Restarted Nonconvex Accelerated Gradient Descent:
No More Polylogarithmic Factor in the O(e~"/*) Complexity

Anonymous Authors'

Abstract

This paper studies the accelerated gradient de-
scent for general nonconvex problems under
the gradient Lipschitz and Hessian Lipschitz as-
sumptions. We establish that a simple restarted
accelerated gradient descent (AGD) finds an
e-approximate first-order stationary point in
O(e~7/*) gradient computations with simple
proofs. Our complexity does not hide any poly-
logarithmic factors, and thus it improves over the
state-of-the-art one by the O(log 1) factor. Our
simple algorithm only consists of Nesterov’s clas-
sical AGD and a restart mechanism, and it does
not need the negative curvature exploitation or the
optimization of regularized surrogate functions.
Technically, our simple proof does not invoke the
analysis for the strongly convex AGD, which is
crucial to remove the O(log 1) factor.

1. Introduction

Nonconvex optimization has emerged increasingly popular
in machine learning since a lot of machine learning tasks
can be formulated as nonconvex problems, such as deep
learning (LeCun et al., 2015). This paper considers the
following general nonconvex problem:

min f (x), (1)
where f(x) is bounded from below and has Lipschitz con-
tinuous gradient and Hessian.

Gradient descent, a simple and fundamental algorithm, is
known to find an e-approximate first-order stationary point
of problem (1) (where ||V f(x)|| < €) in O(¢~?) iterations
(Nesterov, 2004). This rate is optimal among the first-order
methods under the gradient Lipschitz condition (Cartis et al.,

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

2010; Carmon et al., 2020). When additional structure is
assumed, such as the Hessian Lipschitz condition, improve-
ment is possible.

For convex problems, gradient descent is known to be sub-
optimal. In a series of celebrated works (Nesterov, 1983;
1988; 2005), Nesterov proposed several accelerated gradient
descent (AGD) methods, which find an e-optimal solution in

(’)(\/g) and (9(\/% log 1) iterations for L-smooth general
convex problems and p-strongly convex problems, respec-
tively, while gradient descent takes O(£) and O(% log 1)
steps. Motivated by the practical superiority and rich theory
of accelerated methods for convex optimization, nonconvex
AGD has attracted tremendous attentions in recent years. In
this paper, we aim to give a slightly faster convergence rate
than the state-of-the-art one by simple proofs for a simple
nonconvex AGD.

1.1. Literature Review

Nonconvex AGD has been a hot topic in the last decade.
Ghadimi & Lan (2016); Li & Lin (2015); Li et al. (2017)
studied the nonconvex AGD under the gradient Lipschitz
condition. The efficiency is verified empirically and there is
no speed improvement in theory. Carmon et al. (2017) pro-
posed a “convex until guilty” mechanism with nested-loop
under both the gradient Lipschitz and Hessian Lipschitz
conditions, which finds an e-approximate first-order station-
ary point in O(e~"/*log) gradient and function evalua-
tions. Their method alternates between the minimization
of a regularized surrogate function and the negative curva-
ture exploitation, where in the former subroutine, Carmon
et al. (2017) adds a proximal term to reduce the nonconvex
subproblem to a convex one.

Most literatures focus on the second-order stationary point
when studying nonconvex AGD. Carmon et al. (2018) com-
bined the regularized accelerated gradient descent and the
Lanczos method, where the latter is used to search the nega-
tive curvature. Agarwal et al. (2017) implemented the cubic-
regularized Newton steps carefully by using accelerated
method for fast approximate matrix inversion, while Car-
mon & Duchi (2020; 2018) employed the Krylov subspace
method to approximate the cubic-regularized Newton steps.

Restarted Nonconvex Accelerated Gradient Descent

All the above methods find an e-approximate second-order
stationary point in O(e~7/*log %) gradient evaluations and
Hessian-vector products. To avoid the Hessian-vector prod-
ucts, Xu et al. (2018) and Allen-Zhu & Li (2018) proposed
the NEON and NEON?2 first-order procedures to extract
negative curvature of the Hessian. Replacing the Lanczos
method in (Carmon et al., 2018) by NEON?2, the resultant
method needs O(e~"/*log 1) gradient evaluations to find
an e-approximate second-order stationary point (Allen-Zhu
& Li, 2018). Other typical methods include the Newton-CG
(Royer et al., 2020) and the second-order line-search method
(Royer & Wright, 2018), which are beyond the AGD class.

The methods in (Carmon et al., 2017; 2018; Agarwal et al.,
2017; Carmon & Duchi, 2020) are nested-loop algorithms.
They either alternate between the negative curvature ex-
ploitation and the optimization of a regularized surrogate
function using convex AGD (Carmon et al., 2018; 2017),
or call the accelerated methods to solve a series of cu-
bic regularized Newton steps (Agarwal et al., 2017; Car-
mon & Duchi, 2020). Jin et al. (2018) is the first to pro-
pose a Hessian-free and single-loop accelerated method,
which finds an e-approximate second-order stationary point
in O(e""/*log) gradient and function evaluations. The
method in (Jin et al., 2018) runs the classical AGD until
some condition triggers, then calls the negative curvature
exploitation, and continues on the classical AGD. It is, as far
as we know, the simplest algorithm among the nonconvex
accelerated methods with fast rate guarantees.

Although achieving second-order stationary point ensures
the method not to get stuck at the saddle points, some re-
searchers show that gradient descent and its accelerated
variants that converge to first-order stationary point always
converge to local minimum. Lee et al. (2016) established
that gradient descent converges to a local minimizer almost
surely with random initialization. O’Neill & Wright (2019)
proved that accelerated method is unlikely to converge to
strict saddle points, and diverges from the strict saddle point
more rapidly than the steepest-descent method for quadratic
objectives.

1.2. Contribution

All of the above methods (Carmon et al., 2017; 2018; Agar-
wal et al., 2017; Carmon & Duchi, 2020; Jin et al., 2018)
share the O(¢~"/*1log 1) complexity, which has a O(log 1)
factor. To the best of our knowledge, even applying the
methods designed to find second-order stationary point to
the easier problem of finding first-order stationary point, the
O(log %) factor still cannot be removed. On the other hand,
almost all the existing methods are complex with nested
loops. Even the single-loop method proposed in (Jin et al.,
2018) needs the negative curvature exploitation procedure.

