Let ϕk = β(λk − λ∗), any ϕ = βλ, and λk = λk−1 +Axk − wk, then

E
[
−(Axk − wk)T (ϕk − ϕ)

]
=
β

2
E
[
‖λk−1 − λ∗ − λ‖2 − ‖λk − λ∗ − λ‖2 − ‖λk − λk−1‖2

]
.
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Lemma 6 (Upper bound of double snapshot update). Suppose that Assumption 1 holds. Let {xs, ws, λs} be the sequence
generated by our deterministic gradient descent step in Algorithm 2, then we have

E
[
P (xs−1, ws−1)− θs

m
〈Azs−1 − ps−1, ϕ〉

]
≤ (1− θs)P (x̃s−1, w̃s−1) +Rs

+
βθs
2m

E
[
‖λs−2 − λ∗ − λ‖2 − ‖λs−1 − λ∗ − λ‖2

]
+
βθs
2m

E
[
‖Azs−2 − w∗‖2 − ‖Azs−1 − w∗‖2

]
+

θ2s
2mη

(
‖x∗ − x̃s−1‖2Qs

− ‖x∗ − zs−1‖2Qs

)
.

whereRs =
(
θ2s
2η −

θ2s
2mη

)
‖zs−1 − x̃s−1‖2Qs

.

Proof of Lemma 6:

Proof. We first recall the following iteration scheme of our deterministic gradient descent step,

zs−1 = arg min
z

{〈
∇f(x̃s−1), z

〉
+

θs
2mη

∥∥z − x̃s−1∥∥2
Qs

+
β

2m
‖Az − ps−1 + λ

s−2‖2
}
,

and zs−1 is required to satisfy the following optimal condition,

∇f(x̃s−1) +
θs
mη

Qs(z
s−1 − x̃s−1) +

β

m
AT (Azs−1 − ps−1 + λ

s−2
) = 0. (25)

With λ
s−1

= Azs−1 − ps−1 +λ
s−2

, we have

∇f(x̃s−1) +
θs
mη

Qs(z
s−1 − x̃s−1) +

β

m
ATλ

s−1
= 0. (26)

Since f(·) is L-smooth and using the update rule of xs−1 = θsz
s−1 + (1− θs)x̃s−1, the following inequality holds

f(xs−1)

≤ f(x̃s−1) +
〈
∇f(x̃s−1), xs−1 − x̃s−1

〉
+
L

2
‖xs−1 − x̃s−1‖2

≤ f(x̃s−1) + θs
〈
∇f(x̃s−1), zs−1 − x̃s−1

〉
+
θ2s
2η
‖zs−1 − x̃s−1‖2Qs

,

(27)

where the first inequality holds due to the smoothness of f(·), and the second inequality follows from our choice of η ≤ 1
L

and the fact that Qs � I . Furthermore, using the optimal condition in (26), we have

f(xs−1)

≤ f(x̃s−1) +
θ2s
2η
‖zs−1 − x̃s−1‖2Qs

+ θs
〈
∇f(x̃s−1), zs−1 − x∗

〉
+ θs

〈
∇f(x̃s−1), x∗ − x̃s−1

〉
≤ f(x̃s−1) +

θ2s
2η
‖zs−1 − x̃s−1‖2Qs

+

〈
θ2s
mη

Qs(z
s−1 − x̃s−1) +

βθs
m

ATλ
s−1

, x∗ − zs−1
〉

+ θs
〈
∇f(x̃s−1), x∗ − x̃s−1

〉
≤ θsf(x∗) + (1− θs)f(x̃s−1) +

θ2s
2mη

(
‖x∗− x̃s−1‖2Qs

− ‖x∗− zs−1‖2Qs

)
+
βθs
m

〈
ATλ

s−1
, x∗− zs−1

〉
+Rs,

(28)
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where the last inequality follows from the convexities of f(·) and Property 1, i.e.,

θ2s
mη

〈
Qs(z

s−1 − x̃s−1), x∗ − zs−1
〉

=
θ2s

2mη

(
‖x∗ − x̃s−1‖2Qs

− ‖x∗ − zs−1‖2Qs
− ‖zs−1 − x̃s−1‖2Qs

)
.

