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Preliminaries

In this section, we first give the definition of the proximal operator.

Definition 3 (Proximal Operator). The proximal operator, prox’,(-), is defined as follows:
v : 1 2
proxj,(y) := arg min {EHJL—ZJH —l—h(x)}. (16)

Before giving the convergence analysis of our algorithms, we first give the following properties and lemmas.

Lemma 4 ((Allen-Zhu, 2018)). The variance reduction stochastic gradient estimator proposed in (Johnson & Zhang, 2013;
Zhang et al., 2013) is defined as:

Vfiu(eh) = Vilai) — V@) + VAE).

Suppose that each f;(x) is convex and L-smooth, then the following inequality holds
~ . Nt
EMVJ’“(%) - Vf(a:,c)H }

<2L[f@EY) — flay) + (Vf(a}), o — 1]

a7

The convergence analysis for the proposed algorithms requires the above upper bound on the term E[|| Vf; L@3) =Vf (29)]1?]
as in (Allen-Zhu, 2018). Moreover, we need to extend the expected variance upper bound in Lemma 3 to the mini-batch
setting.

Property 1. Given any x1,x2,23,24 € R, then we have

(w1 — @2, 21 — m3) = = (llo1 — z2|® + |2y — @3]|* — |22 — a3]?)

N = N =

(@1 = xo, w3 — wa) = 5 (|21 = za® = [lo1 — @3]* + |22 — x3]% = [lz2 — 24]|*) .

Theoretical Analysis for DAVIS

In this section, we give some detailed proofs for the convergence analysis of DAVIS (i.e., Algorithm 1), which mainly
include the proofs for Lemmas 1 and 2, and Theorem 1 in the main paper.
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Now we sketch the proof of Theorem 1 as follows: The proof of Theorem 1 relies on telescoping the upper bound of
one-epoch in Lemma 4 below. Lemmas 1 and 2 in the main paper play a key role for obtaining the upper bound of one-epoch
in Lemma 4. That is, we first give the upper bound in Lemma 1 by using the proposed double snapshot scheme in Algorithm
1, and the residual term R is also produced. For each inner loop of Algorithm 1, we obtain the upper bound of one-iteration
in Lemma 2 by using both the proposed momentum acceleration scheme and the compensated stochastic gradient estimator.
As a result, the compensated term C is introduced in the upper bound in Lemma 2, which can be used to offset by the the
residual term R in Lemma 1. Therefore, we obtain a tight upper bound of one-epoch in Lemma 4 by using Lemmas 1 and 2.

Before giving the detailed proof for Theorem 1, we first analyze the convergence behavior of our DAVIS algorithm in a
single iteration.

Proof of Lemma 1 (Upper bound of new snapshot update)
In this subsection, we prove the upper bound for a single iteration of our deterministic gradient descent in Algorithm 1.

Lemma 1 (Upper bound of new snapshot update). Suppose that Assumption 1 holds. Let {T°} be the sequence generated
by our deterministic gradient descent step in Algorithm 1, for any p € R%, we have

F@Y) - F(z")

92
S =0 (F@E 1) = Fz™)+-8

(H(E* o 55—1”2 o Hx* _25—1”2) + RS,

where R® = (% - %) lz5—t — @512

Proof. We first recall the following iteration scheme of our deterministic gradient descent step,

~ 0, ~
o argzmin {h(z) + <Vf(x“"1)7 z> + %Hz _ ms_1H2} 7
and z°~! is required to satisfy the following optimal condition,

05
2mn

Vi@ + ¢+ -z =0, (18)

where & € Oh(z°~!) is a sub-gradient of h(-) at z° 1.
Since f(-) is L-smooth and using the update rule z°~1 = 0,z°~! + (1 — 0,)7°1, the following inequality holds
F@ ) =@ + /@)

L
S h(fsfl) + f(%sfl) + <vf(%sfl)’ j571 o %S,1> + 5”5571 o 5571”2

92
<A@+ f@T) 0, (V@Y 2" =) + ﬁl\?s’1 -z
o Qg <Vf(%sfl)’ ¥ 72571>
~ ~ ~ 62 ~
=h@ )+ F@ )+ 0, (V@ ), 2 =T + ﬁ”?‘g_l — 772 (19)
+05 <£_’_ 95 (2371 o gsfl), z* _Zsl>
mn

* ~5— 9? * ~s— * —s—
SO F (™) + (1 - 0,)F(x 1)+mfn(\lw =T~ fla* — 2

6‘2
4 ins—l _ 55—1”2
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where the first inequality holds due to the smoothness of f(-), the third equality holds due to the optimal condition in (18),
and Property 1, that is,and the last inequality holds due to the convexities of A(-) and f(-), and the following fact

292 —s—1 ~s —s—1 * ~s—12 * —s—1112 —s—1 ~571 2
—= (- et ) = (le A Rl EA A el %)
mmn

where the first equality follows Property 1. That is,
F(z*Y — F(z*)

62 (20)
<L = 0)(F@ ") - F(x*))+2nfm (e = 2=7H)* — [la* = z°71)%) + R*.
This completes the proof. O

Proof of Lemma 2 (Upper Bound of One-iteration Inner Loop)

In this subsection, we give and prove the following upper bound for our stochastic updates in one iteration (e.g., for a fixed
k) of Algorithm 1.

Lemma 2 (Upper Bound of One-iteration). Suppose that Assumption 1 holds. Let {x5,, z;} be the sequence generated by
our momentum accelerated update rules of Algorithm 1. Then we have

E[F(z}) — F(2")]
2
< (1-2) r@ ) - P - ¢4 % (o =il o = ).

2 2
where C* = — (9 %, )||z — 75712

2n an

We will prove the upper bound for our stochastic gradient descent step in each inner loop of Algorithm 1. We first recall the
main update rules and the optimal condition in our stochastic gradient descent step (i.e., for a fixed k).

Let g§ =Vfi(yi) — Vi (Z571) + VF(2°1), our compensated stochastic variance reduction gradient estimator is rewritten
as follows:

— s s mos —.
Vzk(yk) =

And the update rule of z is

. = 3mls 1 e
z; £ argmin {h(z) + <Vzk(y;2), z> + o llz—pi +2(z"1-2° 1)||2} ,
which implies that 2} is required to satisfy the following optimal condition:
3mb,

Vilyi) + G+ [z —ph +2E 7 =7 h] =0. 1)

2
where ¢} € Oh(z}).

