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Restarted Nonconvex Accelerated Gradient Descent:
No More Polylogarithmic Factor in the O(ϵ−7/4) Complexity

Anonymous Authors1

Abstract
This paper studies the accelerated gradient de-
scent for general nonconvex problems under
the gradient Lipschitz and Hessian Lipschitz as-
sumptions. We establish that a simple restarted
accelerated gradient descent (AGD) finds an
ϵ-approximate first-order stationary point in
O(ϵ−7/4) gradient computations with simple
proofs. Our complexity does not hide any poly-
logarithmic factors, and thus it improves over the
state-of-the-art one by the O(log 1

ϵ ) factor. Our
simple algorithm only consists of Nesterov’s clas-
sical AGD and a restart mechanism, and it does
not need the negative curvature exploitation or the
optimization of regularized surrogate functions.
Technically, our simple proof does not invoke the
analysis for the strongly convex AGD, which is
crucial to remove the O(log 1

ϵ ) factor.

1. Introduction
Nonconvex optimization has emerged increasingly popular
in machine learning since a lot of machine learning tasks
can be formulated as nonconvex problems, such as deep
learning (LeCun et al., 2015). This paper considers the
following general nonconvex problem:

min
x∈Rd

f(x), (1)

where f(x) is bounded from below and has Lipschitz con-
tinuous gradient and Hessian.

Gradient descent, a simple and fundamental algorithm, is
known to find an ϵ-approximate first-order stationary point
of problem (1) (where ∥∇f(x)∥ ≤ ϵ) in O(ϵ−2) iterations
(Nesterov, 2004). This rate is optimal among the first-order
methods under the gradient Lipschitz condition (Cartis et al.,
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2010; Carmon et al., 2020). When additional structure is
assumed, such as the Hessian Lipschitz condition, improve-
ment is possible.

For convex problems, gradient descent is known to be sub-
optimal. In a series of celebrated works (Nesterov, 1983;
1988; 2005), Nesterov proposed several accelerated gradient
descent (AGD) methods, which find an ϵ-optimal solution in

O(
√

L
ϵ ) and O(

√
L
µ log 1

ϵ ) iterations for L-smooth general
convex problems and µ-strongly convex problems, respec-
tively, while gradient descent takes O(Lϵ ) and O(Lµ log 1

ϵ )
steps. Motivated by the practical superiority and rich theory
of accelerated methods for convex optimization, nonconvex
AGD has attracted tremendous attentions in recent years. In
this paper, we aim to give a slightly faster convergence rate
than the state-of-the-art one by simple proofs for a simple
nonconvex AGD.

1.1. Literature Review

Nonconvex AGD has been a hot topic in the last decade.
Ghadimi & Lan (2016); Li & Lin (2015); Li et al. (2017)
studied the nonconvex AGD under the gradient Lipschitz
condition. The efficiency is verified empirically and there is
no speed improvement in theory. Carmon et al. (2017) pro-
posed a “convex until guilty” mechanism with nested-loop
under both the gradient Lipschitz and Hessian Lipschitz
conditions, which finds an ϵ-approximate first-order station-
ary point in O(ϵ−7/4 log 1

ϵ ) gradient and function evalua-
tions. Their method alternates between the minimization
of a regularized surrogate function and the negative curva-
ture exploitation, where in the former subroutine, Carmon
et al. (2017) adds a proximal term to reduce the nonconvex
subproblem to a convex one.

Most literatures focus on the second-order stationary point
when studying nonconvex AGD. Carmon et al. (2018) com-
bined the regularized accelerated gradient descent and the
Lanczos method, where the latter is used to search the nega-
tive curvature. Agarwal et al. (2017) implemented the cubic-
regularized Newton steps carefully by using accelerated
method for fast approximate matrix inversion, while Car-
mon & Duchi (2020; 2018) employed the Krylov subspace
method to approximate the cubic-regularized Newton steps.
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Restarted Nonconvex Accelerated Gradient Descent

All the above methods find an ϵ-approximate second-order
stationary point in O(ϵ−7/4 log 1

ϵ ) gradient evaluations and
Hessian-vector products. To avoid the Hessian-vector prod-
ucts, Xu et al. (2018) and Allen-Zhu & Li (2018) proposed
the NEON and NEON2 first-order procedures to extract
negative curvature of the Hessian. Replacing the Lanczos
method in (Carmon et al., 2018) by NEON2, the resultant
method needs O(ϵ−7/4 log 1

ϵ ) gradient evaluations to find
an ϵ-approximate second-order stationary point (Allen-Zhu
& Li, 2018). Other typical methods include the Newton-CG
(Royer et al., 2020) and the second-order line-search method
(Royer & Wright, 2018), which are beyond the AGD class.

The methods in (Carmon et al., 2017; 2018; Agarwal et al.,
2017; Carmon & Duchi, 2020) are nested-loop algorithms.
They either alternate between the negative curvature ex-
ploitation and the optimization of a regularized surrogate
function using convex AGD (Carmon et al., 2018; 2017),
or call the accelerated methods to solve a series of cu-
bic regularized Newton steps (Agarwal et al., 2017; Car-
mon & Duchi, 2020). Jin et al. (2018) is the first to pro-
pose a Hessian-free and single-loop accelerated method,
which finds an ϵ-approximate second-order stationary point
in O(ϵ−7/4 log 1

ϵ ) gradient and function evaluations. The
method in (Jin et al., 2018) runs the classical AGD until
some condition triggers, then calls the negative curvature
exploitation, and continues on the classical AGD. It is, as far
as we know, the simplest algorithm among the nonconvex
accelerated methods with fast rate guarantees.

Although achieving second-order stationary point ensures
the method not to get stuck at the saddle points, some re-
searchers show that gradient descent and its accelerated
variants that converge to first-order stationary point always
converge to local minimum. Lee et al. (2016) established
that gradient descent converges to a local minimizer almost
surely with random initialization. O’Neill & Wright (2019)
proved that accelerated method is unlikely to converge to
strict saddle points, and diverges from the strict saddle point
more rapidly than the steepest-descent method for quadratic
objectives.

1.2. Contribution

All of the above methods (Carmon et al., 2017; 2018; Agar-
wal et al., 2017; Carmon & Duchi, 2020; Jin et al., 2018)
share the O(ϵ−7/4 log 1

ϵ ) complexity, which has a O(log 1
ϵ )

factor. To the best of our knowledge, even applying the
methods designed to find second-order stationary point to
the easier problem of finding first-order stationary point, the
O(log 1

ϵ ) factor still cannot be removed. On the other hand,
almost all the existing methods are complex with nested
loops. Even the single-loop method proposed in (Jin et al.,
2018) needs the negative curvature exploitation procedure.

In this paper, we propose a simple restarted AGD, which
has the following three advantages:

Algorithm 1 Restarted AGD (xint, ϵ)
Initialize x−1 = x0 = xint, k = 0.
while k < K do

yk = xk + (1− θ)(xk − xk−1)
xk+1 = yk − η∇f(yk)
k = k + 1
if k
∑k−1

t=0 ∥xt+1 − xt∥2 > B2 then
x−1 = x0 = xk, k = 0

end if
end while
K0 = argmin⌊K

2 ⌋≤k≤K−1 ∥xk+1 − xk∥
Output ŷ = 1

K0+1

∑K0

k=0 y
k

1. Our method finds an ϵ-approximate first-order station-
ary point in O(ϵ−7/4) gradient computations. Our
complexity does not hide any polylogarithmic factors,
and thus it improves over the state-of-the-art one by
the O(log 1

ϵ ) factor.

2. Our method is simple in the sense that it only consists
of Nesterov’s classical AGD and a restart mechanism,
and it does not need the negative curvature exploitation
or the optimization of regularized surrogate functions.

