Abstract

This paper studies the accelerated gradient descent for general nonconvex problems under the gradient Lipschitz and Hessian Lipschitz assumptions. We establish that a simple restarted accelerated gradient descent (AGD) finds an \(\epsilon\)-approximate first-order stationary point in \(O(\epsilon^{-7/4})\) gradient computations with simple proofs. Our complexity does not hide any poly-logarithmic factors, and thus it improves over the state-of-the-art one by the \(O(\log \frac{1}{\epsilon})\) factor. Our simple algorithm only consists of Nesterov’s classical AGD and a restart mechanism, and it does not need the negative curvature exploitation or the optimization of regularized surrogate functions. Technically, our simple proof does not invoke the analysis for the strongly convex AGD, which is crucial to remove the \(O(\log \frac{1}{\epsilon})\) factor.

1. Introduction

Nonconvex optimization has emerged increasingly popular in machine learning since a lot of machine learning tasks can be formulated as nonconvex problems, such as deep learning (LeCun et al., 2015). This paper considers the following general nonconvex problem:

\[
\min_{x \in \mathbb{R}^d} f(x),
\]

where \(f(x)\) is bounded from below and has Lipschitz continuous gradient and Hessian.

Gradient descent, a simple and fundamental algorithm, is known to find an \(\epsilon\)-approximate first-order stationary point of problem (1) (where \(\|\nabla f(x)\| \leq \epsilon\)) in \(O(\epsilon^{-2})\) iterations (Nesterov, 2004). This rate is optimal among the first-order methods under the gradient Lipschitz condition (Cartis et al., 2010; Carmon et al., 2020). When additional structure is assumed, such as the Hessian Lipschitz condition, improvement is possible.

For convex problems, gradient descent is known to be suboptimal. In a series of celebrated works (Nesterov, 1983; 1988; 2005), Nesterov proposed several accelerated gradient descent (AGD) methods, which find an \(\epsilon\)-optimal solution in \(O(\sqrt{\frac{1}{\epsilon} \log \frac{1}{\epsilon}})\) and \(O(\frac{\sqrt{\mu}}{\epsilon} \log \frac{1}{\epsilon})\) iterations for \(L\)-smooth general convex problems and \(\mu\)-strongly convex problems, respectively, while gradient descent takes \(O(\frac{1}{\epsilon})\) and \(O(\frac{L}{\epsilon} \log \frac{1}{\epsilon})\) steps. Motivated by the practical superiority and rich theory of accelerated methods for convex optimization, nonconvex AGD has attracted tremendous attentions in recent years. In this paper, we aim to give a slightly faster convergence rate than the state-of-the-art one by simple proofs for a simple nonconvex AGD.

1.1. Literature Review

Nonconvex AGD has been a hot topic in the last decade. Ghadimi & Lan (2016); Li & Lin (2015); Li et al. (2017) studied the nonconvex AGD under the gradient Lipschitz condition. The efficiency is verified empirically and there is no speed improvement in theory. Carmon et al. (2017) proposed a “convex until guilty” mechanism with nested-loop under both the gradient Lipschitz and Hessian Lipschitz conditions, which finds an \(\epsilon\)-approximate first-order stationary point in \(O(\epsilon^{-7/4} \log \frac{1}{\epsilon})\) gradient and function evaluations. Their method alternates between the minimization of a regularized surrogate function and the negative curvature exploitation, where in the former subroutine, Carmon et al. (2017) adds a proximal term to reduce the nonconvex subproblem to a convex one.

Most literatures focus on the second-order stationary point when studying nonconvex AGD. Carmon et al. (2018) combined the regularized accelerated gradient descent and the Lanczos method, where the latter is used to search the negative curvature. Agarwal et al. (2017) implemented the cubic-regularized Newton steps carefully by using accelerated method for fast approximate matrix inversion, while Carmon & Duchi (2020; 2018) employed the Krylov subspace method to approximate the cubic-regularized Newton steps.
All the above methods find an \(\epsilon\)-approximate second-order stationary point in \(O(\epsilon^{-7/4} \log \frac{1}{\epsilon})\) gradient evaluations and Hessian-vector products. To avoid the Hessian-vector products, Xu et al. (2018) and Allen-Zhu & Li (2018) proposed the NEON and NEON2 first-order procedures to extract negative curvature of the Hessian. Replacing the Lanczos method in (Carmon et al., 2018) by NEON2, the resultant method needs \(O(\epsilon^{-7/4} \log \frac{1}{\epsilon})\) gradient evaluations to find an \(\epsilon\)-approximate second-order stationary point (Allen-Zhu & Li, 2018). Other typical methods include the Newton-CG (Royer & Wright, 2018) and the second-order line-search method (Royer & Wright, 2018), which are beyond the AGD class.

The methods in (Carmon et al., 2017; 2018; Agarwal et al., 2017; Carmon & Duchi, 2020) are nested-loop algorithms. They either alternate between the negative curvature exploitation and the optimization of a regularized surrogate function using convex AGD (Carmon et al., 2018; 2017), or call the accelerated methods to solve a series of cubic regularized Newton steps (Agarwal et al., 2017; Carmon & Duchi, 2020). Jin et al. (2018) is the first to propose a Hessian-free and single-loop accelerated method, which finds an \(\epsilon\)-approximate second-order stationary point in \(O(\epsilon^{-7/4} \log \frac{1}{\epsilon})\) gradient and function evaluations. The method in (Jin et al., 2018) runs the classical AGD until some condition triggers, then calls the negative curvature exploitation, and continues on the classical AGD. It is, as far as we know, the simplest algorithm among the nonconvex accelerated methods with fast rate guarantees.

Although achieving second-order stationary point ensures the method not to get stuck at the saddle points, some researchers show that gradient descent and its accelerated variants that converge to first-order stationary point always converge to local minimum. Lee et al. (2016) established that gradient descent converges to a local minimizer almost surely with random initialization. O’Neill & Wright (2019) proved that accelerated method is unlikely to converge to strict saddle points, and diverges from the strict saddle point more rapidly than the steepest-descent method for quadratic objectives.

1.2. Contribution

All of the above methods (Carmon et al., 2017; 2018; Agarwal et al., 2017; Carmon & Duchi, 2020; Jin et al., 2018) share the \(O(\epsilon^{-7/4} \log \frac{1}{\epsilon})\) complexity, which has a \(O(\log \frac{1}{\epsilon})\) factor. To the best of our knowledge, even applying the methods designed to find second-order stationary point to the easier problem of finding first-order stationary point, the \(O(\log \frac{1}{\epsilon})\) factor still cannot be removed. On the other hand, almost all the existing methods are complex with nested loops. Even the single-loop method proposed in (Jin et al., 2018) needs the negative curvature exploitation procedure.

In this paper, we propose a simple restarted AGD, which has the following three advantages:

1. Our method finds an \(\epsilon\)-approximate first-order stationary point in \(O(\epsilon^{-7/4})\) gradient computations. Our complexity does not hide any polylogarithmic factors, and thus it improves over the state-of-the-art one by the \(O(\log \frac{1}{\epsilon})\) factor.

2. Our method is simple in the sense that it only consists of Nesterov’s classical AGD and a restart mechanism, and it does not need the negative curvature exploitation or the optimization of regularized surrogate functions.

3. Technically, our proof is much simpler than all those in the existing literatures. Especially, we do not invoke the analysis for the strongly convex AGD, which is crucial to remove the \(O(\log \frac{1}{\epsilon})\) factor.

This paper only concentrates on first-order stationary point. When the purpose is to find second-order stationary point, especially with high probability, the polylogarithmic factor may not be canceled.

2. Restarted Accelerated Gradient Descent

We make the following standard assumptions in this paper.

Assumption 2.1.

1. \(f(x)\) is \(L\)-gradient Lipschitz: \(\|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|\).

2. \(f(x)\) is \(\rho\)-Hessian Lipschitz: \(\|\nabla^2 f(x) - \nabla^2 f(y)\| \leq \rho\|x - y\|\).

Our method is described in Algorithm 1. It runs Nesterov’s classical AGD until the “if condition” triggers. Then we restart by setting \(x^0\) and \(x^{-1}\) equal to \(x^k\) and do the next round of AGD. The algorithm terminates when the “if condition” does not trigger in \(K\) iterations. In practice, we suggest to output \(\arg\min_{x \in \mathbb{R}^d} f(x)\) when the condition is not satisfied in \(K\) iterations. To avoid the negative curvature exploitation, the algorithm terminates when the “if condition” does not trigger in \(K\) iterations. In practice, we suggest to output \(\arg\min_{x \in \mathbb{R}^d} f(x)\) when the condition is not satisfied in \(K\) iterations.

In contrast with other nonconvex accelerated methods, our method does not invoke any additional techniques, such as
the negative curvature exploitation, the optimization of regularized surrogate functions, or the minimization of cubic Newton steps. Especially, although the single-loop algorithm proposed in (Jin et al., 2018) is very simple, it still needs the negative curvature exploitation, which should evaluate the objective function. Our method avoids the negative curvature exploitation, and thus it is possible to extend to other problems, such as finite-sum nonconvex optimization.

