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Abstract
Image rescaling is a commonly used bidirectional operation, which first downscales high-resolution images to fit various
display screens or to be storage- and bandwidth-friendly, and afterward upscales the corresponding low-resolution images
to recover the original resolution or the details in the zoom-in images. However, the non-injective downscaling mapping
discards high-frequency contents, leading to the ill-posed problem for the inverse restoration task. This can be abstracted as a
general image degradation–restoration problemwith information loss. In thiswork,we propose a novel invertible framework to
handle this general problem, which models the bidirectional degradation and restoration from a new perspective, i.e. invertible
bijective transformation. The invertibility enables the framework to model the information loss of pre-degradation in the form
of distribution,which couldmitigate the ill-posed problemduring post-restoration. To be specific,we develop invertiblemodels
to generate valid degraded images and meanwhile transform the distribution of lost contents to the fixed distribution of a
latent variable during the forward degradation. Then restoration is made tractable by applying the inverse transformation on
the generated degraded image together with a randomly-drawn latent variable. We start from image rescaling and instantiate
the model as Invertible Rescaling Network, which can be easily extended to the similar decolorization–colorization task.
We further propose to combine the invertible framework with existing degradation methods such as image compression
for wider applications. Experimental results demonstrate the significant improvement of our model over existing methods
in terms of both quantitative and qualitative evaluations of upscaling and colorizing reconstruction from downscaled and
decolorized images, and rate-distortion of image compression. Code is available at https://github.com/pkuxmq/Invertible-
Image-Rescaling.

Keywords Image degradation and restoration · Invertible neural network · Information loss · Image rescaling · Image
decolorization–colorization · Image compression

1 Introduction

Image rescaling is becoming increasingly important in the
age of high-resolution (HR) images/videos explosion on the
Internet. For efficient storage, transmission, and sharing,
such large-sized data are usually downscaled to significantly
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reduce the size and become bandwidth-friendly (Bruckstein
et al., 2003; Li et al., 2018; Lin & Dong, 2006; Shen et
al., 2011; Wu et al., 2009), while visually valid contents are
maintained (Kim et al., 2018; Sun and Chen, 2020) for pre-
viewing or fitting for screens with different resolutions. On
the other hand, the inverse restoration task is required by
user demands, which aims to upscale the downscaled low-
resolution (LR) images to a higher resolution or the original
size (Giachetti&Asuni, 2011; Schulter et al., 2015;Yeo et al.,
2017, 2018) so that vivid details could be presented. How-
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ever, the non-injective downscaling would cause information
loss, as high-frequency contents are lost during downscaling
according to the Nyquist-Shannon sampling theorem (Shan-
non, 1949). Such information loss leads to an intractable
ill-posed problem of the inverse tasks (Dong et al., 2015;
Glasner et al., 2009a;Yang et al., 2010), since the samedown-
scaled LR image may correspond to multiple possible HR
images, and therefore poses great challenges for recovery.

This can be abstracted as a general image degradation–
restoration problem with information loss due to dimension
reduction. Similar examples also include imagedecolorization–
colorization (Xia et al., 2018; Ye et al., 2020) and image
compression. In the following, we first focus on this general
problem and then consider the specific instantiation exam-
ples.

There have been many efforts attempting to mitigate this
ill-posed problem with machine learning algorithms. For
instance, many works consider dealing with the unidirec-
tional restoration task, e.g. for image rescaling, they choose
super-resolution (SR) methods to upscale LR images by
imposing or learning a prior, i.e. a preference on all pos-
sible HR images corresponding to a given LR image, for this
inverse task. However, mainstream SR algorithms (Dai et
al., 2019; Dong et al., 2015; Lim et al., 2017; Wang et al.,
2018; Zhang et al., 2018a, 2018b) leverage a predefined and
non-adjustable downscaling method, such as Bicubic inter-
polation, to guide the learning of upscaling, which omits
the compatibility between these two mutually-inverse oper-
ations. Therefore, simply applying unidirectional restoration
methods, e.g. SR, cannot fully leverage the bidirectional
nature of the task, resulting in unsatisfactory recoveries.

Some recent works attempt to unify these bidirectional
operations through an encoder-decoder framework rather
than separating them as two independent tasks. In these
methods for image rescaling, an encoder, which serves as
a learning-based upscaling-optimal downscaling module, is
jointly trained with an upscaling decoder (Kim et al., 2018)
or an existing SR module (Li et al., 2018; Sun and Chen,
2020). This encoder-decoder framework is also applied in
similar degradation–restoration tasks (Xia et al., 2018; Ye
et al., 2020). Taking the bidirectional nature into considera-
tion, such an integrated training method can largely improve
the quality of image reconstruction. However, these efforts
simply link the two operations through training objectives
without any attempt to fully leverage the reciprocal nature of
the tasks or capture features of lost contents. So the results
cannot meet the expectation as well.

In this paper, we propose a novel invertible framework
to largely mitigate this ill-posed problem through invertible
bijective transformation. With inspiration from the recipro-
cal nature of this pair of tasks, keeping the knowledge of lost
information in the forward procedure, e.g. high-frequency
contents in the image rescaling task, would greatly help the

inverse recovery. However, it is not acceptable to store or
transfer all lost contents to enable an exact recovery. To well
address this challenge, we instead deal with these contents
in the form of distribution, with the assumption that reason-
able lost contents follows a distribution. We develop a novel
invertible model to capture the knowledge of distribution in
the formof distribution transformation function. Specifically,
in the forward procedure, our invertible models will trans-
form the original image x into a degraded image y and an
auxiliary latent variable z by an invertible transformation. y
belongs to a target set of valid degraded images, e.g. the set
of visually-pleasing LR images given the HR image x for
the image rescaling tasks, and z is a random variable fol-
lowing a fixed pre-specified distribution p(z) (e.g. isotropic
Gaussian). The joint distribution of y and z is bijectively
transformed from the distribution of x and therefore the ran-
dom variable z holds the lost “information” of y from the
perspective of statistical modeling.1 Learning this bijective
transformation enables our model to capture the knowl-
edge of lost contents. Then during the inverse restoration
procedure, a random sample of z from the pre-specified dis-
tribution, together with the degraded image y, could recover
most contents for the original image through the inverse func-
tion of the model. We consider two instantiation examples
of the this bidirectional problem, i.e. image rescaling and
image decolorization–colorization. As for the specific archi-
tectures,we start from image rescaling and develop Invertible
Rescaling Network (IRN), which can be easily extended and
adapted to decolorization–colorization.

To realize this invertible framework, several challenges
should be tackled during training. Our basic targets include
reconstructing original images with high quality and gen-
erating degraded images belonging to a target set, e.g. the
set of visually-pleasing LR images. A further objective is
to accomplish the restoration with an image-agnostic z, i.e.,
z ∼ p(z) instead of an image-specific z ∼ p(z|y), because
it is easier for statistical modeling and sampling the inde-
pendent p(z) without the effort of handling conditions y.
This is achievable since for any random vector with a den-
sity (i.e. z′ ∼ p(z′|y)), there exists a bijection fy such that
fy(z′) ∼ N (0, I ) (Hyvärinen & Pajunen, 1999).2 For these

1 Note that the term “information” in this sentencemeans “uncertainty”
of random variables from the definition of information theory, which
does not imply that specific lost contents are “encoded” in z. The knowl-
edge about lost contents is in our invertible model in the form of the
bijective transformation between x and (y, z).
2 This can be viewed as transferring the dependence of z on y into
the process of our model that bijectively transforms mixed y and z
into x . This treatment avoids the manual allocation of model capacity
between capturing the y-dependency of the process from z to x and the
y-dependency of the distribution of z, and make it easier for statistical
modeling and sampling the random variable z. The restoration process,
i.e. the inverse transformation of our model with inputs y and z, is still
dependent on the image content y.
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purposes, we combine a reconstruction loss, a guidance loss,
and a distributionmatching loss to formulate a novel compact
and effective objective function. Note that the last compo-
nent aims at aligning recovered images with the true original
image manifold as well as enforcing z to follow the image-
agnostic distribution p(z), which cannot be simply achieved
by conventional generative adversarial networks (GANs) nor
the maximum likelihood estimation (MLE) method. This is
because our invertible model does not give a marginal distri-
bution on the data (it is not a simple generative model), and
these conventional methods do not guide the distribution in
the latent space for degraded image generation.We formulate
the distribution on y as the pushed-forward empirical distri-
bution of x , which would inversely pass our invertible model
in companywith an independent distribution p(z), to recover
the distribution of x . Therefore, our distribution matching
focuses on this recovered one and the data distribution of x ,
andweminimize the JS divergence between them in practice,
as other alternative methods such as sample-basedmaximum
mean discrepancy (MMD) method (Ardizzone et al., 2019)
could poorly handle the high-dimensional data in our task.
Moreover, we show that once the distribution matching on x
is achieved, the matching also holds on the (y, z) space with
z being image-agnostic, according to the invertible nature of
our model.