In this paper, we propose a simple restarted AGD, which
has the following three advantages:

Algorithm 1 Restarted AGD (X; ¢, €)

Initialize x ! = x0 = x;,,4, k = 0.

while & < K do
yP=xF + (1 -0)(xF —xk1)
xF = yk —nVf(y*)
k=k+1
if &SP |Ixtt! — x||2 > B2 then
x l=x0=xF k=0
end if
end while
Ko = argmin <4 [[x+t — x|

~ 1 K
Output y = =3 > 12 yk

1. Our method finds an e-approximate first-order station-
ary point in O(e~7/4) gradient computations. Our
complexity does not hide any polylogarithmic factors,
and thus it improves over the state-of-the-art one by
the O(log 1) factor.

2. Our method is simple in the sense that it only consists
of Nesterov’s classical AGD and a restart mechanism,
and it does not need the negative curvature exploitation
or the optimization of regularized surrogate functions.

3. Technically, our proof is much simpler than all those
in the existing literatures. Especially, we do not invoke
the analysis for the strongly convex AGD, which is
crucial to remove the O(log 1) factor.

This paper only concentrates on first-order stationary point.
When the purpose is to find second-order stationary point,
especially with high probability, the polylogarithmic factor
may not be canceled.

2. Restarted Accelerated Gradient Descent

We make the following standard assumptions in this paper.
Assumption 2.1. 1. f(x) is L-gradient
IVf(x) = V) < Llx =yl
2. f(x) is p-Hessian Lipschitz: ||V2f(x) — V2f(y)|| <
pllx =yl

Lipschitz:

Our method is described in Algorithm 1. It runs Nesterov’s
classical AGD until the “if condition” triggers. Then we
restart by setting x° and x~! equal to x* and do the next
round of AGD. The algorithm terminates when the “if condi-
tion” does not trigger in K iterations. In practice, we suggest
to output argmin, x ¢ {[|V f(x®)|[, ||V f(3)]}. The restart
trick is motivated by (Fang et al., 2019), who proposed a
ball-mechanism as the stopping criteria to analyze SGD.

In contrast with other nonconvex accelerated methods, our
method does not invoke any additional techniques, such as

Restarted Nonconvex Accelerated Gradient Descent

the negative curvature exploitation, the optimization of reg-
ularized surrogate functions, or the minimization of cubic
Newton steps. Especially, although the single-loop algo-
rithm proposed in (Jin et al., 2018) is very simple, it still
needs the negative curvature exploitation, which should eval-
uate the objective function. Our method avoids the negative
curvature exploitation, and thus it is possible to extend to
other problems, such as finite-sum nonconvex optimization.

We present our main result in Theorem 2.2, which estab-
lishes the O(e~7/*) complexity to find an e-approximate
first-order stationary point. Our complexity does not hide
any polylogarithmic factors, and it improves over the state-
of-the-art one of O(e~"/*1log 1) by the O(log 1) factor.

Theorem 2.2. Suppose that Assumption 2.1 holds. Let n =
ﬁ, B = \/%, 0 =4 (epn2)1/4, K = %. Then Algorithm

. . ApLV2p1/4 , .
1 terminates in at most —{==-*— gradient computations

and the output satisfies |\v€f(y)\| < 82, where Ny =
f(Xint) — ming f(x).

Among the existing methods, Carmon et al. (2017) estab-

. 1/2 1/4
lished the O (M#f
€

e-approximate first-order stationary point, which has the ad-
ditional O(log %) factor compared with our one. The com-
plexity given in other literatures concentrating on second-
order stationary point, such as (Carmon et al., 2018; Agar-
wal et al., 2017; Carmon & Duchi, 2020; Jin et al., 2018),
also has the additional O(log 1) factor even for finding
first-order stationary point. Take (Jin et al., 2018) as the
example. Their Lemma 7 studies the first-order stationary
point. Their proof in Lemmas 9 and 17 is built upon the
analysis for strongly convex AGD, which generally needs
O(y/L/plog 1) iterations such that the gradient norm will
be less than ¢, and thus the O(log 1) factor appears.

log #) complexity to find an

3. Proof of the Theorem

Define K to be the iteration number when the “if condition”
triggers, that is,

k—1
. 1 ty2 2
Ikam{kk;:O|x x| >B}.

Denote the iterations from £k = 0 to k = K to be one
epoch. Then for each epoch except the last one, we have
1<K<LK,

K—1
K> Ix" —x"? > B2, (2a)
t=0

k—1
I = x°7 < kD xT = x| < B2 Vk < K, (2b)
t=0

[|y7% —xC|| < [|x* —xC||+ || x* —x""1| <2B,Vk < K. (2¢)

For the last epoch, that is, the “if condition” does not trigger
and the while loop breaks until £ = K, we have

k—1
IxF =X <& x" —x'||* < B, Vk < K, (3a)
t=0

ly* —x°|| < 2B,Vk < K. (3b)

We will show in Sections 3.1 and 3.2 that the function value
decreases with a magnitude at least O(e!-%) in each epoch
except the last one. Thus the algorithm terminates in at
most O(e~1-%) epochs, and accordingly O(e~1-75) gradient
computations since each epoch needs at most O(¢~-2%)
iterations. In the last epoch, we will show that the gradient
norm at the output iterate is less than O(e), which is detailed
in Section 3.3.

3.1. Large Gradient of ||V f(y*~1)||

We first consider the case when ||V f(y*~1)]| is large.

Lemma 3.1. Suppose that Assumption 2.1 holds. Let n <
ﬁ and 0 < 0 < 1. When the “if condition” triggers and

VLD > %, then we have

Proof. From the L-gradient Lipschitz condition, we have
f (Xk+ 1)

<) (VIR) Ly
2 “)

=1") VI + B I

<f6) = DIVFEHI,

where we use 1 < ﬁ. From the L-gradient Lipschitz, we
also have

PO 2 Fy5) + (T~ yh) — Z e,

So we have
FEMY = f(xY)

N L, 7 .
< — (VI xt = yE) 4 Sl -y 1P = SIVIEHIP

1 L
_t <Xk+17yk’xk7yk>+7
n 2
1
=5, (I = ™17 4 1" = y* (17 = [= xF)1?)

L ™
+ §ka -y P - §||Vf(yk)\|2

m
IIX’“fy’“llzfgllvf(y’“)\\2

@5 ko knz . Loyksr kg2 31 k(2
S22k — R = xR = 2
Sl =317 = el = - 2w)

b5 1 3n
< 2k — xR 2 ikt k2 2 (v |12
< g X e e P,

Restarted Nonconvex Accelerated Gradient Descent

a
where we use L < ﬁ in < and ||x* — y*|| = (1 —

b
x*~1| in <. Summing over
—1 we have

O)|x" — x* 1| < [|x*
k=0, ---,K—1andusing x’ = x

1 = k+1 k2 77 2
Sgp 2o I = xFT - Z IV £(y™)ll
n
k=0
B2 3p B2 3B? B?
<— - ZIVIEHIP < <-=,
8 8 877 87] 4n

c d
where we use (2b) in < and ||V f(y*~1)|| > % in<. O

3.2. Small Gradient of ||V f(y*~1)||
If |[Vf(y* | < %, then from (2¢) we have

15" = x| < [ly* 7" = x|+l VI < 3B.