We present our main result in Theorem 2.2, which establishes the $O(\epsilon^{-3/4})$ complexity to find an ϵ-approximate first-order stationary point. Our complexity does not hide any polylogarithmic factors, and it improves over the state-of-the-art one of $O(\epsilon^{-3/4} \log \frac{1}{\epsilon})$ by the $O(\log \frac{1}{\epsilon})$ factor.

Theorem 2.2. Suppose that Assumption 2.1 holds. Let $\eta = \frac{\epsilon}{4\sqrt{p}}$, $B = \sqrt{\frac{\theta}{\rho}}$, $\theta = 4 \left(\epsilon \eta \right)^{1/4}$, $K = \frac{1}{\theta}$. Then Algorithm 1 terminates in at most $\frac{\Delta f L \epsilon^{1/4}}{\sqrt{p} \epsilon^{1/4}}$ gradient computations and the output $\nabla f(\hat{y}) \leq 8\epsilon$, where $\Delta f = f(x_{init}) - \min_x f(x)$.

Among the existing methods, Carmon et al. (2017) established the $O \left(\frac{\Delta f L \epsilon^{1/4}}{\epsilon^{1/4}} \log \frac{L \Delta f}{\epsilon} \right)$ complexity to find an ϵ-approximate first-order stationary point, which has the additional $O(\log \frac{1}{\epsilon})$ factor compared with our one. The complexity given in other literatures concentrating on second-order stationary point, such as (Carmon et al., 2018; Agarwal et al., 2017; Carmon & Duchi, 2020; Jin et al., 2018), also has the additional $O(\log \frac{1}{\epsilon})$ factor even for finding first-order stationary point. Take (Jin et al., 2018) as the example. Their Lemma 7 studies the first-order stationary point. Their proof in Lemmas 9 and 17 is built upon the analysis for strongly convex AGD, which generally needs $O(\sqrt{L/\mu} \log \frac{1}{\epsilon})$ iterations such that the gradient norm will be less than ϵ, and thus the $O(\log \frac{1}{\epsilon})$ factor appears.

3. Proof of the Theorem

Define K to be the iteration number when the “if condition” triggers, that is,

$$K = \min_k \left\{ k \left| k \sum_{t=0}^{k-1} \|x^{t+1} - x^t\|^2 > B^2 \right. \right\}.$$

Denote the iterations from $k = 0$ to $k = K$ to be one epoch. Then for each epoch except the last one, we have $1 \leq K \leq K$,

\[
K \sum_{t=0}^{K-1} \|x^{t+1} - x^t\|^2 > B^2, \tag{2a}
\]

\[
\|x^{k} - x^0\|^2 \leq k \sum_{t=0}^{k-1} \|x^{t+1} - x^t\|^2 \leq B^2, \forall k \leq K; \tag{2b}
\]

\[
\|x^{k} - x^0\| \leq \|x^k - x^0\| + \|x^0 - x^{k-1}\| \leq 2B, \forall k < K. \tag{2c}
\]

For the last epoch, that is, the “if condition” does not trigger and the while loop breaks until $k = K$, we have

\[
\|x^{k} - x^0\|^2 \leq k \sum_{t=0}^{k-1} \|x^{t+1} - x^t\|^2 \leq B^2, \forall k \leq K, \tag{3a}
\]

\[
\|y^{k} - x^0\|^2 \leq 2B, \forall k \leq K. \tag{3b}
\]

We will show in Sections 3.1 and 3.2 that the function value decreases with a magnitude at least $O(\epsilon^{1.5})$ in each epoch except the last one. Thus the algorithm terminates in at most $O(\epsilon^{-1.5})$ epochs, and accordingly $O(\epsilon^{-1.75})$ gradient computations since each epoch needs at most $O(\epsilon^{-0.25})$ iterations. In the last epoch, we will show that the gradient norm at the output iterate is less than $O(\epsilon)$, which is detailed in Section 3.3.

3.1. Large Gradient of $\|\nabla f(x^{k-1})\|$.

We first consider the case when $\|\nabla f(x^{k-1})\|$ is large.

Lemma 3.1. Suppose that Assumption 2.1 holds. Let $\eta \leq \frac{\epsilon}{4\sqrt{p}}$ and $0 \leq \theta \leq 1$. When the “if condition” triggers and $\|\nabla f(x^{k-1})\| > \frac{B}{\eta}$, then we have

\[
f(x^k) - f(x^0) \leq \frac{B^2}{4\eta}.
\]

Proof. From the L-gradient Lipschitz condition, we have

\[
f(x^{k+1}) \leq f(y^k) + \langle \nabla f(y^k), x^{k+1} - y^k \rangle + \frac{L}{2} \|x^{k+1} - y^k\|^2,
\]

\[
= f(y^k) - \eta \|\nabla f(y^k)\|^2 + \frac{L\eta^2}{2} \|\nabla f(y^k)\|^2 \tag{4}
\]

\[
\leq f(y^k) - \frac{7\eta}{8} \|\nabla f(y^k)\|^2,
\]

where we use $\eta \leq \frac{1}{4\sqrt{p}}$. From the L-gradient Lipschitz, we also have

\[
f(x^k) \geq f(y^k) + \langle \nabla f(y^k), x^k - y^k \rangle - \frac{L}{2} \|x^k - y^k\|^2.
\]

So we have

\[
f(x^{k+1}) - f(x^k) \leq \frac{L}{2} \|x^{k+1} - y^k\|^2 - \frac{7\eta}{8} \|\nabla f(y^k)\|^2
\]

\[
= \frac{1}{2\eta} \left(\|x^{k+1} - y^k\|^2 + \|x^k - y^k\|^2 - 7\eta/8 \|\nabla f(y^k)\|^2 \right)
\]

\[
+ \frac{L}{2} \|x^k - y^k\|^2 - \frac{7\eta}{8} \|\nabla f(y^k)\|^2
\]

\[
\leq \frac{5}{8\eta} \|x^k - y^k\|^2 - \frac{1}{2\eta} \|x^{k+1} - y^k\|^2 - \frac{3\eta}{8} \|\nabla f(y^k)\|^2,
\]

\[
\leq \frac{6}{8\eta} \|x^k - x^{k-1}\|^2 - \frac{1}{2\eta} \|x^{k+1} - x^k\|^2 - \frac{3\eta}{8} \|\nabla f(y^k)\|^2,
\]
where we use $L \leq \frac{1}{4\eta}$ in \(\alpha\) and $\|x^k - y^k\| = (1 - \theta)\|x^k - x^{k-1}\|$ in \(\beta\). Summing over $k = 0, \ldots, K - 1$ and using $x^0 = x^{-1}$, we have

$$f(x^k) - f(x^0)$$

$$\leq \frac{1}{8\eta} \sum_{k=0}^{K-2} \|x^{k+1} - x^k\|^2 - \frac{3\eta}{8} \sum_{k=0}^{K-1} \|\nabla f(y^k)\|^2$$

$$\leq \frac{B^2}{8\eta} \sum_{k=0}^{K-1} \|\nabla f(x^{K-1})\|^4 \leq \frac{B^2}{8\eta} - \frac{3B^2}{8\eta} - \frac{B^2}{4\eta},$$

where we use (2b) in \(\leq\) and $\|\nabla f(y^{K-1})\| > \frac{B}{\eta}$ in \(\leq\).

3.2. Small Gradient of $\|\nabla f(x^{K-1})\|$)

If $\|\nabla f(x^{K-1})\| \leq \frac{B}{\eta}$, then from (2c) we have

$$\|x^k - x^0\| \leq \|y^{K-1} - x^0\| + \eta \|\nabla f(y^{K-1})\| \leq 3B.$$

For each epoch, denote $H = \nabla^2 f(x^0)$ and $H = U\Lambda U^T$ to be its eigenvalue decomposition with $U, \Lambda \in \mathbb{R}^{d \times d}$. Let λ_j be the jth eigenvalue. Denote $\bar{x} = U^T x, \bar{y} = U^T y$, and $\nabla f(y) = U^T \nabla f(y)$. Let \bar{x}_j and $\nabla_j f(y)$ be the jth element of \bar{x} and $\nabla f(y)$, respectively. From the ρ-Hessian Lipschitz assumption, we have

$$f(x^k) - f(x^0)$$

$$\leq (\nabla f(x^0), x^k - x^0) + \frac{1}{2}(x^k - x^0)^T H(x^k - x^0)$$

$$+ \frac{\rho}{6} \|x^k - x^0\|^3$$

$$= (\nabla f(x^0), \bar{x} - \bar{x}^0) + \frac{1}{2}(\bar{x} - \bar{x}^0)^T \Lambda(\bar{x} - \bar{x}^0)$$

$$+ \frac{\rho}{6} \|\bar{x} - \bar{x}^0\|^3$$

$$\leq g(\bar{x}) - g(\bar{x}^0) + 4.5\rho B^3,$$

where we denote

$$g(x) = (\nabla f(x^0), x - x^0) + \frac{1}{2}(x - x^0)^T \Lambda(x - x^0),$$

$$g_j(x) = (\nabla_j f(x^0), x - \bar{x}_j^0) + \frac{1}{2}\lambda_j (x - \bar{x}_j^0)^2.$$