Moreover, the main update rules of our stochastic gradient descent step are defined as follows:

0 0
s _ ZS,s 1— S )| =s—1
Y mpk+( m) 7,
s 93( s s)+ s (22)
Ty, = —(2, —
k= Pk Py, Yk

_ G Zi+ <1—05)x51.
m m
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Below we give the detailed proof of Lemma 2.

Proof of Lemma 2:

Proof. Using the smoothness of f(-), we get

B{F ()
<E[nlaf) + F00) + (V10R), o — ) + ot — )
=E|h(zq) + f(yi +<Vf —p2)>+2LniZIZZ—pEII2]
— &[ha) + Fu) + §<V<><@—ﬁ»}

~ 0 Lﬁg s s
+E <Vf(yk) VilUk), %( i Pk)> + ngnzk —Pkﬂ
[ 95 i * s 05 — s * s
B[ 1(ot) + 1) + 2= (Sl "~ o) ~ 2 (Talo) o” 52

b5 s s Leg s 512
=) ) + psllt - pil]

+E<w@m%ma
L (23)

@Mﬁw4@@+ﬁ<%wmx“W®}

362 ~ _
+ 77 (lz* = pi + 2" =2 HI? = lla* — 251 — 28 —pi + 2 =27 H|?)

[0

L m

%

o s Lag s s
(Gt a" = 2)| + B[ (T - Tl 226t~ b)) + psllet —pil]

S 302 * S =S— ~S8— * S S S =S5— ~S—
| ) + 52 (" = o+ 27 =B IP — o” - I = g - i+ 267 - 2P|

[ s 93 S * s 98 — s * s
+E [hlat) + 2 (Gt a” = 0)| 4B |2 (T, 0" - 01
Aq Ag

[ s v, s 05 Log s s
B (700 - Sl st - k) + sl - k),

Az

1 1 1 S S S S S S S 2 .
where the first inequality follows from the smoothness of f(-) (i.e., f(z5) < f(y;) + (Vf(y5), =} — yi) + Sllzg — vl

the equality = holds due to the fact that Ty = %(z,z — p}) + yi; and the equality 2 holds due to the optimal condition in

(21) and Property 1, that is,

7s_~ik(7_‘
% (o), 2~ o)

0s /3mbs , R 61 ~s— x s
:< (zz —pi +2(z L_3 1)),95 —zk>

m 2n
392 SO N
277 < pk+2( -z 1)7 xz _Zlf:>

39? * S =5— s * 5 S S i
=477(||~'E o G | Rl e R s G | R

Next we need to bound the terms Ay, Ao, and As in the inequality (23). And we first bound the term A;. Using the update
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rule of 7 = %z,‘er (1 — %) 75! we have

— m<
S s —S8— 95 * S
:E[h (fnz,z—f—(l - il) z° 1) + p- ¢y x —zk)]

< E[izh( ) 4 (1 - i) h(&._l)}
! EK o %(x* - Z’“)>] 24)
E _%h(ziﬂ 1- % h(f*l)_

where the first inequality holds due to the convexity of A (-), and the second inequality follows from the facts that (§ € Oh(z;})
and ((7, z* —z;) < h(z*) — h(z]).

By the definition of V;,(y}) (i.e., Vi (y}) = g5 + mne (z57! — 2°71)), the term A5 in the inequality (23) is rewritten as
follows:

2
_E|: <V'Lk yk :l
98 2 1 ~s—1
= — (VI (wp), =" P (- 0 ) (25)
98 s 92 —s—1 ~s—1 * S
E<Vf(yk)a z* >+%< =), 2" )
98 s * S 0? * s —s—1 ~s—1Yy (12 * 512 —s—1 ~s—1)12
o VI, @ = o)t (e = ph 2 =BT e =gl - 4z =R

where the last equality follows Property 1.
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Furthermore, we give the upper bound of the term As in the inequality (23) as follows:

95 s - ~g—
= 2E[(Vf (i) - Valud). 5 — i + 227 =77

05 s < =5— ~5—

— ~E[(VF(h) - Vi), 2" = &)
a 05 S o s s s —Ss— ~s— s —S5— ~57
2 2E[(Vf (i) - Valuh). 5 —pi + 2027 -3 1>>}f e & (26)
b n s\ _ . s 2 972 s __ s —s—1 _ ~s—1 27305 —s—1 _ ~=s—12
< gz [ VA6 = V)| + 5o lst —ph 2 B -
<L @) - 1) + (), v —f“ﬂ
- m

03 S S —=S— ~5— S —=S— ""S*

ol —ph 2 = E TP - S -

where the equality = holds due to the definition of gradient estimator in Definition 1 and E[Vf (yz)—g:] = 0, we have the
following fact

LB [(Vr ) -V, 2 )]
= % [<Vf( ) =gk + mnes (') 2z 7 - zsl)ﬂ
_ _ 293 st—1 _ 55—1”2.
n

b c
And the equality < in (27) follow from the Young’s inequality; the < in (27) due to the following fact

. Hw@z —%Z-k(yz)HZ

_% IV (yi: gk” + Hfé 1 ~s—1H2
92 _
2L<Vf( 5 — g5, mns (zs—l _ $s—1)>
ZQLmz IVf (yi gk” + H*S 1 ~s—1H2
S% [F@ Y = fi) + (Vi) vi — 1)) + Hfs ek

where the first equality holds due to the definition of gradient operator in () and the last equality holds due to the fact
E[Vf(y;)—g;] = 0; the inequality follows Lemma 4 with the settingn < 1/L, i.e., Ln < 1.
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Combing the equality (25) and the inequality (26), we have

< (V. 2 @ -+ -7
— (z* — —(yp — T
= Yi am Dk m Yk
93 s s —s— ~s5— 38? 5— 55—
+%||Zk7pk+2(z -7 1)”272777”2 Loz
+ & (o =+ 2620 =) P la” — il — 47— 3 )
o : Pi @7
<%pay+ (1= %) s - o)
B m Yk
92 s s —s5— s— 502 —s5— s—
+§”Zk_pk+2(z fa 1)||2—2T7s||2 Pt
63 * s 27571 ~s—1\(2 * 52
i 2" —pp + 2 —2° )" = l2" — pll
n
where the first equality holds due to the updated rule of y = £:p? + (1—2:) 7°~! and the following fact:
Vi), 2 (o = )+ = (o — )
K )+ — Wk
s 95 * 95 1 —=S— 1 s s 1 —S— s
:<Vf(yk)7mx + (1 o m) 7+ Eyk _yk> + m [f(l" 1) - f(yk)] o8

<r(Bar s (12 - D)ete L) - s60) + = [ - 0]

m m
Os

< Pra)+ (1) 1@ - )

where the first inequality follows the property of f (i.e., (Vf(z),y — z) < f(y) — f(x)); and the last inequality holds due
to the convexity of f(-).