Using the optimality condition of Problem (2), i.e.,∇f(x∗)+βATλ∗ = 0, and let ϕs−1 = β
(
λ
s−1−λ∗

)
, then the following

result holds 〈
βATλ

s−1
, x∗ − zs−1

〉
=
〈
∇f(x∗), zs−1 − x∗

〉
+
〈
βATλ∗, zs−1 − x∗

〉
+
〈
βATλ

s−1
, x∗− zs−1

〉
=
〈
∇f(x∗), zs−1 − x∗

〉
+
〈
ATϕs−1, x∗− zs−1

〉
,

(29)

Substituting the above equality into (28) and xs−1 = θsz
s−1 + (1− θs)x̃s−1. Then we have

f(xs−1)− f(x∗) +
〈
∇f(x∗), x∗ − xs−1

〉
− θs
m

〈
ATϕs−1, x∗− zs−1

〉
≤ (1− θs)

(
f(x̃s−1)− F (x∗) +

〈
∇f(x∗), x∗ − x̃s−1

〉 )
+

θ2s
2mη

(
‖x∗ − x̃s−1‖2Qs

− ‖x∗ − zs−1‖2Qs

)
+Rs.

(30)

With λ
s−1

= Azs−1−ps−1 +λ
s−2

and the update rules in Eq. (6), and using Lemma 3 in (Zheng & Kwok, 2016), we obtain

h(ps−1)− h(w∗)− ∇̂h(w∗)T (ps−1 − w∗)−
〈
ϕs−1, w∗−ps−1

〉
≤ β

2m

[
‖Azs−2 − w∗‖2 − ‖Azs−1 − w∗‖2 + ‖λs−1 − λs−2‖2

]
.

(31)

Furthermore, using the update rule of ws−1 = θsp
s−1 + (1− θs)w̃s−1, the optimal condition (i.e., ∇̂h(w∗) + βλ∗ = 0)

and the result in (31), we have

h(ws−1)− h(w∗) + 〈∇̂h(w∗), w∗ − ws−1〉 − θs
m

〈
ϕs−1, w∗ − ps−1

〉
≤ (1− θs)

[
h(w̃s−1)− h(w∗) +

〈
∇̂h(w∗), w∗ − w̃s−1

〉
−
〈
ϕs−1, w∗

〉]
+

β

2m

[
‖Azs−2 − w∗‖2 − ‖Azs−1 − w∗‖2 + ‖λs−1 − λs−2‖2

]
.

(32)

For any ϕ = βλ and Ax∗ − w∗ = 0, we have

〈ATϕs−1, x∗ −zs−1〉+ 〈ϕs−1, w∗ − ps−1〉+ 〈Azs−1 − ps−1, ϕs−1 − ϕ〉
= − 〈Azs−1− ps−1, ϕ〉.

(33)

Using Lemma 5 and the update rule of λ
s−1

in Algorithm 2, we have

− 〈Azs−1 − ps−1, ϕs−1 − ϕ〉

=
β

2

(
‖λs−2 − λ∗ − λ‖2 − ‖λs−1 − λ∗ − λ‖2 − ‖λs−2 − λs−1‖2

)
,

(34)

where the equality holds due to Property 1.
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Using the results in (30), (32) and (34), the definition of P (x, y) (i.e., P (x,w)=f(x)−f(x∗)−∇f(x∗)T(x−x∗)+h(w)−
h(w∗)−∇̂h(w∗)T(w−w∗)) and the update rules in Algorithm 2, we have

E
[
P (xs−1, ws−1)− θs

m
〈Azs−1 − ps−1, ϕ〉

]
≤ (1− θs)P (x̃s−1, w̃s−1) +Rs

+
βθs
2m

E
[
‖λs−2 − λ∗ − λ‖2 − ‖λs−1 − λ∗ − λ‖2

]
+
βθs
2m

E
[
‖Azs−2 − w∗‖2 − ‖Azs−1 − w∗‖2

]
+

θ2s
2mη

(
‖x∗ − x̃s−1‖2Qs

− ‖x∗ − zs−1‖2Qs

)
.

(35)

This completes the proof.

Upper bound of one-iteration in our stochastic gradient descent step

Before giving the proofs of Lemmas 8 and 9, we first present the following lemma.

Lemma 7. Let gsk = ∇fIk(ysk)−∇fIk(xs−1) +∇f(xs−1), and b be the size of mini-batch Ik. Then

E
[
‖∇f(ysk)− gsk‖

2
]

≤ 2L(n−b)
b(n−1)

[
f(xs−1)− f(ysk) +

〈
∇f(ysk), ysk − xs−1

〉]
.

