
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Restarted Nonconvex Accelerated Gradient Descent:
No More Polylogarithmic Factor in the O(ϵ−7/4) Complexity

Anonymous Authors1

Abstract
This paper studies the accelerated gradient de-
scent for general nonconvex problems under
the gradient Lipschitz and Hessian Lipschitz as-
sumptions. We establish that a simple restarted
accelerated gradient descent (AGD) finds an
ϵ-approximate first-order stationary point in
O(ϵ−7/4) gradient computations with simple
proofs. Our complexity does not hide any poly-
logarithmic factors, and thus it improves over the
state-of-the-art one by the O(log 1

ϵ) factor. Our
simple algorithm only consists of Nesterov’s clas-
sical AGD and a restart mechanism, and it does
not need the negative curvature exploitation or the
optimization of regularized surrogate functions.
Technically, our simple proof does not invoke the
analysis for the strongly convex AGD, which is
crucial to remove the O(log 1

ϵ) factor.

1. Introduction
Nonconvex optimization has emerged increasingly popular
in machine learning since a lot of machine learning tasks
can be formulated as nonconvex problems, such as deep
learning (LeCun et al., 2015). This paper considers the
following general nonconvex problem:

min
x∈Rd

f(x), (1)

where f(x) is bounded from below and has Lipschitz con-
tinuous gradient and Hessian.

Gradient descent, a simple and fundamental algorithm, is
known to find an ϵ-approximate first-order stationary point
of problem (1) (where ∥∇f(x)∥ ≤ ϵ) in O(ϵ−2) iterations
(Nesterov, 2004). This rate is optimal among the first-order
methods under the gradient Lipschitz condition (Cartis et al.,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

2010; Carmon et al., 2020). When additional structure is
assumed, such as the Hessian Lipschitz condition, improve-
ment is possible.

For convex problems, gradient descent is known to be sub-
optimal. In a series of celebrated works (Nesterov, 1983;
1988; 2005), Nesterov proposed several accelerated gradient
descent (AGD) methods, which find an ϵ-optimal solution in

O(
√

L
ϵ) and O(

√
L
µ log 1

ϵ) iterations for L-smooth general
convex problems and µ-strongly convex problems, respec-
tively, while gradient descent takes O(Lϵ) and O(Lµ log 1

ϵ)
steps. Motivated by the practical superiority and rich theory
of accelerated methods for convex optimization, nonconvex
AGD has attracted tremendous attentions in recent years. In
this paper, we aim to give a slightly faster convergence rate
than the state-of-the-art one by simple proofs for a simple
nonconvex AGD.

1.1. Literature Review

Nonconvex AGD has been a hot topic in the last decade.
Ghadimi & Lan (2016); Li & Lin (2015); Li et al. (2017)
studied the nonconvex AGD under the gradient Lipschitz
condition. The efficiency is verified empirically and there is
no speed improvement in theory. Carmon et al. (2017) pro-
posed a “convex until guilty” mechanism with nested-loop
under both the gradient Lipschitz and Hessian Lipschitz
conditions, which finds an ϵ-approximate first-order station-
ary point in O(ϵ−7/4 log 1

ϵ) gradient and function evalua-
tions. Their method alternates between the minimization
of a regularized surrogate function and the negative curva-
ture exploitation, where in the former subroutine, Carmon
et al. (2017) adds a proximal term to reduce the nonconvex
subproblem to a convex one.

Most literatures focus on the second-order stationary point
when studying nonconvex AGD. Carmon et al. (2018) com-
bined the regularized accelerated gradient descent and the
Lanczos method, where the latter is used to search the nega-
tive curvature. Agarwal et al. (2017) implemented the cubic-
regularized Newton steps carefully by using accelerated
method for fast approximate matrix inversion, while Car-
mon & Duchi (2020; 2018) employed the Krylov subspace
method to approximate the cubic-regularized Newton steps.

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Restarted Nonconvex Accelerated Gradient Descent

All the above methods find an ϵ-approximate second-order
stationary point in O(ϵ−7/4 log 1

ϵ) gradient evaluations and
Hessian-vector products. To avoid the Hessian-vector prod-
ucts, Xu et al. (2018) and Allen-Zhu & Li (2018) proposed
the NEON and NEON2 first-order procedures to extract
negative curvature of the Hessian. Replacing the Lanczos
method in (Carmon et al., 2018) by NEON2, the resultant
method needs O(ϵ−7/4 log 1

ϵ) gradient evaluations to find
an ϵ-approximate second-order stationary point (Allen-Zhu
& Li, 2018). Other typical methods include the Newton-CG
(Royer et al., 2020) and the second-order line-search method
(Royer & Wright, 2018), which are beyond the AGD class.

The methods in (Carmon et al., 2017; 2018; Agarwal et al.,
2017; Carmon & Duchi, 2020) are nested-loop algorithms.
They either alternate between the negative curvature ex-
ploitation and the optimization of a regularized surrogate
function using convex AGD (Carmon et al., 2018; 2017),
or call the accelerated methods to solve a series of cu-
bic regularized Newton steps (Agarwal et al., 2017; Car-
mon & Duchi, 2020). Jin et al. (2018) is the first to pro-
pose a Hessian-free and single-loop accelerated method,
which finds an ϵ-approximate second-order stationary point
in O(ϵ−7/4 log 1

ϵ) gradient and function evaluations. The
method in (Jin et al., 2018) runs the classical AGD until
some condition triggers, then calls the negative curvature
exploitation, and continues on the classical AGD. It is, as far
as we know, the simplest algorithm among the nonconvex
accelerated methods with fast rate guarantees.

Although achieving second-order stationary point ensures
the method not to get stuck at the saddle points, some re-
searchers show that gradient descent and its accelerated
variants that converge to first-order stationary point always
converge to local minimum. Lee et al. (2016) established
that gradient descent converges to a local minimizer almost
surely with random initialization. O’Neill & Wright (2019)
proved that accelerated method is unlikely to converge to
strict saddle points, and diverges from the strict saddle point
more rapidly than the steepest-descent method for quadratic
objectives.

1.2. Contribution

All of the above methods (Carmon et al., 2017; 2018; Agar-
wal et al., 2017; Carmon & Duchi, 2020; Jin et al., 2018)
share the O(ϵ−7/4 log 1

ϵ) complexity, which has a O(log 1
ϵ)

factor. To the best of our knowledge, even applying the
methods designed to find second-order stationary point to
the easier problem of finding first-order stationary point, the
O(log 1

ϵ) factor still cannot be removed. On the other hand,
almost all the existing methods are complex with nested
loops. Even the single-loop method proposed in (Jin et al.,
2018) needs the negative curvature exploitation procedure.

In this paper, we propose a simple restarted AGD, which
has the following three advantages:

Algorithm 1 Restarted AGD (xint, ϵ)
Initialize x−1 = x0 = xint, k = 0.
while k < K do

yk = xk + (1− θ)(xk − xk−1)
xk+1 = yk − η∇f(yk)
k = k + 1
if k
∑k−1

t=0 ∥xt+1 − xt∥2 > B2 then
x−1 = x0 = xk, k = 0

end if
end while
K0 = argmin⌊K

2 ⌋≤k≤K−1 ∥xk+1 − xk∥
Output ŷ = 1

K0+1

∑K0

k=0 y
k

1. Our method finds an ϵ-approximate first-order station-
ary point in O(ϵ−7/4) gradient computations. Our
complexity does not hide any polylogarithmic factors,
and thus it improves over the state-of-the-art one by
the O(log 1

ϵ) factor.

2. Our method is simple in the sense that it only consists
of Nesterov’s classical AGD and a restart mechanism,
and it does not need the negative curvature exploitation
or the optimization of regularized surrogate functions.

3. Technically, our proof is much simpler than all those
in the existing literatures. Especially, we do not invoke
the analysis for the strongly convex AGD, which is
crucial to remove the O(log 1

ϵ) factor.

This paper only concentrates on first-order stationary point.
When the purpose is to find second-order stationary point,
especially with high probability, the polylogarithmic factor
may not be canceled.

2. Restarted Accelerated Gradient Descent
We make the following standard assumptions in this paper.

Assumption 2.1. 1. f(x) is L-gradient Lipschitz:
∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

2. f(x) is ρ-Hessian Lipschitz: ∥∇2f(x)−∇2f(y)∥ ≤
ρ∥x− y∥.