3. Technically, our proof is much simpler than all those
in the existing literatures. Especially, we do not invoke
the analysis for the strongly convex AGD, which is
crucial to remove the O(log 1

ϵ ) factor.

This paper only concentrates on first-order stationary point.
When the purpose is to find second-order stationary point,
especially with high probability, the polylogarithmic factor
may not be canceled.

2. Restarted Accelerated Gradient Descent
We make the following standard assumptions in this paper.

Assumption 2.1. 1. f(x) is L-gradient Lipschitz:
∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

2. f(x) is ρ-Hessian Lipschitz: ∥∇2f(x)−∇2f(y)∥ ≤
ρ∥x− y∥.

Our method is described in Algorithm 1. It runs Nesterov’s
classical AGD until the “if condition” triggers. Then we
restart by setting x0 and x−1 equal to xk and do the next
round of AGD. The algorithm terminates when the “if condi-
tion” does not trigger in K iterations. In practice, we suggest
to output argminxK ,ŷ{∥∇f(xK)∥, ∥∇f(ŷ)∥}. The restart
trick is motivated by (Fang et al., 2019), who proposed a
ball-mechanism as the stopping criteria to analyze SGD.

In contrast with other nonconvex accelerated methods, our
method does not invoke any additional techniques, such as
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Restarted Nonconvex Accelerated Gradient Descent

the negative curvature exploitation, the optimization of reg-
ularized surrogate functions, or the minimization of cubic
Newton steps. Especially, although the single-loop algo-
rithm proposed in (Jin et al., 2018) is very simple, it still
needs the negative curvature exploitation, which should eval-
uate the objective function. Our method avoids the negative
curvature exploitation, and thus it is possible to extend to
other problems, such as finite-sum nonconvex optimization.

We present our main result in Theorem 2.2, which estab-
lishes the O(ϵ−7/4) complexity to find an ϵ-approximate
first-order stationary point. Our complexity does not hide
any polylogarithmic factors, and it improves over the state-
of-the-art one of O(ϵ−7/4 log 1

ϵ ) by the O(log 1
ϵ ) factor.

Theorem 2.2. Suppose that Assumption 2.1 holds. Let η =
1
4L , B =

√
ϵ
ρ , θ = 4

(
ϵρη2

)1/4
, K = 1

θ . Then Algorithm

1 terminates in at most △fL
1/2ρ1/4

ϵ7/4
gradient computations

and the output satisfies ∥∇f(ŷ)∥ ≤ 82ϵ, where △f =
f(xint)−minx f(x).

Among the existing methods, Carmon et al. (2017) estab-

lished the O
(

△fL
1/2ρ1/4

ϵ7/4
log

L△f

ϵ

)
complexity to find an

ϵ-approximate first-order stationary point, which has the ad-
ditional O(log 1

ϵ ) factor compared with our one. The com-
plexity given in other literatures concentrating on second-
order stationary point, such as (Carmon et al., 2018; Agar-
wal et al., 2017; Carmon & Duchi, 2020; Jin et al., 2018),
also has the additional O(log 1

ϵ ) factor even for finding
first-order stationary point. Take (Jin et al., 2018) as the
example. Their Lemma 7 studies the first-order stationary
point. Their proof in Lemmas 9 and 17 is built upon the
analysis for strongly convex AGD, which generally needs
O(
√
L/µ log 1

ϵ ) iterations such that the gradient norm will
be less than ϵ, and thus the O(log 1

ϵ ) factor appears.

3. Proof of the Theorem
Define K to be the iteration number when the “if condition”
triggers, that is,

K = min
k

{
k

∣∣∣∣∣k
k−1∑
t=0

∥xt+1 − xt∥2 > B2

}
.

Denote the iterations from k = 0 to k = K to be one
epoch. Then for each epoch except the last one, we have
1 ≤ K ≤ K,

K
K−1∑
t=0

∥xt+1 − xt∥2 > B2, (2a)

∥xk − x0∥2 ≤ k

k−1∑
t=0

∥xt+1 − xt∥2 ≤ B2,∀k < K, (2b)

∥yk−x0∥≤∥xk−x0∥+∥xk−xk−1∥≤2B, ∀k<K. (2c)

For the last epoch, that is, the “if condition” does not trigger
and the while loop breaks until k = K, we have

∥xk − x0∥2 ≤ k

k−1∑
t=0

∥xt+1 − xt∥2 ≤ B2,∀k ≤ K, (3a)

∥yk − x0∥ ≤ 2B, ∀k ≤ K. (3b)

We will show in Sections 3.1 and 3.2 that the function value
decreases with a magnitude at least O(ϵ1.5) in each epoch
except the last one. Thus the algorithm terminates in at
most O(ϵ−1.5) epochs, and accordingly O(ϵ−1.75) gradient
computations since each epoch needs at most O(ϵ−0.25)
iterations. In the last epoch, we will show that the gradient
norm at the output iterate is less thanO(ϵ), which is detailed
in Section 3.3.

3.1. Large Gradient of ∥∇f(yK−1)∥

We first consider the case when ∥∇f(yK−1)∥ is large.
Lemma 3.1. Suppose that Assumption 2.1 holds. Let η ≤
1
4L and 0 ≤ θ ≤ 1. When the “if condition” triggers and
∥∇f(yK−1)∥ > B

η , then we have

f(xK)− f(x0) ≤ −B2

4η
.

Proof. From the L-gradient Lipschitz condition, we have

f(xk+1)

≤f(yk) +
〈
∇f(yk),xk+1 − yk

〉
+

L

2
∥xk+1 − yk∥2

=f(yk)− η∥∇f(yk)∥2 + Lη2

2
∥∇f(yk)∥2

≤f(yk)− 7η

8
∥∇f(yk)∥2,

(4)

where we use η ≤ 1
4L . From the L-gradient Lipschitz, we

also have

f(xk) ≥ f(yk) +
〈
∇f(yk),xk − yk

〉
− L

2
∥xk − yk∥2.

So we have

f(xk+1)− f(xk)

≤−
〈
∇f(yk),xk−yk

〉
+

L

2
∥xk−yk∥2− 7η

8
∥∇f(yk)∥2

=
1

η

〈
xk+1−yk,xk−yk

〉
+
L

2
∥xk−yk∥2− 7η

8
∥∇f(yk)∥2

=
1

2η

(
∥xk+1 − yk∥2 + ∥xk − yk∥2 − ∥xk+1 − xk∥2

)
+

L

2
∥xk − yk∥2 − 7η

8
∥∇f(yk)∥2

a
≤ 5

8η
∥xk − yk∥2 − 1

2η
∥xk+1 − xk∥2 − 3η

8
∥∇f(yk)∥2

b
≤ 5

8η
∥xk − xk−1∥2 − 1

2η
∥xk+1 − xk∥2 − 3η

8
∥∇f(yk)∥2,
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where we use L ≤ 1
4η in

a
≤ and ∥xk − yk∥ = (1 −

θ)∥xk − xk−1∥ ≤ ∥xk − xk−1∥ in
b
≤. Summing over

k = 0, · · · ,K − 1 and using x0 = x−1, we have

f(xK)− f(x0)

≤ 1

8η

K−2∑
k=0

∥xk+1 − xk∥2 − 3η

8

K−1∑
k=0

∥∇f(yk)∥2

c
≤B2

8η
− 3η

8
∥∇f(yK−1)∥2

d
≤ B2

8η
− 3B2

8η
≤ −B2

4η
,

where we use (2b) in
c
≤ and ∥∇f(yK−1)∥ > B

η in
d
≤.