Lemma 8 (Upper bound of one-iteration of f ). Suppose that Assumption 1 holds. Let {x̃s, w̃s} be sequence generated by
Algorithm 2, then we have

E

[
f(x̃s)− f(x∗) + 〈∇f(x∗), x∗ − x̃s〉 − θs

m2

m∑
k=1

〈ATϕsk, x∗ − xs−1 + vsk − zsk〉

]

≤ E
[(

1− θs
m

)[
f(xs−1)− f(x∗) + 〈∇f(x∗), x∗ − xs−1〉

]]
+ E

[
θ2s

2mη

(
‖x∗ − zs0‖

2
Qs
− ‖x∗ − zsm‖

2
Qs

)]
+ Cs,

(36)

where Cs =
(

θ2s
2mη −

θ2s
2η

)
‖zs−1 − x̃s−1‖2Qs

and ϕsk = β(λsk − λ∗).

Proof of Lemma 8:

Proof. We give the upper bound for our stochastic gradient descent step in this lemma. Using the similar proof in Lemma
3.4 in Appendix B, we have the following result for our stochastic gradient descent step.

Let gIk(ysk) = ∇fIk(ysk) − ∇fIk(x̃s−1) + ∇f(x̃s−1), we have ∇̂Ik(ysk) = gIk(ysk) + mθs
η Qs(z

s−1 − x̃s−1). Since the
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function f(·) is L-smooth, and by using the update rule of xsk and the similar derivation as in Lemma 3.4, we have

f(xsk) ≤ f(ysk) +

〈
∇f(ysk),

θs
m

(zsk − psk)

〉
+
Lθ2s
2m2
‖zsk − psk‖

2

a
= f(ysk) +

θs
m

〈
∇̂Ik(ysk), x∗ − psk

〉
+
θs
m

〈
mθs
η
Qs(z

s
k − psk)+βATλsk, x

∗ − zsk
〉

+

〈
∇f(ysk)− ∇̂Ik(ysk),

θs
m

(zsk − psk)

〉
+
Lθ2s
2m2
‖zsk − psk‖

2

= f(ysk) +
θs
m

〈
∇̂Ik(ysk), x∗ − psk

〉
+
θs
m

〈
βATλsk, x

∗ − zsk
〉

+

〈
∇f(ysk)− ∇̂Ik(ysk),

θs
m

(zsk − psk)

〉
+
Lθ2s
2m2
‖zsk − psk‖

2

+
θ2s
2η

(‖x∗ − psk − 2(zs−1 − x̃s−1)‖2 − ‖x∗ − zsk‖2 − ‖zsk − psk − 2(zs−1 − x̃s−1)‖2),

(37)

where the equality a
= holds due to the update rule of λsk and the optimality condition with respect to z, i.e.,

∇̂Ik(ysk) + βAT
(
Azsk − wsk + λsk−1

)
+
mθs
η
Qs(z

s
k − psk − 2(zs−1 − x̃s−1))

= ∇̂Ik(ysk) + βATλsk +
mθs
η
Qs(z

s
k − psk − 2(zs−1 − x̃s−1))

= 0.

(38)

Moreover, the last equality in (37) follows from Property 1. Taking expectation over the random choice of Ik, the inequality
(37) can be rewritten as follows:

E[f(xsk)]

≤ E
[
f(ysk) +

θs
m

〈
∇̂Ik(ysk), x∗ − psk

〉
+
θs
m

〈
βATλsk, x

∗ − zsk
〉]

+ E
[〈
∇f(ysk)− ∇̂Ik(ysk),

θs
m

(zsk − psk)

〉
+
Lθ2s
2m2
‖zsk − psk‖

2

]
+ E

[
θ2s
2η

(‖x∗ − psk − 2(zs−1 − x̃s−1)‖2 − ‖x∗ − zsk‖2 − ‖zsk − psk − 2(zs−1 − x̃s−1)‖2)

]
.

(39)

Using the inequality (39) and the similar derivation as in Lemma 3.4 in this main paper and Lemma 6, the following result
holds

E[f(xsk)− f(x∗)]

≤ E
[(

1− θs
m

)[
f(xs−1)− f(x∗)

]]
+ E

[
θs
m

〈
βATλsk, x

∗ − zsk
〉]

+ E
[ θ2s

2η

(∥∥x∗ − zsk−1∥∥2Qs
− ‖x∗ − zsk‖

2
Qs

) ]
+ Cs.