Furthermore, we propose the combination between our
invertible framework and existing degradation methods, and
instantiate it by the combination of image rescaling and
image compression. Since parts of degradation operations are
not always available for adaption with restoration, e.g. image
compression has common formats with general standards for
convenient and wide applications, we study this combination
to enable more applications. We demonstrate the effective-
ness to combine our invertible framework with restoration
from such degradation. We note that there could be many
other generalized applications of the invertible framework
and model as well, such as image steganography, video
rescaling, image denoising, etc. Please refer to recent works
that adapt the invertible framework and model into various
tasks since the publication of our preliminary version of this
work3 for more details (Cheng et al., 2021; Huang et al.,
2021; Jing et al., 2021; Liu et al., 2021; Lu et al., 2021; Tian
et al., 2021; Xing et al., 2021; Xie et al., 2021; Zhao et al.,
2021). Our contributions are concluded as follows:

• Toour best knowledge,we are thefirst tomodelmutually-
inverse image degradation and restoration with an invert-
ible bijective transformation.3 The deliberately designed
invertibility enables the framework to model the infor-

3 The preliminary version of this work has been accepted by
ECCV 2020 as oral presentation (Xiao et al., 2020).

mation loss, which can mitigate the ill-posed nature in
this bidirectional problem.

• We propose a novel model design and efficient train-
ing objectives to realize this framework. It enforces the
latent variable z to obey a simple image-agnostic distri-
bution, which enables efficient inverse upscaling based
on a sample from the distribution. We develop IRN with
deliberately designed architecture for the image rescaling
task and demonstrate the easy adaptation to the similar
image decolorization–colorization task.

• The proposed IRN and its scale-flexible and efficient
variants achieve significant performance improvement
of reconstructed HR images from the downscaled LR
images, compared with state-of-the-art downscaling-SR
and encoder-decoder methods. Meanwhile, the largely
reduced parameters of IRN compared with these meth-
ods indicate the lightweight property and high efficiency
of our model.

• We further propose the combination between our invert-
ible framework and restoration from existing degradation
methods, e.g. combination of image rescaling and com-
pression, for more general applications. Experiments
show improvements in these scenarios as well.

2 RelatedWork

2.1 Image Upscaling After Downscaling

When only the unidirectional upscaling task is considered,
image super-resolution (SR) is awidely adoptedmethodwith
promising results in low-resolution (LR) image upscaling.
SR works focus on mitigating the inherent ill-posed prob-
lem by learning strong prior information by example-based
strategy (Freedman & Fattal, 2011; Glasner et al., 2009b;
Kim & Kwon, 2010; Schulter et al., 2015) or deep learning
models (Dai et al., 2019; Dong et al., 2015; Guo et al., 2020;
Lim et al., 2017; Lugmayr et al., 2020; Wang et al., 2018;
Zhang et al., 2018b, a; Zhong et al., 2018). The state-of-the-
art SR models are to train a neural network with elaborately
designed architecture to reconstruct high-resolution (HR)
images from the LR counterparts, which are usually gener-
ated by Bicubic interpolation from the HR images. However,
when it comes to the bidirectional task of image rescaling,
considering the image downscaling method would largely
benefit the upscaling reconstruction.

Traditional imagedownscalingmethods sub-sample images
by a low-pass filter with frequency-based kernels, such as
Bilinear, Bicubic, etc. (Mitchell & Netravali, 1988). For
perceptual quality, several detail- or structure-preserving
downscaling methods were proposed recently (Kopf et al.,
2013; Liu et al., 2017; Oeztireli & Gross, 2015; Wang et al.,
2004; Weber et al., 2016) to mitigate the over-smoothness
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of generated LR images. When the potential mutual rein-
forcement between downscaling and the inverse upscaling
task is considered, the upscaling-optimal downscaling meth-
ods, which aim to learn the optimal downscaling model for
the post-upscaling operation, gain increasing attention and
efforts. For example, Kim et al. (2018) proposed a task-aware
downscaling model based on an auto-encoder framework,
which jointly trains the downscaling encoder and upscaling
decoder as a united task. Similarly, Li et al. (2018) used a
CNN to estimate downscaled images while a learned or spec-
ified SR model is adopted for HR image recovery. Recently,
Sun and Chen (2020) proposed a new content-adaptive-
resampler-based image downscalingmethod,which is jointly
trained with existing differentiable upscaling (SR) models.
And Chen et al. (2020) proposed a downscaling network
based on the discretization of Hamiltonian System, which is
trained jointlywith SRmodels aswell. Although these efforts
take the bidirectional nature of image rescaling into consid-
eration, they simply link downscaling and upscaling through
training objectiveswhile ignoring the lost information during
downscaling that leads to the ill-posed problem they suffer
from. In this paper, we propose to model the bidirectional
downscaling and upscaling processes with invertible trans-
formation based on invertible neural networks, which could
model the lost information and largely mitigate the ill-posed
problem.

Difference from Super-Resolution Please note that the task
of image rescaling is different from super-resolution. In our
scenario, ground-truth HR images are available at the begin-
ning but we have to use the LR version (e.g. for transmission
or preview) instead. We would generate LR images and hope
to recover the HR ones afterward from them. While for SR,
the target is to generate new HR images for any given LR
images.

2.2 Image Decolorization–Colorization

Image decolorization methods convert color images to
grayscale, which enables applications like aesthetic photog-
raphy, backward compatibility for legacy display, etc. (Xia
et al., 2018), while colorization methods aim to colorize
grayscale images. Reconstructing original color images from
the decolorized ones is also a bidirectional task with infor-
mation loss, as color information is lost during decoloriza-
tion and needs to be recovered, which can be viewed as
“downscaling” and “upscaling” in the color channel dimen-
sion.

Image colorization methods could be used to colorize
decolorized images, and existing methods usually requires
user-hints (Levin et al., 2004; Zhang et al., 2017) or learning
strongpriors bydeep learningmodels (Ardizzone et al., 2019;
Deshpande et al., 2017; Zhang et al., 2016) to generate color
for grayscale images. When it comes to precisely recovering

the original color of decolorized images, taking decoloriza-
tion methods into consideration would help reconstruction
as well.

The most commonly used image decolorization method
is to only take the luminance channel and discard color
information in color space. Later, several methods have
been proposed to preserve the color contrast or structural
information which is easily lost during color-to-gray con-
version (Bala & Eschbach, 2004; Liu et al., 2015). Taking
decolorization and colorization as a joint task, Xia et al.
(2018) first proposed invertible grayscale, which leverages
an encoder-decoder architecture of deep learning models to
learn to generate grayscale images that is helpful for col-
orization reconstruction.Ye et al. (2020) further improved the
network design under this architecture. Kim et al. (2018) also
demonstrates the extension of their image rescaling method
for this task. However, these methods do not explicitly model
the lost information and still significantly suffer from the
ill-posed problem. In this work, we demonstrate that our pro-
posed invertible framework could adapt to this bidirectional
task well.