By the above analysis and combining the inequalities (23), (24) and (28), we have
E[F(z}) — F(z")]

b5 302
S (1 _ m) [F(fs_l) _ F(Z‘*)} _ 27.]9 ||§s_1 _ .Z‘S_lHQ
62 * s =5 ~s * s 112 —s— s— (29)
+ g (I =i+ 26 =Pl = g — 42— |P)
302 * s —s ~s * s
+ e (lz* = pi +2 = 2°)|1* = ll=* = 2711?)

302
4n
2 2

% la* — pp/4 - 325/4)%), €5 = =% |75 71| % the last inequality holds due to pj, = p§_, /4+325_, /4+2(z° ~7°)

and r{ = p; — 2(z°~! — 7°71), then Thol = Phg1 — 2z =357 = p3 /4 + 325 /4.

*

w = AP 2

2
where the second inequality hold due to jensen inequality (i.e., %; [|z* —pZHQ +

This completes the proof. O

Proof of Lemma 4 (Upper Bound of One-epoch):

Before giving the proof of Theorem 1, we first give and prove the following lemma, which provides the upper bound for one
epoch of Algorithm 1.
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Lemma 4. (Upper Bound of One-epoch) Suppose that Assumption 1 holds. Let {Z°} be the sequence generated by
Algorithm 1. Then we have

E[F(z°) — F(z7)]

2 (30)
s (||$* _ .%s_lHZ _ Hx* _ 559||2> .

(1= 0)(FE ) - P+

Proof. By the one-iteration upper bound in Lemma 2, we have

E[F (z}) = F(z7)]

95 —S5— * s 63 * s * s 2
< (1-2) [P - ) + 0+ 2 (1o il o = )

Summing the above inequality over k = 1,--- ,m and using 2* = -L 37" | 25 and F(z°) < L 3" | F(z}), we have

E[F(z°) = F(2")]

< <1 — fn> [F(z*") — F(2")] +C*
+ :5] (||$* - TfHQ—Hx* - Tfn+1||2) 31
= <1 — f;) [F(z*™') — F(z")] +C*

02 112 ~5112
+ = (ot = 2Pl - 7)),
mmn

where the equality holds due to the update rules pj = 42571 — 325 (i.e, 2°71 = r{ = pj/4 + 325/3) and T° = Thy =
pr/4+ 323 /4.
Furthermore, by using Lemma 1, we have

F(@*Y) — F(z¥)

2 (32)
U= 0P ) = Fa) ot (" =77 = o =21 [P) + R

By the above analysis, the upper bound of one-epoch

E[F(@°) — F(z")]
2 33)
< (1= 0)(FE ) ~ Fa)) s (o =3P " = 317). (

This completes the proof. O

Proof of Theorem 1

In this subsection, we prove the convergence property of DAVIS (i.e., Algorithm 1). Theorem 1 shows that DAVIS
improves the convergence rate of some accelerated methods (e.g., Katyusha) from O(1/52) to O(1/(nS?)) for the non-SC
problem (1). That is, the result shows that DAVIS has both the optimal oracle complexity, O(n + y/nL/€), and the optimal
convergence rate, O(1/(nS?)).
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Theorem 1. Suppose that each component function f;(-) is L-smooth. Let T° = %ZZL:MZ (i.e., the average point of the
previous epoch'), then the following result holds

E[F(3°) — F(z*)] < 0( [F(gzo) — F(a*) + L||z* - 50||2} )

msS?2

Choosing m=0(n), Algorithm I achieves an e-solution using at most O(n++/nL/¢) iterations.

2

Proof. Using the update rule of 6, (i.e., 05 = ) for Algorithm 1, we have > 15§ = Therefore, we telescope the

s+1 93_
inequality (34) in Lemma 4 forall s = 1,2,..., S, we have
1 ~ *
B [F%) - F(z")
s
(1 - 91) ~0 * 39% x _ ~0]|2
< 7 [F(m)—F(m)]+4mnx -0
Since 6, =1,
1 ~ .
SE[FE) - F")]
5 (34)
3 * ~0112
< 7477177 ||x -z || .
: 2
Since 0, = 10 We have
E[F(@®) — F(2")]
* ~0]|2
cofle= =2 (35)
- mS2n
In other words, by choosing m =©(n), the total oracle complexity of our algorithm is O(n++/nL/¢).
This completes the proof. O

Theoretical Analysis for DAVIS-ADMM

In this section, we analyze the convergence property of the proposed algorithm. Similar to Theorem 1, the proofs of
Theorems 2 and 3 rely on the one-epoch inequality in Lemma 10 below. To prove Lemma 10, we first give the upper bound
in Lemma 6 below by using our snapshot scheme in Algorithm 2. Furthermore, by using our stochastic momentum iteration
rules in Algorithm 2, we can obtain the upper bounds in Lemmas 7 and 8 below. Thus, we can obtain the upper bound of
one-epoch in Lemma 10 by using Lemmas 6, 7 and 8.

For the more general case, we use the mini-batch version of the proposed compensated stochastic variance reduction gradient
estimator in our ASADMM algorithm, which is defined as follows:

Definition 4 (Mini-batch compensated stochastic gradient estimator). We define a new compensated stochastic variance
reduction gradient estimator for our ASADMM algorithm as follows:

m

770‘“ Qs(zt -7, (36)

Compensated estimator

6l'k(ac) = Vf[k(x) — Vf[k(fsfl) + Vf(fsfl) I

SVRG estimator

"Note that we choose Z° to be the average point of the previous m stochastic iterates rather than the last iterate because it has been
reported to work better in practice (Xiao & Zhang, 2014; Allen-Zhu, 2018; Allen-Zhu & Yuan, 2016).
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where I;; C{1,2,...,n} is a randomly chosen mini-batch of size b.