(40)

Let ϕsk = β (λsk − λ∗). Using the optimality condition of Problem (2) and the update rule of xsk in Algorithm 2, i.e.,
∇f(x∗) + βATλ∗ = 0, and the similar derivation as in Lemma 3.4 in this main paper and Lemma 6, the inequality (40) can
be rewritten as follows:

E
[
f(xsk)− f(x∗) + 〈∇f(x∗), x∗−xsk)〉 − 〈ATϕsk,

θs
m

(x∗ − zsk)〉
]

≤ E
[(

1− θs
m

)[
f(xs−1)− f(x∗) + 〈∇f(x∗), x∗ − xs−1〉

]]
+ Cs

+
θ2s
2η

E
[ ∥∥x∗ − zsk−1∥∥2Qs

− ‖x∗ − zsk‖
2
Qs

]
.

(41)
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Since f(x)− f(x∗) +∇f(x∗)T (x∗ − x) ≥ 0, using the update rules in Algorithm 2 and summing up the inequality (41)
for all the iterations k = 1, 2, · · · ,m, and dividing both side of the resulting inequality by m, and using the update rules of
x̃s = 1

m

∑m
k=1 x

s
k, f(x̃s) ≤ 1

m

∑m
k=1 f(xsk), and xs0 = x̃s−1, we have

E

[
f(x̃s)− f(x∗) + 〈∇f(x∗), x∗ − x̃s〉 − θs

m2

m∑
k=1

〈ATϕsk, x∗ − zsk〉

]

≤ E
[(

1− θs
m

)[
f(xs−1)− f(x∗) + 〈∇f(x∗), x∗ − xs−1

]]
+ E

[
θ2s

2mη

(
‖x∗ − zs0‖

2
Qs
− ‖x∗ − zsm‖

2
Qs

)]
+ Cs.

This completes the proof.

Lemma 9 (Upper bound of one-iteration of h). Using the same notation as in Lemma 8, we have

E

[
h(w̃s)− h(w∗) + ∇̂h(w∗)T (w∗ − w̃s)− θs

m2

m∑
k=1

〈ϕsk, w∗ − wsk〉

]

≤ (1− θs
m

)
[
h(ws−1)− h(w∗) + ∇̂h(w∗)T (w∗ − ws−1)

]
+
βθs
2m2

E

[
‖Azs0 − w∗‖2 − ‖Azsm − w∗‖2 +

m∑
k=1

‖λsk − λsk−1‖2
]
.

(42)

Proof. The optimal condition with respect to wsk is ζsk − β(Azsk−1 − wsk + λsk−1) = 0, where ζsk is a subgradient at wsk.

Using the similar derivation as in Lemma 3 in (Zheng & Kwok, 2016) and the update rules in Algorithm 2, we obtain

E
[
h(wsk)− h(w∗)− ∇̂h(w∗)T (wsk − w∗)−

θs
m
〈ϕsk, w∗ − wsk〉

]
≤ β

2
E
[
‖Azsk−1 − w∗‖2 − ‖Azsk − w∗‖2 + ‖λsk − λsk−1‖2

]
.

Since h(x)− h(w∗) + ∇̂h(x∗)T (w∗ −w) ≥ 0, using the update rules in Algorithm 2 and summing up the above inequality
for all the iterations k = 1, 2, · · · ,m, and using the update rules in Algorithm 2, we can obtain the result of (42).

This completes the proof.

Lemma 10 (Upper bound of one-epoch). Using the same notation as in Lemma 8, we have

E[P (x̃s, w̃s)−〈Ax̃s − w̃s, ϕ〉]
≤ (1− θs) [P (x̃s−1, w̃s−1)− 〈Ax̃s−1 − w̃s−1, ϕ〉]

+
θ2s

2mη
E
[
‖x∗ − zs0‖

2
Qs
− ‖x∗ − zsm‖

2
Qs

]
+
βθs
2m2

E
[
‖Azs0 − w∗‖2 − ‖Azsm − w∗‖2

]
+
βθs
2m2

E
[
‖λs0 − λ∗ − λ‖2 − ‖λsm − λ∗ − λ‖2

]
+
βθs
2m

E
[
‖Azs−2 − w∗‖2 − ‖Azs−1 − w∗‖2

]
+
βθs
2m

E
[
‖λs−2 − λ∗ − λ‖2 − ‖λs−1 − λ∗ − λ‖2

]
.