2.3 Image Compression

Image compression is a kind of data compression on digital
images, which can be lossy (e.g. JPEG, BPG) or lossless (e.g.
PNG, BMP). Traditional lossy image compression usually
involves quantization in the frequency domain and optimal
coding rules, while recently image compression methods
based on deep learning show promising results of compres-
sion ratio and image quality (Agustsson, 2019; Ballé et al.,
2017, 2018; Cheng et al., 2020; Li et al., 2020;Minnen et al.,
2018; Rippel &Bourdev, 2017;Wang et al., 2020). As image
compression is only for storage saving, it will not change the
resolution of images and there is no visuallymeaningful low-
resolution image but only bit-stream output. Therefore image
compression is different from image rescaling and theirmeth-
ods are usually different.

Despite this, image rescaling is orthogonal to image com-
pression: they can be combined naturally and be applied
together in many real applications (Sullivan et al., 2013).
On one hand, the downscaled low-resolution images could
be encoded by advanced lossless compression methods; on
the other hand, first downscaling images and then com-
pressing them is a common method for larger compression
rate (Bruckstein et al., 2003). Direct image compression
methods perform poorly under extremely large compression
rate, and are always combined with image rescaling for high
compression rate of high-resolution images. In this work, we
demonstrate the combination between IRN and lossless as
well as lossy compression methods for better lossy compres-
sion performance.
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2.4 Invertible Neural Network

The invertible neural network (INN) (Behrmann et al., 2019;
Chen et al., 2019; Dinh et al., 2015, 2017; Grathwohl et
al., 2019; Kingma & Dhariwal, 2018; Kumar et al., 2020;
Kobyzev et al., 2020) is usually used for generative mod-
els. The invertible transformation of INN fθ specifies the
generative process x = fθ (z) given a latent variable z,
while the inverse mapping f −1

θ enables explicit computa-
tion for the density of the model distribution, i.e. pX (x) =
pZ ( f −1(x))

∣
∣det J f −1(x)

∣
∣. Therefore, it is possible to use

the maximum likelihood method for stable training of INN.
The flexibility for modeling distributions allows INN to be
applied in many variational inference tasks as well (Berg et
al., 2018; Kingma et al., 2016; Rezende &Mohamed, 2015).
Also, due to the strict invertibility, INN has been used to
learn representations without information loss (Jacobsen et
al., 2018), which has been applied in the super-resolution
task as a feature embedding module (Li et al., 2019; Zhu,
2019).

Several prior works apply INN for tasks with paired data
(x, y). For example, Ardizzone et al. (2019) deal with real-
world inverse problems frommedicine and astrophysics with
INN. And Asim et al. (2020) leverage INN as effective priors
at inverse problems including denoising, compressive sens-
ing, and inpainting. Ren et al. (2020) further analyze INN
as deep inverse models for generic inverse problems with
four benchmarking tasks. Besides, conditional generation
with INN, where the invertible modeling between x and z
is conditioned on y, has also been explored and analyzed,
such as in the task of image colorization (Ardizzone et al.,
2019) and super resolution (Lugmayr et al., 2020). Differ-
ent from these tasks considering unidirectional generation,
image degradation–restoration is bidirectional, i.e. both gen-
erating y given x and the inverse reconstruction of x are
required. Therefore these models are unsuitable for our task,
and we propose to model information loss in this task with
INN. On the other hand, INN has been applied to conduct
image-to-image translation (van der Ouderaa and Worrall,
2019). They consider the paired domain (X ,Y ) rather than
paired data, which is also different from our scenario.

The computational architecture of INN is specially designed
to enable invertibility. For example, the mainstream architec-
ture of INN is composed of coupling layers proposed in (Dinh
et al., 2015, 2017). In this architecture, INN consists of sev-
eral invertible blocks. For the computation of the l-th block,
different from conventional neural networks that directly
apply neural network transformation on the input hl as f (hl),
the input hl ∈ R

N×H×W×C is first split into hl1, h
l
2, usually

along the channel axis so that hl1 ∈ R
N×H×W×C1 , hl2 ∈

R
N×H×W×C2 ,C1 + C2 = C , and the following additive

transformations are applied (Dinh et al., 2015):

hl+1
1 = hl1 + φ(hl2),

hl+1
2 = hl2 + η(hl+1

1 ),
(1)

where φ, η are functions parameterized by neural networks,
e.g. convolutional neural networks. There is no restriction
for φ, η. The output of the block is the concatenation of the
two parts, i.e. [hl+1

1 , hl+1
2 ], which will be the input to the

(l + 1)-th block. The strictly inverse transformation is easily
computed given the output:

hl2 = hl+1
2 − η(hl+1

1 ),

hl1 = hl+1
1 − φ(hl2),

(2)

For stronger expression ability, the following computation is
often leveraged (Dinh et al., 2017):

hl+1
1 = hl1 � exp(ψ(hl2)) + φ(hl2),

hl+1
2 = hl2 � exp(ρ(hl+1

1 )) + η(hl+1
1 ),

hl2 = (hl+1
2 − η(hl+1

1 )) � exp(−ρ(hl+1
1 )),

hl1 = (hl+1
1 − φ(hl2)) � exp(−ψ(hl2)).

(3)

This is the basic component of mainstream INNs that
enforces the invertibility of the computation, and the expres-
sive ability of such kind of architecture has been theoretically
studied (Teshima et al., 2020). There are also other choices
for INN architectures. For example, Behrmann et al. (2019);
Chen et al. (2019) prove that for the commonly used resid-
ual neural network architecture y = fθ (x) + x , when the
spectral norm of the residual function fθ is restricted under
1, this computation is invertible and therefore can be used as
a kind of INN. On the other hand, Lu et al. (2021) further
proposes implicit normalizing flows, in which the computa-
tion of INN is implicitly defined by solving an equation. We
will design our invertible architecture based on the typical
coupling-layer-based invertible blocks, i.e. Eqs. (1,3), and
task-related considerations in Sect. 3.3.1.

3 Methods

In this section, we first formally present the general math-
ematical formulation of the image degradation–restoration
problem in Sect. 3.1. Then we describe the invertible mod-
eling framework of this bidirectional problem in Sect. 3.2.
As for the specific model, we start from image rescaling and
elaborate on the specific invertible architecture and training
methods for IRN in Sect. 3.3. Then we show the adapta-
tion of IRN to the similar decolorization–colorization task
in Sect. 3.4. Finally, we propose to combine the invert-
ible framework with existing degradation methods with an
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instantiation of the combination between image rescaling and
compression in Sect. 3.5.

3.1 Mathematical Formulation of Image
Degradation–Restoration

The basic formulation of the image degradation–restoration
problem can be described as:

min
θ

∑

x

L (x,U (D(x; θ); θ)) ,

s.t. y = D(x; θ) ∈ Y (x),∀x,
(4)

where x is the original image, e.g. HR image for the image
rescaling task,D and U are respectively the degradation and
restoration models parameterized by θ , e.g. downscaling and
upscaling of image rescaling, L is a criterion justifying the
quality of recovered images, y = D(x; θ) is the model-
degraded image, and Y (x) denotes the target set of valid
degraded images given x , e.g. visually valid LR images given
the HR image x for the image rescaling task. When D is a
given mapping without parameters to optimize, the problem
of learning U only resorts to a typical restoration problem,
e.g. image super-resolution. In contrast, in the degradation–
restoration problem, D is also learned and contributes to a
better restoration.