Denoting

$$\delta_j = \nabla_j f(y^k) - \nabla g_j(\bar{y}_j^k),$$

$$\bar{\delta}^k = \nabla f(y^k) - \nabla g(\bar{y}^k),$$

then the iterations can be rewritten as

$$\bar{y}_j^k = \bar{y}_j^0 + (1 - \theta)(\bar{x}_j^k - \bar{x}_j^{k-1}),$$

$$\bar{x}_j^{k+1} = \bar{y}_j^k - \eta \nabla_j f(y^k) = \bar{y}_j^k - \eta g_j(\bar{y}_j^k) - \eta \delta_j^k,$$

and $\|\bar{\delta}^k\|$ can be bounded as

$$\|\bar{\delta}^k\|$$

$$= \|\nabla f(y^k) - \nabla f(x^0) - \Lambda(\bar{y}^k - \bar{x}^0)\|$$

$$= \|\nabla f(y^k) - \nabla f(x^0) - H(\bar{y}^k - \bar{x}^0)\|$$

$$= \left\| \left(\int_0^1 \frac{\eta}{\theta} + 1(t(x^k - x^0)) - H \right)(y^k - x^0) dt \right\|$$

$$\leq \frac{\rho}{2} \|y^k - x^0\|^2 \leq 2\rho B^2,$$

for any $k < K$, where we use the ρ-Hessian Lipschitz assumption and (2c) in the last two inequalities.

From (5), to prove the decrease from $f(x^0)$ to $f(x^k)$, we only need to study $g(\bar{x}^k) - g(\bar{x}^0)$, that is, the decrease of $g(x)$. Iterations (6a) and (6b) can be viewed as applying AGD to the quadratic approximation $g(x)$ coordinate by coordinate, with the approximation error $\bar{\delta}^k$, which can be controlled within $O(\rho B^2)$. The quadratic function $g(x)$ equals to the sum of d scalar functions $g_j(x_j)$. We decompose $g(x)$ into $\sum_{j \in S_1} g_j(x_j)$ and $\sum_{j \in S_2} g_j(x_j)$, where

$$S_1 = \left\{ j : \lambda_j \geq \frac{\theta}{\eta} \right\}, \quad S_2 = \left\{ j : \lambda_j < \frac{\theta}{\eta} \right\}.$$

We see that $g_j(x)$ is approximate convex when $j \in S_1$, and strongly concave when $j \in S_2$.

It is pointed out in (Jin et al., 2018) that the major challenge in analyzing nonconvex momentum-based methods is that the objective function does not decrease monotonically. To overcome this issue, Jin et al. (2018) designs a potential function and uses the negative curvature exploitation when the objective is very nonconvex to guarantee the decrease of the potential function. An open problem is asked in Section 5 of Jin et al., 2018 whether the negative curvature exploitation is necessary for the fast rate.

In contrast with Jin et al., 2018, in this paper we establish the approximate decrease of some specified potential function when $j \in S_1$, as shown in (9), and the approximate decrease of $g_j(x)$ when $j \in S_2$, given in (12). Thus, the negative curvature exploitation is avoided. Putting the two cases together, we can show the decrease of $f(x)$ in each epoch.

We first consider $\sum_{j \in S_1} g_j(x_j)$ in the following lemma.

Lemma 3.2. Suppose that Assumption 2.1 holds. Let $\eta \leq \frac{1}{4\eta}$ and $0 \leq \theta \leq 1$. When the “if condition” triggers and $\|\nabla f(y^{K-1})\| \leq \frac{B}{\eta}$, then we have

$$\sum_{j \in S_1} g_j(\bar{x}_j^k) - \sum_{j \in S_1} g_j(\bar{x}_j^0)$$

$$\leq - \sum_{k=0}^{K-1} \frac{3\theta}{8\eta} \|x_j^{k+1} - x_j^k\|^2 + \frac{8\eta\rho B^4K}{\theta}. \quad (8)$$
Proof. Since $g_j(x)$ is quadratic, we have

$$g_j(x_j^{k+1}) = g_j(x_j^k) + \langle \nabla g_j(x_j^k), x_j^{k+1} - x_j^k \rangle + \frac{\lambda_j}{2} \| x_j^{k+1} - x_j^k \|^2,$$

and $j \in S_1$, using $x^0 - x^1 = 0$, we have

$$\sum_{j \in S_1} g_j(x_j^k) \leq \sum_{j \in S_1} \ell_j^k,$$

$$\leq \sum_{j \in S_1} g_j(x_j^k) - \sum_{j \in S_1} \frac{2\eta}{\sqrt{8j}} \sum_{k=0}^{K-1} \| x_j^{k+1} - x_j^k \|^2 + \frac{2\eta}{\sqrt{\theta}} \sum_{k=0}^{K-1} \| \tilde\delta_k \|^2,$$

$$\leq \sum_{j \in S_1} g_j(x_j^0) - \sum_{j \in S_1} \frac{2\eta}{\sqrt{8j}} \sum_{k=0}^{K-1} \| x_j^{k+1} - x_j^k \|^2 + \frac{8\eta^2 B^4 K}{\theta},$$

where we use (7) in d. Next, we consider $\sum_{j \in S_2} g_j(x_j^k)$.

Lemma 3.3. Suppose that Assumption 2.1 holds. Let $\eta \leq \frac{\lambda_j}{\sqrt{2}}$ and $0 \leq \theta \leq 1$. When the “if condition” triggers and $\| \nabla f(y^{K-1}) \| \leq \frac{\alpha}{\eta}$, then we have

$$\sum_{j \in S_2} g_j(x_j^k) - \sum_{j \in S_2} g_j(x_j^0) \leq -\sum_{j \in S_2} \frac{\theta}{2\eta} \sum_{k=0}^{K-1} \| x_j^{k+1} - x_j^k \|^2 + 2\eta^2 B^4 K \frac{\alpha^2}{\theta}.$$

Proof. Denoting $v_j = x_j^0 - x_j \nabla_j f(x_j^0)$, $g_j(x)$ can be rewritten as

$$g_j(x) = \frac{\lambda_j}{2} \left(x - x_j^0 + \frac{1}{\lambda_j} \nabla_j f(x_j^0) \right)^2 - \frac{1}{2\lambda_j} \| \nabla_j f(x_j^0) \|^2.$$

For each $j \in S_2 = \{ j : \lambda_j < \frac{\alpha}{\eta} \}$, we have

$$\frac{\lambda_j}{2} (x - x_j^0 - \frac{1}{\lambda_j} \nabla_j f(x_j^0))^2 \leq \frac{\lambda_j}{2} |x_j^0 - v_j|^2.$$

So we only need to bound the second term. From (6b) and (6a), we have

$$\tilde{x}_j^{k+1} - x_j^k = \tilde{x}_j^k - x_j^k - \frac{1}{2\lambda_j} \nabla_j f(x_j^0) - \frac{1}{2\lambda_j} (\tilde{x}_j^k - v_j),$$