Our method is described in Algorithm 1. It runs Nesterov’s
classical AGD until the “if condition” triggers. Then we
restart by setting x0 and x−1 equal to xk and do the next
round of AGD. The algorithm terminates when the “if condi-
tion” does not trigger in K iterations. In practice, we suggest
to output argminxK ,ŷ{∥∇f(xK)∥, ∥∇f(ŷ)∥}. The restart
trick is motivated by (Fang et al., 2019), who proposed a
ball-mechanism as the stopping criteria to analyze SGD.

In contrast with other nonconvex accelerated methods, our
method does not invoke any additional techniques, such as

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Restarted Nonconvex Accelerated Gradient Descent

the negative curvature exploitation, the optimization of reg-
ularized surrogate functions, or the minimization of cubic
Newton steps. Especially, although the single-loop algo-
rithm proposed in (Jin et al., 2018) is very simple, it still
needs the negative curvature exploitation, which should eval-
uate the objective function. Our method avoids the negative
curvature exploitation, and thus it is possible to extend to
other problems, such as finite-sum nonconvex optimization.

We present our main result in Theorem 2.2, which estab-
lishes the O(ϵ−7/4) complexity to find an ϵ-approximate
first-order stationary point. Our complexity does not hide
any polylogarithmic factors, and it improves over the state-
of-the-art one of O(ϵ−7/4 log 1

ϵ) by the O(log 1
ϵ) factor.

Theorem 2.2. Suppose that Assumption 2.1 holds. Let η =
1
4L , B =

√
ϵ
ρ , θ = 4

(
ϵρη2

)1/4
, K = 1

θ . Then Algorithm

1 terminates in at most △fL
1/2ρ1/4

ϵ7/4
gradient computations

and the output satisfies ∥∇f(ŷ)∥ ≤ 82ϵ, where △f =
f(xint)−minx f(x).

Among the existing methods, Carmon et al. (2017) estab-

lished the O
(

△fL
1/2ρ1/4

ϵ7/4
log

L△f

ϵ

)
complexity to find an

ϵ-approximate first-order stationary point, which has the ad-
ditional O(log 1

ϵ) factor compared with our one. The com-
plexity given in other literatures concentrating on second-
order stationary point, such as (Carmon et al., 2018; Agar-
wal et al., 2017; Carmon & Duchi, 2020; Jin et al., 2018),
also has the additional O(log 1

ϵ) factor even for finding
first-order stationary point. Take (Jin et al., 2018) as the
example. Their Lemma 7 studies the first-order stationary
point. Their proof in Lemmas 9 and 17 is built upon the
analysis for strongly convex AGD, which generally needs
O(
√
L/µ log 1

ϵ) iterations such that the gradient norm will
be less than ϵ, and thus the O(log 1

ϵ) factor appears.

3. Proof of the Theorem
Define K to be the iteration number when the “if condition”
triggers, that is,

K = min
k

{
k

∣∣∣∣∣k
k−1∑
t=0

∥xt+1 − xt∥2 > B2

}
.

Denote the iterations from k = 0 to k = K to be one
epoch. Then for each epoch except the last one, we have
1 ≤ K ≤ K,

K
K−1∑
t=0

∥xt+1 − xt∥2 > B2, (2a)

∥xk − x0∥2 ≤ k

k−1∑
t=0

∥xt+1 − xt∥2 ≤ B2,∀k < K, (2b)

∥yk−x0∥≤∥xk−x0∥+∥xk−xk−1∥≤2B, ∀k<K. (2c)

For the last epoch, that is, the “if condition” does not trigger
and the while loop breaks until k = K, we have

∥xk − x0∥2 ≤ k

k−1∑
t=0

∥xt+1 − xt∥2 ≤ B2,∀k ≤ K, (3a)

∥yk − x0∥ ≤ 2B, ∀k ≤ K. (3b)

We will show in Sections 3.1 and 3.2 that the function value
decreases with a magnitude at least O(ϵ1.5) in each epoch
except the last one. Thus the algorithm terminates in at
most O(ϵ−1.5) epochs, and accordingly O(ϵ−1.75) gradient
computations since each epoch needs at most O(ϵ−0.25)
iterations. In the last epoch, we will show that the gradient
norm at the output iterate is less thanO(ϵ), which is detailed
in Section 3.3.

3.1. Large Gradient of ∥∇f(yK−1)∥

We first consider the case when ∥∇f(yK−1)∥ is large.
Lemma 3.1. Suppose that Assumption 2.1 holds. Let η ≤
1
4L and 0 ≤ θ ≤ 1. When the “if condition” triggers and
∥∇f(yK−1)∥ > B

η , then we have

f(xK)− f(x0) ≤ −B2

4η
.

Proof. From the L-gradient Lipschitz condition, we have

f(xk+1)

≤f(yk) +
〈
∇f(yk),xk+1 − yk

〉
+

L

2
∥xk+1 − yk∥2

=f(yk)− η∥∇f(yk)∥2 + Lη2

2
∥∇f(yk)∥2

≤f(yk)− 7η

8
∥∇f(yk)∥2,

(4)

where we use η ≤ 1
4L . From the L-gradient Lipschitz, we

also have

f(xk) ≥ f(yk) +
〈
∇f(yk),xk − yk

〉
− L

2
∥xk − yk∥2.

So we have

f(xk+1)− f(xk)

≤−
〈
∇f(yk),xk−yk

〉
+

L

2
∥xk−yk∥2− 7η

8
∥∇f(yk)∥2

=
1

η

〈
xk+1−yk,xk−yk

〉
+
L

2
∥xk−yk∥2− 7η

8
∥∇f(yk)∥2

=
1

2η

(
∥xk+1 − yk∥2 + ∥xk − yk∥2 − ∥xk+1 − xk∥2

)
+

L

2
∥xk − yk∥2 − 7η

8
∥∇f(yk)∥2

a
≤ 5

8η
∥xk − yk∥2 − 1

2η
∥xk+1 − xk∥2 − 3η

8
∥∇f(yk)∥2

b
≤ 5

8η
∥xk − xk−1∥2 − 1

2η
∥xk+1 − xk∥2 − 3η

8
∥∇f(yk)∥2,

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Restarted Nonconvex Accelerated Gradient Descent

where we use L ≤ 1
4η in

a
≤ and ∥xk − yk∥ = (1 −

θ)∥xk − xk−1∥ ≤ ∥xk − xk−1∥ in
b
≤. Summing over

k = 0, · · · ,K − 1 and using x0 = x−1, we have

f(xK)− f(x0)

≤ 1

8η

K−2∑
k=0

∥xk+1 − xk∥2 − 3η

8

K−1∑
k=0

∥∇f(yk)∥2

c
≤B2

8η
− 3η

8
∥∇f(yK−1)∥2

d
≤ B2

8η
− 3B2

8η
≤ −B2

4η
,

where we use (2b) in
c
≤ and ∥∇f(yK−1)∥ > B

η in
d
≤.

3.2. Small Gradient of ∥∇f(yK−1)∥

If ∥∇f(yK−1)∥ ≤ B
η , then from (2c) we have

∥xK − x0∥ ≤ ∥yK−1 − x0∥+ η∥∇f(yK−1)∥ ≤ 3B.

For each epoch, denote H = ∇2f(x0) and H = UΛUT

to be its eigenvalue decomposition with U,Λ ∈ Rd×d. Let
λj be the jth eigenvalue. Denote x̃ = UTx, ỹ = UTy,
and ∇̃f(y) = UT∇f(y). Let x̃j and ∇̃jf(y) be the jth
element of x̃ and ∇̃f(y), respectively. From the ρ-Hessian
Lipschitz assumption, we have

f(xK)− f(x0)

≤
〈
∇f(x0),xK − x0

〉
+

1

2
(xK − x0)TH(xK − x0)

+
ρ

6
∥xK − x0∥3

=
〈
∇̃f(x0), x̃K − x̃0

〉
+

1

2
(x̃K − x̃0)TΛ(x̃K − x̃0)

+
ρ

6
∥xK − x0∥3

≤g(x̃K)− g(x̃0) + 4.5ρB3,

(5)

where we denote

g(x) =
〈
∇̃f(x0),x− x̃0

〉
+

1

2
(x− x̃0)TΛ(x− x̃0),

gj(x) =
〈
∇̃jf(x

0), x− x̃0
j

〉
+

1

2
λj(x− x̃0

j)
2.