3.2. Small Gradient of ∥∇f(yK−1)∥

If ∥∇f(yK−1)∥ ≤ B
η , then from (2c) we have

∥xK − x0∥ ≤ ∥yK−1 − x0∥+ η∥∇f(yK−1)∥ ≤ 3B.

For each epoch, denote H = ∇2f(x0) and H = UΛUT

to be its eigenvalue decomposition with U,Λ ∈ Rd×d. Let
λj be the jth eigenvalue. Denote x̃ = UTx, ỹ = UTy,
and ∇̃f(y) = UT∇f(y). Let x̃j and ∇̃jf(y) be the jth
element of x̃ and ∇̃f(y), respectively. From the ρ-Hessian
Lipschitz assumption, we have

f(xK)− f(x0)

≤
〈
∇f(x0),xK − x0

〉
+

1

2
(xK − x0)TH(xK − x0)

+
ρ

6
∥xK − x0∥3

=
〈
∇̃f(x0), x̃K − x̃0

〉
+

1

2
(x̃K − x̃0)TΛ(x̃K − x̃0)

+
ρ

6
∥xK − x0∥3

≤g(x̃K)− g(x̃0) + 4.5ρB3,

(5)

where we denote

g(x) =
〈
∇̃f(x0),x− x̃0

〉
+

1

2
(x− x̃0)TΛ(x− x̃0),

gj(x) =
〈
∇̃jf(x

0), x− x̃0
j

〉
+

1

2
λj(x− x̃0

j )
2.

Denoting

δ̃kj = ∇̃jf(y
k)−∇gj(ỹk

j ), δ̃k = ∇̃f(yk)−∇g(ỹk),

then the iterations can be rewritten as

ỹk
j = x̃k

j + (1− θ)(x̃k
j − x̃k−1

j ), (6a)

x̃k+1
j = ỹk

j − η∇̃jf(y
k) = ỹk

j − η∇gj(ỹk
j )− ηδ̃kj , (6b)

and ∥δ̃k∥ can be bounded as

∥δ̃k∥

=∥∇̃f(yk)− ∇̃f(x0)− Λ(ỹk − x̃0)∥
=∥∇f(yk)−∇f(x0)−H(yk − x0)∥

=

∥∥∥∥(∫ 1

0

∇2f(x0 + t(yk − x0))−H

)
(yk − x0)dt

∥∥∥∥
≤ρ

2
∥yk − x0∥2 ≤ 2ρB2,

(7)

for any k < K, where we use the ρ-Hessian Lipschitz
assumption and (2c) in the last two inequalities.

From (5), to prove the decrease from f(x0) to f(xK), we
only need to study g(x̃K) − g(x̃0), that is, the decrease
of g(x). Iterations (6a) and (6b) can be viewed as apply-
ing AGD to the quadratic approximation g(x) coordinately
with the approximation error δ̃k, which can be controlled
within O(ρB2). The quadratic function g(x) equals to the
sum of d scalar functions gj(xj). We decompose g(x) into∑

j∈S1
gj(xj) and

∑
j∈S2

gj(xj), where

S1 =

{
j : λj ≥ −

θ

η

}
, S2 =

{
j : λj < −

θ

η

}
.

We see that gj(x) is approximate convex when j ∈ S1, and
strongly concave when j ∈ S2.

It is pointed out in (Jin et al., 2018) that the major challenge
in analyzing nonconvex momentum-based methods is that
the objective function does not decrease monotonically. To
overcome this issue, Jin et al. (2018) designs a potential
function and uses the negative curvature exploitation when
the objective is very nonconvex to guarantee the decrease
of the potential function. An open problem is asked in
Section 5 of (Jin et al., 2018) whether the negative curvature
exploitation is necessary for the fast rate.

In contrast with (Jin et al., 2018), in this paper we establish
the approximate decrease of some specified potential func-
tion when j ∈ S1, as shown in (9), and the approximate
decrease of gj(x) when j ∈ S2, given in (12). Thus, the
negative curvature exploitation is avoided. Putting the two
cases together, we can show the decrease of f(x) in each
epoch.

We first consider
∑

j∈S1
gj(xj) in the following lemma.

Lemma 3.2. Suppose that Assumption 2.1 holds. Let η ≤
1
4L and 0 ≤ θ ≤ 1. When the “if condition” triggers and
∥∇f(yK−1)∥ ≤ B

η , then we have∑
j∈S1

gj(x̃
K
j )−

∑
j∈S1

gj(x̃
0
j )

≤−
∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
8ηρ2B4K

θ
.

(8)
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Proof. Since gj(x) is quadratic, we have

gj(x̃
k+1
j )

=gj(x̃
k
j ) +

〈
∇gj(x̃k

j ), x̃
k+1
j − x̃k

j

〉
+

λj

2
|x̃k+1

j − x̃k
j |2

a
=gj(x̃

k
j )−

1

η

〈
x̃k+1
j − ỹk

j + ηδ̃kj , x̃
k+1
j − x̃k

j

〉
+
〈
∇gj(x̃k

j )−∇gj(ỹk
j ), x̃

k+1
j − x̃k

j

〉
+

λj

2
|x̃k+1

j − x̃k
j |2

=gj(x̃
k
j )−

1

η

〈
x̃k+1
j − ỹk

j , x̃
k+1
j − x̃k

j

〉
−
〈
δ̃kj , x̃

k+1
j − x̃k

j

〉
+ λj

〈
x̃k
j − ỹk

j , x̃
k+1
j − x̃k

j

〉
+

λj

2
|x̃k+1

j − x̃k
j |2

=gj(x̃
k
j )+

1

2η

(
|x̃k

j − ỹk
j |2−|x̃k+1

j − ỹk
j |2−|x̃k+1

j − x̃k
j |2
)

−
〈
δ̃kj , x̃

k+1
j − x̃k

j

〉
+

λj

2

(
|x̃k+1

j − ỹk
j |2 − |x̃k

j − ỹk
j |2
)

≤gj(x̃k
j )+

1

2η

(
|x̃k

j − ỹk
j |2−|x̃k+1

j − ỹk
j |2−|x̃k+1

j − x̃k
j |2
)

+
1

2α
|δ̃kj |2+

α

2
|x̃k+1

j −x̃k
j |2+

λj

2

(
|x̃k+1

j −ỹk
j |2−|x̃k

j−ỹk
j |2
)
,

where we use (6b) in a
=. Using L ≥ λj ≥ − θ

η when j ∈

S1 = {j : λj ≥ − θ
η} and

(
− 1

2η +
λj

2

)
|x̃k+1

j − ỹk
j |2 ≤(

−2L+ L
2

)
|x̃k+1

j − ỹk
j |2 ≤ 0, we have for each j ∈ S1,

gj(x̃
k+1
j ) ≤gj(x̃k

j ) +
1

2η

(
|x̃k

j − ỹk
j |2 − |x̃k+1

j − x̃k
j |2
)

+
1

2α
|δ̃kj |2 +

α

2
|x̃k+1

j − x̃k
j |2 +

θ

2η
|x̃k

j − ỹk
j |2

b
=gj(x̃

k
j ) +

(1− θ)2(1 + θ)

2η
|x̃k

j − x̃k−1
j |2

−
(

1

2η
− α

2

)
|x̃k+1

j − x̃k
j |2 +

1

2α
|δ̃kj |2,

where we use (6a) in b
=. Defining the potential function

ℓk+1
j = gj(x̃

k+1
j ) +

(1− θ)2(1 + θ)

2η
|x̃k+1

j − x̃k
j |2,

we have

ℓk+1
j ≤ℓkj +

1

2α
|δ̃kj |2

−
(

1

2η
− α

2
− (1−θ)2(1+θ)

2η

)
|x̃k+1

j − x̃k
j |2

c
≤ℓkj −

3θ

8η
|x̃k+1

j − x̃k
j |2 +

2η

θ
|δ̃kj |2,

(9)

where we let α = θ
4η in

c
≤ such that 1

2η−
θ
8η−

(1−θ)2(1+θ)
2η =

3θ
8η + θ2

2η −
θ3

2η ≥
3θ
8η . Summing over k = 0, 1, · · · ,K − 1

and j ∈ S1, using x0 − x−1 = 0, we have∑
j∈S1

gj(x̃
K
j ) ≤

∑
j∈S1

ℓKj

≤
∑
j∈S1

gj(x̃
0
j )−

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2+
2η

θ

K−1∑
k=0

∥δ̃k∥2

d
≤
∑
j∈S1

gj(x̃
0
j )−

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
8ηρ2B4K

θ
,

where we use (7) in
d
≤.