Inmany tasks, althoughwedo not have the explicit expres-
sion of Y (x), it is much easier to obtain a valid degraded
image in this set. For example, typical interpolation meth-
ods (e.g. Bicubic) could produce visually valid LR images
for the image rescaling tasks. As for the rescaling and
decolorization–colorization tasks in this paper, we instantiate
the constraint in (4) by narrowing the set around a given sam-
ple. Specifically, let yguide(x) denote an available degraded
image, e.g. an LR image downscaled by a typical interpo-
lation method which well demonstrates what is a visually
valid LR image as a sample in Y (x). We instantiate Y (x) by
Yguide(x) = {y | ‖y−yguide(x)‖ < ε}. So in practice only one
valid degraded image yguide(x) is required and the original
problem turns into:

min
θ

∑

x

L (x,U (D(x; θ); θ)) ,

s.t. ‖D(x; θ) − yguide(x)‖ < ε.

(5)

In Sect. 3.2.2, this constraint will be further relaxed and for-
mulate a guidance loss in practice.

Now we have described the basic settings of image
degradation–restoration. The problem formulation under our
invertible framework will be illustrated in the following sec-
tions.

3.2 Specification of Invertible Modeling

3.2.1 Formulation of Invertible Framework

As described in the Introduction, we model the bidirectional
degradation and restoration from the perspective of invert-
ible bijective transformation. Figure 1 illustrates the sketch
of our invertible framework. To model lost information dur-
ing degradation, we introduce an auxiliary latent random
variable z, and leverage an invertible neural network to bijec-
tively transform the distribution of x to the joint distribution
of a pre-specified distribution p(z) and the distribution of
model-degraded image y. Then the distribution of lost con-
tents is transformed to p(z) together with the generation of
y. As described in the introduction, we note that for any ran-
dom vector with a density (i.e. z′ ∼ p(z′|y)), there exists
a bijection fy such that fy(z′) ∼ N (0, I ) (Hyvärinen &
Pajunen, 1999); therefore for easier modeling and sampling
of p(z) without handling conditions, we choose image-
agnostic z ∼ p(z) as an additional desideratum, which will
be enforced by distribution matching. In this way, the dis-
tribution of lost contents is captured by our model without
preserving image-specific lost contents or z, and a random
sample of z′ from p(z) in company with the degraded image
y could reconstruct a image x ′ with reasonable lost contents
by the inverse function of our invertible model. Let fθ denote
the parameterized bijective transformation. Then the degra-
dation procedure of ourmodel is expressed as (y, z) = fθ (x),
where y is the output degraded image. Correspondingly, the
restoration procedure is x ′ = f −1

θ (y, z′), where z′ ∼ p(z).
As z′ is random, the restored image x ′ is also random. This
defines the restoration distribution pθ (x |y), representing the
uncertainty over all possible original images that could yield
y. The randomness of z corresponds to the randomness of
reasonable x in pθ (x |y). Note that this inverse transforma-
tion will mix y and z′ so that the generation process is still
dependent on the image-specific information.

The invertiblemodeling framework is particularly suitable
for the degradation–restoration problem under a measure-
theoretic point of view, in that it has the unique advantage of
being cyclically compatible (Liu et al. 2021, Def. 2.1). This
means the model-defined restoration distribution pθ (x |y)
and degradation distribution pθ (y|x) always come from the
same joint distribution of (x, y). Since the degradation dis-
tribution pθ (y|x) = δ f yθ (x)(y) ( f

y
θ (x) denotes the y-part of

the output of (y, z) = fθ (x)) is a Dirac delta distribution, the
restoration distribution pθ (x |y) is compatible with it if and
only if it is supported within the preimage set of the degrada-
tion transformation f yθ , i.e. ( f

y
θ )−1({y}) := {x | f yθ (x) = y}

(Liu et al. 2021, Thm. 2.6). Due to the invertibility of fθ , for
any z′ ∈ R

K , the restored image f −1
θ (y, z′) is always in

the preimage set since f yθ ( f −1
θ (y, z′)) = y. In this way, the
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Fig. 1 Illustration of the
invertible modeling framework
for the degradation–restoration
problem. In the forward
degradation procedure, the
image x is transformed to a
valid degraded image y and an
image-agnostic latent variable z
through a parameterized
invertible function fθ (·); in the
inverse upscaling procedure, a
randomly drawn z combined
with y are transformed to restore
image x through the inverse
function f −1

θ (·)

model only needs to focus on learning the distribution over all
possible original images without worrying about conflicting
with the degradation process.

With invertible modeling, the problem formulation is
described as:

min
θ

∑

x

Ez∼p(z)

[

L
(

x, f −1
θ

([ f yθ (x), z])
)]

,

s.t. ‖ f yθ (x) − yguide‖ < ε,

{ f zθ (x)}x ∼ p(z),

(6)

where f yθ and f zθ denote the transformations whose outputs
correspond to y and z of the output of fθ (x) respectively.
In Sect. 3.2.2, the constraint regarding distributions will be
relaxed and formulate a distribution loss in practice.

3.2.2 Realization of Invertible Framework

Our invertible framework specifies a correspondence
between the distributions of the original image x and the
degraded image y, as well as the image-agnostic distribu-
tion p(z) of the latent variable z. To realize this framework,
we should train the invertible model denoted by fθ . This
subsection introduces the general training objectives for our
invertible models, while some adaptions will be detailed for
specific tasks in Sects. 3.3 and 3.4. The training objectives are
to drive the above relations and match our requirements, i.e.
solve (6). We will make the constrained optimization prob-
lem (6) practical by reforming it as jointly optimizing three
objective terms as introduced below.

Reconstruction As described in Sect. 3.2, our invertible
framework is under the context of distribution. Therefore
it is not for the correspondence between the point x and
y if z is not specified. Given a image x (n), the model-
degraded image f yθ (x (n)) will be restored by our model with
the image-agnostic latent variable z ∼ p(z), resulting in
f −1
θ ( f yθ (x (n)), z)which also follows a distribution. We hope

to restrict this distribution around the original image so that

the image can be validly recovered by the model using any
sample of z from p(z). This arbitrariness would inversely
encourage the disentanglement between z and y in the for-
ward process as well. To achieve this, we encourage the
reconstructed image with any random sample z to match
the original x (n), leading to the reconstruction loss which
minimizes the expected difference over all original images:

L recon(θ) :=
N

∑

n=1

Ez∼p(z)[	X (x (n), f −1
θ ( f yθ (x (n)), z))],

(7)

where 	X is a difference metric on X , e.g. the L1 or L2 loss.
We estimate the expectation w.r.t z by one random sample
from p(z) each evaluation in practice. This loss corresponds
to the objective in (6).

Guidance As described in Sect. 3.1, we hope to gener-
ate a valid degraded image belonging to a target set, whose
expression is not explicitly known, but we can instantiate it
as a constraint w.r.t. the distance to guiding degraded images.
We relax this constraint as a loss added in the objective,which
encourages the model-degraded images to resemble guiding
images. Let y(n)

guide denote this guiding image (for example,
an LR image generated by the Bicubic interpolation for the
image rescaling task). The guidance loss is expressed as:

Lguide(θ) :=
N

∑

n=1

	Y (y(n)
guide, f yθ (x (n))), (8)

where 	Y is a difference metric on Y , e.g. the L1 or L2 loss.
This kind of objective was also adopted in literatures (Kim
et al., 2018; Sun and Chen, 2020).