Compared with Definition 1, the additional matrix ) is need to introduced into the gradient estimator in the ADMM
version.

Our ASADMM Algorithm

In this subsection, we present an efficient accelerated stochastic variance reduced ADMM algorithm for solving the structured
regularization problem (2), as shown in Algorithm 2. By introducing the dual variable A and the variable w, the augmented
Lagrangian function of Problem (2) is

B

L(z,w, ) = f(z) + h(w) + (N, Az — w) + §||Am —w||?,

where 8 > 0 is a penalty parameter.

Proofs for ASADMM

Before giving the proof of Theorem 2, we first present the following lemma (Zheng & Kwok, 2016).
Lemma 5. Let ¢, = (A, — \*) and any ¢ = B\, and A\, = A;—1 + Axy, — wy, then

E[—(Azr — wi)" (or — ¢)]

= gE[HAk—l = AT = AP = A = A = AP = A = AP

Lemma 6 (Upper bound of new snapshot update). Suppose that Assumption 1 holds. Let G = Vf (') + BATXS_l for
Algorithm 2, and {T°,W*, X"} be the sequence generated by our deterministic gradient descent step in Algorithm 2, then we
have

E[P(f5717 @571)—@4?371 _wsfl7 <P>]
< (1-0,) [PE @) — (A7 -0 )] + RS

ﬂ(‘)s —s—2 « ~s—1 *
+ERE[RT - X A X - 4 = A
m
e A Y P A U

where R* = —3L[|G,||? ot 0s(Gs, 2571 — z%)

Proof. We first recall the following iteration scheme of our deterministic gradient descent step,

—s— . ~g— 03 ~s—1112 ﬂ s —s—2
z27 ! = argmln{h(z) +({Vf(@*), 2)+ mn”z -z 1HQS+EHAZ—’LU L4 ||2} ,

z

and z°~! is required to satisfy the following optimal condition,

(V@) +¢&) + if;Qs(zS—l -+ %AT(AES_l—ES_l +X5’2) =0, (37)

where € € Oh(z°~1) is a sub-gradient of 7(-) at 7~ 1. With A" ' = Az*~1—7°~1 2", we have

208 QS(ES—I _ %s—l) + 26

(VI@E ) +¢) + LAy 2o, (38)
mn m
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Since f(-) is L-smooth and using the update rule 7°~! = 0,2~ + (1 — 6,)z°~!, the following inequality holds
f@
L
~s5—1 ~s5—1\ =s—1 ~s5—1 —=s—1 ~s5—112
< f(@ )+<Vf(x ), T - >+§||$ -z (39)

2

S— =S— ~S— 95 =S— S
< f@ETH+0,(Vf(EY, 2 -7 1>—|—%||z Lozo712

Qs>

where the first inequality holds due to the smoothness of f(-), and the second inequality uses our choice of 7 < % and the
fact that Q, > I. Furthermore, for any p € R? and using the optimal condition in (18), we have

f(fs_l)
<@+ SII*S -aE,

+0, (VF(@* 1), 27 —a*) + 0, (Vf(@ ), 2F — 757
2
Sf(is_l) T %st—l _ 55_1||225 (40)

2
+<§;7Qs(zs—l —F )+ ’89 P gy —zs—1> + 0, (V@Y 2" - 7Y

2

~ 0 ~
Sﬁsf(x*)+(1—93)f(afﬂ)+%(Ilw* o, —ll=

where the last inequality follows Property 1 and the convexities of f(-), i.e

292 ~s—1 * _s—1 02 55— 1 * 5= 1 =s—1 ~571 2
<Qs( —3Th), " -7 = mn == (|lz* =2 7H[G, — e =2 7G, — |z 1%.) -

* _zsleZQS)

% <w572 —@571, A(JZ* —5571)>
s—1 —s—2

ﬁ * —5— * W ¢
=—([l4z" =@ 72| — Az” @7 + A = A )

Using BATX ! + V(@) = %QS(%S_l —z°71), we have

Using the optimality condition of Problem (2), i.e., Vf(z*) + BATA* = 0, and let p*~! = 33 (Xs_l - /\*), then the result

for 75~ is given by
<,3AT>\S 17 o — TS 1>
<Vf( ) —s—1 (E*>+<BAT)\*, fs—l —.’E*>

(41)
<6AT/\§ Lo 1>
<Vf( ) —s—1 (E*>+<AT§DS_1, x*—fs_1>,
and7°7 1 = 0,2°"1 + (1 — 25" 1)*~!, we have
f(fs_l) —f($*)+<Vf( ’ ¥ — 5T 1> <AT@S_17 x*_fs—1>
<(1—0)(F@E ) — F(z*) + (Vf(@"), 2* — 3 1) — (AT L, o= 5°1))
2

2 (P = —lp=7"113.) 2

g s—1 *

0 * ~s5—1 —s5—1 T —s—1
+;<P—$7Qs(x -z )>+9s<ﬂA)\ , ¥ —Z >
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Let p = * — v}, we have

F@ ) = £ + (V) o7 =) — (AT )
S(l o 95)(F(E5_1) _ F({E*) + <Vf($*), (E* o ZEs—l> _ <AT<pS—17 {E*— ‘%s—l>)
62 ~5— * s —s—
o (e = vk =7, — o v =) )

? s—1

0. s —s—1 ~s—1 TY * —=s—1
—|—n<vk,Qs(z -z )>—|—98<BA)\ , ¥ —7Z >

This completes the proof. O

Proof. We first recall the following iteration scheme of our deterministic gradient descent step,

—s—1 : ~s—1 m ~s—12 B 2 s, Osys—2 2}
= \Y/ , — ||z — — || Ax— — A ,
T arg;n1n{<m f(xz*) 3:>—|—277||x T |QS+295” T—W q —|—m |

and 7° ! is required to satisfy the following optimal condition,

B

ViGE) + %Qs(f*l ~F )+ AT @ )0, 4+ X ] = 0. (44)

Let G, = Vf(#* 1) + S AT[(Az —w* 2 —¢*) /0, + X372] and X" =m(AZ —w — ) /0, +2°77, we have

Gy=VFE) + %AT[(AES’l w2 ) )0, + 3 m)
:Vf(%571) + %AT[(Ajsfl _w = qs)/gs _|_Xs_2/m +w571 _w572] 45)
_ ~s5—1 ﬁ Tys—1 E T(755—1 _ -=s—2
=Vf(z )+m2A A —|—mA (w wTe)
Thus ]
Got -Qu@ ™ =77 =0. (46)
Using the convexity of f(-), we have
FETH V@, 2 -2 < f(a). “47)

Since f(-) is L-smooth, the following result holds

f(Tsfl) < f(gsfl) + <vf(gsfl), fsfl o %571> 4 gnfsfl o 5371“2

(48)
2

1
~s—1 ~s5—1\ =s—1 ~s5—1 —=s—1 ~s—1
<fETHH(VIETY), T -1 >+%||x -2 .

where the first inequality holds due to the smoothness of f(+), and the second inequality holds due to the choice n < % and
the fact that Qs > 1.