Next, we consider
∑

j∈S2
gj(xj).

Lemma 3.3. Suppose that Assumption 2.1 holds. Let η ≤
1
4L and 0 ≤ θ ≤ 1. When the “if condition” triggers and
∥∇f(yK−1)∥ ≤ B

η , then we have∑
j∈S2

gj(x̃
K
j )−

∑
j∈S2

gj(x̃
0
j )

≤−
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
2ηρ2B4K

θ
.

(10)

Proof. Denoting vj = x̃0
j − 1

λj
∇̃jf(x

0), gj(x) can be
rewritten as

gj(x) =
λj

2

(
x− x̃0

j +
1

λj
∇̃jf(x

0)

)2

− 1

2λj
|∇̃jf(x

0)|2

=
λj

2
(x− vj)

2 − 1

2λj
|∇̃jf(x

0)|2.

For each j ∈ S2 = {j : λj < − θ
η}, we have

gj(x̃
k+1
j )− gj(x̃

k
j )

=
λj

2
|x̃k+1

j − vj |2 −
λj

2
|x̃k

j − vj |2

=
λj

2
|x̃k+1

j − x̃k
j |2 + λj

〈
x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
≤− θ

2η
|x̃k+1

j − x̃k
j |2 + λj

〈
x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
.

(11)

So we only need to bound the second term. From (6b) and
(6a), we have

x̃k+1
j − x̃k

j

=ỹk
j − x̃k

j − η∇gj(ỹk
j )− ηδ̃kj

=(1− θ)(x̃k
j − x̃k−1

j )− η∇gj(ỹk
j )− ηδ̃kj

=(1− θ)(x̃k
j − x̃k−1

j )− ηλj(ỹ
k
j − vj)− ηδ̃kj

=(1− θ)(x̃k
j − x̃k−1

j )

− ηλj(x̃
k
j − vj + (1− θ)(x̃k

j − x̃k−1
j ))− ηδ̃kj .
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So for each j ∈ S2, we have〈
x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
=(1− θ)

〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
− ηλj |x̃k

j − vj |2

− ηλj(1− θ)
〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
− η

〈
δ̃kj , x̃

k
j − vj

〉
a
≥(1− θ)

〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
− ηλj |x̃k

j − vj |2

+
ηλj(1− θ)

2

(
|x̃k

j − x̃k−1
j |2 + |x̃k

j − vj |2
)

+
η

2λj(1 + θ)
|δ̃kj |2 +

ηλj(1 + θ)

2
|x̃k

j − vj |2

=(1− θ)
〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
+

ηλj(1− θ)

2
|x̃k

j − x̃k−1
j |2 + η

2λj(1 + θ)
|δ̃kj |2

=(1− θ)
〈
x̃k
j − x̃k−1

j , x̃k−1
j − vj

〉
+ (1− θ)|x̃k

j − x̃k−1
j |2

+
ηλj(1− θ)

2
|x̃k

j − x̃k−1
j |2 + η

2λj(1 + θ)
|δ̃kj |2

b
≥(1− θ)

〈
x̃k
j − x̃k−1

j , x̃k−1
j − vj

〉
+

η

2λj
|δ̃kj |2,

where we use the fact that λj < 0 when j ∈ S2 in
a
≥ and(

1+
ηλj

2

)
(1−θ)≥

(
1− ηL

2

)
(1−θ)≥0 in

b
≥. So we have〈

x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
≥(1− θ)k

〈
x̃1
j − x̃0

j , x̃
0
j − vj

〉
+

η

2λj

k∑
t=1

(1− θ)k−t|δ̃tj |2

c
=− (1− θ)kηλj |x̃0

j − vj |2 +
η

2λj

k∑
t=1

(1− θ)k−t|δ̃tj |2

d
≥ η

2λj

k∑
t=1

(1− θ)k−t|δ̃tj |2,

where we use

x̃1
j − x̃0

j =x̃1
j − ỹ0

j = −η∇̃jf(y
0) = −η∇̃jf(x

0)

=− η∇gj(x̃0
j ) = −ηλj(x̃

0
j − vj)

in c
= and λj < 0 in

d
≥. Plugging into (11) and using λj < 0

again, we have

gj(x̃
k+1
j )− gj(x̃

k
j )

≤− θ

2η
|x̃k+1

j − x̃k
j |2 +

η

2

k∑
t=1

(1− θ)k−t|δ̃tj |2.
(12)

Summing over k = 0, 1, · · · ,K − 1 and j ∈ S2, we have∑
j∈S2

gj(x̃
K
j )−

∑
j∈S2

gj(x̃
0
j )

≤−
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j −x̃k

j |2+
η

2

K−1∑
k=0

k∑
t=1

(1− θ)k−t∥δ̃t∥2

e
≤−

∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j −x̃k

j |2+2ηρ2B4
K−1∑
k=0

k∑
t=1

(1− θ)k−t

≤−
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
2ηρ2B4K

θ
,

where we use (7) in
e
≤.

Putting Lemmas 3.2 and 3.3 together, we can show the
decrease of f(x) in each epoch.

Lemma 3.4. Suppose that Assumption 2.1 holds. Under the
parameter settings in Theorem 2.2, when the “if condition”
triggers and ∥∇f(yK−1)∥ ≤ B

η , then we have

f(xK)− f(x0) ≤ −ϵ3/2
√
ρ
.

Proof. Summing over (8) and (10), we have

g(x̃K)− g(x̃0) =
∑

j∈S1∪S2

gj(x̃
K
j )− gj(x̃

0
j )

≤− 3θ

8η

K−1∑
k=0

∥x̃k+1 − x̃k∥2 + 10ηρ2B4K
θ

=− 3θ

8η

K−1∑
k=0

∥xk+1 − xk∥2 + 10ηρ2B4K
θ

a
≤− 3θB2

8ηK
+

10ηρ2B4K
θ

,

where we use (2a) in
a
≤. Plugging into (5) and usingK ≤ K,

we have

f(xK)− f(x0)

≤− 3θB2

8ηK
+

10ρ2B4ηK
2θ

+ 4.5ρB3

≤− 3θB2

8ηK
+

10ρ2B4ηK

2θ
+ 4.5ρB3 ≤ −ϵ3/2

√
ρ
.

(13)

3.3. Small Gradient in the Last Epoch

In this section, we prove Theorem 2.2. The main job is to
establish ∥∇f(ŷ)∥ ≤ O(ϵ) in the last epoch.

Proof. From Lemmas 3.1 and 3.4, we have

f(xK)− f(x0) ≤ −min

{
ϵ3/2
√
ρ
,
ϵL

ρ

}
. (14)

Note that at the beginning of each epoch in Algorithm 1,
we set x0 to be the last iterate xK in the previous epoch.
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Summing (14) over all epochs, say N total epochs, we have

min
x

f(x)− f(xint) ≤ −N min

{
ϵ3/2
√
ρ
,
ϵL

ρ

}
.