For each epoch, denote H = V2 f(x%) and H = UAU7”
to be its eigenvalue decomposition with U, A € R4¥¢, Let
A; be the jth eigenvalue. Denote x = UTx, y = Uy,
and Vf(y) = UTVf(y). Let x; and ﬁjf(y) be the jth
element of X and V f (y), respectively. From the p-Hessian
Lipschitz assumption, we have

F5) = f(x°)
< <Vf(x0),x’C — x0> + %(x’C —xOTH(N — x%
£lx — x|
6
B . 5)
- <Vf(x0),>~<'< - §0> + 5 (&) TAR - %)

+
Pk 03
+ 21x< - x|
<g(x") — g(x°

where we denote

) +4.5pB3,

glx) = <%f(xo)’ x- X0> + %(X —XOTA(x - %%),
g;(2) = (Vi (x0), 2 = %) + %A](x oy

Denoting

=V, fyF) — Vg h), 3 = VEyF) - Ve,

then the iterations can be rewritten as

yh=xb 4 (1) - %Y, (6)

J
XETL = g Vi f(y") = ¥ — Vg (FF) — ndk, (6b)

and ||0%|| can be bounded as

[t
=|Vf(y") - V") — AFF -2
=|Vf(y*) - V£(x°) - H(y" —x")|| -
H(/ V20 4 t(y" —x%)) — H)(yk—xo)dtH
<Llly* —x"|” < 20°,

for any £ < K, where we use the p-Hessian Lipschitz
assumption and (2c¢) in the last two inequalities.

From (5), to prove the decrease from f(x°) to f(x*), we
only need to study g(X*) — g(X°), that is, the decrease
of g(x). Iterations (6a) and (6b) can be viewed as apply-
ing AGD to the quadratic approximation g(x) coordinately
with the approximation error g’“, which can be controlled
within O(pB?). The quadratic function g(x) equals to the
sum of d scalar functions g;(x;). We decompose g(x) into

Zj€sl g] (x]) and ZjESQ gj (X]), Where

Sl{ji)\jza}, Sz{j:Aj<9}.
n n

We see that g;(z) is approximate convex when j € Sy, and
strongly concave when j € S,.

It is pointed out in (Jin et al., 2018) that the major challenge
in analyzing nonconvex momentum-based methods is that
the objective function does not decrease monotonically. To
overcome this issue, Jin et al. (2018) designs a potential
function and uses the negative curvature exploitation when
the objective is very nonconvex to guarantee the decrease
of the potential function. An open problem is asked in
Section 5 of (Jin et al., 2018) whether the negative curvature
exploitation is necessary for the fast rate.

In contrast with (Jin et al., 2018), in this paper we establish
the approximate decrease of some specified potential func-
tion when j € Sj, as shown in (9), and the approximate
decrease of gj(x) when j € S, given in (12). Thus, the
negative curvature exploitation is avoided. Putting the two
cases together, we can show the decrease of f(x) in each
epoch.

We first consider 3, 5 g;(x;) in the following lemma.

Lemma 3.2. Suppose that Assumption 2.1 holds. Let n <
ﬁ and 0 < 0 < 1. When the “if condition” triggers and
VA < % then we have

Y aiE) =Y gE)

JES1 j€S1

Z 30 X Z R b

JES1

8
8np*B*K B4IC ®

Restarted Nonconvex Accelerated Gradient Descent

Proof. Since g;(x) is quadratic, we have

g; (X5
=g; (X5) + (Vg; (&5), % —%F) + J|~’“+1 x¥|?
gj(if)_1<;<§f+1_~ 0ol R - %)

n
+ (Vg (xF) = Vg (35), x5 —xF) + j\Nk“ x5
:gj<i5>—1<>~<§+1—m;?“—i§>—<6f,izf“—%§>
(R) - SR R
:gj(§§)+2i(|§k; ~k|2 |~k+1 ~k|2 |~k+1 ~k|2)

%5 - ¥51%)

A B bl b1~
ng(X§)+*(IX?*Y§I2 X =y - % X5

i (R — 342 -

1~ ~ A
— <5’»c x?“ — xf> + ?j Y;

~ ~ Aj i~ ~
7|5k|2—|— | k+1_ k‘2_|_ (| k+1_ k|2

XE—y5 %),

where we use (6b) in <, Using L > A; > —% when j €
. A\~ ~

Si={j:N>-2}and (—ﬁ + é) X —yh? <

(—2L+ %) \~k+1 §§|2 < 0, we have for each j € Sy,

~ 1 ~ ~ ~
9; (&) <g; (%)+%(\x§—y§|2 %5 - %51%)
1 ~ o ~ 0 . ~
+ o105 P+ SR =X+ 1% - 5
e (1=021+6) .,
S0i(&) + g R KT

1 ~
—|5k2
+2a|]|’

_ i_g |§k+1_§k|2
2 2 J J

. b . . .
where we use (6a) in =. Defining the potential function

- 1—0)2(1+0) - -
e‘l;:—&-l (k+1)+() ()|X‘I;+17X?|27

we have
ngrl <€k+i|gk|2
J =57 2" 7

1 1-0)2(1+6)\ - ~
(e e

ok 30 ki1 ~ki2 L 20 kg2

2

where we let & = -~ in < such that Q——Si—(lfa)zﬂ =
1 n 8n n

30+7_£

277_87] K =1

Summing over k = 0,1, ---

and j € Sy, using x% — x~1 = 0, we have

> G <Y 6

JGSl Jesl
<D uE)-> 5 Zl AR leé’“HQ

JES1 J€$1

(% 30 % <+ - 8np”B°K B4IC

SIS SRR

JEST JjESL ’

d

where we use (7) in <. O]

Next, we consider 3, s, 9;(x;).