Using the results in the inequalities (47) and (48), and given any x, the following result holds

1@ < 1)+ (@), 77 =)+ 5 7 =,

1

= f(2) + (Gs, 7 — ) + (G,, T8 =71 + 5 2

s

||§s_1 _ %s—l‘

(49)

_< ﬂ ATX571 + ﬁ(@871 _@572)’ ES,]_ —l'>,

m2 m
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where the equality holds due to the result of (45).

Due to the fact that 7°~! -7 = —Q; G and let u*™ = %ATXSf1 + 2 AT (w1 —w*2), the result in the inequality
(49) can be rewritten as follows:

F@ET) < @) + (G =) = DG 50 — w7 —a ), (50)
Let z = 2°~! or x = z*, the above inequality can be reformulated as follows:
F@) < FE) = QG — T w T =, (51)
and
@Y < fa) + (G, T —2%) — gHGSH? Lt T ), (52)

Multiplying each side of the inequality (51) by (1 — ;) and the inequality (52) by 6,, respectively, and then combining the
two resulting inequalities, we obtain

J@ ) <05 + (1= 0) @) = JIG70 + (G, 77 —a7)
— (T —ht — (1 —0,)z5 )
= 0.,f() + (1= 0)F @) = 2G|2 0 +6.(G, 771 —a)
— BATX T m?, T~ 4 (1= 0) (@ — 7))
D A et (10 7))
= 0.,f() + (1= 0)F @) = G |2 +6.(G, 771 —a)
— AT, T =t 4 (1= 0) (@ =5 )
# 20 (10 - w2 P At w4 LR X)),

(53)

where the last equality follows from the similar derivation as in Lemma 3 in (Zheng & Kwok, 2016) with the update rule
s—1 =2

A =m(AT - %) [0+ A
Subtracting f(z*) + B(ATA™ / m?, 2* — 1) from both sides of the inequality (53), we have
F@Y) = F@) = BATX T m?, 2t =77
< (1=0) [F@ ) = f@") = BATX m?, a" = 5] = DGl + 0(Guy @ — )

1 o1 —s
+ 2 (1w w22 = o - w4 R

(54)

Using the optimality condition of Problem (2), i.e., Vf(z*) + BATA* = 0, and let p*~! = 33 (Xs_l/m2 - )\*), then the

result for 75! is given by

s—1

(BATX ™ fm?, ot~ 7
(V) 71— 2t )+ (BATN, 71 — )
< BATX " ym?2, o — 7~ 1>
=(Vf(z*), T8 —a*) + (ATp" !, a* -7,

(55)
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~s—1

and the result for x is

< ATA /m Jr L 1>
<Vf( ) ~s—1 CU*>+< AT)\*, 5871—$*>

(56)
< BATN /m =z 1>
<Vf( ) ~s—1 (E*> + <ATSOS_17 T — Es—l> .
Using (54), (55) and (56), we have
f(fsfl) o f(x*) + <Vf($*), z* 7fsfl> - <ATS0871’ $*7f871>
< (1=00) [f@ 1) = fla®) +(Vf(@"), " = 7°71) = (AT ™, 2" =771
~ DGl 464G, ) (57)

1 —so1  —se
e e e e L P I §
m

Thus, we have
F@E) = f@) + (Vi) " —71) = (AT o= = (1-6,)(a" = 3 1))
< (1= 0)IEN ~ f) + (T, 2 -5 4 R .
# 20 (10 - w2 At g LR X)),
m m

where R* = —2||G4 % -1 + 6,(Gs, 2571 — z*)

Using the convexity of h(-) and ¢ € Oh(w*~'), we have
h(@w* 1) — h(w) < (=¢, w—w* ).
Let w = w° ! or w = w*, the above inequality can be reformulated as follows:
h(@*=h) = h(@* ™) < (=¢, @* ! —w"), (59)
and

h(w@*™") — h(w*) < (=¢, w* —w* ). (60)

Multiplying each side of the inequality (59) by (1 — 6;) and the inequality (60) by 6,, and then combining the two resulting
inequalities, we obtain

h(w*™') — h(w*)
< (1-6y) (h(ws b — h(w*)) <—C, Ow* + (1 —0)w* ! —w°~ 1) (61)
=(1-46y) (h(ws 1) h(w*)) + ( /m Ow* + (1 —0,)w* " E“l),

where the last equality holds due to the optimal condition with A" =m(AZ* ! —w° 1 —¢%) /0, + X

¢+p3 ((Afs_l —w T —q%) /0, +X572/m) /mz(+ﬁXSﬁl/m2 =0,

where ( is a subgradient of h(w®~1).
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Furthermore, using the optimal condition (i.e., @h(w*) + BA* = 0) and the result in (61), we have

h(ws—l) _ h(y*) + (@h(w*% w* _ws—1> _ <(,08_1, w* —E“"_1>

. (62)
< (1= )[R(@* ") = hw*) + (Vh(w"), w* = @) = (¢, w’— @)
For any ¢ = 8\ and Az* — w* = 0, we have
<ATSD571’ ¥ 7§sfl> + <(Psfl, w* — E571> + <Afsfl o @371, s0571 _ s0>
L 1 (63)
= - <A§§_ —w* ’ §0>7
and
<ATQOS_1, T* _§5—1> + <ws—1, w* — ﬁ)'s—1> =+ <AES_1 _ @5—17 SOs—l _ s0> (64)

= — (AP -a" ).