So the algorithm will terminate in at most △f
√
ρ

ϵ3/2
epochs.

Since each epoch needs at most K = 1
2

(
L2

ϵρ

)1/4
gradient

evaluations, the total number of gradient evaluations must

be less than △fL
1/2ρ1/4

ϵ7/4
.

Now, we consider the last epoch. Denote ỹ = UT ŷ =
1

K0+1

∑K0

k=0 U
Tyk = 1

K0+1

∑K0

k=0 ỹ
k. Since g is

quadratic, we have

∥∇g(ỹ)∥ =

∥∥∥∥∥ 1

K0 + 1

K0∑
k=0

∇g(ỹk)

∥∥∥∥∥
a
=

1

η(K0 + 1)

∥∥∥∥∥
K0∑
k=0

(
x̃k+1 − ỹk + ηδ̃k

)∥∥∥∥∥
=

1

η(K0+1)

∥∥∥∥∥
K0∑
k=0

(
x̃k+1−x̃k−(1−θ)(x̃k−x̃k−1)+ηδ̃k

)∥∥∥∥∥
b
=

1

η(K0+1)

∥∥∥∥∥x̃K0+1− x̃0− (1−θ)(x̃K0− x̃0)+η

K0∑
k=0

δ̃k

∥∥∥∥∥
=

1

η(K0 + 1)

∥∥∥∥∥x̃K0+1 − x̃K0 + θ(x̃K0 − x̃0) + η

K0∑
k=0

δ̃k

∥∥∥∥∥
≤ 1

η(K0+1)

(
∥x̃K0+1−x̃K0∥+θ∥x̃K0−x̃0∥+η

K0∑
k=0

∥δ̃k∥

)
c
≤ 2

ηK
∥x̃K0+1 − x̃K0∥+ 2θB

ηK
+ 2ρB2, (15)

where we use (6b) in a
=, x−1 = x0 in b

=, K0 +

1 ≥ K
2 , (3a), (7), and (3b) in

c
≤. From K0 =

argmin⌊K
2 ⌋≤k≤K−1 ∥xk+1 − xk∥, we have

∥xK0+1 − xK0∥2

≤ 1

K − ⌊K/2⌋

K−1∑
k=⌊K/2⌋

∥xk+1 − xk∥2

≤ 1

K − ⌊K/2⌋

K−1∑
k=0

∥xk+1 − xk∥2
d
≤ 2B2

K2
,

(16)

where we use (3a) in
d
≤. On the other hand, we also have

∥∇f(ŷ)∥ =∥∇̃f(ŷ)∥ ≤ ∥∇g(ỹ)∥+ ∥∇̃f(ŷ)−∇g(ỹ)∥

=∥∇g(ỹ)∥+ ∥∇̃f(ŷ)− ∇̃f(x0)−Λ(ỹ− x̃0)∥
=∥∇g(ỹ)∥+ ∥∇f(ŷ)−∇f(x0)−H(ŷ−x0)∥

≤∥∇g(ỹ)∥+ ρ

2
∥ŷ − x0∥2

e
≤ ∥∇g(ỹ)∥+ 2ρB2,

where we use ∥ŷ − x0∥ ≤ 1
K0+1

∑K0

k=0 ∥yk − x0∥ ≤ 2B

from (3b) in
e
≤. So we have

∥∇f(ŷ)∥ ≤ 2
√
2B

ηK2
+

2θB

ηK
+ 4ρB2 ≤ 82ϵ.

Remark 3.5. The purpose of using k
∑k−1

t=0 ∥xt+1−xt∥2 >
B2 in the “if condition”, rather than ∥xk−x0∥ ≥ B, and the
special average as the output in Algorithm 1 is to establish
(16).

3.4. Discussion on the Acceleration Mechanism

When we replace the AGD iterations in Algorithm 1 by the
gradient descent iterations xk+1 = xk − η∇f(xk) with
η = 1

4L , similar to (4), the descent property in each epoch
becomes

f(xK)− f(x0) ≤ − 7

8η

K−1∑
k=0

∥xk+1 − xk∥2 ≤ −7B2

8ηK
,

and the gradient norm at the averaged output x̂ =
1
K

∑K−1
k=0 xk is bounded as

∥∇g(x̂)∥ ≤ 1

ηK
∥xK − x0∥+ 2ρB2 ≤ B

ηK
+ 2ρB2.

By setting B =
√

ϵ
ρ and K = L√

ϵρ , we have the O(ϵ−2)

complexity.

Comparing with (13) and (15), respectively, we see that the
momentum parameter θ is crucial to speedup the conver-
gence because it allows smaller K, that is, 1

ϵ1/4
v.s. 1

ϵ1/2
for

AGD and GD, respectively. Accordingly, smaller K results
in less total gradient computations. Thus, the acceleration
mechanism for nonconvex optimization seems irrelevant
to the analysis of convex AGD. It is just because of the
momentum.

4. Extension to Jin’s Method
In this section, we extend our analysis to the method pro-
posed in (Jin et al., 2018), and detail the method in Algo-
rithm 2. No perturbation is added since we do not consider
second-order stationary point. Except the perturbation and
that we specify the stopping criteria and the output, as well
as that we rewrite the algorithm in epochs, Algorithm 2 is
equivalent to the one in (Jin et al., 2018). However, we give
a slightly faster convergence rate by a O(log 1

ϵ ) factor with
much simpler proofs.

Define K = k + 1 when k resets to 0. Denote the iterations
from k = 0 to k = K to be one epoch. For each epoch, we
have three cases:
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Algorithm 2 AGD-Jin (xint)
Initialize x0 = xint, v0 = 0, k = 0.
while k < K do
yk = xk + (1− θ)vk

xk+1 = yk − η∇f(yk)
vk+1 = xk+1 − xk

if f(xk)< f(yk)+
〈
∇f(yk),xk−yk

〉
− γ

2 ∥x
k−yk∥2

then
xk+1 ←Negative Curvature Exploitation(xk,vk, s)
x0 = xk+1, v0 = vk+1 = 0, k = 0

else if (k + 1)
∑k

t=0 ∥xt+1 − xt∥2 > B2 then
x0 = xk+1, v0 = vk+1, k = 0

else
k = k + 1

end if
end while
K1 = argmin1≤k≤⌈K

3 ⌉ ∥xk − xk−1∥
K2 = argmin⌊ 2K

3 ⌋≤k≤K−1 ∥xk+1 − xk∥
Output ŷ = 1

K2−K1+1

∑K2

k=K1
yk

Algorithm 3 Negative Curvature Exploitation(xk,vk, s)

if ∥vk∥ ≥ s then
xk+1 = xk

else
δ = svk/∥vk∥
xk+1 = argminxk+δ,xk−δ f(x)

end if
Return xk+1

1. The negative curvature exploitation (NCE) is employed
at the last iteration.

2. The condition (k + 1)
∑k

t=0 ∥xt+1 − xt∥2 > B2 trig-
gers at the last iteration. Note that in this case, AGD
does not restart because x0 − x−1 = v0 ̸= 0.

3. None of the above two cases occurs, and the while loop
breaks until k = K. This is the last epoch.

Define the potential function ℓk = f(xk) + 1−θ
2η ∥v

k∥2.
We need the following two lemmas, which can be adapted
slightly from Lemmas 4 and 5 in (Jin et al., 2018).

Lemma 4.1. Suppose that Assumption 2.1 holds. Let η ≤
1
2L and θ ∈ [2ηγ, 1

2 ]. If NCE is not performed at iteration
k, then we have ℓk+1 ≤ ℓk − θ

2η∥x
k+1 − xk∥2.