Denoting

δ̃kj = ∇̃jf(y
k)−∇gj(ỹk

j), δ̃k = ∇̃f(yk)−∇g(ỹk),

then the iterations can be rewritten as

ỹk
j = x̃k

j + (1− θ)(x̃k
j − x̃k−1

j), (6a)

x̃k+1
j = ỹk

j − η∇̃jf(y
k) = ỹk

j − η∇gj(ỹk
j)− ηδ̃kj , (6b)

and ∥δ̃k∥ can be bounded as

∥δ̃k∥

=∥∇̃f(yk)− ∇̃f(x0)− Λ(ỹk − x̃0)∥
=∥∇f(yk)−∇f(x0)−H(yk − x0)∥

=

∥∥∥∥(∫ 1

0

∇2f(x0 + t(yk − x0))−H

)
(yk − x0)dt

∥∥∥∥
≤ρ

2
∥yk − x0∥2 ≤ 2ρB2,

(7)

for any k < K, where we use the ρ-Hessian Lipschitz
assumption and (2c) in the last two inequalities.

From (5), to prove the decrease from f(x0) to f(xK), we
only need to study g(x̃K) − g(x̃0), that is, the decrease
of g(x). Iterations (6a) and (6b) can be viewed as apply-
ing AGD to the quadratic approximation g(x) coordinately
with the approximation error δ̃k, which can be controlled
within O(ρB2). The quadratic function g(x) equals to the
sum of d scalar functions gj(xj). We decompose g(x) into∑

j∈S1
gj(xj) and

∑
j∈S2

gj(xj), where

S1 =

{
j : λj ≥ −

θ

η

}
, S2 =

{
j : λj < −

θ

η

}
.

We see that gj(x) is approximate convex when j ∈ S1, and
strongly concave when j ∈ S2.

It is pointed out in (Jin et al., 2018) that the major challenge
in analyzing nonconvex momentum-based methods is that
the objective function does not decrease monotonically. To
overcome this issue, Jin et al. (2018) designs a potential
function and uses the negative curvature exploitation when
the objective is very nonconvex to guarantee the decrease
of the potential function. An open problem is asked in
Section 5 of (Jin et al., 2018) whether the negative curvature
exploitation is necessary for the fast rate.

In contrast with (Jin et al., 2018), in this paper we establish
the approximate decrease of some specified potential func-
tion when j ∈ S1, as shown in (9), and the approximate
decrease of gj(x) when j ∈ S2, given in (12). Thus, the
negative curvature exploitation is avoided. Putting the two
cases together, we can show the decrease of f(x) in each
epoch.

We first consider
∑

j∈S1
gj(xj) in the following lemma.

Lemma 3.2. Suppose that Assumption 2.1 holds. Let η ≤
1
4L and 0 ≤ θ ≤ 1. When the “if condition” triggers and
∥∇f(yK−1)∥ ≤ B

η , then we have∑
j∈S1

gj(x̃
K
j)−

∑
j∈S1

gj(x̃
0
j)

≤−
∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
8ηρ2B4K

θ
.

(8)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Restarted Nonconvex Accelerated Gradient Descent

Proof. Since gj(x) is quadratic, we have

gj(x̃
k+1
j)

=gj(x̃
k
j) +

〈
∇gj(x̃k

j), x̃
k+1
j − x̃k

j

〉
+

λj

2
|x̃k+1

j − x̃k
j |2

a
=gj(x̃

k
j)−

1

η

〈
x̃k+1
j − ỹk

j + ηδ̃kj , x̃
k+1
j − x̃k

j

〉
+
〈
∇gj(x̃k

j)−∇gj(ỹk
j), x̃

k+1
j − x̃k

j

〉
+

λj

2
|x̃k+1

j − x̃k
j |2

=gj(x̃
k
j)−

1

η

〈
x̃k+1
j − ỹk

j , x̃
k+1
j − x̃k

j

〉
−
〈
δ̃kj , x̃

k+1
j − x̃k

j

〉
+ λj

〈
x̃k
j − ỹk

j , x̃
k+1
j − x̃k

j

〉
+

λj

2
|x̃k+1

j − x̃k
j |2

=gj(x̃
k
j)+

1

2η

(
|x̃k

j − ỹk
j |2−|x̃k+1

j − ỹk
j |2−|x̃k+1

j − x̃k
j |2
)

−
〈
δ̃kj , x̃

k+1
j − x̃k

j

〉
+

λj

2

(
|x̃k+1

j − ỹk
j |2 − |x̃k

j − ỹk
j |2
)

≤gj(x̃k
j)+

1

2η

(
|x̃k

j − ỹk
j |2−|x̃k+1

j − ỹk
j |2−|x̃k+1

j − x̃k
j |2
)

+
1

2α
|δ̃kj |2+

α

2
|x̃k+1

j −x̃k
j |2+

λj

2

(
|x̃k+1

j −ỹk
j |2−|x̃k

j−ỹk
j |2
)
,

where we use (6b) in a
=. Using L ≥ λj ≥ − θ

η when j ∈

S1 = {j : λj ≥ − θ
η} and

(
− 1

2η +
λj

2

)
|x̃k+1

j − ỹk
j |2 ≤(

−2L+ L
2

)
|x̃k+1

j − ỹk
j |2 ≤ 0, we have for each j ∈ S1,

gj(x̃
k+1
j) ≤gj(x̃k

j) +
1

2η

(
|x̃k

j − ỹk
j |2 − |x̃k+1

j − x̃k
j |2
)

+
1

2α
|δ̃kj |2 +

α

2
|x̃k+1

j − x̃k
j |2 +

θ

2η
|x̃k

j − ỹk
j |2

b
=gj(x̃

k
j) +

(1− θ)2(1 + θ)

2η
|x̃k

j − x̃k−1
j |2

−
(

1

2η
− α

2

)
|x̃k+1

j − x̃k
j |2 +

1

2α
|δ̃kj |2,

where we use (6a) in b
=. Defining the potential function

ℓk+1
j = gj(x̃

k+1
j) +

(1− θ)2(1 + θ)

2η
|x̃k+1

j − x̃k
j |2,

we have

ℓk+1
j ≤ℓkj +

1

2α
|δ̃kj |2

−
(

1

2η
− α

2
− (1−θ)2(1+θ)

2η

)
|x̃k+1

j − x̃k
j |2

c
≤ℓkj −

3θ

8η
|x̃k+1

j − x̃k
j |2 +

2η

θ
|δ̃kj |2,

(9)

where we let α = θ
4η in

c
≤ such that 1

2η−
θ
8η−

(1−θ)2(1+θ)
2η =

3θ
8η + θ2

2η −
θ3

2η ≥
3θ
8η . Summing over k = 0, 1, · · · ,K − 1

and j ∈ S1, using x0 − x−1 = 0, we have∑
j∈S1

gj(x̃
K
j) ≤

∑
j∈S1

ℓKj

≤
∑
j∈S1

gj(x̃
0
j)−

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2+
2η

θ

K−1∑
k=0

∥δ̃k∥2

d
≤
∑
j∈S1

gj(x̃
0
j)−

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
8ηρ2B4K

θ
,

where we use (7) in
d
≤.

Next, we consider
∑

j∈S2
gj(xj).

Lemma 3.3. Suppose that Assumption 2.1 holds. Let η ≤
1
4L and 0 ≤ θ ≤ 1. When the “if condition” triggers and
∥∇f(yK−1)∥ ≤ B

η , then we have∑
j∈S2

gj(x̃
K
j)−

∑
j∈S2

gj(x̃
0
j)

≤−
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
2ηρ2B4K

θ
.

(10)

Proof. Denoting vj = x̃0
j − 1

λj
∇̃jf(x

0), gj(x) can be
rewritten as

gj(x) =
λj

2

(
x− x̃0

j +
1

λj
∇̃jf(x

0)

)2

− 1

2λj
|∇̃jf(x

0)|2

=
λj

2
(x− vj)

2 − 1

2λj
|∇̃jf(x

0)|2.

For each j ∈ S2 = {j : λj < − θ
η}, we have

gj(x̃
k+1
j)− gj(x̃

k
j)

=
λj

2
|x̃k+1

j − vj |2 −
λj

2
|x̃k

j − vj |2

=
λj

2
|x̃k+1

j − x̃k
j |2 + λj

〈
x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
≤− θ

2η
|x̃k+1

j − x̃k
j |2 + λj

〈
x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
.