Lemma 3.3. Suppose that Assumption 2.1 holds. Let n <
41L and 0 < 0 < 1 When the “if condition” triggers and
IV DI <3

Zgj

, then we have

Zg; X7)

JES2]€52
(10)
Z Z R xE2 2770234/C
JESQ

Proof. Denoting v; = XJ — /\iﬁ f(x°), g;(z) can be
rewritten as

Aj %0+ l & ’ I s 0y|2
(o) =3 (2 =4 L0) = T30
=G =) = g I
Foreachj € So ={j: \; < —%},we have
95X) = g5 (x5)
=R 7 - R 2
:ﬁ&'ﬁl B4 @ gt vy

—XEP N T - R v

So we only need to bound the second term. From (6b) and
(6a), we have

x5 - X)
=y — X5 — Vg, (FF) — 0ot
=(1-0)(%E — 1) — Vg, (FF) — ok
=(1-0) k- fl) A (75 = v;) — ot
=(1-0)(xy -z

— A (X] Vy+(1 0)(xE — xh1)) — ot

Restarted Nonconvex Accelerated Gradient Descent

So for each j € Sa, we have

(& -x%) -)
=(1=0)(X) = X7.%) = vj) = nAlx5 = vyl
— (1= 0) (R - KL RE - vy - (3, _VJ>
2(1 - 6) (% = %575 = vy) I8 - v
A\ (1—=6) —p —p_ _
+%(|X§—x§? Y2+ xh = vy)?)
\(1+6)
T gk MAE T ok 2
+2)\ (1—}—9)' "+ 2 x5 — vl
-0 (& %R)
M%_%flz _n
+ 51X = %] |+2A(1+9)|’|
=(1=0) (X XL X)+ (-0 -
A —0) o kg k12
AU =0) ok N
+ X - %; |+2A(1+9)| |

b
>(1-0)(xF LR vy 4+ K"W’
J

where we use the fact that A\; < 0 when j € Sy in % and
b
(1+"T/\j) (1-6)> (1—%) (1—6)>0in >. So we have

& -xx - vy)
. k
k /=l =0 =0 g)k—t 2
>(1-90) <Xj*Xjan ﬁtzzl H
" k
— A= 0 AR v g Y- 0
t=1

k
d k—t) 562
> — .
255, 20 -0,

where we use

1 _ 0
X; —X; —x y

; = -0V f(¥°) = -0V, f(x°)
=—nVyg;(x

7) = —nX(X] —vy)

, d
in = and A; < 0in >. Plugging into (11) and using A\; < 0
again, we have

;X — g; (%)

0 n k
< _ k1 ~k:2 n
<=5 l% 22::

K —1andj € So, we have

(12)

k t‘5t|2

Summing over k = 0,1, --

Zgj Zgj

JES2 JES2
K—1

<= 5 ZI”““ ;’Zi o) 151

JESz k=0t=1

K-1 k
N R O S
1682 = k=0t=1
-5 Zr’““ iy 20 K
X; 9)
Jesz
where we use (7) in % O

Putting Lemmas 3.2 and 3.3 together, we can show the
decrease of f(x) in each epoch.

Lemma 3.4. Suppose that Assumption 2.1 holds. Under the
parameter settings in Theorem 2.2, when the “if condition”
triggers and ||V f(y*~1)|| < L, then we have

Proof. Summing over (8) and (10), we have

9&) —9x) = Y ¢&) - g(x)
jeleJSz
39 Z ||~lc+1 ~kH2 10770 *B'K
30 "= 10np?B*K
BN ety K
8n P 0
e 30B% 10np*B*K
- &K 0 ’

where we use (2a) in % Plugging into (5) and using X < K,
we have

F) = F(x%)
30B% 10p°Bnk 3
< — 4.5pB
ST T g TP (13)
0 B2 1002 B4nK 3/2
< OB W00k s < C
K 26 N

3.3. Small Gradient in the Last Epoch
In this section, we prove Theorem 2.2. The main job is to

establish ||V f(¥)|| < O(e) in the last epoch.

Proof. From Lemmas 3.1 and 3.4, we have

F) —) < —mm{ej//; =

Note that at the beginning of each epoch in Algorithm 1,
we set x° to be the last iterate x* in the previous epoch.

(14)

Restarted Nonconvex Accelerated Gradient Descent

Summing (14) over all epochs, say N total epochs, we have
) 3/2 el
m;nf(x) — f(Xint) < len{ 7 p }

So the algorithm will terminate in at most 5/‘2[

epochs.

. 2\ 1/4)
Since each epoch needs at most K = % (é?) gradient
evaluations, the total number of gradient evaluations must

ALLL/2p1/4
be less than ==—"—.
€

Now, we consider the last epoch. Denote y = Uy =

K N . .
KOHZOUT’C = K+1Zk oY% Since g is
quadratic, we have
IVe@)l = | — ng 7)

Ky+1
Ko
<h+1 5k)
| \
Ko
1 _xk —(1-6 gk)
Trcesy 1 G C e i

1 <l
b $Ko+1 _ 30 Ko _ 30 Tk
= |Ix —-x —(1-0)(x"°—x")+ 1)

T (1-0)(DY

1 o
— "'K0+1 "’KO "'Ko =0 ~k)
= ||x — X0+ 9(x"0 —x7)+ 1 1)

1Ko+ 1) ()
Ko
FKo+1 NKU FKo _ ~0 NG
+6 +)
o +1)< [+6]x | TII;OH II)
c 20B
< xKotl _ xKo 4 22— 4 9,B? 15
—nK” I+ 5 + 208, (1s)
where we use (6b) in %, x! = x0 in %, K, +
C
1 > %, (3a), (7), and 3b) in <. From Ky =
argmin x | << g [[x*+1 — x¥||, we have
kot — o 2
1 K-1
< - Z ”Xk-‘rl _kaQ
K- |K/2] | o) (16)
K-1
1 d 2B?
Si ||Xk+1 k||2 < ,
K - |K/2| ;} K2

d
where we use (3a) in <. On the other hand, we also have

IV =1V < V@) + IV F(F) = Ve
=IVa@) + IVF(F) - V") — AF —%)]
=Va@) + V£(F) — VF(x°) —H(y —x")|
<IVg@)l + 51y = x| < Vo (@) + 2082,

where we use ||y — x°|| < K01+1 Zszoo ly* — x| < 2B
from (3b) in % So we have
Q\fB 20B
v 4+ 4pB* <82
IVIOI < e+ + 2
O

Remark 3.5. The purpose of using k S5~ [|x"+1 —x||? >
B2 in the “if condition”, rather than ||x* —x°|| > B, and the
special average as the output in Algorithm 1 is to establish
(16).