Multiplying each side of the inequality (64) by —(1 — 6) and combining the inequality (63), we have
(ATos=1 2% 75~ (1= 0,)(z* —7° 1)) + ("1, w* — @ — (1 — 0,)(w* —@°~L))
+{((AZ P+ — (1= 0) (A7 @) — e, o5 — ) (65)
= — (AT T — (1 - 0,) (AT + @) — buc, o).

Using Lemma 5 and the updated rule X in Algorithm 2, we have
_ <Afs_1 _ ws—l _ (1 _ 93)(14%8_1 _ '&}3_1), <PS_1 _ (,0>

ﬁes —s—1 ~5—2 —s—1 *
= S EERTT NN oy (66)

m
BOs
2m

—s—1

(IR = A = A2 = X =X = a2 = X =3

where the last equality holds due to Property 1.

Using the results in (64), (68) and (72), the definition of P(z,y) (i.e., P(z,y) = f(z)— f(z*) —Vf (@) (x—z*)+h(y)—
h(y*)—Vh(y*)T(y—y*)) and the update rules in Algorithm 2, we have

E[P(f8717@571) o <A5571 7E571,¢>]
< (1 _ 95) (P(i‘is_l,ws_l) _ <A%s_1 _ @S_l,(p»
— TGl + 605G, 771 =)

5 E[IX = x = AP = X = A = ]
2m
05
+ ﬁ E“|A"E* 7@872H2 o HAiC* 7@871H2] .
m
This completes the proof. O

Upper bound of our stochastic gradient descent step:

Lemma 7. Let gi = Vf1,(yi) — Vf1,(Z°71) + Vf(2°') and b be the size of mini-batch Iy,. Then
E[IV/(2) - oi ]

< 25(5311? [F@ D = F ) + (V) v = &)
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Lemma 8. Suppose that Assumption 1 holds. Let {T°, w*, XS } be sequence generated by Algorithm 2, then we have

m
*

E ot ol — 28

f@) = f(a") + (Vf(2"), «" = 2°

< E[(l — 2) [f@ 1) = f(z*) + (Vf(z*), ;__ wiﬁ]}
2— 0,

(67)
@) = F@") + (Vf ("), 2" = 7°7)]

(m+1)9§ * 2 * 2
B[ (1o g, — ot - mal3,) |+ e

" — py

p 2
where C5 = (1 — 2)0,(G,, o* — 31 + 20227 |G, |1

Proof. We give the upper bound for our stochastic gradient descent step in this lemma. Using the similar derivation as in
Lemma 2, we have the following result for our stochastic gradient descent step.

Let g = Vi1, (y5) — Vi, (#°~1) + VF(@* ) and G = (1— 2)G,, we have Vp, (y3) = g + (m — 2)G, = g§ +mG.

Since the function f(-) is L-smooth, and by using the update rule of zj = y; + % (27 — 2v7), we have

0, Lo?
stad) < 1) + (VD). et - 2vz>> P o2
0
= Fi) + = (Vi (o} + 20,0}/, @ —op) - <vh (i) + 20,07 /n, @* =T 4 of = 2
+<Vf<yz>—vfk<yk> 28.01/n, > L8 e — 20

gf(yk) + 0* <V1k(yk) + 20,5 /0, ©F —2° —v,‘;>
+9s<<m+2>es

s s s AT)\S * _ ~s—1 s _ S
m i Qs(28 — VR)+BAT AL, 2" = 2% + g Zk> (68)

S < s s 95 s s Leg s s
+ (V00— D 08) — 2020t/ 25t = 200) ) + ot~ 20l

b 93 ~ s s * ~g— s 05 s * ~s5— s s
<flyp)+— <Vlk (yi) + 20508 /n, x* — 2571 — Uk> + — <5AT)\1<7 A AR z)
m m
s o s s 95 S s Lez s s
+ ( VFWR) = Vi (i) — 20505/, E(Zk —2up) )+ 2 2% — villg, -
(m + 2)62

S (lz* =27 = (¢ = Dl = llo* = &7 + i = 2217 — Il — cui]]*)-

+

where the equality = holds due to the update rule of \{ = Az —vi —2571) —wi + \j_, and the optimality condition of
(15), i.e.,

(m+2)6,

mn

Vi (y P+ BAT (A(zp — vy — 7)) —wi + M) +
(m+2)0;

Qs (24 + T0})
= Vi (y3) + BATA; + Qs(z5 + T05)

(m + 2)0

(69)
= Vi (y}) + 20,0 /n + BATA; + Qu(z — <v})

=0.
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b
Moreover, the inequality < in (68) follows from Property 1 and the similar derivation in (35) and (36).

Taking expectation over the random choice of i, the inequality (68) can be rewritten as follows:
E[f(z})]
s . s s * ~s—1 s 03 Tys * ~s—1 s s
<E|f(yp) +0s <V1k(yk)+29s’”k/7h$ -2 *%>+E<5A AL, ot = o) — =)

s — s s 95 s s L@g s s112 (70)
+E | Vf(yr) — Vi, (yg) — 20505/, E(zk —2u) ) + W”Zk —2vllo.

+E [(m+2)9§

5 (2" =37 = (e = Dog|” = fla” = &7 v — 2 - 1= - <vZII2)] :

Using the variance upper bound in Lemma 5 and the similar derivation in (39) of Lemma 2, we have

S < s s 95 s s Leg s s
E va(yk) — Vi,(yi) — 2055 /n, E(zk - 2Uk)> + ﬁ”zk - 2“1@”2}

(n—b) 1 , s sl — o M= o 2mo>? 9
s _ s s _ s 98 GS7 s A Gs B s s 71
62 , 02 9
]E S s _ 2 s _S S S
B |2 ag - 20l + 21t - ol
where the first inequality holds due to the Young’s inequality.
Furthermore, we also have
QS - * ~5— s
~E|(Vi(yi) + 20003 /m, 2" =57 = o)
0 o1 0s , — o1 202 SO
_ s s * _ s .8 7s Gs,*_s .8 s 9’ * s _
- (Vf(yp),z* — vR) —l—m (mG,, 0" — 7 vp) + i (v, a* -7 vy)
es * ~g— al * ~5— S
:E<Vf(y2),a: - 1—1},‘2>+95 <G5,x -z’ 1—v‘k> (72)
2 (o = (= Dl "~ = (5= D — o
oy k k= Uk
2(2—¢—2/m)o? 262 <
- + =5 ) llvill*.
m m