(11)

So we only need to bound the second term. From (6b) and
(6a), we have

x̃k+1
j − x̃k

j

=ỹk
j − x̃k

j − η∇gj(ỹk
j)− ηδ̃kj

=(1− θ)(x̃k
j − x̃k−1

j)− η∇gj(ỹk
j)− ηδ̃kj

=(1− θ)(x̃k
j − x̃k−1

j)− ηλj(ỹ
k
j − vj)− ηδ̃kj

=(1− θ)(x̃k
j − x̃k−1

j)

− ηλj(x̃
k
j − vj + (1− θ)(x̃k

j − x̃k−1
j))− ηδ̃kj .

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Restarted Nonconvex Accelerated Gradient Descent

So for each j ∈ S2, we have〈
x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
=(1− θ)

〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
− ηλj |x̃k

j − vj |2

− ηλj(1− θ)
〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
− η

〈
δ̃kj , x̃

k
j − vj

〉
a
≥(1− θ)

〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
− ηλj |x̃k

j − vj |2

+
ηλj(1− θ)

2

(
|x̃k

j − x̃k−1
j |2 + |x̃k

j − vj |2
)

+
η

2λj(1 + θ)
|δ̃kj |2 +

ηλj(1 + θ)

2
|x̃k

j − vj |2

=(1− θ)
〈
x̃k
j − x̃k−1

j , x̃k
j − vj

〉
+

ηλj(1− θ)

2
|x̃k

j − x̃k−1
j |2 + η

2λj(1 + θ)
|δ̃kj |2

=(1− θ)
〈
x̃k
j − x̃k−1

j , x̃k−1
j − vj

〉
+ (1− θ)|x̃k

j − x̃k−1
j |2

+
ηλj(1− θ)

2
|x̃k

j − x̃k−1
j |2 + η

2λj(1 + θ)
|δ̃kj |2

b
≥(1− θ)

〈
x̃k
j − x̃k−1

j , x̃k−1
j − vj

〉
+

η

2λj
|δ̃kj |2,

where we use the fact that λj < 0 when j ∈ S2 in
a
≥ and(

1+
ηλj

2

)
(1−θ)≥

(
1− ηL

2

)
(1−θ)≥0 in

b
≥. So we have〈

x̃k+1
j − x̃k

j , x̃
k
j − vj

〉
≥(1− θ)k

〈
x̃1
j − x̃0

j , x̃
0
j − vj

〉
+

η

2λj

k∑
t=1

(1− θ)k−t|δ̃tj |2

c
=− (1− θ)kηλj |x̃0

j − vj |2 +
η

2λj

k∑
t=1

(1− θ)k−t|δ̃tj |2

d
≥ η

2λj

k∑
t=1

(1− θ)k−t|δ̃tj |2,

where we use

x̃1
j − x̃0

j =x̃1
j − ỹ0

j = −η∇̃jf(y
0) = −η∇̃jf(x

0)

=− η∇gj(x̃0
j) = −ηλj(x̃

0
j − vj)

in c
= and λj < 0 in

d
≥. Plugging into (11) and using λj < 0

again, we have

gj(x̃
k+1
j)− gj(x̃

k
j)

≤− θ

2η
|x̃k+1

j − x̃k
j |2 +

η

2

k∑
t=1

(1− θ)k−t|δ̃tj |2.
(12)

Summing over k = 0, 1, · · · ,K − 1 and j ∈ S2, we have∑
j∈S2

gj(x̃
K
j)−

∑
j∈S2

gj(x̃
0
j)

≤−
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j −x̃k

j |2+
η

2

K−1∑
k=0

k∑
t=1

(1− θ)k−t∥δ̃t∥2

e
≤−

∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j −x̃k

j |2+2ηρ2B4
K−1∑
k=0

k∑
t=1

(1− θ)k−t

≤−
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j − x̃k

j |2 +
2ηρ2B4K

θ
,

where we use (7) in
e
≤.

Putting Lemmas 3.2 and 3.3 together, we can show the
decrease of f(x) in each epoch.

Lemma 3.4. Suppose that Assumption 2.1 holds. Under the
parameter settings in Theorem 2.2, when the “if condition”
triggers and ∥∇f(yK−1)∥ ≤ B

η , then we have

f(xK)− f(x0) ≤ −ϵ3/2
√
ρ
.

Proof. Summing over (8) and (10), we have

g(x̃K)− g(x̃0) =
∑

j∈S1∪S2

gj(x̃
K
j)− gj(x̃

0
j)

≤− 3θ

8η

K−1∑
k=0

∥x̃k+1 − x̃k∥2 + 10ηρ2B4K
θ

=− 3θ

8η

K−1∑
k=0

∥xk+1 − xk∥2 + 10ηρ2B4K
θ

a
≤− 3θB2

8ηK
+

10ηρ2B4K
θ

,

where we use (2a) in
a
≤. Plugging into (5) and usingK ≤ K,

we have

f(xK)− f(x0)

≤− 3θB2

8ηK
+

10ρ2B4ηK
2θ

+ 4.5ρB3

≤− 3θB2

8ηK
+

10ρ2B4ηK

2θ
+ 4.5ρB3 ≤ −ϵ3/2

√
ρ
.

(13)

3.3. Small Gradient in the Last Epoch

In this section, we prove Theorem 2.2. The main job is to
establish ∥∇f(ŷ)∥ ≤ O(ϵ) in the last epoch.

Proof. From Lemmas 3.1 and 3.4, we have

f(xK)− f(x0) ≤ −min

{
ϵ3/2
√
ρ
,
ϵL

ρ

}
. (14)

Note that at the beginning of each epoch in Algorithm 1,
we set x0 to be the last iterate xK in the previous epoch.

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Restarted Nonconvex Accelerated Gradient Descent

Summing (14) over all epochs, say N total epochs, we have

min
x

f(x)− f(xint) ≤ −N min

{
ϵ3/2
√
ρ
,
ϵL

ρ

}
.

So the algorithm will terminate in at most △f
√
ρ

ϵ3/2
epochs.

Since each epoch needs at most K = 1
2

(
L2

ϵρ

)1/4
gradient

evaluations, the total number of gradient evaluations must

be less than △fL
1/2ρ1/4

ϵ7/4
.

Now, we consider the last epoch. Denote ỹ = UT ŷ =
1

K0+1

∑K0

k=0 U
Tyk = 1

K0+1

∑K0

k=0 ỹ
k. Since g is

quadratic, we have

∥∇g(ỹ)∥ =

∥∥∥∥∥ 1

K0 + 1

K0∑
k=0

∇g(ỹk)

∥∥∥∥∥
a
=

1

η(K0 + 1)

∥∥∥∥∥
K0∑
k=0

(
x̃k+1 − ỹk + ηδ̃k

)∥∥∥∥∥
=

1

η(K0+1)

∥∥∥∥∥
K0∑
k=0

(
x̃k+1−x̃k−(1−θ)(x̃k−x̃k−1)+ηδ̃k

)∥∥∥∥∥
b
=

1

η(K0+1)

∥∥∥∥∥x̃K0+1− x̃0− (1−θ)(x̃K0− x̃0)+η

K0∑
k=0

δ̃k

∥∥∥∥∥
=

1

η(K0 + 1)

∥∥∥∥∥x̃K0+1 − x̃K0 + θ(x̃K0 − x̃0) + η

K0∑
k=0

δ̃k

∥∥∥∥∥
≤ 1

η(K0+1)

(
∥x̃K0+1−x̃K0∥+θ∥x̃K0−x̃0∥+η

K0∑
k=0

∥δ̃k∥

)
c
≤ 2

ηK
∥x̃K0+1 − x̃K0∥+ 2θB

ηK
+ 2ρB2, (15)

where we use (6b) in a
=, x−1 = x0 in b

=, K0 +

1 ≥ K
2 , (3a), (7), and (3b) in

c
≤. From K0 =

argmin⌊K
2 ⌋≤k≤K−1 ∥xk+1 − xk∥, we have

∥xK0+1 − xK0∥2

≤ 1

K − ⌊K/2⌋

K−1∑
k=⌊K/2⌋

∥xk+1 − xk∥2

≤ 1

K − ⌊K/2⌋

K−1∑
k=0

∥xk+1 − xk∥2
d
≤ 2B2

K2
,

(16)

where we use (3a) in
d
≤. On the other hand, we also have

∥∇f(ŷ)∥ =∥∇̃f(ŷ)∥ ≤ ∥∇g(ỹ)∥+ ∥∇̃f(ŷ)−∇g(ỹ)∥

=∥∇g(ỹ)∥+ ∥∇̃f(ŷ)− ∇̃f(x0)−Λ(ỹ− x̃0)∥
=∥∇g(ỹ)∥+ ∥∇f(ŷ)−∇f(x0)−H(ŷ−x0)∥

≤∥∇g(ỹ)∥+ ρ

2
∥ŷ − x0∥2

e
≤ ∥∇g(ỹ)∥+ 2ρB2,

where we use ∥ŷ − x0∥ ≤ 1
K0+1

∑K0

k=0 ∥yk − x0∥ ≤ 2B

from (3b) in
e
≤. So we have

∥∇f(ŷ)∥ ≤ 2
√
2B

ηK2
+

2θB

ηK
+ 4ρB2 ≤ 82ϵ.