3.4. Discussion on the Acceleration Mechanism

When we replace the AGD iterations in Algorithm 1 by the
gradient descent iterations x**1 = x¥ — nV f(x*) with
n= ﬁ, similar to (4), the descent property in each epoch
becomes

7T 78?2
Ky)< - <F L _ k|2 <
1) <& Z P < o

and the gradient norm at the averaged output X =

K—1
11(k=0 x" is bounded as

N 1 B
IVg(x)|| < n?||xK x| +2pB% < — +2pB.

By setting B = f and K = \/7) we have the O(e2)

complexity.

Comparing with (13) and (15), respectively, we see that the
momentum parameter 6 is crucial to speedup the conver-
gence because it allows smaller K, that is, 61% V.S. 61% for
AGD and GD, respectively. Accordingly, smaller K results
in less total gradient computations. Thus, the acceleration
mechanism for nonconvex optimization seems irrelevant
to the analysis of convex AGD. It is just because of the
momentum.

4. Extension to Jin’s Method

In this section, we extend our analysis to the method pro-
posed in (Jin et al., 2018), and detail the method in Algo-
rithm 2. No perturbation is added since we do not consider
second-order stationary point. Except the perturbation and
that we specify the stopping criteria and the output, as well
as that we rewrite the algorithm in epochs, Algorithm 2 is
equivalent to the one in (Jin et al., 2018). However, we give
a slightly faster convergence rate by a O(log %) factor with
much simpler proofs.

Define KL = k + 1 when k resets to 0. Denote the iterations
from k = 0 to k = K to be one epoch. For each epoch, we
have three cases:

Restarted Nonconvex Accelerated Gradient Descent

Algorithm 2 AGD-Jin (X;,¢)
Initialize x° = x;,,¢, v0 = 0, k = 0.
while k£ < K do

k _ k ok
yi=x"+(1-0)v
XM= yk -V f(y")

VR — k1
if f(x) < f(y")+(Vf(y"),xF—y") -2 |x"—y"|]?
then

xF+1 < Negative Curvature Exploitation(x*, v¥, 5)
x0 =xFtl O = vkl =, k=0
else if (k + 1) Y1 [[x'*! — x||> > B2 then
x0 = xk+1 Y0 = yk+1l =
else
E=k+1
end if
end while
K = argminlgkg%] | xF — x*=1|
Ky = argmin 2 | <o e X" — x|

o 1 K k
Output § = 7 —=7e757 2kek, ¥

Algorithm 3 Negative Curvature Exploitation(x*, v¥, s)

if | v*|| > s then

skl — yk

else

5 = svk /v

xFH = argming . 505 f(x)
end if

Return x*+1

1. The negative curvature exploitation (NCE) is employed
at the last iteration.

2. The condition (k + 1) 31 [Ix"+! — x*||2 > B2 wrig-
gers at the last iteration. Note that in this case, AGD
does not restart because x° — x~! = v0 £ 0.

3. None of the above two cases occurs, and the while loop
breaks until £k = K. This is the last epoch.

Define the potential function (% = f(x*) + 130[v¥||.
We need the following two lemmas, which can be adapted
slightly from Lemmas 4 and 5 in (Jin et al., 2018).

Lemma 4.1. Suppose that Assumption 2.1 holds. Let n <
57 and 6 € [21y, 3. If NCE is not performed at iteration
k, then we have £*+1 < ¢k — %kaﬂ — xk|2,

Lemma 4.2. Suppose that Assumption 2.1 holds. Let 0 < %
If NCE is performed at iteration k, then we have (1 <

¢% — min {7(1_2?82 , 7(7_22%)82 }

2
Sety = %, s = 4lp, and the other parameters the same as

those in Theorem 2.2. In Case 1, we know from Lemma

4.2 that the potential function decreases with a magnitude

1.5
at least 84< " at the last iteration, and it does not increase in
the previous iterations from Lemma 4.1. So we have

1.5
€K§£Omin{646 ’166L}.
Ve oop

In Case 2, we have

K—-1
0
(’C _ /0 < - % Z ||Xk+1 _ Xk||2
k=0
2

932 861'5

0B
< _
STuK S

K \Jp

where we use K Y [[x"t! — x![|2 > B2. So the al-
Br/P

gorithm will terminate in at most —3%~ epochs, and each
epoch needs at most K gradient and function evaluations. In
the last epoch, similar to the proof of Theorem 2.2, we also
have ||V f(¥)|| < O(e). So we have the following theorem.

Theorem 4.3. Suppose that Assumption 2.1 holds. Let
e 1/4 2
n=n B= 50 =) K =Gy = 2

y . . . N, L/2p1/4
s = 4&. Then Algorithm 2 terminates in at most ————
P €

gradient and function evaluations and the output satisfies
IVf(¥)] <267c, where Aj = f(Xint) — ming f(x).

Our complexity improves over the O(e~7/* log 1) one given
in (Jin et al., 2018) by the O(log 1) factor. Although Jin
et al. (2018) focus on finding second-order stationary point,
their complexity to find approximate first-order stationary
point also has the additional O(log %) factor, see the rea-
sons discussed in Section 2. Our analysis for Case 3 above
does not invoke the analysis for strongly convex AGD, and
moreover, it is much simpler. The proof in (Jin et al., 2018),
although very novel, is quite involved, especially the spec-
tral analysis of the second-order system. It should be noted
that we measure the convergence rate at the average of the it-
erates. When measuring at the final iterate, which is always
used in practice, we should use the proof in (Jin et al., 2018),
and we conjecture that the O(log 1) factor in unlikely to
cancel.

5. Conclusion

This paper proposes a simple restarted AGD for general
nonconvex problems under the gradient Lipschitz and Hes-
sian Lipschitz assumptions. Our simple method finds an
e-approximate first-order stationary pointin O(e~7/4) gradi-
ent computations with simple proofs, which improves over
the state-of-the-art complexity by the O(log 1) factor. We
hope our analysis may lead to a better understanding of the
acceleration mechanism for nonconvex optimization.

Restarted Nonconvex Accelerated Gradient Descent

References

Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E., and
Ma, T. Finding approximate local minima for nonconvex
optimization in linear time. In Proceedings of the 49th An-
nual ACM SIGACT Symposium on Theory of Computing
(STOC), pp. 1195-1199, 2017.

Allen-Zhu, Z. and Li, Y. Neon2: Finding local minima via
first-order oracles. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 3716-3726, 2018.