$$\leq \frac{\lambda_j}{2} |x_j^0 - v_j|^2 + \frac{\lambda_j}{2} (\tilde{x}_j^k - \tilde{x}_j^k)^2 + \frac{\lambda_j}{2} (\tilde{x}_j^k - \tilde{x}_j^k)^2.$$
So for each $j \in S_2$, we have
\[
\langle \tilde{x}_j^{k+1} - \tilde{x}_j^k, \tilde{x}_j^k - v_j \rangle \\
= (1 - \theta) \langle \tilde{x}_j^k - \tilde{x}_{j-1}^k, \tilde{x}_j^k - v_j \rangle - \eta \lambda_j \langle \tilde{x}_j^k - v_j \rangle^2 \\
- \eta \lambda_j (1 - \theta) \langle \tilde{x}_j^k - \tilde{x}_{j-1}^k, \tilde{x}_j^k - v_j \rangle - \eta \langle \tilde{\tilde{x}}_j^k, \tilde{x}_j^k - v_j \rangle \\
\geq (1 - \theta) \langle \tilde{x}_j^k - \tilde{x}_{j-1}^k, \tilde{x}_j^k - v_j \rangle - \eta \lambda_j \langle \tilde{x}_j^k - v_j \rangle^2 \\
+ \frac{\eta \lambda_j (1 - \theta)}{2} (\langle \tilde{x}_j^k - \tilde{x}_{j-1}^k \rangle^2 + \langle \tilde{x}_j^k - v_j \rangle^2) \\
+ \frac{\eta}{2 \lambda_j (1 + \theta)} \langle \tilde{\tilde{x}}_j^k \rangle^2 + \frac{\eta \lambda_j (1 + \theta)}{2} \langle \tilde{x}_j - v_j \rangle^2 \\
= (1 - \theta) \langle \tilde{x}_j^k - \tilde{x}_{j-1}^k, \tilde{x}_j^k - v_j \rangle \\
+ \frac{\eta \lambda_j (1 - \theta)}{2} \langle \tilde{x}_j^k - \tilde{x}_{j-1}^k \rangle^2 + \frac{\eta}{2 \lambda_j (1 + \theta)} \langle \tilde{\tilde{x}}_j^k \rangle^2 + \frac{\eta \lambda_j (1 + \theta)}{2} \langle \tilde{x}_j - v_j \rangle^2 \\
\geq (1 - \theta) \langle \tilde{x}_j^k - \tilde{x}_{j-1}^k, \tilde{x}_j^k - v_j \rangle + (1 - \theta) \langle \tilde{x}_j^k - \tilde{x}_{j-1}^k \rangle^2 \\
+ \frac{\eta \lambda_j (1 - \theta)}{2} \langle \tilde{x}_j^k - \tilde{x}_{j-1}^k \rangle^2 + \frac{\eta}{2 \lambda_j (1 + \theta)} \langle \tilde{\tilde{x}}_j^k \rangle^2 + \frac{\eta \lambda_j (1 + \theta)}{2} \langle \tilde{x}_j - v_j \rangle^2.
\]
where we use the fact that $\lambda_j < 0$ when $j \in S_2$ in \geq and $\left(1 + \frac{\eta \lambda_j}{2}\right) (1 - \theta) \geq \left(1 - \frac{\eta \lambda_j}{2}\right) (1 - \theta) \geq 0$ in \geq. So we have
\[
\langle \tilde{x}_j^{k+1} - \tilde{x}_j^k, \tilde{x}_j^k - v_j \rangle \\
\geq (1 - \theta)^k \langle \tilde{x}_j^1 - \tilde{x}_j^0, \tilde{x}_j^0 - v_j \rangle + \frac{\eta \lambda_j}{2 \lambda_j} \left(1 - \theta^k \right) \langle \tilde{\tilde{x}}_j^k \rangle^2 \\
\leq - (1 - \theta)^k \eta \lambda_j \langle \tilde{x}_j^0 - v_j \rangle^2 + \frac{\eta \lambda_j}{2 \lambda_j} \left(1 - \theta^k \right) \langle \tilde{\tilde{x}}_j^k \rangle^2
\]
\[
in \leq \text{ and } \lambda_j < 0 \text{ in } \geq.\text{ Plugging into (11) and using } \lambda_j < 0 \text{ again, we have}
\]
\[
g_j(\tilde{x}_j^{k+1}) - g_j(\tilde{x}_j^k) \\
\leq - \frac{\theta}{2 \eta} \| \tilde{x}_j^{k+1} - \tilde{x}_j^0 \|^2 + \frac{\eta}{2} \sum_{t=1}^k (1 - \theta)^{k-t} \| \tilde{\tilde{x}}_j^t \|^2. \tag{12}
\]
Summing over $k = 0, 1, \cdots, K - 1$ and $j \in S_2$, we have
\[
\sum_{j \in S_2} g_j(\tilde{x}_j^{k+1}) - g_j(\tilde{x}_j^0) \\
\leq - \sum_{j \in S_2} \frac{\theta}{2 \eta} \sum_{k=0}^{K-1} \| \tilde{x}_j^{k+1} - \tilde{x}_j^0 \|^2 + \frac{\eta}{2} \sum_{k=0}^{K-1} \sum_{t=1}^k (1 - \theta)^{k-t} \| \tilde{\tilde{x}}_j^t \|^2
\]
\[
\leq - \sum_{j \in S_2} \frac{\theta}{2 \eta} \sum_{k=0}^{K-1} \| \tilde{x}_j^{k+1} - \tilde{x}_j^0 \|^2 + \frac{\eta \rho^2 B^4 K}{\theta} \sum_{k=0}^{K-1} \| \tilde{x}_j^{k+1} - \tilde{x}_j^0 \|^2
\]
where we use (7) in \leq. \hfill \square

Putting Lemmas 3.2 and 3.3 together, we can show the decrease of $f(x)$ in each epoch.

Lemma 3.4. Suppose that Assumption 2.1 holds. Under the parameter settings in Theorem 2.2, when the “if condition” triggers and $\| \nabla f(y^{K-1}) \| \leq \frac{B}{\eta}$, then we have
\[
f(x^K) - f(x^0) \leq - \frac{\epsilon^3/2}{\sqrt{\rho}}.
\]
Proof. Summing over (8) and (10), we have
\[
g(x^K) - g(x^0) = \sum_{j \in S_1 \cup S_2} g_j(\tilde{x}_j^0) - g_j(\tilde{x}_j^0) \\
\leq - \frac{3 \theta B^2}{8 \eta K} \sum_{k=0}^{K-1} \| \tilde{x}_j^{k+1} - \tilde{x}_j^0 \|^2 + \frac{10 \eta \rho^2 B^4 K}{\theta}
\]
\[
= - \frac{3 \theta B^2}{8 \eta K} \sum_{k=0}^{K-1} \| \tilde{x}_j^{k+1} - \tilde{x}_j^0 \|^2 + \frac{10 \eta \rho^2 B^4 K}{\theta}
\]
\[
\leq - \frac{3 \theta B^2}{8 \eta K} \sum_{k=0}^{K-1} \| \tilde{x}_j^{k+1} - \tilde{x}_j^0 \|^2 + \frac{10 \eta \rho^2 B^4 K}{\theta} \\
\leq - \frac{3 \theta B^2}{8 \eta K} \sum_{k=0}^{K-1} \| \tilde{x}_j^{k+1} - \tilde{x}_j^0 \|^2 + \frac{10 \eta \rho^2 B^4 K}{\theta} \leq - \frac{\epsilon^3/2}{\sqrt{\rho}}.
\]
\hfill \square

3.3. Small Gradient in the Last Epoch

In this section, we prove Theorem 2.2. The main job is to establish $\| \nabla f(y^K) \| \leq O(\epsilon)$ in the last epoch.

Proof. From Lemmas 3.1 and 3.4, we have
\[
f(x^K) - f(x^0) \leq - \min \left\{ \frac{\epsilon^3/2}{\sqrt{\rho}}, \frac{\epsilon L}{\rho} \right\}. \tag{14}
\]
Note that at the beginning of each epoch in Algorithm 1, we set x^0 to be the last iterate x^K in the previous epoch.
Summing (14) over all epochs, say N total epochs, we have
\[
\min_x f(x) - f(x_{init}) \leq -N \min \left\{ \frac{c^3/\sqrt{\rho}}{\sqrt{\rho}}, \frac{\epsilon L}{\rho} \right\}.
\]
So the algorithm will terminate in at most $\frac{\sqrt{\epsilon}T}{\sqrt{\rho}}$ epochs.

Since each epoch needs at most $K = \frac{L}{\epsilon} \left(\frac{1}{L_\rho} \right)^{1/4}$ gradient evaluations, the total number of gradient evaluations must be less than $\frac{\sqrt{\epsilon}L^{1/4}L^{1/4}}{\epsilon^{1/4}}$.

Now, we consider the last epoch. Denote $\tilde{y} = U^T \hat{y} = \frac{1}{K_0+1} \sum_{k=0}^{K_0} y^k$. Since g is quadratic, we have
\[
\|\nabla g(\tilde{y})\| = \left\| \frac{1}{K_0+1} \sum_{k=0}^{K_0} \nabla g(\tilde{y}^k) \right\|
= \frac{1}{\eta(K_0+1)} \left\| \sum_{k=0}^{K_0} \left(\tilde{x}^{k+1} - \tilde{x}^k + \eta \tilde{y}^k \right) \right\|
= \frac{1}{\eta(K_0+1)} \left\| \sum_{k=0}^{K_0} (\tilde{x}^{k+1} - \tilde{x}^k - (1-\theta)(\tilde{x}^k - \tilde{x}^{k-1}) + \eta \tilde{y}^k) \right\|
= \frac{1}{\eta(K_0+1)} \left\| \sum_{k=0}^{K_0} x^{k+1} - x^k - (1-\theta)(x^k - x^{k-1}) + \eta \sum_{k=0}^{K_0} \delta_k \right\|
\leq \frac{1}{\eta(K_0+1)} \left(\|x^{K_0+1} - x^0\| + \theta \|x^{K_0} - x^0\| + \eta \sum_{k=0}^{K_0} \|\tilde{y}^k\| \right)
\leq \frac{1}{\eta K} 2 \|x^{K_0+1} - x^0\| + \frac{2 \theta B}{\eta K} + 2 \rho B^2,
\]
where we use (6b) in $\frac{a}{c}$, $x^{-1} = x^0$ in $\frac{b}{e}$, $K_0 + 1 \geq \frac{K}{2}$, (3a), (7), and (3b) in $\frac{c}{f}$. From $K_0 = \arg \min_{K \leq k \leq K-1} \|x^{k+1} - x^k\|$, we have
\[
\|x^{K_0+1} - x^{K_0}\|^2 \leq \frac{1}{K - |K/2|} \sum_{k=|K/2|}^{K-1} \|x^{k+1} - x^k\|^2
\leq \frac{1}{K - |K/2|} \sum_{k=0}^{K-1} \|x^{k+1} - x^k\|^2 \leq \frac{2B^2}{K^2},
\]
where we use (3a) in $\frac{d}{f}$. On the other hand, we also have
\[
\|\nabla f(y)\| = \|\nabla f(\hat{y})\| \leq \|\nabla g(\hat{y})\| + \|\nabla f(\hat{y}) - \nabla g(\hat{y})\|
= \|\nabla g(\hat{y})\| + \|\nabla f(\hat{y}) - \nabla f(x^0)\|.
\]
Remarking that $\nabla f(x^0)^T (\hat{y} - x^0) \leq \epsilon$, we have
\[
\|\nabla f(\hat{y})\| + \|\nabla f(\hat{y}) - \nabla f(x^0)\| \leq \|\nabla g(\hat{y})\| + \frac{\rho}{2} \|\hat{y} - x^0\|^2 \leq \|\nabla g(\hat{y})\| + 2 \rho B^2,
\]
where we use $\|\hat{y} - x^0\| \leq \frac{1}{K_0+1} \sum_{k=0}^{K_0} \|y^k - x^0\| \leq 2B$ from (3b) in \leq. So we have
\[
\|\nabla f(\hat{y})\| \leq \frac{2 \sqrt{2B}}{\eta K} + \frac{2B}{\eta K} + 4 \rho B^2 \leq 8 \epsilon.
\]

Remark 3.5. The purpose of using $k \sum_{l=0}^{k-1} \|x^{l+1} - x^{l}\|^2 > B^2$ in the “if condition”, rather than $\|x^k - x^0\| \geq B$, and the special average as the output in Algorithm 1 is to establish (16).