Remark 3.5. The purpose of using k
∑k−1

t=0 ∥xt+1−xt∥2 >
B2 in the “if condition”, rather than ∥xk−x0∥ ≥ B, and the
special average as the output in Algorithm 1 is to establish
(16).

3.4. Discussion on the Acceleration Mechanism

When we replace the AGD iterations in Algorithm 1 by the
gradient descent iterations xk+1 = xk − η∇f(xk) with
η = 1

4L , similar to (4), the descent property in each epoch
becomes

f(xK)− f(x0) ≤ − 7

8η

K−1∑
k=0

∥xk+1 − xk∥2 ≤ −7B2

8ηK
,

and the gradient norm at the averaged output x̂ =
1
K

∑K−1
k=0 xk is bounded as

∥∇g(x̂)∥ ≤ 1

ηK
∥xK − x0∥+ 2ρB2 ≤ B

ηK
+ 2ρB2.

By setting B =
√

ϵ
ρ and K = L√

ϵρ , we have the O(ϵ−2)

complexity.

Comparing with (13) and (15), respectively, we see that the
momentum parameter θ is crucial to speedup the conver-
gence because it allows smaller K, that is, 1

ϵ1/4
v.s. 1

ϵ1/2
for

AGD and GD, respectively. Accordingly, smaller K results
in less total gradient computations. Thus, the acceleration
mechanism for nonconvex optimization seems irrelevant
to the analysis of convex AGD. It is just because of the
momentum.

4. Extension to Jin’s Method
In this section, we extend our analysis to the method pro-
posed in (Jin et al., 2018), and detail the method in Algo-
rithm 2. No perturbation is added since we do not consider
second-order stationary point. Except the perturbation and
that we specify the stopping criteria and the output, as well
as that we rewrite the algorithm in epochs, Algorithm 2 is
equivalent to the one in (Jin et al., 2018). However, we give
a slightly faster convergence rate by a O(log 1

ϵ) factor with
much simpler proofs.

Define K = k + 1 when k resets to 0. Denote the iterations
from k = 0 to k = K to be one epoch. For each epoch, we
have three cases:

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Restarted Nonconvex Accelerated Gradient Descent

Algorithm 2 AGD-Jin (xint)
Initialize x0 = xint, v0 = 0, k = 0.
while k < K do
yk = xk + (1− θ)vk

xk+1 = yk − η∇f(yk)
vk+1 = xk+1 − xk

if f(xk)< f(yk)+
〈
∇f(yk),xk−yk

〉
− γ

2 ∥x
k−yk∥2

then
xk+1 ←Negative Curvature Exploitation(xk,vk, s)
x0 = xk+1, v0 = vk+1 = 0, k = 0

else if (k + 1)
∑k

t=0 ∥xt+1 − xt∥2 > B2 then
x0 = xk+1, v0 = vk+1, k = 0

else
k = k + 1

end if
end while
K1 = argmin1≤k≤⌈K

3 ⌉ ∥xk − xk−1∥
K2 = argmin⌊ 2K

3 ⌋≤k≤K−1 ∥xk+1 − xk∥
Output ŷ = 1

K2−K1+1

∑K2

k=K1
yk

Algorithm 3 Negative Curvature Exploitation(xk,vk, s)

if ∥vk∥ ≥ s then
xk+1 = xk

else
δ = svk/∥vk∥
xk+1 = argminxk+δ,xk−δ f(x)

end if
Return xk+1

1. The negative curvature exploitation (NCE) is employed
at the last iteration.

2. The condition (k + 1)
∑k

t=0 ∥xt+1 − xt∥2 > B2 trig-
gers at the last iteration. Note that in this case, AGD
does not restart because x0 − x−1 = v0 ̸= 0.

3. None of the above two cases occurs, and the while loop
breaks until k = K. This is the last epoch.

Define the potential function ℓk = f(xk) + 1−θ
2η ∥v

k∥2.
We need the following two lemmas, which can be adapted
slightly from Lemmas 4 and 5 in (Jin et al., 2018).

Lemma 4.1. Suppose that Assumption 2.1 holds. Let η ≤
1
2L and θ ∈ [2ηγ, 1

2]. If NCE is not performed at iteration
k, then we have ℓk+1 ≤ ℓk − θ

2η∥x
k+1 − xk∥2.

Lemma 4.2. Suppose that Assumption 2.1 holds. Let θ ≤ 1
2 .

If NCE is performed at iteration k, then we have ℓk+1 ≤
ℓk −min

{
(1−θ)s2

2η , (γ−2ρs)s2

2

}
.

Set γ = θ2

η , s = γ
4ρ , and the other parameters the same as

those in Theorem 2.2. In Case 1, we know from Lemma

4.2 that the potential function decreases with a magnitude
at least 64ϵ1.5√

ρ at the last iteration, and it does not increase in
the previous iterations from Lemma 4.1. So we have

ℓK ≤ ℓ0 −min

{
64ϵ1.5
√
ρ

,
16ϵL

ρ

}
.

In Case 2, we have

ℓK − ℓ0 ≤− θ

2η

K−1∑
k=0

∥xk+1 − xk∥2

≤− θB2

2ηK
≤ − θB2

2ηK
= −8ϵ1.5

√
ρ
,

where we use K
∑K−1

t=0 ∥xt+1 − xt∥2 > B2. So the al-
gorithm will terminate in at most △f

√
ρ

ϵ3/2
epochs, and each

epoch needs at most K gradient and function evaluations. In
the last epoch, similar to the proof of Theorem 2.2, we also
have ∥∇f(ŷ)∥ ≤ O(ϵ). So we have the following theorem.

Theorem 4.3. Suppose that Assumption 2.1 holds. Let
η = 1

4L , B =
√

ϵ
ρ , θ = 4

(
ϵρη2

)1/4
, K = 1

θ , γ = θ2

η ,

s = γ
4ρ . Then Algorithm 2 terminates in at most △fL

1/2ρ1/4

ϵ7/4

gradient and function evaluations and the output satisfies
∥∇f(ŷ)∥ ≤ 267ϵ, where△f = f(xint)−minx f(x).

Our complexity improves over theO(ϵ−7/4 log 1
ϵ) one given

in (Jin et al., 2018) by the O(log 1
ϵ) factor. Although Jin

et al. (2018) focus on finding second-order stationary point,
their complexity to find approximate first-order stationary
point also has the additional O(log 1

ϵ) factor, see the rea-
sons discussed in Section 2. Our analysis for Case 3 above
does not invoke the analysis for strongly convex AGD, and
moreover, it is much simpler. The proof in (Jin et al., 2018),
although very novel, is quite involved, especially the spec-
tral analysis of the second-order system. It should be noted
that we measure the convergence rate at the average of the it-
erates. When measuring at the final iterate, which is always
used in practice, we should use the proof in (Jin et al., 2018),
and we conjecture that the O(log 1

ϵ) factor in unlikely to
cancel.

5. Conclusion
This paper proposes a simple restarted AGD for general
nonconvex problems under the gradient Lipschitz and Hes-
sian Lipschitz assumptions. Our simple method finds an
ϵ-approximate first-order stationary point inO(ϵ−7/4) gradi-
ent computations with simple proofs, which improves over
the state-of-the-art complexity by the O(log 1

ϵ) factor. We
hope our analysis may lead to a better understanding of the
acceleration mechanism for nonconvex optimization.