Beaton, A. E. and Tukey, J. W. The fitting of power series,
meaning polynomials, illustrated on band-spectroscopic
data. Technometrics, 16(2):147-185, 1974.

Carmon, Y. and Duchi, J. Analysis of krylov subspace
solutions of regularized nonconvex quadratic problems.
In Advances in Neural Information Processing Systems
(NeurlPS), pp. 10728-10738, 2018.

Carmon, Y. and Duchi, J. First-order methods for nonconvex
quadratic minimization. SIAM Review, 62(2):395-436,
2020.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Con-
vex until proven guilty: Dimension-free acceleration of
gradient descent on non-convex functions. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), pp. 654-663, 2017.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Ac-
celerated methods for nonconvex optimization. SIAM
Journal on Optimization, 28(2):1751-1772, 2018.

Carmon, Y., Duchi, J., Hinder, O., and Sidford, A. Lower
bounds for finding stationary points I. Mathematical
Programming, 184:71-120, 2020.

Cartis, C., Gould, N. I. M., and Toint, P. L. On the complex-
ity of sttpest descent, Newton’s and regularized Newton’s
methods for nonconvex unconstrained optimization prob-
lems. SIAM Journal on Optimization, 20(6):2833-2852,
2010.

Fang, C., Lin, Z., and Zhang, T. Sharp analysis for noncon-
vex SGD escaping from saddle points. In Proceedings of
the Conference On Learning Theory (COLT), pp. 1192—
1234, 2019.

Ghadimi, S. and Lan, G. Accelerated gradient methods
for nonconvex nonlinear and stochastic programming.
Mathematical Programming, 156:59-99, 2016.

Hoffman, A. J. and Wielandt, H. W. The variation of the
spectrum of a normal matrix. Duke Mathematical Journal,
20:37-39, 1953.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. L. How to escape saddle points efficiently. In Proceed-
ings of the 34th International Conference on Machine
Learning (ICML), pp. 1724-1732, 2017.

Jin, C., Netrapalli, P., and Jordan, M. I. Accelerated gradient
descent escapes saddle points faster than gradient descent.
In Proceedings of the Conference On Learning Theory
(COLT), pp. 1042-1085, 2018.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Na-
ture, 521(7553):436-444, 2015.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B.
Gradient descent only converges to minimizers. In Pro-
ceedings of the Conference On Learning Theory (COLT),
pp. 12461257, 2016.

Li, H. and Lin, Z. Accelerated proximal gradient methods
for nonconvex programming. In Advances in Neural
Information Processing Systems (NIPS), pp. 379-387,
2015.

Li, Q., Zhou, Y., Liang, Y., and Varshney, P. K. Conver-
gence analysis of proximal gradient with momentum for
nonconvex optimization. In Proceedings of the 34th In-

ternational Conference on Machine Learning (ICML), pp.
2111-2119, 2017.

Nesterov, Y. A method for unconstrained convex mini-
mization problem with the rate of convergence O(1/k?).
Soviet Mathematics Doklady, 27(2):372-376, 1983.

Nesterov, Y. On an approach to the construction of opti-
mal methods of minimization of smooth convex func-
tions. Ekonomika I Mateaticheskie Metody, 24(3):509—
517, 1988.

Nesterov, Y. Introductory Lectures on Convex Optimization:
A Basic Course. Springer Science+Business Media, 2004.

Nesterov, Y. Smooth minimization of non-smooth functions.
Mathematical Programming, 103:127-152, 2005.

O’Neill, M. and Wright, S. J. Behavior of accelerated gradi-
ent methods near critical points of nonconvex functions.
Mathematical Programming, 176:403-427, 2019.

Royer, C. W. and Wright, S. J. Complexity analysis of
second-order line-search algorithms for smooth noncon-
vex optimization. SIAM Journal on Optimization, 28(2):
1448-14717, 2018.

Royer, C. W.,, O’Neill, M., and Wright, S. J. A Newton-
CG algorithm with complexity guarantees for smooth
unconstrained optimization. Mathematical Programming,
180:451-488, 2020.

Restarted Nonconvex Accelerated Gradient Descent

Xu, Y., Jin, R., and Yang, T. First-order stochastic algo-
rithms for escaping from saddle points in almost linear

time. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 5535-5545, 2018.

A. Proof of Theorem 4.3

Proof. We only need to prove ||V f(¥)|| < O(e) in the last
epoch. Denote

) = (VF(0) %~ x%) + 5 (x— %) H(x — <),
§* =V f(y*) - Vh(y").
Similar to the deduction in Section 3.2, we have

X =yt — g Vh(y*) = nd",

185 < Elly* —x°I* < 2pB2,

(17a)

where we use

k—1
IxF —x0|? <k x"—x'||*< B, VE < K, (18a)
t=0

ly* —x°|| < 2B,Vk < K, (18b)

in the last epoch. Similar to the proof of Theorem 2.2, we
have

1 L
Vh =l Vh(y
I9h)] = "K2_K1+1k§1)
1 &
_ k+1 k k
= X —y +nd
n(Ky — K +1) k;ﬁ(")
and
Ko
Z (Xk+1 _yk_|_n5k)
k=K,
Ko
= Z (xM —xP — (1 - 0)(x" —xF71) 4 no")
k=K
Ko
= [|xF2 1 — xFr (1 —6)(DR Z 5k
k=K
_HXK2+1 Ko XKl +XK1_1+9(XK2 _XKl—l)
Ko
+n Z 5"
k=K,
<R - x| 4 5 = x| g xS — x|
K>
O = X0 4+ D (18R]

k=K,

)

From Ky — K1 + 1 > £ (18a), and (17a), we have

VA <77 [xf2H — xRz
3 Ky Ki—1 6608 2
— — — +2pB~.
+17KHX X ”+7]K +2p

On the other hand, from the definitions of K7 and K5, we
have

et — 22
1 K-1
< - Z ||xk+1 _XkHQ
K — |2K/3] k={27/3]
K-1
1 & 3B?
- 1 _ k2 « 22
=K — 2K/3] D Ix <" = Tz
k=0
and
1 [51
HXK1 _ XK1—1||2 ST Z ||Xk k—lHQ
[?W k=1
S% ||Xk+1 k||2 %
[§W k=0 K
So we have
G\fB
Vhi@)| < + 2pB2
IVR)I < e + T2
and
IV <IIVR@) + IV F(F) = VR
<|Vh(y)||+*||y x°|?
G\fB
4pB? < 267
= WK 77K + €.