DistributionMatchingThe third part of the training objec-
tive is to match the distribution of latent variable z and
original images. We first describe our notations for the distri-
butions.We denote the data distribution of original images as
q(x), which is available through the sample cloud {x (n)}Nn=1.
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Note that when traversing over this sample cloud, {y(n)}Nn=1
generated by our model also form a sample cloud of a dis-
tribution. We use the push-forward distribution f yθ #[q](y)
to denote this distribution of y, which represents the distri-
bution of the transformed random variable y = f yθ (x) with
x ∼ q(x). We define the push forward distribution f zθ #[q](z)
in the same way. Similarly, the inversely reconstructed
images compose a sample cloud { f −1

θ (y(n), z(n))}Nn=1 fol-
lowing a distribution, where z(n) ∼ p(z) is a randomly
drawn latent variable. As z ∼ p(z) is to be independent
from y, we have (y(n), z(n)) ∼ f yθ #[q](y) p(z). Therefore,
we can denote the distribution of reconstructed images as
f −1
θ #

[

f yθ #[q](y) p(z)](x).
Our model should enforce z ∼ p(z) to be image-agnostic

and match the model-reconstructed distribution towards data
distribution. This corresponds to the constraint on the dis-
tribution in (6). Therefore we relax the constraint as a loss
added in the objective as well, and introduce the distribution
matching loss to achieve these two goals:

Ldistr(θ) := LP
(

f −1
θ #

[

f yθ #[q](y) p(z)](x), q(x)
)

, (9)

where LP is a differencemetric of distributions. The distribu-
tion matching loss directly pushes the model-reconstructed
images to lie on the manifold of true original images, which
matches the distribution and enables the recovered images
to be more realistic (note that the reconstruction loss only
restrict them around the original images). At the same time,
it drives the independence of z ∼ p(z) from y in the forward
transformation. This is because if fθ is invertible, the distri-
butionmatching holds onX if and only if it holds onY×Z in
the asymptotic case, i.e. f −1

θ #

[

f yθ #[q](y) p(z)](x) = q(x)
is equivalent to f yθ #[q](y) p(z) = fθ #[q](y, z). In this way,
the loss also drives the coupled distribution fθ #[q](y, z) from
the forward transformation towards the decoupled distribu-
tion f yθ #[q](y) p(z), realizing the matching of independent
z ∼ p(z).

As for the probability metric LP , we can employ the JS
divergence due to the high-dimensionality and unknown den-
sity function in our problem. We estimate the loss as:

Ldistr(θ) =JS( f −1
θ #

[

f yθ #[q](y) p(z)](x), q(x))

= 1

2
max
T

{

Eq(x)
[

log σ(T (x))
]

+ E
x ′∼ f −1

θ #

[

f y
θ #[q](y) p(z)

]

(x ′)
[

log
(

1 − σ(T (x ′))
)] }

+ log 2

= 1

2
max
T

{

Eq(x)
[

log σ(T (x))
]

+ E
(y,z)∼ f y

θ #[q](y) p(z)
[

log
(

1 − σ(T ( f −1
θ (y, z)))

)] }

+ log 2

≈ 1

2N
max
T

∑

n

{

log σ(T (x(n)))

+ log
(

1 − σ(T ( f −1
θ ( f yθ (x(n)), z(n))))

) }

+ log 2, (10)

where σ is the sigmoid function, T : X → R is a function on
X and σ(T (·)) is regarded as the discriminator in GAN lit-
eratures (Goodfellow et al., 2014). The “≈” is due to Monte
Carlo estimation: {z(n)}Nn=1 are i.i.d. samples from p(z) and
{x (n)}Nn=1 ∼ q(x). In practice, we can parameterize the func-
tion T with a neural network Tφ , and thus maxT amounts to
maxφ . We can follow the same way as GANs to optimize θ

and φ so that the JS divergence is minimized.

3.3 Model for Image Rescaling

As for specific models, we start from image rescaling in
this section.We develop Invertible Rescaling Network (IRN)
as the instantiation model of our inverible modeling frame-
work for image rescaling, and we will describe the specific
invertible architecture and training methods of IRN. We also
present the algorithms for downscaling and upscaling in
our IRN model in Algorithms 1, 2 as an example to better
demonstrate the input, output, and procedure of our invert-
ible framework. Note that in practice the HR image x and LR
image y will be quantized to 8-bit representation, as will be
indicated in Sect. 3.3.1. We omit this detail in the algorithm
description and treat the domain as R.

Algorithm 1 Downscaling of IRN

Input: HR image x ∈ R
H×W×C , scale size s, model fθ,s

Output: LR image y ∈ R
H
s × W

s ×C

1: Calculate (y, z) = fθ,s(x)
2: return y

Algorithm 2 Upscaling of IRN

Input: LR image y ∈ R
H×W×C , scale size s, model fθ,s

Output: HR image x ∈ R
sH×sW×C

1: Randomly sample z ∼ p(z), z ∈ R
H×W×(s2−1)C

2: Calculate x = f −1
θ,s (y, z)

3: return x

3.3.1 Invertible Architecture

Figure 2 illustrates the architecture of our proposed IRN,
which is basically composed of stacked Downscaling Mod-
ules consisting of one Haar Transformation and several
InvBlocks. Each Downscaling Module will reduce the spa-
tial resolution by 2×. The overall architecture is invertible
given that each component is invertible.

The Haar Transformation In each Downscaling Mod-
ule, a Haar Transformation is first applied to equip the
model with a certain inductive bias for splitting low- and
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Fig. 2 Illustration of our Invertible Rescaling Network (IRN) as the
instantiation model of our invertible modeling framework. The invert-
ible architecture is composed of Downscaling Modules, in which

InvBlocks are stacked after a Haar Transformation. Each Downscal-
ing Module reduces the spatial resolution by 2×. The exp(·) of ρ is
omit

high-frequency contents, which are approximately preserved
and lost contents during image downscaling respectively.
The Haar Transformation, which is an invertible wavelet
transformation, will decompose the input into a low-pass
representation and three directions of high-frequency coeffi-
cients (Ardizzone et al., 2019). Specifically, given the input
raw image or feature maps with height H , width W and
channel C , a tensor of shape ( 12H , 1

2W , 4C) is produced,
where the firstC slices are the low-pass representation equiv-
alent to the Bilinear interpolation downscaling, and the other
three groups of C slices correspond to the high-frequency
residual in the vertical, horizontal and diagonal directions
respectively. With the help of the Haar Transformation, the
model could effectively separate low- and high-frequency
information, which benefits the following generation of y
and transformation from xH to z. And the spatial resolution
is reduced by 2× after the Haar Transformation.

InvBlock InvBlocks are the main components for the
target invertible transformations. Given that the input has
been split into low- and high-frequency components by
the Haar Transformation, we introduce InvBlocks based on
the coupling layer architecture described in Eqs. (1,2,3),
whose two branches (i.e. the split of hl1 and hl2 in Eq. (1))
correspond to these two components respectively. The trans-
formation would further polish the input representations for
the generation of a suitable LR image as well as an inde-
pendent and properly distributed latent representation for
lost information. As for the detailed computation, consid-
ering the importance of shortcut connection in image scaling
tasks (Lim et al., 2017; Wang et al., 2018), we employ the
additive transformation (Eq. 1) for the low-frequency part
hl1, and the enhanced affine transformation (Eq. 3) for the
high-frequency part hl2 to enhance the model capacity. This
also equips the model with a certain inductive bias for the
generation of LR images with the low-frequency part going
straight through, and could stabilize the training of IRN. The
details of the InvBlock architecture are illustrated in Fig. 2,
except that the exp(·) operation after function ρ is omitted
here.

Fig. 3 Illustration of the learnable dowmsampling module (2× exam-
ple). It consists of a squeeze operation to downscale the spatial
resolution by N times and a 1 × 1 invertible convolution to transform
the squeezed N × N elements

We employ a densely connected convolutional block,
which has demonstrated its effectiveness for image scaling
tasks in (Wang et al., 2018), to parameterize the transforma-
tion functions φ(·), η(·), ρ(·). To avoid numerical explosion
due to the exp(·) function, we employ a centered sigmoid
function and a scale term after function ρ(·).