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Restarted Nonconvex Accelerated Gradient Descent

References
Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., and

Ma, T. Finding approximate local minima for nonconvex
optimization in linear time. In Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing
(STOC), pp. 1195–1199, 2017.

Allen-Zhu, Z. and Li, Y. Neon2: Finding local minima via
first-order oracles. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 3716–3726, 2018.

Beaton, A. E. and Tukey, J. W. The fitting of power series,
meaning polynomials, illustrated on band-spectroscopic
data. Technometrics, 16(2):147–185, 1974.

Carmon, Y. and Duchi, J. Analysis of krylov subspace
solutions of regularized nonconvex quadratic problems.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 10728–10738, 2018.

Carmon, Y. and Duchi, J. First-order methods for nonconvex
quadratic minimization. SIAM Review, 62(2):395–436,
2020.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Con-
vex until proven guilty: Dimension-free acceleration of
gradient descent on non-convex functions. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), pp. 654–663, 2017.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Ac-
celerated methods for nonconvex optimization. SIAM
Journal on Optimization, 28(2):1751–1772, 2018.

Carmon, Y., Duchi, J., Hinder, O., and Sidford, A. Lower
bounds for finding stationary points I. Mathematical
Programming, 184:71–120, 2020.

Cartis, C., Gould, N. I. M., and Toint, P. L. On the complex-
ity of sttpest descent, Newton’s and regularized Newton’s
methods for nonconvex unconstrained optimization prob-
lems. SIAM Journal on Optimization, 20(6):2833–2852,
2010.

Fang, C., Lin, Z., and Zhang, T. Sharp analysis for noncon-
vex SGD escaping from saddle points. In Proceedings of
the Conference On Learning Theory (COLT), pp. 1192–
1234, 2019.

Ghadimi, S. and Lan, G. Accelerated gradient methods
for nonconvex nonlinear and stochastic programming.
Mathematical Programming, 156:59–99, 2016.

Hoffman, A. J. and Wielandt, H. W. The variation of the
spectrum of a normal matrix. Duke Mathematical Journal,
20:37–39, 1953.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), pp. 1724–1732, 2017.

Jin, C., Netrapalli, P., and Jordan, M. I. Accelerated gradient
descent escapes saddle points faster than gradient descent.
In Proceedings of the Conference On Learning Theory
(COLT), pp. 1042–1085, 2018.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436–444, 2015.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.
Gradient descent only converges to minimizers. In Pro-
ceedings of the Conference On Learning Theory (COLT),
pp. 1246–1257, 2016.

Li, H. and Lin, Z. Accelerated proximal gradient methods
for nonconvex programming. In Advances in Neural
Information Processing Systems (NIPS), pp. 379–387,
2015.

Li, Q., Zhou, Y., Liang, Y., and Varshney, P. K. Conver-
gence analysis of proximal gradient with momentum for
nonconvex optimization. In Proceedings of the 34th In-
ternational Conference on Machine Learning (ICML), pp.
2111–2119, 2017.

Nesterov, Y. A method for unconstrained convex mini-
mization problem with the rate of convergence O(1/k2).
Soviet Mathematics Doklady, 27(2):372–376, 1983.

Nesterov, Y. On an approach to the construction of opti-
mal methods of minimization of smooth convex func-
tions. Ekonomika I Mateaticheskie Metody, 24(3):509–
517, 1988.

Nesterov, Y. Introductory Lectures on Convex Optimization:
A Basic Course. Springer Science+Business Media, 2004.

Nesterov, Y. Smooth minimization of non-smooth functions.
Mathematical Programming, 103:127–152, 2005.

O’Neill, M. and Wright, S. J. Behavior of accelerated gradi-
ent methods near critical points of nonconvex functions.
Mathematical Programming, 176:403–427, 2019.

Royer, C. W. and Wright, S. J. Complexity analysis of
second-order line-search algorithms for smooth noncon-
vex optimization. SIAM Journal on Optimization, 28(2):
1448–1477, 2018.

Royer, C. W., O’Neill, M., and Wright, S. J. A Newton-
CG algorithm with complexity guarantees for smooth
unconstrained optimization. Mathematical Programming,
180:451–488, 2020.

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Restarted Nonconvex Accelerated Gradient Descent

Xu, Y., Jin, R., and Yang, T. First-order stochastic algo-
rithms for escaping from saddle points in almost linear
time. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 5535–5545, 2018.

A. Proof of Theorem 4.3
Proof. We only need to prove ∥∇f(ŷ)∥ ≤ O(ϵ) in the last
epoch. Denote

h(x) =
〈
∇f(x0),x− x0

〉
+

1

2
(x− x0)TH(x− x0),

δk = ∇f(yk)−∇h(yk).

Similar to the deduction in Section 3.2, we have

xk+1 = yk − η∇h(yk)− ηδk,

∥δk∥ ≤ ρ

2
∥yk − x0∥2 ≤ 2ρB2, (17a)

where we use

∥xk−x0∥2≤k

k−1∑
t=0

∥xt+1−xt∥2≤B2,∀k ≤ K, (18a)

∥yk − x0∥ ≤ 2B, ∀k ≤ K, (18b)

in the last epoch. Similar to the proof of Theorem 2.2, we
have

∥∇h(ŷ)∥ =

∥∥∥∥∥ 1

K2 −K1 + 1

K2∑
k=K1

∇h(yk)

∥∥∥∥∥
=

1

η(K2 −K1 + 1)

∥∥∥∥∥
K2∑

k=K1

(
xk+1 − yk + ηδk

)∥∥∥∥∥ ,
and∥∥∥∥∥

K2∑
k=K1

(
xk+1 − yk + ηδk

)∥∥∥∥∥
=

∥∥∥∥∥
K2∑

k=K1

(
xk+1 − xk − (1− θ)(xk − xk−1) + ηδk

)∥∥∥∥∥
=

∥∥∥∥∥xK2+1 − xK1 − (1− θ)(xK2 − xK1−1) + η

K2∑
k=K1

δk

∥∥∥∥∥
=
∥∥xK2+1 − xK2 − xK1 + xK1−1 + θ(xK2 − xK1−1)

+η

K2∑
k=K1

δk

∥∥∥∥∥
≤∥xK2+1 − xK2∥+ ∥xK1 − xK1−1∥+ θ∥xK2 − x0∥

+ θ∥xK1−1 − x0∥+ η

K2∑
k=K1

∥δk∥.

From K2 −K1 + 1 ≥ K
3 , (18a), and (17a), we have

∥∇h(ŷ)∥ ≤ 3

ηK
∥xK2+1 − xK2∥

+
3

ηK
∥xK1 − xK1−1∥+ 6θB

ηK
+ 2ρB2.

On the other hand, from the definitions of K1 and K2, we
have

∥xK2+1 − xK2∥2

≤ 1

K − ⌊2K/3⌋

K−1∑
k=⌊2K/3⌋

∥xk+1 − xk∥2

≤ 1

K − ⌊2K/3⌋

K−1∑
k=0

∥xk+1 − xk∥2 ≤ 3B2

K2
,

and

∥xK1 − xK1−1∥2 ≤ 1

⌈K3 ⌉

⌈K
3 ⌉∑

k=1

∥xk − xk−1∥2

≤ 1

⌈K3 ⌉

K−1∑
k=0

∥xk+1 − xk∥2 ≤ 3B2

K2
.

So we have

∥∇h(ŷ)∥ ≤ 6
√
3B

ηK2
+

6θB

ηK
+ 2ρB2,

and

∥∇f(ŷ)∥ ≤∥∇h(ŷ)∥+ ∥∇f(ŷ)−∇h(ŷ)∥

≤∥∇h(ŷ)∥+ ρ

2
∥ŷ − x0∥2

≤6
√
3B

ηK2
+

6θB

ηK
+ 4ρB2 ≤ 267ϵ.

B. Discussion on the Second-order Stationary
Point

Algorithm 1 can also find ϵ-approximate second-order sta-
tionary point, defined as

∥∇f(x)∥ ≤ ϵ, λmin(∇2f(x)) ≥ −√ϵρ.