O

B. Discussion on the Second-order Stationary
Point

Algorithm 1 can also find e-approximate second-order sta-
tionary point, defined as

VI <6 Amin(V2f(x)) > —\/ep.

We follow (Jin et al., 2017; 2018) to add the perturbations
generated uniformly from the ball B(r) with radius r and
center 0. The method is presented in Algorithm 4 and the
complexity is given in Theorem B.1. We see that Algorithm
4 needs at most O(e~7/*log 4%) gradient computations to
find an e-approximate second-order stationary point with
probability at least 1 — (, where d is the dimension of x in

Restarted Nonconvex Accelerated Gradient Descent

Algorithm 4 Perturbed Restarted AGD (X5, €)
Initialize x ! = x° = x;,,¢ + &, € ~Unif(B(r)), k = 0.
while k£ < K do
vy =xF + (1 -0)(xF —xk1)
XM = yk —nVf(y*)
k=k+1
if &SP |Ixtt! — x||2 > B2 then
x t=x0=xF 4+ ¢ & ~Unif(B(r), k=0

end if
end while
Ko = argminL J<kSK-1 ||XkJrl —x"|
Output y = 7= +1 Zk o¥"

problem (1). This complexity is the same with the one given
in (Jin et al., 2018). Comparing with Theorem 2.2, we see
that there is a O(log é) term. Currently, it is unclear how
to remove it.

Theorem B.1. Suppose that Assumption 2.1 holds Let
1 /4
X = O(log é), n= 41L’ = 288)(\/7 0 = ,
2 0 0 2
K=2r= = min{£5- TR \B[, 20%, B = = (e)for
some constant C. Then Algorithm 1 termmates in at most

ALL/2,1/4,6])
O (===/—%) gradient computations and the output

satisfies |V f(¥)|| < € where Ay = f(Xine) — miny f(x).
It also satisfies Ain (V2 f(§)) > —1.011,/€p with proba-
bility at least 1 — (.

Proof. Denote x"* to be the iterate in the tth epoch. From
Lemmas 3.1 and 3.4, we have when the “if condition” trig-
gers,

t,K £,0 B?
FOR) — fO) <~
() =) < - -
if [V /() > 2, and
30B% 10p°B*nK
I\ t,0 < _ 4. B3
FO) = i) < =+ I s
if |[Vf(y*H| < %. From the L-gradient Lipschitz, we
have
FE0) — F(x5)
S <Vf(Xt’K),Xt+1’O _ Xt,IC> + gHXt—H,O _ Xt,ICHQ
L Lr?
=(Vf(x""),¢") + 5\\§t||2 < VA lr+ -

We say that ||V f(x**)|| is bounded. Otherwise, perform-
ing one gradient descent step z = x*"* — nV f(x?*), sim-
. 7

ilar to (4), we have f(z) < f(x"X) — B[V f(x"5)]|2 ~

—o00, which contradicts with miny f(x) > —oo. Letting
|V £(x!X)|| < C for all epochs, we have

Lr? B2
<Cr4+—< —
Ky <or+ i<

FOEO) = it
B2 L
8y 165888px*

if IIVf(

-1 > B On the other hand, if
19765 < 2w

IV

SIVAES DI+ IVAES) = Vi)

SIVAES DI+ LI =y
I

- B
=V + LoV F(y* 1)II<

So we have

LB < —.
+ 1n

5Br Lr? 0B?
= 47 <

t+1,0\ 6Ky «
PO — fR) < ST S < o

and

0B% 10p?’BnK
f(xt+1,0) o + P n

dnK 20
15

<— .
= 700000,/px>

fx) < - +4.5pB3

So the algorithm will terminate in at most O(A";ﬁxo)

epochs. Since each epoch needs at most K

O(x (L?/(ep)) Y 4) gradient evaluations, the total number
1/2 51/

of gradient evaluations must be less than O(W).

Now, we consider the last epoch. Similar to the proof of
Theorem 2.2, we also have

2[2B 20B

€
nk X

VIl <

T S €

If Anin (V2 f(x5K)) > —, /ep, from the perturbation theory
of eigenvalues (Hoffman & Wielandt, 1953), we have for

any j,

IV (V2F(FY) = A (V2 (x5))
<[V2FEHY) = V2F ()
<pllgH — x| < pllgt = x|+ pr < 3pB,
and

A (VEF(5))
>0 (V2 (x)) = [V (V2F(F) = M(V2 ()|
> — \/éep—3pB > —1.011,/ep,

Restarted Nonconvex Accelerated Gradient Descent

t+1,k

K
Xt+170” < K01+1 Zk:oo ”y

xtHL0| < 2B in % Now, we consider
Amin(V2f(x"X)) < —,/ép. Define the stuck re-
gion in B(r) centered at x*** to be the set of points starting
from which the “if condition” does not trigger in K
iterations, that is, the algorithm terminates and outputs a
saddle point. Similar to Lemma 8 in (Jin et al., 2018), we
know from Lemma B.2 that the probability of the starting
point x*+1.0 = xtX 1 ¢t Jocated in the stuck region is less
than

where we use |yttt —

roVa—1(r) < rovd

Va(r)y — r =6

where we let 1o = Thus, the output y satisfies

Anin(V2f(§)) > —1.011,/ep with probability at least
1—C. 0

Lemma B.2. Suppose that \pin(H) < —/€p, where H =

V2f(x). Let x'° and x"° be at distance at most r from
x Letx' ' =x"° x" 7t = x"° and x'° — x"° = ro€i,
where e, is the minimum eigen-direction of H. Under the
parameter settings in Theorem B.1, running AGD starting
at x'° and x"'°, respectively, then at least one of the iterates

triggers the “if condition”.

o~
3

The proof of this lemma is almost the same as that of Lemma
18 in (Jin et al., 2018). We only list the sketch and the details
can be found in (Jin et al., 2018).

1k //k

Proof. Denote wF = x . From the update of AGD,
we have
whtl _|2-0)@-nH) —(1-0)(I-nH) wk
wh I 0 wh—1
{(2 —)N Fwk — (1 G)A’“wkl]
_ 0
wh K
NEIR
WO k d)r
__AEk+1 _ k—r
- Q] = 5]
and
k 1
k—1—7r d)r
oA o] o a 5],
r= O
where AF = (flty™ +()y”k) - H) dt and
o = (2 9)Ak - 9)Ak
Assume that none of the iterates (x’ O xt %! K) and
(x"%,x"", -+ x"") trigger the “if condition”, which yield
% =" < B,ly" -x"| <2BVE <K,
Ix"* —x"°|| < B, |ly"* —x"°|| < 2B, vk < K.