Quantization The outputs of ourmodel are floating-point
values, while the common image formats such as RGB are
quantized to 8-bit representation. To enable storage com-
patibility, we adopt a rounding operation as the quantization
module on the generated LR image. The quantized LR image
is saved by PNG format and used for upscaling. However, the
nondifferentiable property of quantization poses challenges
for training with back-propagation. To overcome the obsta-
cle, we apply the Straight-Through Estimator (Bengio et al.,
2013) to calculate the gradients for the quantization module.
The notation for quantization is omitted in the following for
simplicity.

3.3.2 Scale-Flexible and Efficient Implementation

There could be further improvements over the architecture
to adapt IRN to more scales or more computation efficiency.
Specifically, we will introduce the learnable downsampling
module and improvement on computational efficiency to
enable scale-flexible and efficient implementation.
LearnableDownsamplingAlthough theHaarWavelet Trans-
formation is able to serve for downsampling and splitting
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high- and low-frequency contents well, stacking multiple
transformations can only rescale images by the scales that are
the power of two. This largely restricts the rescaling scope for
our model. To enable more scales, such as 3×, we propose
to leverage a learnable downsampling layer to replace Haar
Transformation in the architecture. It consists of a squeeze
operation and one 1 × 1 invertible convolution.

As shown in Fig. 3, the squeeze operation downscales the
spatial resolution for a certain scale N by squeezing spatial
elements into channels. Then, a 1 × 1 invertible convolu-
tion is applied to transform the squeezed N × N elements
before InvBlocks. 1 × 1 invertible convolution is first pro-
posed in GLOW (Kingma & Dhariwal, 2018) for channel
permutation. Different from their purpose, we expect it to
learn to split low- and high-frequency contents under arbi-
trary scales and adapt the following InvBlocks better. The
Haar Transformation can be viewed as a special case of this
downsampling module under 2× scale, as it provides a fixed
rather than learnable prior. For this module, we provide a
prior for extracting low-frequency in initialization by setting
parameters of the 1 × 1 invertible convolution in order that
the first channel after transformation is the average of N ×N
elements, while the other channels are the identity transfor-
mation to enable the invertibility.

We denote the IRN model with learnable downsampling
as IRNLD.

Fractional scaling factors In real applications, there
would be fractional scaling factors. We can deal with them
by combining IRN and traditional interpolation methods.
Specifically, for the scaling factor s1, we choose IRN with
scaling factor s2 = [s1] and rescale HR images with inter-
polation (e.g. Bicubic) by scale s2

s1
and s1

s2
before and after

passing them into IRN respectively. This has been demon-
strated in recent work as well (Xing et al., 2022).

Improving Computation EfficiencyWe note that the architec-
ture that stacks multiple Downscaling Modules containing
one downsampling module and multiple InvBlocks suffers
from much-increased FLOPs during computation. This is
because InvBlocks in the previous Downscaling Modules
other than the last one will apply convolution operations
on tensors with larger spatial resolution, which significantly
increases computational cost. To further improve compu-
tation efficiency, we propose to modify the architecture to
first apply downsamplingmodules (e.g. multiple Haar Trans-
formation or learnable downsampling) and then go through
multiple InvBlocks. This enables the convolution operations
to be applied on smaller resolutions, which could largely
reduce the FLOPs and runtime under a similar amount of
parameters.

We denote the IRNmodel under this architecture as IRNE.
It differs from IRN only when IRN stacks multiple Down-
scaling Modules.

3.3.3 Training Objectives

The training objectives of IRNmainly follow the reconstruc-
tion (Eq. 7), guidance (Eq. 8), and distribution matching
(Eq. 9) to realize the invertible framework as described
in Sect. 3.2.2. For image rescaling, the reconstruction and
guidance is adapted as HR reconstruction and LR guidance
correspondingly, which means calculating Lrecon between
reconstructed and original HR images and calculating Lguide

between model-generated LR images and LR images gen-
erated by the Bicubic interpolation methods, respectively.
Based on the above objectives, we can optimize our IRN
model by minimizing the combination of the three losses,
which relaxes the constrained problem (6) into an uncon-
strained one. However, as an issue in practice, we find it
difficult to directly do the optimization due to the unsta-
ble training process of GANs (Arjovsky & Bottou, 2017).
Therefore, we propose to adopt a weakened but more stable
surrogate loss for the distribution matching as a pre-training
stage, forming a two-stage training procedure.

As explained in Sect. 3.2.2, the distribution match-
ing on X has the same asymptotic effect as on Y ×
Z , i.e. LP ( f yθ #[q](y) p(z), fθ #[q](y, z)). Our surrogate
loss considers partial distribution matching on Z , i.e.
LP (p(z), f zθ #[q](z)), which is more flexible as the density
function of p(z) is available. We choose cross entropy (CE)
as a more stable distribution metric for minimization:

L ′
distr(θ) := CE( f zθ #[q](z), p(z))

= −E f zθ #[q](z)[log p(z)] = −Eq(x)[log p(z= f zθ (x))].
(11)

Note that the maximum likelihood estimation (MLE)
maxθ Eq(x)[log f −1

θ #[py,z](x)] commonly used in related
INN-based generative models (Ardizzone et al., 2019; Dinh
et al., 2015, 2017; Kingma & Dhariwal, 2018) is however
not applicable to our model, since it requires a joint distribu-
tion p(y, z)with tractable density function on the (y, z) end,
while we only have a distribution p(z) on z.4 Therefore we
can only leverage a stable but weakened surrogate loss.

Our pre-training stage will minimize the following total
objective, and we call IRN as this trained model:

L IRN := λ1L recon + λ2Lguide + λ3L
′
distr, (12)

where λ1, λ2, λ3 are coefficients for balancing different loss
terms.

4 MLEs corresponding to minimizing KL(q(x |y), f −1
θ (y, ·)#[pz](x))

or KL
(

q(x),
(

E f yθ #[q](y)[ f −1
θ (y, ·)]

)

#
[pz](x)

)

are also impossible,

since the pushed-forward distributions are only supported on a lower-
dimensional manifold (dimension of z) in X so their densities are not
well-defined (i.e., the densities are a.e. zero in X and are infinite on the
manifold).
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After the pre-training, we adopt the trained model as the
initialization and restore the full distribution matching loss
Ldistr based on JS divergence for the training objective. Addi-
tionally, as Ldistr encourages reconstructed HR images to be
more realistic, we also add a perceptual loss (Johnson et al.,
2016) Lpercp on X to further enhance the perceptual quality.
Instead of pixels, the perceptual loss measures the difference
between two images on their semantic features, which are
extracted by pre-trained deep learning models (e.g. VGG).
There are several variants of the perceptual losswhichmainly
differ from the feature positions (Ledig et al., 2017; Wang et
al., 2018), and we adopt the variant proposed in Wang et al.
(2018).

Therefore, the second stage minimizes the following total
objective, and we call the model as IRN+:

L IRN+ := λ1L recon + λ2Lguide + λ3Ldistr + λ4Lpercp. (13)

3.4 Model for Image Decolorization–Colorization

Image decolorization–colorization is a commonly seen task
(Xia et al., 2018; Ye et al., 2020) and is another instantiation
of bidirectional degradation–restoration problem, in which
color information in the channel dimension is lost. The core
idea of our problem formulation is the same as Fig. 1, which
transforms the distribution of image-specific lost information
into an image-agnostic Gaussian distribution. Some adapta-
tion of the specific model to fit this task is illustrated as the
following.

3.4.1 Architecture

The basic architecture is similar to Fig. 2. Different from
splitting low- and high-frequency contents as image rescal-
ing, we need to split grayscale and color information, and
produce a grayscale image while capturing the distribution
of color information here. Therefore, we need to replace the
downsampling module with a graying module. We directly
leverage the YCbCr color space representation of the image
to split the information in the channel. Then these two branch
of information (i.e. Y and CbCr) go through InvBlocks as
introduced previously. We denote this model as IRNcolor.