3.4. Discussion on the Acceleration Mechanism

When we replace the AGD iterations in Algorithm 1 by the gradient descent iterations $x^{k+1} = x^k - \eta \nabla f(x^k)$ with $\eta = \frac{1}{4T}$, similar to (4), the descent property in each epoch becomes
\[
f(x^k) - f(x^0) \leq -\frac{7}{8\eta} \sum_{k=0}^{K-1} \|x^{k+1} - x^k\|^2 \leq -\frac{7B^2}{8\eta K},
\]
and the gradient norm at the averaged output $\hat{x} = \frac{1}{K} \sum_{k=0}^{K-1} x^k$ is bounded as
\[
\|\nabla g(\hat{x})\| \leq \frac{1}{\eta K} \|x^K - x^0\| + 2 \rho B^2 \leq \frac{B}{\eta K} + 2 \rho B^2.
\]
By setting $B = \sqrt{\rho}$ and $K = \frac{T}{\eta \rho}$, we have the $O(\epsilon^{-2})$ complexity.

Comparing with (13) and (15), respectively, we see that the momentum parameter θ is crucial to speedup the convergence because it allows smaller K, that is, $\frac{1}{\eta^2}$ v.s. $\frac{1}{\eta^4}$ for AGD and GD, respectively. Accordingly, smaller K results in less total gradient computations. Thus, the acceleration mechanism for nonconvex optimization seems irrelevant to the analysis of convex AGD. It is just because of the momentum.

4. Extension to Jin’s Method

In this section, we extend our analysis to the method proposed in (Jin et al., 2018), and detail the method in Algorithm 2. No perturbation is added since we do not consider second-order stationary point. Except the perturbation and that we specify the stopping criteria and the output, as well as that we rewrite the algorithm in epochs, Algorithm 2 is equivalent to the one in (Jin et al., 2018). However, we give a slightly faster convergence rate by a $O(\log \frac{1}{\epsilon})$ factor with much simpler proofs.

Define $K = k + 1$ when k resets to 0. Denote the iterations from $k = 0$ to $k = K$ to be one epoch. For each epoch, we have three cases:

[Details of the proof and analysis are provided here for the sake of completeness.]

This completes the analysis of the Restarted Nonconvex Accelerated Gradient Descent method.
Algorithm 2 AGD-Jin (x_{int})

Initialize $x^0 = x_{int}$, $v^0 = 0$, $k = 0$.

while $k < K$ do

\[y^k = x^k + (1 - \theta) v^k \]
\[x^{k+1} = y^k - \eta \nabla f(y^k) \]
\[v^{k+1} = x^{k+1} - x^k \]

if $f(x^k) < f(y^k) + \langle \nabla f(y^k), x^k - y^k \rangle - \frac{\eta}{2} \| x^k - y^k \|^2$ then

\[x^{k+1} \leftarrow \text{Negative Curvature Exploitation}(x^k, v^k, s) \]
\[x^0 = x^{k+1}, v^0 = v^{k+1} = 0, k = 0 \]

else if $(k + 1) \sum_{t=0}^{k} \| x^{t+1} - x^t \|^2 > B^2$ then

\[x^0 = x^{k+1}, v^0 = v^{k+1}, k = 0 \]

else

\[k = k + 1 \]

end if

end while

$K_1 = \arg \min_{1 \leq k \leq \left\lceil \frac{k}{2} \right\rceil} \| x^k - x^{k-1} \|

K_2 = \arg \min_{2 \leq k \leq K-1} \| x^{k+1} - x^k \|

Output $\hat{y} = \frac{1}{K_2 - K_1 + 1} \sum_{k=K_1}^{K_2} y^k$

Algorithm 3 Negative Curvature Exploitation(x^k, v^k, s)

If $\| v^k \| \geq s$ then

\[x^{k+1} = x^k \]

else

$\delta = s \| v^k \|

\[x^{k+1} = \arg \min_{x^{k+\delta}, x^{k-\delta}} f(x) \]

end if

Return x^{k+1}

1. The negative curvature exploitation (NCE) is employed at the last iteration.

2. The condition $(k + 1) \sum_{t=0}^{k} \| x^{t+1} - x^t \|^2 > B^2$ triggers at the last iteration. Note that in this case, AGD does not restart because $x^0 - x^{-1} = v^0 \neq 0$.

3. None of the above two cases occurs, and the while loop breaks until $k = K$. This is the last epoch.

Define the potential function $\ell^k = f(x^k) + \frac{1}{2\eta} \| v^k \|^2$. We need the following two lemmas, which can be adapted slightly from Lemmas 4 and 5 in (Jin et al., 2018).

Lemma 4.1. Suppose that Assumption 2.1 holds. Let $\eta \leq \frac{1}{\sqrt{\rho}}$ and $\theta \in \left[2\eta \gamma, \frac{1}{2} \right]$. If NCE is not performed at iteration k, then we have $\ell^{k+1} \leq \ell^k - \frac{\theta}{2\eta} \| x^{k+1} - x^k \|^2$.

Lemma 4.2. Suppose that Assumption 2.1 holds. Let $\theta \leq \frac{1}{2}$. If NCE is performed at iteration k, then we have $\ell^{k+1} \leq \ell^k - \min \left\{ \frac{(1-\theta)\gamma s^2}{2\eta}, \frac{(\gamma - 2\gamma s)\gamma s^2}{2} \right\}$.

Set $\gamma = \frac{\theta^2}{2}$, $s = \frac{\gamma}{4\eta}$, and the other parameters the same as those in Theorem 2.2. In Case 1, we know from Lemma 4.2 that the potential function decreases with a magnitude at least $\frac{64\epsilon^{1.5}}{\sqrt{\rho}}$ at the last iteration, and it does not increase in the previous iterations from Lemma 4.1. So we have

$\ell^k \leq \ell^0 - \min \left\{ \frac{64\epsilon^{1.5}}{\sqrt{\rho}}, \frac{16\epsilon L}{\rho} \right\}$.

In Case 2, we have

$\ell^k - \ell^0 \leq - \frac{\theta}{2\eta} \sum_{k=0}^{K-1} \| x^{k+1} - x^k \|^2$

$\leq - \frac{\theta B^2}{2\eta K} \leq - \frac{\theta B^2}{2\eta K} = - \frac{8\epsilon^{1.5}}{\sqrt{\rho}}$

where we use $K \sum_{k=0}^{K-1} \| x^{k+1} - x^k \|^2 > B^2$. So the algorithm will terminate in at most $\frac{K}{2\eta B^2}$ epochs, and each epoch needs at most K gradient and function evaluations. In the last epoch, similar to the proof of Theorem 2.2, we also have $\| \nabla f(\hat{y}) \| \leq \Omega(\epsilon)$. So we have the following theorem.

Theorem 3. Suppose that Assumption 2.1 holds. Let $\eta = \frac{1}{\sqrt{\rho}}$, $B = \frac{\gamma}{\sqrt{\rho}}$, $\theta = \frac{\eta}{4\sqrt{\rho}}$, $K = \frac{1}{\beta}$, $\gamma = \frac{\theta^2}{2\eta}$, $s = \frac{\gamma}{4\eta}$. Then Algorithm 2 terminates in at most $\frac{\Delta s^{1.5} L^{1.5} \rho^{1.5}}{\sqrt{\epsilon} \eta^7}$ gradient and function evaluations and the output satisfies $\| \nabla f(\hat{y}) \| \leq 267\epsilon$, where $\Delta f = f(x_{int}) - \min_x f(x)$.