We have

k k
IAF[] <pmax{]ly™ — x|, [ly"" — x|}

nk //0

0
"l lly I} + pr < 3pB,

16" 1| <6pB(|w" | + [[w"~"[]).

<pmax{|ly’" - x

We can show the following inequality for all £k < K by
induction:

nasa

It is easy to check the base case holds for £ = 0. Assume
the inequality holds for all steps equal to or less than k.
Then we have

SN

)

3 0
I < 5 |moia [

)

o] < 1805 | L0147

0
by the monotonicity of ||[I, 0]A* [XO} in k (Lemma 33 in

(Jin et al., 2018)). We also have

ZAk 4| E o=]| e
2

B =l [Offlo 17 w'

k
= 18anZ |ak—r|lar — br|ro

r=0
b
< 18anZ (+k+ 1) |ak 1 = brtalro

ket [WO

< 18pBnK (9 +K> H[LO}A [WO} ’
where we define [ay, —bi] = [1,0]/A% . and A,,;, =
[(2 - 9)(11_ NAmin) —(1— 9)((1) - 77)‘”””)} , < uses the

fact that w® = rge; is along the minimum eigenvector di-

b
rection of H, <uses Lemma 31 in (Jin et al., 2018). From
the parameter settings, we have 18pBnK (2 + K) < 1.
Therefore, the induction is proved, which yields

’ — |InL, 0] ISAK—l—r [%T] ‘
1

r=0
0
o
c 0 ONE a
z% <1+2> > 5B,

w

) > | oar []

0
= —|a *b
2| K K|

Restarted Nonconvex Accelerated Gradient Descent

where § uses Lemma 33 in (Jin et al., 2018) and N\, <

d
—62%, > uses K = %1og 299_]03. However, (19) yields
W <[= <)+ [l = x|
+lx — x| 4 |[x = x"°|| < 2B + 2r < 4B,

which makes a contradiction. Thus the assumption is wrong
and we conclude that at least one of the iterates trigger the
“if condition”.

O

C. A Continuation Extension

In Algorithm 1, we set B small such that the method may
restart frequently in the first few iterations. In this case,
Algorithm 1 almost reduces to the classical gradient descent.
To make use of the practical superiority of AGD in the first
few iterations, we can use a continuation strategy, at the
cost of introducing nested loops. The method is presented
in Algorithm 5, which gradually decreases the precision €
in restarted AGD.

Algorithm 5 Restarted AGD with Continuation

Initialize z°, 7 > 1,7, ¢ <

256 pn?
fOl‘t—O,l," aNdO
z'T! =Restarted AGD(z", %)
end for
Setting N = log, ¢ and denoting D = AfL1/2p1/4’ the

total complexity is

D T4 _ D)t _ FTIN+L) /4 q
A =) =D)

L7/4 (¢)7/4 1 DyT/Ac—T/4
T (rTA 1) T A

7_7/4(7_N)7/4_1
c7/4 (7-7/4 _ 1)

=D

At the Nth iteration, since we set the precision as T%, =,
Algorithm 5 will output an e-approximate first-order station-
ary point.

D. Efficient Implementation of the Average

Given x°,x!,... xK and vy, X -, y¥ sequentially,
we want to ﬁnd y = Ko T D keo y* efficiently, where

k+1 k”

Ko = argmin x o< p_q [|X We present the

implementation in Algorithm 6.

Similarly, we can also implement the average in Algorithm
2 efficiently.

Algorithm 6 Implementation of the Average
Initialize S = S5 =0, Ko =0
fork=0,1,--- K —1do

if k < |£] then
S1 =51 +yk,K0 =k
else
if || x Ko|| < ||lxk*t — x*|| then
Sy =S5 + y
else
S1=51+8+yk S =0,Ky=k
end if
end if
end for
Output

Ko+1 _

K+1

E. Preliminary Experiments

We follow (Carmon et al., 2017) to consider the robust linear
regression with the smooth biweight loss (Beaton & Tukey,
1974),

92
aigerﬂgl;n— Z(b (al'x —b;), where ¢(0) = T3
We set d = 1000 and m = 5000, and we generate b

and each a; from the Gaussian distribution A/ (0, L,,) and
N(0,1,), respectively.

We compare restarted AGD (Algorithm 1), restarted AGD
with continuation (Algorithm 5), and AGD-Jin (Algorithm
2) with gradient descent (GD). Carmon et al. (2017) im-
plemented their “convex until guilty” method with several
modifications, see their Section D.1, and it is not an easy
job for us to give a fair implementation and comparison.
So we do not compare with the complex nested-loop meth-
ods, and only compare with the single-loop ones. We tune
the best stepsize = 0.5 for all the compared methods.
Since the Hessian Lipschitz constant p is unknown, we set
it as 1 for simplicity. For restarted AGD, we set € = 1076,
0 = 4(epn®)*/*, K = 1/, and B = 1000+/¢/p. When
preparing the experiments, we observed that the conver-
gence is not sensitive to B and e but the practical per-
formance depends on B, and we suggest to set B bigger
than the one given in Theorem 2.2, and e bigger than the
desired precision. For restarted AGD with continuation,
we set ¢ = W, 7 = 2, and the other parameters
the same as those of restarted AGD For AGD-Jin, we set
0 =4(epn®)V/*, v =%, and s = 4p

Figure 1 plots the results. To plot the figures, we do not
terminate restart AGD and AGD-Jin even if the break con-
dition in the while loop triggers. We measure the objective
function and gradient at each iterate y* for the accelerated
methods. We observed that the figures are almost the same
when measured at y* and x*. We see that the accelerated

Restarted Nonconvex Accelerated Gradient Descent

0.6

—GD
— Restarted AGD-Continuation
— Restarted AGD
—AGD-Jin

® 0.55¢

>

©

>

[

il

©

c

>

N— 05 .

0.45 ' ‘ ' :
0 100 200 300 400 500

of gradient evaluations

Figure 1. Comparisons of function value and gradient norm.

methods perform better than GD, which verifies the effi-
ciency of acceleration in nonconvex optimization. Restarted
AGD and restarted AGD with continuation decrease the gra-
dient norm faster than AGD-Jin, while AGD-Jin decreases
the objective function a little faster.

gradient norm

10°

—GD
——AGD-Jin

—Restarted AGD

—Restarted AGD-Continuation

2 3
of gradient evaluations

4

5
x10*