3.4.2 Training Objectives

We also leverage the three components for the objective,
i.e. guidance loss (Eq. 8), reconstruction loss (Eq. 7), and
distribution matching loss (Eq. 9). In particular, for the guid-
ance loss, we adapt it as a Grayscale Guidance, in which
the Y channel under YCbCr representation of the image
is leveraged as the guidance. The reconstruction loss is to
compute the difference between reconstructed images and
original ones. For distribution matching, we choose the sta-

ble cross entropy introduced in Sect. 3.3.3 here, because the
human perception of color is less sensitive and the unsta-
ble perceptual-driven loss is not necessary for good results.
Besides, because colorization has more diverse results than
upscaling, to stabilize and improve our training for the
reconstruction of original color images, we will consider
an alternative choice to only encourage the most probable
point of latent variable z in its distribution rather than the
whole distribution to perfectly reconstruct original images.
That is, when z follows the standard Gaussian distribution,
we set z = 0 rather than a random sample in the inverse
computation. For more discussion about this please refer to
Sect. 4.2.5.

3.5 Combination of Image Rescaling and
Compression

Our invertible framework jointly models degradation and
restoration as an invertible bijective transformation. In real
applications, some parts of degradation operations are not
always available to adapt with restoration, e.g. for conve-
nience. For example, thewidely used image compression fol-
lows general standards, and formats such as PNG and JPEG
are the most commonly used ones with well-established
support in most digital devices. Therefore, we propose the
combination of our invertible framework and restoration
from existing degradation methods for wider applications.

Specifically, we consider the instantiation of the combi-
nation between image rescaling and compression, which is
also a common method for a higher compression rate of
high-resolution images (Bruckstein et al., 2003), because
direct image compression methods perform poorly under an
extremely large compression rate. In this work, we demon-
strate the combination between IRN and lossless as well as
lossy compressionmethods for better lossy compression per-
formance.

Note that it is also possible to directly generalize the invert-
ible framework for image compression with some additional
efforts. Please refer to (Wang et al., 2020) for the preliminary
attempt.

3.5.1 Methods

For lossless image compression methods, LR images can
be encoded without information loss, therefore IRN can
be directly combined with them, i.e. directly compress the
downscaled LR images generated by IRN.

For existing lossy image compression methods, there
would be inevitable information loss during encoding, i.e.
additional degradation caused by the lossy compression. So
directly combining IRN with them , e.g. first compress LR
images of IRN and then directly pass compressed images to
IRN, may go against the principle of modeling lost infor-
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mation in the proposed invertible framework. Additional
restoration for such degradation is required for good per-
formance.

To mitigate this problem, we propose to leverage an addi-
tionalmodule to partially restore the lost information by lossy
compression methods. Specifically, downscaled images of
IRN will first be compressed by lossy compression methods,
e.g. JPEG, and the compressed imagewill go through aCom-
pressionRestoreModule (CRM) before being passed to IRN.
CRM is taken as a neural network model, whose input is the
compressed LR image with degradation and output is the LR
image restored from the degradation caused by lossy com-
pression. This module is trained to restore lost information
of the given compression method, which is similar to many
methods considering the unidirectional restoration task. We
will elaborate on the detailed architecture and evaluate the
compression performance in the next section. The combi-
nation of IRN and CRM is the instantiation model of our
proposed combination of invertible framework and restora-
tion from existing degradation methods.

4 Experiments

4.1 Datasets and Settings

Our experiments include three parts: image rescaling, image
decolorization–colorization, as well as the combination
between image rescaling and compression. For the training
of all tasks, we employ thewidely usedDIV2K (Agustsson&
Timofte, 2017) image restoration dataset to train our models.
It contains 800 high-quality 2K resolution training images
and 100 validation images. Besides, for the first two tasks,
we evaluate our model on 4 additional standard datasets, i.e.
the Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010),
BSD100 (Martin et al., 2001), and Urban100 (Huang et al.,
2015); and for the third task, we also evaluate our model on
the widely used Kodak dataset (Franzen, 1999). For image
rescaling, following the setting in (Lim et al., 2017), we
quantitatively evaluate the peak noise-signal ratio (PSNR)
and SSIM (Wang et al., 2004) on the Y channel of images
represented in the YCbCr (Y, Cb, Cr) color space. We also
evaluate LPIPS (Zhang et al., 2018), PI (Blau et al., 2018),
and FID (Heusel et al., 2017) as quantitative metrics of per-
ceptual evaluation. For the other two tasks,we evaluate PSNR
and SSIM on the RGB three-channel color space.

For image rescaling, we train and compare our IRNmodel
in 2×, 4× and 8× downscaling scale with 1, 2, and 3 down-
scaling modules respectively. Each downscaling module has
8 InvBlocks and downscales the original image by 2×. The
transformation functions φ(·), η(·), ρ(·) in InvBlocks are
parameterized by a densely connected convolutional block,
which is referred to as Dense Block in Wang et al. (2018). Ta
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For experiments of IRNLD model in 3× scale, we use one
downscaling module with learnable downsampling and 12
InvBlocks. For experiments of IRNE model in 4× scale, we
use one downscaling module with 16 InvBlocks (downscal-
ing first).We use Adam optimizer (Kingma&Ba, 2015) with
β1 = 0.9, β2 = 0.999 to train our model. The mini-batch
size is set to 16. The input HR image is randomly cropped
into 144 × 144 and augmented by applying random hori-
zontal and vertical flips. In the pre-training stage, the total
number of iteration is 500K , and the learning rate is initial-
ized as 2 × 10−4 where halved at [100k, 200k, 300k, 400k]
mini-batch updates. The hyper-parameters in Eq. (12) are set
as λ1 = 1, λ2 = s2, λ3 = 1, where s denotes the scale.
After pre-training, we finetune our model for another 200K
iterations as described in Sect. 3.3.3. The learning rate is
initialized as 1 × 10−4 and halved at [50k, 100k] iterations.
We set λ1 = 0.01, λ2 = s2, λ3 = 1, λ4 = 0.01 in Eq. (13)
and pre-train the discriminator for 5000 iterations. The dis-
criminator is similar to Ledig et al. (2017), which contains
eight convolutional layers with 3×3 kernels, whose numbers
increase from 64 to 512 by a factor of 2 every two layers, and
two dense layers with 100 hidden units.

For image decolorization–colorization, the graying mod-
ule has 8 InvBlocks. The hyper-parameters are set as λ1 =
1, λ2 = 9, λ3 = 1. Other optimizers and iteration settings
are the same as image rescaling.

For combination with image compression, we leverage
the IRN2× model trained in image rescaling task and further
finetune it for 100K iterations in the rescaling task by adding
a random noise on the generated LR images during upscaling
in training, in order tomake themodelmore robust to possible
changes on LR images due to compression and restoration.
The model for Kodak is additionally finetuned for 2.5K iter-
ations on Kodak. We train a compression restore module
(CRM) for each compression ratio of JPEG. The CRM con-
tains 8 residual in residual dense blocks (RRDB) proposed
in (Wang et al., 2018), and is trained by a L2 loss on recon-
structed LR images and LR images before compression. The
optimizer and iteration settings are the same as IRN.