Our complexity improves over the $O(\epsilon^{-7/4} \log \frac{1}{\epsilon})$ one given in (Jin et al., 2018) by the $O(\log \frac{1}{\epsilon})$ factor. Although Jin et al. (2018) focus on finding second-order stationary point, their complexity to find approximate first-order stationary point also has the additional $O(\log \frac{1}{\epsilon})$ factor, see the reasons discussed in Section 2. Our analysis for Case 3 above does not invoke the analysis for strongly convex AGD, and moreover, it is much simpler. The proof in (Jin et al., 2018), although very novel, is quite involved, especially the spectral analysis of the second-order system. It should be noted that we measure the convergence rate at the average of the iterates. When measuring at the final iterate, which is always used in practice, we should use the proof in (Jin et al., 2018), and we conjecture that the $O(\log \frac{1}{\epsilon})$ factor in unlikely to cancel.

5. Conclusion

This paper proposes a simple restarted AGD for general nonconvex problems under the gradient Lipschitz and Hessian Lipschitz assumptions. Our simple method finds an ϵ-approximate first-order stationary point in $O(\epsilon^{-7/4})$ gradient computations with simple proofs, which improves over the state-of-the-art complexity by the $O(\log \frac{1}{\epsilon})$ factor. We hope our analysis may lead to a better understanding of the acceleration mechanism for nonconvex optimization.
References

A. Proof of Theorem 4.3

Proof. We only need to prove \(\| \nabla f(\hat{y}) \| \leq O(\epsilon) \) in the last epoch. Denote

\[
\begin{aligned}
 h(x) &= \langle \nabla f(x^0), x - x^0 \rangle + \frac{1}{2} (x - x^0)^T H(x - x^0), \\
 \delta^k &= \nabla f(y^k) - \nabla h(y^k).
\end{aligned}
\]

Similar to the deduction in Section 3.2, we have

\[
\begin{aligned}
 x^{k+1} &= y^k - \eta \nabla h(y^k) - \eta \delta^k, \\
 \| \delta^k \| &\leq \frac{\eta}{2} \| y^k - x^0 \|^2 \leq 2\rho B^2,
\end{aligned}
\tag{17a}
\]

where we use

\[
\begin{aligned}
 \| x^k - x^0 \|^2 &\leq K \sum_{i=0}^{k-1} \| x^{i+1} - x^i \|^2 \leq B^2, \forall k \leq K, \tag{18a} \\
 \| y^k - x^0 \| &\leq 2B, \forall k \leq K, \tag{18b}
\end{aligned}
\]

in the last epoch. Similar to the proof of Theorem 2.2, we have

\[
\| \nabla h(\hat{y}) \| = \left\| \frac{1}{K_2 - K_1 + 1} \sum_{k=K_1}^{K_2} \nabla h(y^k) \right\| = \frac{1}{\eta(K_2 - K_1 + 1)} \left\| \sum_{k=K_1}^{K_2} (x^{k+1} - y^k + \eta \delta^k) \right\|,
\]

and

\[
\begin{aligned}
 &\left\| \sum_{k=K_1}^{K_2} (x^{k+1} - y^k + \eta \delta^k) \right\| \\
 = &\left\| \sum_{k=K_1}^{K_2} (x^{k+1} - x^k + (1 - \theta)(x^k - x^{k-1}) + \eta \delta^k) \right\| \\
 = &\left\| x^{K_2+1} - x^{K_1} - (1 - \theta)(x^{K_2} - x^{K_1-1}) + \eta \sum_{k=K_1}^{K_2} \delta^k \right\| \\
 = &\left\| x^{K_2+1} - x^{K_2} + x^{K_1-1} + \theta(x^{K_2} - x^{K_1-1}) \right. \\
 &\left. + \eta \sum_{k=K_1}^{K_2} \delta^k \right\| \\
 \leq &\| x^{K_2+1} - x^{K_2} \| + \| x^{K_1} - x^{K_1-1} \| + \theta \| x^{K_2} - x^0 \| \\
 &+ \theta \| x^{K_1-1} - x^0 \| + \eta \sum_{k=K_1}^{K_2} \| \delta^k \|.
\end{aligned}
\]

From \(K_2 - K_1 + 1 \geq \frac{K}{4} \), \((18a) \), and \((17a) \), we have

\[
\| \nabla h(\hat{y}) \| \leq \frac{3}{\eta K} \| x^{K_2+1} - x^{K_2} \| \\
+ \frac{3}{\eta K} \| x^{K_1} - x^{K_1-1} \| + \frac{6\theta B+2\rho B^2}{\eta K}.
\]

On the other hand, from the definitions of \(K_1 \) and \(K_2 \), we have

\[
\begin{aligned}
 \| x^{K_2+1} - x^{K_2} \| &\leq \frac{1}{K - [2K/3]} \sum_{k=[2K/3]}^{K-1} \| x^{k+1} - x^k \|^2 \\
 \leq \frac{1}{K - [2K/3]} \sum_{k=0}^{K-1} \| x^{k+1} - x^k \|^2 \leq \frac{3B^2}{K^2},
\end{aligned}
\]

and

\[
\begin{aligned}
 \| x^{K_1} - x^{K_1-1} \|^2 &\leq \frac{1}{\left\lceil \frac{K}{3} \right\rceil} \sum_{k=1}^{\left\lceil \frac{K}{3} \right\rceil} \| x^k - x^{k-1} \|^2 \\
 \leq \frac{1}{\left\lceil \frac{K}{3} \right\rceil} \sum_{k=0}^{K-1} \| x^{k+1} - x^k \|^2 \leq \frac{3B^2}{K^2}.
\end{aligned}
\]

So we have

\[
\| \nabla h(\hat{y}) \| \leq \frac{6\sqrt{3}B}{\eta K^2} + \frac{6\theta B}{\eta K} + 2\rho B^2,
\]

and

\[
\begin{aligned}
 \| \nabla f(\hat{y}) \| &\leq \| \nabla h(\hat{y}) \| + \| \nabla f(\hat{y}) - \nabla h(\hat{y}) \| \\
 &\leq \| \nabla h(\hat{y}) \| + \frac{\eta}{2} \| \hat{y} - x^0 \|^2 \\
 &\leq \frac{6\sqrt{3}B}{\eta K^2} + \frac{6\theta B}{\eta K} + 4\rho B^2 \leq 267\epsilon.
\end{aligned}
\]

\[
\square
\]

B. Discussion on the Second-order Stationary Point

Algorithm 1 can also find \(\epsilon \)-approximate second-order stationary point, defined as

\[
\| \nabla f(x) \| \leq \epsilon, \quad \lambda_{\min}(\nabla^2 f(x)) \geq -\sqrt{\rho}.
\]

We follow (Jin et al., 2017; 2018) to add the perturbations generated uniformly from the ball \(B(r) \) with radius \(r \) and center 0. The method is presented in Algorithm 4 and the complexity is given in Theorem B.1. We see that Algorithm 4 needs at most \(O(\epsilon^{-7/4} \log \frac{d}{\epsilon}) \) gradient computations to find an \(\epsilon \)-approximate second-order stationary point with probability at least 1 – \(\zeta \), where \(d \) is the dimension of \(x \) in
Algorithm 4 Perturbed Restarted AGD (x_{int}, ϵ)

Initialize $x^{-1} = x^0 = x_{int} + \xi$, $\xi \sim \text{Unif}(\mathbb{B}(r))$, $k = 0$.

while $k < K$ do

$\gamma^k = x^k + (1 - \theta)(x^k - x^{k-1})$
$\chi^k = x^k - \eta \nabla f(x^k)$
$k = k + 1$

if $k \sum_{t=0}^{k-1} ||x^{t+1} - x^t||^2 > B^2$ then

$x^{-1} = x^0 = x^k + \xi, \xi \sim \text{Unif}(\mathbb{B}(r))$, $k = 0$

end if

end while

$K_0 = \arg \min \{ \frac{\eta}{2} I_{k \leq K - 1} ||x^{k+1} - x^k|| \}

Output $y = \frac{1}{K_0} \sum_{k=0}^{K_0} y^k$

problem (1). This complexity is the same with the one given in (Jin et al., 2018). Comparing with Theorem 2.2, we see that there is a $O(\log \frac{1}{\epsilon^4})$ term. Currently, it is unclear how to remove it.

Theorem B.1. Suppose that Assumption 2.1 holds. Let $p = O(\log \frac{1}{\epsilon^4})$, $\eta = \frac{1}{4\ell}$, $B = \frac{1}{288\rho^2} \sqrt{\frac{2}{\rho^2} \theta} \leq \frac{1}{2} \left(\frac{p}{2\ell^2} \right)^{1/4}$, $K = \frac{2\rho}{\theta} r = \min \{ \frac{LB^2}{4K}, \frac{B \eta^2}{2\theta K}, \sqrt{2B^2} \frac{2K}{2K} \} = O(\epsilon)$ for some constant C. Then Algorithm 1 terminates in at most $O\left(\frac{\Delta f}{\epsilon} \frac{L^2}{p^2 \rho^4} \right)$ gradient computations and the output satisfies $\| \nabla f(y) \| \leq \epsilon$, where $\Delta f = f(x_{int}) - \min_x f(x)$. It also satisfies $\lambda_{min}(\nabla^2 f(y)) \geq -1.01\sqrt{\rho}$ and ϵ with probability at least $1 - \xi$.