Lemma 4.2. Suppose that Assumption 2.1 holds. Let θ ≤ 1
2 .

If NCE is performed at iteration k, then we have ℓk+1 ≤
ℓk −min

{
(1−θ)s2

2η , (γ−2ρs)s2

2

}
.

Set γ = θ2

η , s = γ
4ρ , and the other parameters the same as

those in Theorem 2.2. In Case 1, we know from Lemma

4.2 that the potential function decreases with a magnitude
at least 64ϵ1.5√

ρ at the last iteration, and it does not increase in
the previous iterations from Lemma 4.1. So we have

ℓK ≤ ℓ0 −min

{
64ϵ1.5
√
ρ

,
16ϵL

ρ

}
.

In Case 2, we have

ℓK − ℓ0 ≤− θ

2η

K−1∑
k=0

∥xk+1 − xk∥2

≤− θB2

2ηK
≤ − θB2

2ηK
= −8ϵ1.5

√
ρ
,

where we use K
∑K−1

t=0 ∥xt+1 − xt∥2 > B2. So the al-
gorithm will terminate in at most △f

√
ρ

ϵ3/2
epochs, and each

epoch needs at most K gradient and function evaluations. In
the last epoch, similar to the proof of Theorem 2.2, we also
have ∥∇f(ŷ)∥ ≤ O(ϵ). So we have the following theorem.

Theorem 4.3. Suppose that Assumption 2.1 holds. Let
η = 1

4L , B =
√

ϵ
ρ , θ = 4

(
ϵρη2

)1/4
, K = 1

θ , γ = θ2

η ,

s = γ
4ρ . Then Algorithm 2 terminates in at most △fL

1/2ρ1/4

ϵ7/4

gradient and function evaluations and the output satisfies
∥∇f(ŷ)∥ ≤ 267ϵ, where△f = f(xint)−minx f(x).

Our complexity improves over theO(ϵ−7/4 log 1
ϵ ) one given

in (Jin et al., 2018) by the O(log 1
ϵ ) factor. Although Jin

et al. (2018) focus on finding second-order stationary point,
their complexity to find approximate first-order stationary
point also has the additional O(log 1

ϵ ) factor, see the rea-
sons discussed in Section 2. Our analysis for Case 3 above
does not invoke the analysis for strongly convex AGD, and
moreover, it is much simpler. The proof in (Jin et al., 2018),
although very novel, is quite involved, especially the spec-
tral analysis of the second-order system. It should be noted
that we measure the convergence rate at the average of the it-
erates. When measuring at the final iterate, which is always
used in practice, we should use the proof in (Jin et al., 2018),
and we conjecture that the O(log 1

ϵ ) factor in unlikely to
cancel.

5. Conclusion
This paper proposes a simple restarted AGD for general
nonconvex problems under the gradient Lipschitz and Hes-
sian Lipschitz assumptions. Our simple method finds an
ϵ-approximate first-order stationary point inO(ϵ−7/4) gradi-
ent computations with simple proofs, which improves over
the state-of-the-art complexity by the O(log 1

ϵ ) factor. We
hope our analysis may lead to a better understanding of the
acceleration mechanism for nonconvex optimization.
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A. Proof of Theorem 4.3
Proof. We only need to prove ∥∇f(ŷ)∥ ≤ O(ϵ) in the last
epoch. Denote

h(x) =
〈
∇f(x0),x− x0

〉
+

1

2
(x− x0)TH(x− x0),

δk = ∇f(yk)−∇h(yk).

Similar to the deduction in Section 3.2, we have

xk+1 = yk − η∇h(yk)− ηδk,

∥δk∥ ≤ ρ

2
∥yk − x0∥2 ≤ 2ρB2, (17a)

where we use

∥xk−x0∥2≤k

k−1∑
t=0

∥xt+1−xt∥2≤B2,∀k ≤ K, (18a)

∥yk − x0∥ ≤ 2B, ∀k ≤ K, (18b)

in the last epoch. Similar to the proof of Theorem 2.2, we
have

∥∇h(ŷ)∥ =

∥∥∥∥∥ 1

K2 −K1 + 1

K2∑
k=K1

∇h(yk)

∥∥∥∥∥
=

1

η(K2 −K1 + 1)

∥∥∥∥∥
K2∑

k=K1

(
xk+1 − yk + ηδk

)∥∥∥∥∥ ,
and∥∥∥∥∥

K2∑
k=K1

(
xk+1 − yk + ηδk

)∥∥∥∥∥
=

∥∥∥∥∥
K2∑

k=K1

(
xk+1 − xk − (1− θ)(xk − xk−1) + ηδk

)∥∥∥∥∥
=

∥∥∥∥∥xK2+1 − xK1 − (1− θ)(xK2 − xK1−1) + η

K2∑
k=K1

δk

∥∥∥∥∥
=
∥∥xK2+1 − xK2 − xK1 + xK1−1 + θ(xK2 − xK1−1)

+η

K2∑
k=K1

δk

∥∥∥∥∥
≤∥xK2+1 − xK2∥+ ∥xK1 − xK1−1∥+ θ∥xK2 − x0∥

+ θ∥xK1−1 − x0∥+ η

K2∑
k=K1

∥δk∥.

From K2 −K1 + 1 ≥ K
3 , (18a), and (17a), we have

∥∇h(ŷ)∥ ≤ 3

ηK
∥xK2+1 − xK2∥

+
3

ηK
∥xK1 − xK1−1∥+ 6θB

ηK
+ 2ρB2.

On the other hand, from the definitions of K1 and K2, we
have

∥xK2+1 − xK2∥2

≤ 1

K − ⌊2K/3⌋

K−1∑
k=⌊2K/3⌋

∥xk+1 − xk∥2

≤ 1

K − ⌊2K/3⌋

K−1∑
k=0

∥xk+1 − xk∥2 ≤ 3B2

K2
,

and

∥xK1 − xK1−1∥2 ≤ 1

⌈K3 ⌉

⌈K
3 ⌉∑

k=1

∥xk − xk−1∥2

≤ 1

⌈K3 ⌉

K−1∑
k=0

∥xk+1 − xk∥2 ≤ 3B2

K2
.

So we have

∥∇h(ŷ)∥ ≤ 6
√
3B

ηK2
+

6θB

ηK
+ 2ρB2,

and

∥∇f(ŷ)∥ ≤∥∇h(ŷ)∥+ ∥∇f(ŷ)−∇h(ŷ)∥

≤∥∇h(ŷ)∥+ ρ

2
∥ŷ − x0∥2

≤6
√
3B

ηK2
+

6θB

ηK
+ 4ρB2 ≤ 267ϵ.

B. Discussion on the Second-order Stationary
Point

Algorithm 1 can also find ϵ-approximate second-order sta-
tionary point, defined as

∥∇f(x)∥ ≤ ϵ, λmin(∇2f(x)) ≥ −√ϵρ.

We follow (Jin et al., 2017; 2018) to add the perturbations
generated uniformly from the ball B(r) with radius r and
center 0. The method is presented in Algorithm 4 and the
complexity is given in Theorem B.1. We see that Algorithm
4 needs at most O(ϵ−7/4 log d

ζϵ ) gradient computations to
find an ϵ-approximate second-order stationary point with
probability at least 1− ζ, where d is the dimension of x in
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Algorithm 4 Perturbed Restarted AGD (xint, ϵ)
Initialize x−1 = x0 = xint + ξ, ξ ∼Unif(B(r)), k = 0.
while k < K do
yk = xk + (1− θ)(xk − xk−1)
xk+1 = yk − η∇f(yk)
k = k + 1
if k
∑k−1

t=0 ∥xt+1 − xt∥2 > B2 then
x−1 = x0 = xk + ξ, ξ ∼Unif(B(r)), k = 0

end if
end while
K0 = argmin⌊K

2 ⌋≤k≤K−1 ∥xk+1 − xk∥
Output ŷ = 1

K0+1

∑K0

k=0 y
k

problem (1). This complexity is the same with the one given
in (Jin et al., 2018). Comparing with Theorem 2.2, we see
that there is a O(log d

ζϵ ) term. Currently, it is unclear how
to remove it.