Using the inequalities (76), (77), (78) and the similar derivation as in Lemma 2, the following result holds
E[f(a}) — f(=")]
2 - .
<B|(1-2) 1@ - 6] +

m

2 -0,
m

1)~ )]

0 ~ 73
+ E[m <BAT)\Z, o* =7 o — z,§>] (73)

(m+1)0

2
PR (= ptallf, e — i) ] €

_ _ 252 _
where C* = 0,(Gs, 0" —2°71) + 3[|Gsl7, . = (1= 2)0:(Gs, 2" —7°71) + UGN Land G, = (1- 2)G,.
Let 5 = B (A — A\*). Using the optimality condition of Problem (2), i.e., Vf(z*) + BATA* = 0, we have
0
’s AT}\S * _ ~s—1 s_ .8
O (54T, =)

_ _% * * _ ~s—1 s_ s % T, s * _ ~s—1 s__ 5
= m<Vf(m ), *=T°7 "+ zk>+m<A o, o= up— 27) .
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By the above analysis, we have

B[ o) — £ + (W), 2" =5 o)) = (AT a5 o - )

<B|(1-2) (1) - £+ 22 ) - )| e

m
(m +1)63
B [l o]
Using the update rule of z} = bs

+

1HQ |2~ _pk|

ma
% k_vk_’_.’,i.'s—l)_’_(l_l)fs—l_"_Q\9"'31

= 2T and adding both sides of the above
inequality by (1 — 2) (Vf(z*), 2* —7° 1) + ZL(Vf(2¥), 2* — T~

1), we have

B| o) ~ ) + V"), a" = o)~ = (AT}, o7

SEK1_2>U@“U—f®ﬂ+ﬁﬁmwﬂﬁ_f4ﬂ]

o (74)
s [f(ES—l) _ f(q;*) + <Vf<$*), * §S_1>]

+E[(m+l)9§ (‘ é)] g
Since f(z) — f(z*) + Vf(z*)T

mmn
)* (z* — x) > 0, using the update rules in Algorithm 2 and summing up the inequality (80)
for all the iterations k = 1,2, - - - , ividi

m, and dividing both side of the resulting inequality by m, and using the update rules of
T8 =13 g, f(@°) < LY fag), and of = 2571, we have

27 4 o) - 2)

+

*

—piallg, - 2

m

E|f(@°) = f(a7) +{Vf(z7), 2" = 2°) —

s * s—1 s s
P, T — 2"+ up — 27)

<EK}—2>Umww—ﬂwaWWﬂmfiﬁ”ﬂ
2—0,

[F@1) = f(a™) + (Vf(2"), 2" =7 71)]

+Erm+U%

* 2 % : 112 .
L (la = nall, o - )|+ e

This completes the proof.

Lemma 9. Using the same notation as in Lemma 8, we have

EV@ﬂ—hmﬂ+¢MM)w)—w 9 ]

PB4z — w|? - [z, — P+ 3 I3 - zm] .
L k=1
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Proof. Using the convexity of h(-) and (; € 0h(wy), we have

h(wg) — h(w")
< <_<Ii= w* — w;>
= (A(ziog — v} + 771 —wi + Aoy, Wt —wp),

where the equality holds due to the optimal condition of Problem (14), that s, ¢ +B(A(z_; —vi+Z° 1) —wi+A; ;) = 0.
Using the similar derivation as in Lemma 3 in (Zheng & Kwok, 2016), we obtain

[ w') = V() (w] —w') = (g}, v —w)]

E[lAz; 3 — w'|* = [ Az} — w”||* + [|A% = X [1] -

M\Q ﬁ

Since h(z) — h(w*) + Vh(z*)T (w* —w) > 0, using the update rules in Algorithm 2 and summing up the above inequality

for all the iterations k = 1,2, - - - , m, and using the update rule of w* = 92 ey wy A+ (1= 2wt + 2_795@5_1, we
have
E[h({ﬁs) h(w*) + Vh(w")T (w* — @° ]
2 s—1 * 1
< (1= =) [h(@* ) = h(w") + Vh(w")T ("~ )}
(75)
2—0, . A —~
+ (@) = hlw") + Vh(w)T (w* — @]
m
Bes A s * |12 A s * (|2 <& s s 2
+ DO g4z w2 — Az, — w2+ D0 1M~ M|
This completes the proof. ]
Lemma 10. Using the same notation as in Lemma 8, we have
E[P(z%, w*)— (Az® — w®, ¢)]
2—0, ~ ~ . ~
< (1 — 05+ ) [P(@* Y, w5 — (A7~ — w71, )]
m
(m +1)62 512 s 2
+ TQ??E[H —pillg, — = —Pm”QJ
36, ) , ) (76)
n Q—E[nAza |~ Az, —w|?]
69 2 5 2
Ao —AIF =X = A=)\
+ DO gy - xr—a— g, 17
95 —s— ~s—
5 ] N e P W E
2m

Proof. Using the definition of P(z,y) and combining the inequality (67) in Lemma 8 and the inequality (81) in Lemma 9,
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we have

s
8
g
<) »
(=
N
S
AS)
TVJ
&*
&(IJ
+
<
e
I
§
3
g
I
S
>
—

2 2 -
< (1 _ ) P(fs_l,ﬁs_l) 4 93 P(gs—l’ws—l)

(m+1)62

S 52
5y B[l 7l

(77)
Q. — =% =7l

+

] ve

B804
2m?2

+

m
E ([ Az —w|® = Az}, —w|* + > IXioy — Zlﬂ :

k=1

For any ¢ = S\, we have

0, ~
5> ((ATeh, " =7 4 o) — 2) + (o, w7 — wp)

3

k
Os

2

M= =

_|_

((A(z — vk +2°71) —wi, @i — 9)

3

(78)
k

Il
-

Os
m2

NE

(A(2f — v +7°71) — i, ),
k

where pf = S (Af — A*), and Az* — w* = 0.
Using Lemma 9 with A\j = \j | + A(zf —vf +2°71)

I
-

—wj, o5 = B(A; — A*) and ¢ = B\, we have

b
2

NE

(A = v +37) - wi, of — ¢)

k=1

Ms

A=A A=A =)

b
Il
—

30, & (79)
=53 D (NG = A = AP = 1A = A" = AP = I3y = AR1P)
k=1

86 . - )
= 55 (M= A = AP = X5 = A" = A1) I,

where the second equality holds due to Property 1.