(43)
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Proof of Lemma 10:

Proof. Using the definition of P (x,w) and combining the inequality (36) in Lemma 8 and the inequality (42) in Lemma 9,
we have

E

[
P (x̃s, w̃s)− θs

m2

m∑
k=1

〈ATϕsk, x∗ − zsk〉 −
θs
m2

m∑
k=1

〈ϕsk, w∗ − wsk〉

]

≤
(

1− θs
m

)
P (xs−1, ws−1)

+
θ2s

2mη
E
[
‖x∗ − zs0‖

2
Qs
− ‖x∗ − zsm‖

2
Qs

]
+ Cs

+
βθs
2m2

E

[
‖Azs0 − w∗‖2 − ‖Azsm − w∗‖2 +

m∑
k=1

‖λsk−1 − λsk‖2
]
.

(44)

Using Lemma 5 with the update rule of λsk in Algorithm 2, ϕsk = β(λsk − λ∗) and ϕ = βλ, we have

− θs
m2

m∑
k=1

〈Azsk − wsk, ϕsk − ϕ〉

=
βθs
2m2

(
‖λs0 − λ∗ − λ‖2 − ‖λsm − λ∗ − λ‖2

)
− βθs

2m2

m∑
k=1

‖λsk−1 − λsk‖2,
(45)

where the equality holds due to Property 1.

Adding both sides of the inequalities (44) and (45) and the similar derivation as in Lemma 6 with the update rule of xsk in
Algorithm 2, we have

E[P (x̃s, w̃s)−〈Ax̃s − w̃s, ϕ〉]

≤
(

1− θs
m

)
[P (xs−1, ws−1)− 〈Axs−1 − ws−1, ϕ〉]

+
θ2s

2mη
E
[
‖x∗ − zs0‖

2
Qs
− ‖x∗ − zsm‖

2
Qs

]
+ Cs

+
βθs
2m2

E
[
‖Azs0 − w∗‖2 − ‖Azsm − w∗‖2 + ‖λs0 − λ∗ − λ‖2 − ‖λsm − λ∗ − λ‖2

]
.

(46)

Furthermore, by using Lemma 6 for the upper bound of our new snapshot point, we have

E
[
P (xs−1, ws−1)− 〈Axs−1 − ws−1, ϕ〉

]
≤ (1− θs)

(
P (x̃s−1, w̃s−1)− 〈Ax̃s−1 − w̃s−1, ϕ〉

)
+Rs

+
βθs
2m

E
[
‖λs−2 − λ∗ − λ‖2 − ‖λs−1 − λ∗ − λ‖2

]
+
βθs
2m

E
[
‖Azs−2 − w∗‖2 − ‖Azs−1 − w∗‖2

]
+

θ2s
2mη

(
‖x∗ − x̃s−1‖2Qs

− ‖x∗ − zs−1‖2Qs

)
.

By adding up the above two inequalities, the result of Lemma 10 holds.

This completes the proof.
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Proof of Theorem 4.3 (i.e., Convergence Analysis of DAVIS-ADMM)

Proof. Using the upper bound of the s-th epoch in Lemma 10 and dividing both sides of the inequality (43) by θs instead of
θ2s in Theorem 4.3. According to the update rule of θs, and summing up the inequality (43) for all the stages (s = 1, 2, · · · , S)
with w∗ = Ax∗ and z−1 = x̃0, we have

1

θS
E

[
P (x̃S , w̃S)− 1

S

S∑
s=1

〈ϕ, Ax̃s − w̃s〉

]

≤ [(1− θ1)]

θ1
[P (x̃0, w̃0)− 〈ϕ, Ax̃0 − w̃0〉]

+
θ1

2mη

∥∥x∗ − x̃0∥∥2
Q1

+
β

2m2
E
[
‖Ax̃0 − w∗‖2 + ‖λ0 − λ∗ − λ‖2

]
+

β

2m
E
[
‖λ∗ − λ‖2 + ‖Ax̃0 − w∗‖2

]
.