Theorem B.1. Suppose that Assumption 2.1 holds. Let
χ = O(log d

ζϵ ), η = 1
4L , B = 1

288χ2

√
ϵ
ρ , θ = 1

2

(
ϵρ
L2

)1/4
,

K = 2χ
θ , r = min{LB2

4C , B√
2
, θB
20K ,

√
θB2

2K } = O(ϵ) for
some constant C. Then Algorithm 1 terminates in at most

O
(

△fL
1/2ρ1/4χ6

ϵ7/4

)
gradient computations and the output

satisfies ∥∇f(ŷ)∥ ≤ ϵ, where△f = f(xint)−minx f(x).
It also satisfies λmin(∇2f(ŷ)) ≥ −1.011√ϵρ with proba-
bility at least 1− ζ.

Proof. Denote xt,k to be the iterate in the tth epoch. From
Lemmas 3.1 and 3.4, we have when the “if condition” trig-
gers,

f(xt,K)− f(xt,0) ≤ −B2

4η

if ∥∇f(yK−1)∥ > B
η , and

f(xt,K)− f(xt,0) ≤ −3θB2

8ηK
+

10ρ2B4ηK

2θ
+ 4.5ρB3

if ∥∇f(yK−1)∥ ≤ B
η . From the L-gradient Lipschitz, we

have

f(xt+1,0)− f(xt,K)

≤
〈
∇f(xt,K),xt+1,0 − xt,K〉+ L

2
∥xt+1,0 − xt,K∥2

=
〈
∇f(xt,K), ξt

〉
+

L

2
∥ξt∥2 ≤ ∥∇f(xt,K)∥r + Lr2

2
.

We say that ∥∇f(xt,K)∥ is bounded. Otherwise, perform-
ing one gradient descent step z = xt,K − η∇f(xt,K), sim-
ilar to (4), we have f(z) ≤ f(xt,K) − 7η

8 ∥∇f(x
t,K)∥2 ∼

−∞, which contradicts with minx f(x) > −∞. Letting
∥∇f(xt,K)∥ ≤ C for all epochs, we have

f(xt+1,0)− f(xt,K) ≤ Cr +
Lr2

2
≤ B2

8η
,

and

f(xt+1,0)− f(xt,0) ≤ −B2

8η
= − ϵL

165888ρχ4

if ∥∇f(yK−1)∥ > B
η . On the other hand, if

∥∇f(yK−1)∥ ≤ B
η , we have

∥∇f(xK)∥
≤∥∇f(yK−1)∥+ ∥∇f(xK)−∇f(yK−1)∥
≤∥∇f(yK−1)∥+ L∥xK − yK−1∥

=∥∇f(yK−1)∥+ Lη∥∇f(yK−1)∥ ≤ B

η
+ LB ≤ 5B

4η
.

So we have

f(xt+1,0)− f(xt,K) ≤ 5Br

4η
+

Lr2

2
≤ θB2

8ηK
,

and

f(xt+1,0)− f(xt,0) ≤− θB2

4ηK
+

10ρ2B4ηK

2θ
+ 4.5ρB3

≤− ϵ1.5

700000
√
ρχ5

.

So the algorithm will terminate in at most O(△f
√
ρχ5

ϵ3/2
)

epochs. Since each epoch needs at most K =

O(χ
(
L2/(ϵρ)

)1/4
) gradient evaluations, the total number

of gradient evaluations must be less than O(△fL
1/2ρ1/4χ6

ϵ7/4
).

Now, we consider the last epoch. Similar to the proof of
Theorem 2.2, we also have

∥∇f(ŷ)∥ ≤ 2
√
2B

ηK2
+

2θB

ηK
+ 4ρB2 ≤ ϵ

χ3
≤ ϵ.

If λmin(∇2f(xt,K)) ≥ −√ϵρ, from the perturbation theory
of eigenvalues (Hoffman & Wielandt, 1953), we have for
any j,

|λj(∇2f(ŷt+1))− λj(∇2f(xt,K))|
≤∥∇2f(ŷt+1)−∇2f(xt,K)∥2

≤ρ∥ŷt+1 − xt,K∥ ≤ ρ∥ŷt+1 − xt+1,0∥+ ρr
a
≤ 3ρB,

and

λj(∇2f(ŷt+1))

≥λj(∇2f(xt,K))− |λj(∇2f(ŷt+1))− λj(∇2f(xt,K))|
≥ −√ϵρ− 3ρB ≥ −1.011√ϵρ,
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where we use ∥ŷt+1 − xt+1,0∥ ≤ 1
K0+1

∑K0

k=0 ∥yt+1,k −

xt+1,0∥ ≤ 2B in
a
≤. Now, we consider

λmin(∇2f(xt,K)) < −√ϵρ. Define the stuck re-
gion in B(r) centered at xt,K to be the set of points starting
from which the “if condition” does not trigger in K
iterations, that is, the algorithm terminates and outputs a
saddle point. Similar to Lemma 8 in (Jin et al., 2018), we
know from Lemma B.2 that the probability of the starting
point xt+1,0 = xt,K + ξt located in the stuck region is less
than

r0Vd−1(r)

Vd(r)
≤ r0

√
d

r
= ζ,

where we let r0 = ζr√
d

. Thus, the output ŷ satisfies
λmin(∇2f(ŷ)) ≥ −1.011√ϵρ with probability at least
1− ζ.

Lemma B.2. Suppose that λmin(H) < −√ϵρ, where H =

∇2f(x). Let x′0 and x′′0 be at distance at most r from
x. Let x′−1

= x′0, x′′−1
= x′′0, and x′0 − x′′0 = r0e1,

where e1 is the minimum eigen-direction of H. Under the
parameter settings in Theorem B.1, running AGD starting
at x′0 and x′′0, respectively, then at least one of the iterates
triggers the “if condition”.

The proof of this lemma is almost the same as that of Lemma
18 in (Jin et al., 2018). We only list the sketch and the details
can be found in (Jin et al., 2018).

Proof. Denote wk = x′k − x′′k. From the update of AGD,
we have[
wk+1

wk

]
=

[
(2−θ)(I−ηH) −(1−θ)(I−ηH)

I 0

][
wk

wk−1

]
− η

[
(2− θ)△kwk − (1− θ)△kwk−1

0

]
=A

[
wk

wk−1

]
− η

[
ϕk

0

]
=Ak+1

[
w0

w0

]
− η

k∑
r=0

Ak−r

[
ϕr

0

]
,

and

wk = [I, 0]Ak

[
w0

w0

]
− η[I, 0]

k−1∑
r=0

Ak−1−r

[
ϕr

0

]
,

where △k =
∫ 1

0

(
∇2f(ty′k + (1− t)y′′k)−H

)
dt and

ϕk = (2− θ)△kwk − (1− θ)△kwk−1.

Assume that none of the iterates (x′0,x′1, · · · ,x′K) and
(x′′0,x′′1, · · · ,x′′K) trigger the “if condition”, which yield

∥x′k − x′0∥ ≤ B, ∥y′k − x′0∥ ≤ 2B, ∀k ≤ K,

∥x′′k − x′′0∥ ≤ B, ∥y′′k − x′′0∥ ≤ 2B, ∀k ≤ K.
(19)

We have

∥△k∥ ≤ρmax{∥y′k − x∥, ∥y′′k − x∥}

≤ρmax{∥y′k − x′0∥, ∥y′′k − x′′0∥}+ ρr ≤ 3ρB,

∥ϕk∥ ≤6ρB(∥wk∥+ ∥wk−1∥).