Proof. Denote $x^{t,k}$ to be the iterate in the tth epoch. From Lemmas 3.1 and 3.4, we have when the “if condition” triggers,

$$f(x^{t,K}) - f(x^{t,0}) \leq \frac{B^2}{4\eta}$$

if $\| \nabla f(y^{K-1}) \| > \frac{B}{\eta}$, and

$$f(x^{t,K}) - f(x^{t,0}) \leq -3\theta B^2 \frac{2B^2}{\eta K^2} + \frac{10\rho^2 B^2}{2\theta} + 4.5 \rho B^3$$

if $\| \nabla f(y^{K-1}) \| \leq \frac{B}{\eta}$. From the L-gradient Lipschitz, we have

$$f(x^{t+1,0}) - f(x^{t,K}) \leq \left\langle \nabla f(x^{t,K}), x^{t+1,0} - x^{t,K} \right\rangle + \frac{L}{2} \| x^{t+1,0} - x^{t,K} \|^2$$

$$= \left\langle \nabla f(x^{t,K}), \xi^t \right\rangle + \frac{L}{2} \| \xi^t \|^2 \leq \| \nabla f(x^{t,K}) \| r + \frac{Lr^2}{2}.$$

We say that $\| \nabla f(x^{t,K}) \|$ is bounded. Otherwise, performing one gradient descent step $z = x^{t,K} - \eta \nabla f(x^{t,K})$, similar to (4), we have $f(z) \leq f(x^{t,K}) - \frac{\eta^2}{2} \| \nabla f(x^{t,K}) \|^2 \sim \infty$, which contradicts with $\min_x f(x) > -\infty$. Letting $\| \nabla f(x^{t,K}) \| \leq C$ for all epochs, we have

$$f(x^{t+1,0}) - f(x^{t,K}) \leq Cr + \frac{L}{2} \leq \frac{B^2}{8\eta},$$

and

$$f(x^{t+1,0}) - f(x^{t,0}) \leq \frac{B^2}{8\eta} = -\frac{\epsilon L}{165888p\chi^4}$$

if $\| \nabla f(y^{K-1}) \| > \frac{B}{\eta}$. On the other hand, if $\| \nabla f(y^{K-1}) \| \leq \frac{B}{\eta}$, we have

$$\| \nabla f(x^{t,K}) \| \leq \| \nabla f(y^{K-1}) \| + \| \nabla f(x^{t,K}) - \nabla f(y^{K-1}) \|$$

$$\leq \| \nabla f(y^{K-1}) \| + L \| x^{t,K} - y^{K-1} \|$$

$$= \| \nabla f(y^{K-1}) \| + L\eta \| \nabla f(y^{K-1}) \| \leq \frac{B}{\eta} + LB \leq \frac{5B}{4\eta}.$$

So we have

$$f(x^{t+1,0}) - f(x^{t,0}) \leq \frac{5B^2}{4\eta} + \frac{L}{2} \leq \frac{\theta B^2}{4\eta K},$$

and

$$f(x^{t+1,0}) - f(x^{t,0}) \leq -\frac{\theta B^2}{4\eta K} + \frac{10\rho^2 B^4 \eta K}{2\theta} + 4.5 \rho B^3$$

$$\leq \frac{-7000000}{\sqrt{\rho} K^5}.$$

So the algorithm will terminate in at most $O(\frac{\Delta f}{\epsilon} \frac{L^2}{p^2 \rho^4} \chi^4)$ epochs. Since each epoch needs at most $K = O(\chi (L^2/\epsilon p))^{1/4}$ gradient evaluations, the total number of gradient evaluations must be less than $O(\frac{\Delta f}{\epsilon} \frac{L^2}{p^2 \rho^4} \chi^4)$.

Now, we consider the last epoch. Similar to the proof of Theorem 2.2, we also have

$$\| \nabla f(y) \| \leq \frac{2\sqrt{2}B}{\eta K^2} + \frac{2\theta B}{\eta K} + 4\rho B \leq \frac{\epsilon}{\chi^3} \leq \epsilon.$$

If $\lambda_{min}(\nabla^2 f(x^{t,K})) \geq -\sqrt{\rho}$, from the perturbation theory of eigenvalues (Hoffman & Wielandt, 1953), we have for any j,

$$|\lambda_j(\nabla^2 f(y^{t+1})) - \lambda_j(\nabla^2 f(x^{t,K}))|$$

$$\leq \| \nabla^2 f(y^{t+1}) - \nabla^2 f(x^{t,K}) \|_2$$

$$\leq \rho \| \hat{y}^{t+1} - x^{t,K} \| \leq \rho \| \hat{y}^{t+1} - x^{t+1,0} \| + \rho r \leq 3\rho B,$$

and

$$\lambda_j(\nabla^2 f(y^{t+1})) \geq \lambda_j(\nabla^2 f(x^{t,K})) - |\lambda_j(\nabla^2 f(y^{t+1})) - \lambda_j(\nabla^2 f(x^{t,K}))|$$

$$\geq -\sqrt{\rho} - 3\rho B \geq -1.0111\sqrt{\rho}.$$
where we use $\|x^{t+1} - x^{t+1,0}\| \leq \frac{1}{K_0 + 1} \sum_{k=0}^{K_0} \|y^{t+1,k} - x^{t+1,0}\| \leq 2B$ in α. Now, we consider $\lambda_{\min}(\nabla^2 f(x^{t,k})) < -\sqrt{\rho}$. Define the stuck region in $\mathcal{B}(r)$ centered at $x^{T,K}$ to be the set of points starting from which the “if condition” does not trigger in K iterations, that is, the algorithm terminates and outputs a saddle point. Similar to Lemma 8 in (Jin et al., 2018), we know from Lemma B.2 that the probability of the starting point $x^{t+1,0} = x^{T,0} + \xi^t$ located in the stuck region is less than

$$r_0 V_{d-1}(r) \leq \frac{r_0 \sqrt{d}}{r} = \zeta,$$

where we let $r_0 = \frac{\zeta}{\sqrt{d}}$. Thus, the output \hat{y} satisfies $\lambda_{\min}(\nabla^2 f(\hat{y})) \geq -1.0111 \sqrt{\rho}$ with probability at least $1 - \zeta$. □

Lemma B.2. Suppose that $\lambda_{\min}(H) < -\sqrt{\rho}$, where $H = \nabla^2 f(x)$. Let $x^{0,0}$ and $x^{0,0}$ be at distance at most r from x. Let $x^{-1} = x^{0,0}$, $x^{t,0} = x^{0,0}$, and $x^{0} - x^{0,0} = r_0 e_1$, where e_1 is the minimum eigen-direction of H. Under the parameter settings in Theorem B.1, running AGD starting at $x^{0,0}$ and x^{0}, respectively, then at least one of the iterates triggers the “if condition”.

The proof of this lemma is almost the same as that of Lemma 18 in (Jin et al., 2018). We only list the sketch and the details can be found in (Jin et al., 2018).

Proof. Denote $w^k = x^{k} - x^{0}$. From the update of AGD, we have

$$\begin{align*}
[w^{k+1}] & = \left[\begin{array}{cc}
(2 - \theta)(I - \eta H) & -(1 - \theta)(I - \eta H) \\
0 & 0
\end{array}\right] \begin{bmatrix} w^{k} \\
0
\end{bmatrix} \\
& - \eta \begin{bmatrix}
(2 - \theta)\Delta k w^k - (1 - \theta)\Delta k w^{k-1} \\
0
\end{bmatrix} \\
& = A \begin{bmatrix} w^{k} \\
0
\end{bmatrix} - \eta \begin{bmatrix} \phi^r \\
0
\end{bmatrix} \\
& = A^{k+1} \begin{bmatrix} w^{0} \\
0
\end{bmatrix} - \eta \sum_{r=0}^{k} A^{k-r} \begin{bmatrix} \phi^r \\
0
\end{bmatrix},
\end{align*}$$

and

$$w^k = [I, 0] A_k \begin{bmatrix} w^{0} \\
0
\end{bmatrix} - \eta [I, 0] \sum_{r=0}^{k-1} A^{k-1-r} \begin{bmatrix} \phi^r \\
0
\end{bmatrix},$$

where $\Delta k = \int_{0}^{1} \left(\nabla^2 f(y^t(x^{k})) - (1 + \eta \lambda_{\min}) H dt \right.$ and $\phi^k = (2 - \theta)\Delta k w^k - (1 - \theta)\Delta k w^{k-1}$. Assume that none of the iterates $(x^{0,0}, x^{1,0}, \ldots, x^{K})$ and $(x^{0}, x^{1,0}, \ldots, x^{K})$ trigger the “if condition”, which yield

$$\begin{align*}
& \|x^{h} - x^{0}\| \leq B, \|y^{h} - x^{0}\| \leq 2B, \forall k \leq K, \\
& \|x^{h} - x^{0}\| \leq B, \|y^{h} - x^{0}\| \leq 2B, \forall k \leq K.
\end{align*}$$