We follow (Jin et al., 2017; 2018) to add the perturbations
generated uniformly from the ball B(r) with radius r and
center 0. The method is presented in Algorithm 4 and the
complexity is given in Theorem B.1. We see that Algorithm
4 needs at most O(ϵ−7/4 log d

ζϵ) gradient computations to
find an ϵ-approximate second-order stationary point with
probability at least 1− ζ, where d is the dimension of x in

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Restarted Nonconvex Accelerated Gradient Descent

Algorithm 4 Perturbed Restarted AGD (xint, ϵ)
Initialize x−1 = x0 = xint + ξ, ξ ∼Unif(B(r)), k = 0.
while k < K do
yk = xk + (1− θ)(xk − xk−1)
xk+1 = yk − η∇f(yk)
k = k + 1
if k
∑k−1

t=0 ∥xt+1 − xt∥2 > B2 then
x−1 = x0 = xk + ξ, ξ ∼Unif(B(r)), k = 0

end if
end while
K0 = argmin⌊K

2 ⌋≤k≤K−1 ∥xk+1 − xk∥
Output ŷ = 1

K0+1

∑K0

k=0 y
k

problem (1). This complexity is the same with the one given
in (Jin et al., 2018). Comparing with Theorem 2.2, we see
that there is a O(log d

ζϵ) term. Currently, it is unclear how
to remove it.

Theorem B.1. Suppose that Assumption 2.1 holds. Let
χ = O(log d

ζϵ), η = 1
4L , B = 1

288χ2

√
ϵ
ρ , θ = 1

2

(
ϵρ
L2

)1/4
,

K = 2χ
θ , r = min{LB2

4C , B√
2
, θB
20K ,

√
θB2

2K } = O(ϵ) for
some constant C. Then Algorithm 1 terminates in at most

O
(

△fL
1/2ρ1/4χ6

ϵ7/4

)
gradient computations and the output

satisfies ∥∇f(ŷ)∥ ≤ ϵ, where△f = f(xint)−minx f(x).
It also satisfies λmin(∇2f(ŷ)) ≥ −1.011√ϵρ with proba-
bility at least 1− ζ.

Proof. Denote xt,k to be the iterate in the tth epoch. From
Lemmas 3.1 and 3.4, we have when the “if condition” trig-
gers,

f(xt,K)− f(xt,0) ≤ −B2

4η

if ∥∇f(yK−1)∥ > B
η , and

f(xt,K)− f(xt,0) ≤ −3θB2

8ηK
+

10ρ2B4ηK

2θ
+ 4.5ρB3

if ∥∇f(yK−1)∥ ≤ B
η . From the L-gradient Lipschitz, we

have

f(xt+1,0)− f(xt,K)

≤
〈
∇f(xt,K),xt+1,0 − xt,K〉+ L

2
∥xt+1,0 − xt,K∥2

=
〈
∇f(xt,K), ξt

〉
+

L

2
∥ξt∥2 ≤ ∥∇f(xt,K)∥r + Lr2

2
.

We say that ∥∇f(xt,K)∥ is bounded. Otherwise, perform-
ing one gradient descent step z = xt,K − η∇f(xt,K), sim-
ilar to (4), we have f(z) ≤ f(xt,K) − 7η

8 ∥∇f(x
t,K)∥2 ∼

−∞, which contradicts with minx f(x) > −∞. Letting
∥∇f(xt,K)∥ ≤ C for all epochs, we have

f(xt+1,0)− f(xt,K) ≤ Cr +
Lr2

2
≤ B2

8η
,

and

f(xt+1,0)− f(xt,0) ≤ −B2

8η
= − ϵL

165888ρχ4

if ∥∇f(yK−1)∥ > B
η . On the other hand, if

∥∇f(yK−1)∥ ≤ B
η , we have

∥∇f(xK)∥
≤∥∇f(yK−1)∥+ ∥∇f(xK)−∇f(yK−1)∥
≤∥∇f(yK−1)∥+ L∥xK − yK−1∥

=∥∇f(yK−1)∥+ Lη∥∇f(yK−1)∥ ≤ B

η
+ LB ≤ 5B

4η
.

So we have

f(xt+1,0)− f(xt,K) ≤ 5Br

4η
+

Lr2

2
≤ θB2

8ηK
,

and

f(xt+1,0)− f(xt,0) ≤− θB2

4ηK
+

10ρ2B4ηK

2θ
+ 4.5ρB3

≤− ϵ1.5

700000
√
ρχ5

.

So the algorithm will terminate in at most O(△f
√
ρχ5

ϵ3/2
)

epochs. Since each epoch needs at most K =

O(χ
(
L2/(ϵρ)

)1/4
) gradient evaluations, the total number

of gradient evaluations must be less than O(△fL
1/2ρ1/4χ6

ϵ7/4
).

Now, we consider the last epoch. Similar to the proof of
Theorem 2.2, we also have

∥∇f(ŷ)∥ ≤ 2
√
2B

ηK2
+

2θB

ηK
+ 4ρB2 ≤ ϵ

χ3
≤ ϵ.

If λmin(∇2f(xt,K)) ≥ −√ϵρ, from the perturbation theory
of eigenvalues (Hoffman & Wielandt, 1953), we have for
any j,

|λj(∇2f(ŷt+1))− λj(∇2f(xt,K))|
≤∥∇2f(ŷt+1)−∇2f(xt,K)∥2

≤ρ∥ŷt+1 − xt,K∥ ≤ ρ∥ŷt+1 − xt+1,0∥+ ρr
a
≤ 3ρB,

and

λj(∇2f(ŷt+1))

≥λj(∇2f(xt,K))− |λj(∇2f(ŷt+1))− λj(∇2f(xt,K))|
≥ −√ϵρ− 3ρB ≥ −1.011√ϵρ,

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Restarted Nonconvex Accelerated Gradient Descent

where we use ∥ŷt+1 − xt+1,0∥ ≤ 1
K0+1

∑K0

k=0 ∥yt+1,k −

xt+1,0∥ ≤ 2B in
a
≤. Now, we consider

λmin(∇2f(xt,K)) < −√ϵρ. Define the stuck re-
gion in B(r) centered at xt,K to be the set of points starting
from which the “if condition” does not trigger in K
iterations, that is, the algorithm terminates and outputs a
saddle point. Similar to Lemma 8 in (Jin et al., 2018), we
know from Lemma B.2 that the probability of the starting
point xt+1,0 = xt,K + ξt located in the stuck region is less
than

r0Vd−1(r)

Vd(r)
≤ r0

√
d

r
= ζ,

where we let r0 = ζr√
d

. Thus, the output ŷ satisfies
λmin(∇2f(ŷ)) ≥ −1.011√ϵρ with probability at least
1− ζ.

Lemma B.2. Suppose that λmin(H) < −√ϵρ, where H =

∇2f(x). Let x′0 and x′′0 be at distance at most r from
x. Let x′−1

= x′0, x′′−1
= x′′0, and x′0 − x′′0 = r0e1,

where e1 is the minimum eigen-direction of H. Under the
parameter settings in Theorem B.1, running AGD starting
at x′0 and x′′0, respectively, then at least one of the iterates
triggers the “if condition”.

The proof of this lemma is almost the same as that of Lemma
18 in (Jin et al., 2018). We only list the sketch and the details
can be found in (Jin et al., 2018).

Proof. Denote wk = x′k − x′′k. From the update of AGD,
we have[
wk+1

wk

]
=

[
(2−θ)(I−ηH) −(1−θ)(I−ηH)

I 0

][
wk

wk−1

]
− η

[
(2− θ)△kwk − (1− θ)△kwk−1

0

]
=A

[
wk

wk−1

]
− η

[
ϕk

0

]
=Ak+1

[
w0

w0

]
− η

k∑
r=0

Ak−r

[
ϕr

0

]
,

and

wk = [I, 0]Ak

[
w0

w0

]
− η[I, 0]

k−1∑
r=0

Ak−1−r

[
ϕr

0

]
,

where △k =
∫ 1

0

(
∇2f(ty′k + (1− t)y′′k)−H

)
dt and

ϕk = (2− θ)△kwk − (1− θ)△kwk−1.

Assume that none of the iterates (x′0,x′1, · · · ,x′K) and
(x′′0,x′′1, · · · ,x′′K) trigger the “if condition”, which yield

∥x′k − x′0∥ ≤ B, ∥y′k − x′0∥ ≤ 2B, ∀k ≤ K,

∥x′′k − x′′0∥ ≤ B, ∥y′′k − x′′0∥ ≤ 2B, ∀k ≤ K.
(19)

We have

∥△k∥ ≤ρmax{∥y′k − x∥, ∥y′′k − x∥}

≤ρmax{∥y′k − x′0∥, ∥y′′k − x′′0∥}+ ρr ≤ 3ρB,

∥ϕk∥ ≤6ρB(∥wk∥+ ∥wk−1∥).