(47)

With θs ≤ 2/(s+ 1) and θ1 = 1, using the update rules of Algorithm 2, and multiplying both sides of the above inequality
by 2/(S + 1), we have

E

[
P (x̃S , w̃S)− 〈ϕ, 1

S

S∑
s=1

(Ax̃s − w̃s)〉

]

≤ 2

m(S + 1)
[P (x̃0, w̃0)− 〈ϕ, Ax̃0 − w̃0〉]

+
1

mη(S + 1)

∥∥x∗ − x̃0∥∥2
Q1

+
β

m(S + 1)

[
2‖ATA‖22‖x∗ − x̃0‖2 + ‖λ0 − λ∗ − λ‖2 + ‖λ∗ − λ‖2

]
.

(48)

Let x̂ = 1
S

∑S
s=1 x̃

s and ŵ = 1
S

∑S
s=1 w̃

s. Setting ϕ = δ Ax̂−ŵ
‖Ax̂−ŵ‖ , then the following inequalities hold:

−〈Ax̃0 − w̃0, ϕ〉 ≤ ‖ϕ‖‖Ax̃0 − w̃0‖ ≤ δ‖Ax̃0 − w̃0‖.

Therefore, we have

E
[
P (x̃S , w̃S) + δ‖Ax̃S − w̃S‖

]
≤ 2

m(S + 1)

[
P (x̃0, w̃0) + δ‖Ax̃0 − w̃0‖

]
+

1

mη(S + 1)

∥∥x∗ − x̃0∥∥2
Q1

+
β

m(S + 1)

[
2‖ATA‖22‖x∗ − x̃0‖2 + ‖λ0 − λ∗ − λ‖2 + ‖λ∗ − λ‖2

]
≤ 2

m(S + 1)

[
P (x̃0, w̃0) + δ‖Ax̃0 − w̃0‖

]
+

1

mη(S + 1)

∥∥x∗ − x̃0∥∥2
Q1

+
β

m(S + 1)

[
2‖ATA‖22‖x∗ − x̃0‖2 + 2‖λ0 − λ∗‖2 + 2‖λ∗‖2 + 4‖λ‖2

]
.

(49)



Closing the Convergence Gaps in Non-Strongly Convex Optimization

By choosing m = Θ(n), we have

E
[
P (x̃S , w̃S) + δ‖Ax̃S − w̃S‖

]
≤ O

2[P (x̃0, w̃0) + δ‖Ax̃0 − w̃0‖]
n(S + 1)

+

∥∥x∗ − x̃0∥∥2
Q1

nη(S + 1)
+

c1β

n(S + 1)

 ,
(50)

where c1 is a constant, i.e., c1 = 2‖ATA‖22‖x∗ − x̃0‖2 + 2‖λ0 − λ∗‖2 + 8δ2 + 10‖λ∗‖2.

This completes the proof.

Appendix D: Experimental Setup
In this section, we also present detailed experimental setups for solving non-SC problems. All the experimental results
were conducted on a PC with an Intel Core i7-7700 3.6GHz and 32GB RAM. All the experimental results show that
the proposed DAVIS algorithm consistently converges much faster than other accelerated stochastic algorithms including
Katyusha (Allen-Zhu, 2018) and Varag (Lan et al., 2019).

We are optimizing the following binary non-strongly convex problem with ai ∈ Rd, bi ∈ {−1,+1}, i = 1, 2, . . . n:

`1-norm Regularized Logistic Regression:
1

n

n∑
i=1

log (1 + exp (−biaTi x)) + λ‖x‖1, (51)

where λ is the regularization parameter.

For the `1-norm regularized logistic regression problem, we set the length of each epoch to m = 2n, as suggested by
(Johnson & Zhang, 2013). For all the algorithms including the stochastic ADMM algorithms, we carefully tune the step-size
η from the set {a× 10−k : a ∈ {1, 2, . . . , 9}, k ∈ Z} for each plot. For Katyusha, the parameter τ is set to 0.5, as suggested
by (Allen-Zhu, 2018). In particular, for Varag, the length of each epoch and other parameters are set according to its original
paper (Lan et al., 2019).

In the experiment of graph-guided fused Lasso, we set the mini-batch size to b = 50 for all the stochastic ADMM algorithms
such as SVRG-ADMM, ASVRG-ADMM and our DAVIS-ADMM algorithm. Moreover, the length of each epoch in
SVRG-ADMM, ASVRG-ADMM and DAVIS-ADMM is set to m = d2n/be. For ASVRG-ADMM, the parameters η and β
are set according to its original papers (Liu et al., 2017; 2021).
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