We have

$$\|\triangle k\| \leq \rho \max\{\|y^{k} - x^{0}\|, \|y^{n} - x^{0}\|\} \leq \rho \max\{\|y^{k} - x^{0}\|, \|y^{n} - x^{0}\|\} + \rho r \leq 3\rho B,$$

$$\|\phi^k\| \leq 6\rho B(\|w^k\| + \|w^{k-1}\|),$$

We can show the following inequality for all $k \leq K$ by induction:

$$\|\eta[I, 0] \sum_{r=0}^{k-1} A^{k-1-r} \begin{bmatrix} \phi^r \\
0
\end{bmatrix}\| \leq \frac{1}{2} \left\| [I, 0] A_k \begin{bmatrix} w^{0} \\
0
\end{bmatrix} \right\|.$$

It is easy to check the base case holds for $k = 0$. Assume the inequality holds for all steps equal to or less than k. Then we have

$$\begin{align*}
\|w^k\| & \leq \frac{3}{2} \left\| [I, 0] A_k \begin{bmatrix} w^{0} \\
0
\end{bmatrix} \right\|, \\
\|\phi^k\| & \leq 18\rho B \left\| [I, 0] A_k \begin{bmatrix} w^{0} \\
0
\end{bmatrix} \right\|,
\end{align*}$$

by the monotonicity of $\|\eta[I, 0] A_k \begin{bmatrix} w^{0} \\
0
\end{bmatrix} \|$ in k (Lemma 33 in (Jin et al., 2018)). We also have

$$\begin{align*}
\eta[I, 0] \sum_{r=0}^{k} A^{k-r} \begin{bmatrix} \phi^r \\
0
\end{bmatrix} & \leq \eta \sum_{r=0}^{k} \left\| [I, 0] A^{k-r} \begin{bmatrix} \phi^r \\
0
\end{bmatrix} \right\| \\
& \leq 18\rho B \eta \sum_{r=0}^{k} \left\| [I, 0] A^{k-r} \begin{bmatrix} \phi^r \\
0
\end{bmatrix} \right\| \\
& \leq 18\rho B \eta \sum_{r=0}^{k} |a_{k-r} - b_r| r_0 \\
& \leq 18\rho B \eta K \left(\frac{2}{\theta} + K\right) \left\| [I, 0] A^{k+1} \begin{bmatrix} w^{0} \\
0
\end{bmatrix} \right\|,
\end{align*}$$

where we define $[a_{k}, b_k] = [1, 0] A_{k}^{min}$ and $A_{\min} = \left(\frac{2}{\theta} - 1 \right) \left(1 - \eta \lambda_{\min}\right)$. Therefore, the induction is proved, which yields

$$\begin{align*}
\|w^k\| & \geq \left\| [I, 0] A_k \begin{bmatrix} w^{0} \\
0
\end{bmatrix} \right\| - \|\eta[I, 0] \sum_{r=0}^{k-1} A^{k-1-r} \begin{bmatrix} \phi^r \\
0
\end{bmatrix}\| \\
& \geq \frac{1}{2} \left\| [I, 0] A_k \begin{bmatrix} w^{0} \\
0
\end{bmatrix} \right\| - r_0 |a_K - b_K| \\
& \geq \frac{\theta r_0}{4} \left(1 + \frac{\theta}{2}\right)^K \geq 5B,
\end{align*}$$
where \(c \geq \frac{\epsilon}{\eta \lambda_{\min}} \) uses Lemma 33 in (Jin et al., 2018) and \(\eta \lambda_{\min} \leq -\theta^2\), \(\geq \frac{d}{\theta}\). \(\epsilon \), \(K = \frac{2}{\theta} \log \frac{20B}{\eta r_0}\). However, (19) yields

\[
\|w^K\| \leq \|x^K - x^0\| + \|x^{*K} - x^0\| + \|x - x^0\| \leq 2B + 2\eta \leq 4K,
\]

which makes a contradiction. Thus the assumption is wrong and we conclude that at least one of the iterates triggers the “if condition”.

\[\square\]

C. A Continuation Extension

In Algorithm 2, we set \(B\) small such that the method may restart frequently in the first few iterations. In this case, Algorithm 1 almost reduces to the classical gradient descent. To make use of the practical superiority of AGD in the first few iterations, we can use a continuation strategy, at the cost of introducing nested loops. The method is presented in Algorithm 5, which gradually decreases the precision \(\epsilon\) in restarted AGD.

Algorithm 5 Restated AGD with Continuation

```
Initialize \(z^{t}, \tau > 1, \eta, c < \frac{1}{2d\rho r^2}\)
for \(t = 0, 1, \cdots, N\) do
\(z^{t+1} = \text{Restarted AGD}(z^t, \frac{\epsilon}{\tau})\)
end for
```

Setting \(N = \log_{\frac{\tau}{c}}\) and noting \(D = \Delta \rho L^{1/2} \rho^{-1/4}\), the total complexity is

\[
\frac{D}{c^{1/4}} \sum_{t=0}^{N} \tau^{t/4} = \frac{D}{c^{1/4}} \sum_{t=0}^{N} \left(\frac{\tau}{c}\right)^{t} = \frac{D}{c^{1/4}} \left(\frac{\tau^{N+1}}{c^{1/4}} - 1\right) \leq \frac{D}{c^{1/4}} \left(\frac{\tau^{N-1}}{c^{1/4}} - 1\right)
\]

\[
= \frac{D}{c^{1/4}} \left(\frac{\tau^{N}}{c^{1/4}} - 1\right) \leq \frac{D}{c^{1/4}} \left(\frac{\tau^{N-1}}{c^{1/4}} - 1\right)
\]

At the \(N\)th iteration, since we set the precision as \(\frac{\epsilon}{\tau^l} = \epsilon\), Algorithm 5 will output an \(\epsilon\)-approximate first-order stationary point.

D. Efficient Implementation of the Average

Given \(x^0, x^1, \cdots, x^K\) and \(y^0, y^1, \cdots, y^K\) sequentially, we want to find \(\tilde{y} = \frac{1}{K+1} \sum_{k=0}^{K} y^k\) efficiently, where \(K_0 = \text{argmin}_{k \geq K \geq 0} \frac{1}{K+1} \|x^{k+1} - x^k\|\). We present the implementation in Algorithm 6.

```
Algorithm 6 Implementation of the Average

Initialize \(S_1 = S_2 = 0, K_0 = 0\)
for \(k = 0, 1, \cdots, K - 1\) do
if \(k \leq \left\lfloor \frac{K}{4} \right\rfloor\) then
\(S_1 = S_1 + y^k, K_0 = k\)
else if \(\|x^{K_0+1} - x^k\| < \|x^{k+1} - x^k\|\) then
\(S_2 = S_2 + y^k\)
else
\(S_1 = S_1 + S_2 + y^k, S_2 = 0, K_0 = k\)
end if
end if
end for
Output \(\frac{S_1}{K_0+1}\)
```

E. Preliminary Experiments

We follow (Carmon et al., 2017) to consider the robust linear regression with the smooth biweight loss (Beaton & Tukey, 1974),

\[
\text{argmin}_{x \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^{m} \phi(a_i^T x - b_i), \quad \text{where} \quad \phi(\theta) = \frac{\theta^2}{1 + \theta^2}.
\]

We set \(d = 1000\) and \(m = 5000\), and we generate \(b\) and each \(a_i\) from the Gaussian distribution \(\mathcal{N}(0, I_m)\) and \(\mathcal{N}(0, I_d)\), respectively.

We compare restarted AGD (Algorithm 1), restarted AGD with continuation (Algorithm 5), and AGD-Jin (Algorithm 2) with gradient descent (GD). Carmon et al. (2017) implemented their “convex until guilty” method with several modifications, see their Section D.1, and it is not an easy job for us to give a fair implementation and comparison. So we do not compare with the complex nested-loop methods, and only compare with the single-loop ones. We tune the best stepsize \(\eta = 0.5\) for all the compared methods. Since the Hessian Lipschitz constant \(\rho\) is unknown, we set it as 1 for simplicity. For restarted AGD, we set \(\epsilon = 10^{-6}\), \(\theta = 4(\epsilon \rho r)^{1/4}\), \(K = 1/\theta\), and \(B = 10000/\sqrt{\rho}\). When preparing the experiments, we observed that the convergence is not sensitive to \(B\) and \(\epsilon\) but the practical performance depends on \(B\), and we suggest to set \(B\) bigger than the one given in Theorem 2.2, and \(\epsilon\) bigger than the desired precision. For restarted AGD with continuation, we set \(c = \frac{1}{10000\rho r^2}\), \(\tau = 2\), and the other parameters the same as those of restarted AGD. For AGD-Jin, we set \(\theta = 4(\epsilon \rho r)^{1/4}\), \(\gamma = \frac{\theta}{\gamma}\), and \(s = \frac{\gamma}{\theta}\).

Figure 1 plots the results. To plot the figures, we do not terminate restart AGD and AGD-Jin even if the break condition in the while loop triggers. We measure the objective function and gradient at each iterate \(y^k\) for the accelerated methods. We observed that the figures are almost the same when measured at \(y^k\) and \(x^k\). We see that the accelerated
methods perform better than GD, which verifies the efficiency of acceleration in nonconvex optimization. Restarted AGD and restarted AGD with continuation decrease the gradient norm faster than AGD-Jin, while AGD-Jin decreases the objective function a little faster.