We can show the following inequality for all k ≤ K by
induction:∥∥∥∥∥η[I, 0]

k−1∑
r=0

Ak−1−r

[
ϕr

0

]∥∥∥∥∥ ≤ 1

2

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ .
It is easy to check the base case holds for k = 0. Assume
the inequality holds for all steps equal to or less than k.
Then we have

∥wk∥ ≤ 3

2

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ ,
∥ϕk∥ ≤ 18ρB

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ ,
by the monotonicity of

∥∥∥∥[I, 0]Ak

[
w0

w0

]∥∥∥∥ in k (Lemma 33 in

(Jin et al., 2018)). We also have∥∥∥∥∥η[I, 0]
k∑

r=0

Ak−r

[
ϕr

0

]∥∥∥∥∥ ≤ η

k∑
r=0

∥∥∥∥[I, 0]Ak−r

[
I
0

]∥∥∥∥
2

∥ϕr∥

≤ 18ρBη

k∑
r=0

∥∥∥∥[I, 0]Ak−r

[
I
0

]∥∥∥∥
2

∥∥∥∥[I, 0]Ar

[
w0

w0

]∥∥∥∥
a
= 18ρBη

k∑
r=0

|ak−r||ar − br|r0

b
≤ 18ρBη

k∑
r=0

(
2

θ
+ k + 1

)
|ak+1 − bk+1|r0

≤ 18ρBηK

(
2

θ
+K

)∥∥∥∥[I, 0]Ak+1

[
w0

w0

]∥∥∥∥ ,
where we define [ak,−bk] = [1, 0]Ak

min and Amin =[
(2− θ)(1− ηλmin) −(1− θ)(1− ηλmin)

1 0

]
, a
= uses the

fact that w0 = r0e1 is along the minimum eigenvector di-

rection of H,
b
≤uses Lemma 31 in (Jin et al., 2018). From

the parameter settings, we have 18ρBηK
(
2
θ +K

)
≤ 1

2 .
Therefore, the induction is proved, which yields

∥wK∥ ≥
∥∥∥∥[I, 0]AK

[
w0

w0

]∥∥∥∥−
∥∥∥∥∥η[I, 0]

K−1∑
r=0

AK−1−r

[
ϕr

0

]∥∥∥∥∥
≥1

2

∥∥∥∥[I, 0]AK

[
w0

w0

]∥∥∥∥ =
r0
2
|aK − bK |

c
≥θr0

4

(
1 +

θ

2

)K
d
≥ 5B,

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Restarted Nonconvex Accelerated Gradient Descent

where
c
≥ uses Lemma 33 in (Jin et al., 2018) and ηλmin ≤

−θ2,
d
≥ uses K = 2

θ log
20B
θr0

. However, (19) yields

∥wK∥ ≤∥x′K − x′0∥+ ∥x′′K − x′′0∥

+ ∥x− x′0∥+ ∥x− x′′0∥ ≤ 2B + 2r ≤ 4B,

which makes a contradiction. Thus the assumption is wrong
and we conclude that at least one of the iterates trigger the
“if condition”.

C. A Continuation Extension
In Algorithm 1, we set B small such that the method may
restart frequently in the first few iterations. In this case,
Algorithm 1 almost reduces to the classical gradient descent.
To make use of the practical superiority of AGD in the first
few iterations, we can use a continuation strategy, at the
cost of introducing nested loops. The method is presented
in Algorithm 5, which gradually decreases the precision ϵ
in restarted AGD.

Algorithm 5 Restarted AGD with Continuation
Initialize z0, τ > 1, η, c < 1

256ρη2

for t = 0, 1, · · · , N do
zt+1 =Restarted AGD(zt, c

τt)
end for

Setting N = logτ
c
ϵ and denoting D = △fL

1/2ρ1/4, the
total complexity is

D

c7/4

N∑
t=0

τ7t/4 =
D

c7/4

N∑
t=0

(
τ7/4

)t
= D

τ7(N+1)/4 − 1

c7/4
(
τ7/4 − 1

)
=D

τ7/4(τN)7/4−1
c7/4

(
τ7/4 − 1

) =D
τ7/4

(
c
ϵ

)7/4−1
c7/4

(
τ7/4 − 1

)≤Dτ7/4ϵ−7/4

τ7/4 − 1
.

At the N th iteration, since we set the precision as c
τN = ϵ,

Algorithm 5 will output an ϵ-approximate first-order station-
ary point.

D. Efficient Implementation of the Average
Given x0,x1, · · · ,xK and y0,y1, · · · ,yK sequentially,
we want to find ŷ = 1

K0+1

∑K0

k=0 y
k efficiently, where

K0 = argmin⌊K
2 ⌋≤k≤K−1 ∥xk+1 − xk∥. We present the

implementation in Algorithm 6.

Similarly, we can also implement the average in Algorithm
2 efficiently.

Algorithm 6 Implementation of the Average
Initialize S1 = S2 = 0, K0 = 0
for k = 0, 1, · · · ,K − 1 do

if k ≤ ⌊K2 ⌋ then
S1 = S1 + yk, K0 = k

else
if ∥xK0+1 − xK0∥ < ∥xk+1 − xk∥ then
S2 = S2 + yk

else
S1 = S1 + S2 + yk, S2 = 0, K0 = k

end if
end if

end for
Output S1

K0+1

E. Preliminary Experiments
We follow (Carmon et al., 2017) to consider the robust linear
regression with the smooth biweight loss (Beaton & Tukey,
1974),

argmin
x∈Rd

1

m

m∑
i=1

ϕ(aTi x− bi), where ϕ(θ) =
θ2

1 + θ2
.

We set d = 1000 and m = 5000, and we generate b
and each ai from the Gaussian distribution N (0, Im) and
N (0, Id), respectively.

We compare restarted AGD (Algorithm 1), restarted AGD
with continuation (Algorithm 5), and AGD-Jin (Algorithm
2) with gradient descent (GD). Carmon et al. (2017) im-
plemented their “convex until guilty” method with several
modifications, see their Section D.1, and it is not an easy
job for us to give a fair implementation and comparison.
So we do not compare with the complex nested-loop meth-
ods, and only compare with the single-loop ones. We tune
the best stepsize η = 0.5 for all the compared methods.
Since the Hessian Lipschitz constant ρ is unknown, we set
it as 1 for simplicity. For restarted AGD, we set ϵ = 10−6,
θ = 4(ϵρη2)1/4, K = 1/θ, and B = 1000

√
ϵ/ρ. When

preparing the experiments, we observed that the conver-
gence is not sensitive to B and ϵ but the practical per-
formance depends on B, and we suggest to set B bigger
than the one given in Theorem 2.2, and ϵ bigger than the
desired precision. For restarted AGD with continuation,
we set c = 1

10000ρη2 , τ = 2, and the other parameters
the same as those of restarted AGD. For AGD-Jin, we set
θ = 4(ϵρη2)1/4, γ = θ2

η , and s = γ
4ρ .

Figure 1 plots the results. To plot the figures, we do not
terminate restart AGD and AGD-Jin even if the break con-
dition in the while loop triggers. We measure the objective
function and gradient at each iterate yk for the accelerated
methods. We observed that the figures are almost the same
when measured at yk and xk. We see that the accelerated

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Restarted Nonconvex Accelerated Gradient Descent

0 100 200 300 400 500

of gradient evaluations

0.45

0.5

0.55

0.6

fu
n
c
ti
o
n
 v

a
lu

e

GD

Restarted AGD-Continuation

Restarted AGD

AGD-Jin

0 1 2 3 4 5

of gradient evaluations 104

10-15

10-10

10-5

100

g
ra

d
ie

n
t
n
o
rm

GD

AGD-Jin

Restarted AGD-Continuation

Restarted AGD

Figure 1. Comparisons of function value and gradient norm.

methods perform better than GD, which verifies the effi-
ciency of acceleration in nonconvex optimization. Restarted
AGD and restarted AGD with continuation decrease the gra-
dient norm faster than AGD-Jin, while AGD-Jin decreases
the objective function a little faster.