We can show the following inequality for all k ≤ K by
induction:∥∥∥∥∥η[I, 0]

k−1∑
r=0

Ak−1−r

[
ϕr

0

]∥∥∥∥∥ ≤ 1

2

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ .
It is easy to check the base case holds for k = 0. Assume
the inequality holds for all steps equal to or less than k.
Then we have

∥wk∥ ≤ 3

2

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ ,
∥ϕk∥ ≤ 18ρB

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ ,
by the monotonicity of

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ in k (Lemma 33 in

(Jin et al., 2018)). We also have∥∥∥∥∥η[I, 0]
k∑

r=0

Ak−r

[
ϕr

0

]∥∥∥∥∥ ≤ η

k∑
r=0

∥∥∥∥[I, 0]Ak−r

[
I
0

]∥∥∥∥
2

∥ϕr∥

≤ 18ρBη

k∑
r=0

∥∥∥∥[I, 0]Ak−r

[
I
0

]∥∥∥∥
2

∥∥∥∥[I, 0]Ar

[
w0

w0

]∥∥∥∥
a
= 18ρBη

k∑
r=0

|ak−r||ar − br|r0

b
≤ 18ρBη

k∑
r=0

(
2

θ
+ k + 1

)
|ak+1 − bk+1|r0

≤ 18ρBηK

(
2

θ
+K

)∥∥∥∥[I, 0]Ak+1

[
w0

w0

]∥∥∥∥ ,
where we define [ak,−bk] = [1, 0]Ak

min and Amin =[
(2− θ)(1− ηλmin) −(1− θ)(1− ηλmin)

1 0

]
, a
= uses the

fact that w0 = r0e1 is along the minimum eigenvector di-

rection of H,
b
≤uses Lemma 31 in (Jin et al., 2018). From

the parameter settings, we have 18ρBηK
(
2
θ +K

)
≤ 1

2 .
Therefore, the induction is proved, which yields

∥wK∥ ≥
∥∥∥∥[I, 0]AK

[
w0

w0

]∥∥∥∥−
∥∥∥∥∥η[I, 0]

K−1∑
r=0

AK−1−r

[
ϕr

0

]∥∥∥∥∥
≥1

2

∥∥∥∥[I, 0]AK

[
w0

w0

]∥∥∥∥ =
r0
2
|aK − bK |

c
≥θr0

4

(
1 +

θ

2

)K
d
≥ 5B,
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where
c
≥ uses Lemma 33 in (Jin et al., 2018) and ηλmin ≤

−θ2,
d
≥ uses K = 2

θ log
20B
θr0

. However, (19) yields

∥wK∥ ≤∥x′K − x′0∥+ ∥x′′K − x′′0∥

+ ∥x− x′0∥+ ∥x− x′′0∥ ≤ 2B + 2r ≤ 4B,

which makes a contradiction. Thus the assumption is wrong
and we conclude that at least one of the iterates trigger the
“if condition”.

C. A Continuation Extension
In Algorithm 1, we set B small such that the method may
restart frequently in the first few iterations. In this case,
Algorithm 1 almost reduces to the classical gradient descent.
To make use of the practical superiority of AGD in the first
few iterations, we can use a continuation strategy, at the
cost of introducing nested loops. The method is presented
in Algorithm 5, which gradually decreases the precision ϵ
in restarted AGD.

Algorithm 5 Restarted AGD with Continuation
Initialize z0, τ > 1, η, c < 1

256ρη2

for t = 0, 1, · · · , N do
zt+1 =Restarted AGD(zt, c

τt )
end for

Setting N = logτ
c
ϵ and denoting D = △fL

1/2ρ1/4, the
total complexity is

D

c7/4

N∑
t=0

τ7t/4 =
D

c7/4

N∑
t=0

(
τ7/4

)t
= D

τ7(N+1)/4 − 1

c7/4
(
τ7/4 − 1

)
=D

τ7/4(τN )7/4−1
c7/4

(
τ7/4 − 1

) =D
τ7/4

(
c
ϵ

)7/4−1
c7/4

(
τ7/4 − 1

)≤Dτ7/4ϵ−7/4

τ7/4 − 1
.

At the N th iteration, since we set the precision as c
τN = ϵ,

Algorithm 5 will output an ϵ-approximate first-order station-
ary point.

D. Efficient Implementation of the Average
Given x0,x1, · · · ,xK and y0,y1, · · · ,yK sequentially,
we want to find ŷ = 1

K0+1

∑K0

k=0 y
k efficiently, where

K0 = argmin⌊K
2 ⌋≤k≤K−1 ∥xk+1 − xk∥. We present the

implementation in Algorithm 6.

Similarly, we can also implement the average in Algorithm
2 efficiently.

Algorithm 6 Implementation of the Average
Initialize S1 = S2 = 0, K0 = 0
for k = 0, 1, · · · ,K − 1 do

if k ≤ ⌊K2 ⌋ then
S1 = S1 + yk, K0 = k

else
if ∥xK0+1 − xK0∥ < ∥xk+1 − xk∥ then
S2 = S2 + yk

else
S1 = S1 + S2 + yk, S2 = 0, K0 = k

end if
end if

end for
Output S1

K0+1

E. Preliminary Experiments
We follow (Carmon et al., 2017) to consider the robust linear
regression with the smooth biweight loss (Beaton & Tukey,
1974),

argmin
x∈Rd

1

m

m∑
i=1

ϕ(aTi x− bi), where ϕ(θ) =
θ2

1 + θ2
.

We set d = 1000 and m = 5000, and we generate b
and each ai from the Gaussian distribution N (0, Im) and
N (0, Id), respectively.

We compare restarted AGD (Algorithm 1), restarted AGD
with continuation (Algorithm 5), and AGD-Jin (Algorithm
2) with gradient descent (GD). Carmon et al. (2017) im-
plemented their “convex until guilty” method with several
modifications, see their Section D.1, and it is not an easy
job for us to give a fair implementation and comparison.
So we do not compare with the complex nested-loop meth-
ods, and only compare with the single-loop ones. We tune
the best stepsize η = 0.5 for all the compared methods.
Since the Hessian Lipschitz constant ρ is unknown, we set
it as 1 for simplicity. For restarted AGD, we set ϵ = 10−6,
θ = 4(ϵρη2)1/4, K = 1/θ, and B = 1000

√
ϵ/ρ. When

preparing the experiments, we observed that the conver-
gence is not sensitive to B and ϵ but the practical per-
formance depends on B, and we suggest to set B bigger
than the one given in Theorem 2.2, and ϵ bigger than the
desired precision. For restarted AGD with continuation,
we set c = 1

10000ρη2 , τ = 2, and the other parameters
the same as those of restarted AGD. For AGD-Jin, we set
θ = 4(ϵρη2)1/4, γ = θ2

η , and s = γ
4ρ .

Figure 1 plots the results. To plot the figures, we do not
terminate restart AGD and AGD-Jin even if the break con-
dition in the while loop triggers. We measure the objective
function and gradient at each iterate yk for the accelerated
methods. We observed that the figures are almost the same
when measured at yk and xk. We see that the accelerated
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Figure 1. Comparisons of function value and gradient norm.

methods perform better than GD, which verifies the effi-
ciency of acceleration in nonconvex optimization. Restarted
AGD and restarted AGD with continuation decrease the gra-
dient norm faster than AGD-Jin, while AGD-Jin decreases
the objective function a little faster.