Lo S (Azp — v +7°71) —wj, @) — ¢) and using the facts in (84) and
(85), we have

2 2—0s .
< <1 _ > P(fs_l,ws_l) 4 P(l’s_l,’ws_l)
m m

(m+1)62 2
7513[ *_pslA -
+ mQT] ||(E Po Qs

56‘5 s * s * s * s
QmQE[IIAZo —w*|? = [[Azp, — w2+ 1A = X = AP = A, = A

(80)

* s |12 S
lo* = w3, ] + ¢

+

— A7)

With the update rule of 7§ = %= (28 —vf — 3 71) 4+ (1 — 2)7° 1 4 2 2egsl g = foqp? 4 (1 — 2 )po 1 4 2 0e ol
= LS ag, wt = L3 wi, and adding both sides of the inequality (86) by (1 — 2)(Az*~' — w*" =1 . ©) +
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2-0s ( gzs—1 _ ;551
—=(AT°T —w*, ), we have

E[P(z°,w*)—(AZ° — w® ¢)]

< (1 - i) [Pt w*h) — (A7 — @ )]

2—40
+ s

[P(%sfl’asfl) _ <A%sfl _ {[}5717 S0>] (81)
m+2 03 * S * S S

I 2 o — i, — o — il ] +C

508 s * 12 s * |2 s * 2 s * 2

PSE[lAz5 — 0P — Az, — w2+ X5 — X = AP — s, — A = Al

+

+

Furthermore, by using Lemma 4 for the upper bound of our new snapshot point, we have

JE[PE 0 )~ (47> w0 )]

A= 0)PE T ) = (A7 =)

2 n 2 2 ~s—1 *
— (1= NGy 1— )6, , —
(1= ) 2GE- + (1= D)8 (G, 7 =) o
(1 B %)695 —=5— * —5— *
+ TE[HA’U 2 —wr|? — Az - w*||?]
(L= 2)B0s 11552 v a2 50— yr a2
R 1 D e il RN AP
2
— 2)80,
+ 7( 2’;1)5 E[||Az* —w*|? — || Azt — ES’1H2] .
By adding up the above two inequalities, we have
E[P(Z°, w®)—(AZ® — w®, ¢)]
< [(1- z)(1 —0,)+ 2=9, [Pz 1w Y) — (A5 —a* ) )]
— m S m I J
05 * S * S
+ gl = pillg, e = il
+ —[%)S E[HAZS —w*||? — || AzE, — w*||2]
22 0 m (83)
508 s * 2 s * 2
T+ S SE[ING — A = A = X5, = A = AJP]
(1 - %)/893 —s5—2 * 2 —s—1 * 2
+ B[N X = A - X A

Gt L,

o ||A.T* —ES_QHQ _ ||Ax* _@5—1”2] .

This completes the proof.
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Proof of Theorem 2:

Proof. Using the upper bound of the s-th epoch in Lemma 9 and dividing both sides of the inequality (89) by 6, instead of
62 in Theorem 2, we have

! E[P(z°,w®) — (¢, AT® — w*)]

[(1-2)(1-6) %5;;"1

0,
1—2)(1—6,)+ 22
< [( m)( 7 )+ m ] [P(%sfl’,&v)sfl) _ < 5571 7{5371, §0>]
+ Pg e gl — o~ pil,] 54
nm Qs milQs
ﬁ S * S * S * S *
+ 5B ([l A5 —w I = [[Azh, — w2+ A5 = X7 = M = A5 = A" = A
(1 B %)6 352 * sl * * oS — *_ =5 —
S E [N = A = AR = X =X = AP A -2 A
According to the update rule of 6;, and summing up the above inequality for all the stages (s = 1,2,--- ,S) with w* = Ax*
and X% = 0, we have
1 s
E s PE5,5%) =Y oulp, AT — m]

] [P(goaibo) - <$07 AZLV'O - 7:60>]

<
< m
Oy . op2 (85)
g L P
B ~0 |2 30 * 2
+ 5B [ 45 — w2+ X - X" = A
B

+ R[N = AP+ 470 — ],

1 (=2)a-0.)+230e

where 7 = 51— P = which implies that 0 < o, < 1.

With 6, < 2/(s + 1) and §; = 1, using the updated rules of Algorithm 2, and multiplying both sides of the above inequality
by 2/(S + 1), we have

1 S
PE*,0%) - (p, 5 > 0. (AT — @)

E
s=1
2
< —2 __[PGE°, @) - (p, AT° —@°

ms @) = ) 5
R T

mn(S+ ]_) Q1

5 T 2| o ~0(12 30 * 2 « 2

o (AT AR = B0 IR0 =8 = P a7 - 7]

LetZ = & S 0.3 and @ = 5 %, 0.@". Setting ¢ = & %, then the following inequality holds:
—(AZ° —a°, o) <|lgll|AZ° — @°|| < 4| AZ° —a°,

and
I =l + X117 < 2[llf” + 2| A1 = 26% + 2| A2
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Therefore, we have

E[P(3%,@%) + 0| AZ° — @]
2
“m(S+1)

1

+— |l = 27
mn(S + 1) Q1

ﬁ T 2 * ~0112 30 % 2 % 2
o [T AR = B 130 =X = P a7 - P

2
<— 2 _[P@E, ") + 0| A7 — @
< e P ) 4 51470 - )
1 * ~0]|2
+m77(S+1)H$ . HQI

B
e |

[P@E°,a°) + 6] Az° — @]

87)

+ 2| AT A3l — 07 4 2030 = NP 4 20377 + 4fA)1 |

By choosing m = ©(n), we have

E[PE®, @) + 6| AZ° — @]

. ~0l12
o[P(a°, @) + o Az° —a°ll] = =2lly, @B (88)

<0 WS+ 1) mS+1) 1))’

where ¢y is a constant, i.e., ¢; = 2||ATA||2[|lz* — Z°||2 + 2||A° — A*[|2 + 832 + 10]|A* 2.
Note that the initialization values for z°, w" and A are chosen in our algorithm (i.e., Algorithm 2).

This completes the proof. O
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