4.2 Image Rescaling

4.2.1 Evaluation on Reconstructed HR Images

In this section, we present the quantitative and qualita-
tive performance of HR images reconstructed by our model
and other downscaling and upscaling methods. Two kinds
of baselines are considered: (1) downscaling with Bicubic
interpolation and upscaling with state-of-the-art SR models
trained with this downscaling kernel (Dai et al., 2019; Dong
et al., 2015; Lim et al., 2017; Wang et al., 2018; Zhang et
al., 2018b, a); (2) downscaling with upscaling-optimal mod-
els (Kim et al., 2018; Li et al., 2018; Sun andChen, 2020) and
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Fig. 4 Qualitative results of upscaling the 4× downscaled images. IRN recovers rich details, leading to both visually pleasing performance and
high similarity to the original images. IRN+ produces even sharper and more realistic details. See the appendix for more results

Fig. 5 Visualisation of the difference of upscaledHR images frommul-
tiple draws of z. a original image; b–d HR image differences of three
z samples from another common z sample. Darker color means larger

difference. It shows that the differences are high-frequency noises in
high-frequency regions without a typical texture

upscaling with corresponding SR models. For the notations,
we identify the downscaling and upscaling methods respec-
tively for baselines while use IRN or IRN+ as a whole to
denote our invertible model for the bidirectional tasks; and
following our notation, we use ESRGAN to represent the
pre-trained PSNR-driven model of Wang et al. (2018) while
ESRGAN+ for their GAN-based perceptual-driven model.
In addition, the influence of different samples of z on our
reconstructed HR images and the effectiveness of different
types of loss in the pre-training stage are investigated.

Quantitative Results As shown in Table 1, IRN sig-
nificantly outperforms the state-of-the-art baseline models
regarding quantitative evaluation PSNR and SSIM in all
datasets. Although upscaling-optimal downscaling methods
largely enhance the reconstruction performance of SR mod-
els comparedwithBicubic interpolationdue to the unification
of bidirectional tasks, they still suffer from the ill-posed prob-
lem caused by information loss and therefore the results are
hardly satisfying. Contrarily, by modeling the lost informa-

tion with invertibility, IRN significantly boosts the PSNR
with about 4–5 dB, 2–3 dB, and 3–4 dB on each dataset
under 2×, 4×, and 8× scale respectively compared with the
state-of-the-art results, where the improvement is up to 5.94
dB. The PSNR results indicate an exponential reduction of
information loss due to its logarithmic computation, which
is consistent with the significant improvement of SSIM. The
results of IRN+ are in the appendix because it is visual
perception oriented. IRNLD extends IRN to more flexible
downscaling and upscaling scales. Table 2 demonstrates the
significant improvement of IRNLD on 3× scale as well, with
about 3-5 dB improvement on the PSNR metric compared
with other methods.

It is noteworthy that IRN achieved the best results with a
relatively small amount of parameters. When upscaling with
SR models, it requires more than 15M parameters for better
results, while the model sizes of our IRN are only 1.66M,
4.35M, and 11.1M in the scale 2×, 4×, and 8×. It indicates
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the lightweight property and high efficiency of our proposed
invertible model.

We also quantitatively evaluate the perceptual perfor-
mance as shown in Table 3. LPIPS and PI are full-reference
and no-reference methods for perceptual evaluation of each
image respectively, and FID is the metric for the percep-
tual similarity between two groups of images. We compare
IRN and IRN+ with the representative PSNR-driven model
ESRGAN and perceptual-driven model ESRGAN+, and the
results demonstrate significant improvements of our mod-
els. Particularly, IRN+ with full distribution matching and
perceptual loss achieves the best result considering both
PSNR/SSIMandperceptual indexes,which also accordswith
the qualitative results below.

Qualitative Results When it comes to qualitative eval-
uation, we visually demonstrate the details of the upscaled
images by different methods. Figure 4 demonstrates the bet-
ter visual quality and fidelity of our IRN and IRN+ model
compared with previous state-of-the-art methods. IRN could
recover richer details, while IRN+ further produces sharper
and more realistic images, leading to their pleasing visual
quality. For instance, IRN and IRN+ are the only models
that are able to reconstruct the ’Comic’ image with the com-
plicated textures on the headwear and necklace, as well as
the sharp and realistic fingers. Previous perceptual-driven
models such as ESRGAN+, however, would produce unrea-
sonable and unpleasing details, leading to great dissimilarity.
The better results of our models owe to the modeling of
information loss, aswell as the distributionmatching and per-
ceptual loss for IRN+.More visual results are in the appendix.

Visualisation on the Influence of z We further investi-
gate the influence of random z. As described in Sect. 3.2,
different samples of z ∼ p(z) aim to only focus on the
randomness of reasonable high-frequency contents. Visually,
we calculate and visualize the difference between different
draws of z in Fig. 5. It shows that only a tiny noisy distinc-
tion without typical textures is observed in high-frequency
regions, which are almost imperceptible if combined with
low-frequency contents. Quantitatively, different samples of
z result in the PSNR difference that is less than 0.02 dB for
each image, which also indicates that the randomness mainly
lies in high-frequency noise. These results indicate that our
models have learned the knowledge to restore meaningful
lost high-frequency contents while embedding impercepti-
ble noises into the randomness of distribution.

Additionally, we test our model with out-of-distribution
samples to verify its effectiveness and sensitivity. Ourmodels
are trained with p(z) being an isotropic Gaussian distribu-
tion, and we test IRN and IRN+ by inversely passing (y, αz)
to obtain xα with the control of the scale α of sampled
z ∼ p(z). Note that the probability density for samples with
α < 1 is still large for theGaussian distribution, e.g. the point
of z = 0 has the largest probability density, and therefore the

reconstruction should still be valid if distribution matching is
fully realized. As shown in Fig. 6, IRN+ could validly recon-
struct HR images when the sampled z lie in areas with a large
probability density orwith small disturbance, andmore noisy
textures and degradationswould appearwhen there is a larger
deviation from the original distribution. This indicates that
IRN+ fully realizes the distribution matching for p(z) and
is robust to mild deviation. On the other hand, IRN without
the full distribution matching objective fails to validly recon-
struct HR images when the scale α 
= 1, which indicates that
it only learns to validly reconstruct images by z around the
areas with a large density of training samples rather than the
full distribution. This demonstrates the effectiveness of our
full distribution matching objective.

Analysis on the Losses We also conduct analysis exper-
iments for the losses of Eqs. (8, 7, 11), which is shown in
Tables 4, 5 and 6. We can see from Table 4 that when the
LR guidance takes the L2 loss while the HR reconstruction
is the L1 loss, IRN gets the best training performance. The
underlying explanation is that our forward procedure aims
to learn a valid downscaling transformation that is benefi-
cial to the inverse upscaling, rather than exactly the Bicubic
downscaling, so the L2 loss that is less sensitive to minor
changes from the guidance would bemore suitable; while the
goal of our inverse procedure is to accurately reconstruct the
original HR image, thus the L1 loss encouraging more pixel-
wise similarity is profitable. The results also demonstrate the
improvement brought by our surrogate partial distribution
matching loss (Eq. (11)), which acts on the marginal distri-
bution on Z to encourage the forward distribution learning.

As described in Sect. 4.1, our default weights for HR
reconstruction and LR guidance loss are λ1 = 1 and λ2 = s2

in order to keep the losses on the same scale. To further jus-
tify the choice, we study the weights with different scales
of ratios. We conduct analysis experiments with IRN in
4× scale. The original weights are λ1 = 1, λ2 = 16, we
largely increase or decrease the weight for LR guidance, i.e.
λ2 = 160 or λ2 = 1.6. The evaluation results on image
reconstruction are shown in Table 5. It shows that the recon-
struction quality is quite robust to the ratio between HR
reconstruction and LR guidance, and the original weights
that keep the losses on the same scale achieve the best results.
We also compare the images downscaled by IRN trained by
different loss weights with those downscaled by Bicubic to
verify the validity of LR images. The results are in Table 6.
It shows that the LR similarity is strongly correlated with the
ratio of LR guidance loss, and the larger the loss is, the more
similar LR images are. When λ2 = 16, it is enough to keep
the LR images valid due to the strong similarity (PSNR>40,
SSIM>0.99), and setting λ2 = 160 could improve the LR
similarity but not HR reconstruction quality.When λ2 = 1.6,
however, the LR similarity is significantly dropped, and there
could be slight artifacts on the LR images on the validation
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(a)

(b)

Fig. 6 Results of HR images by IRN and IRN+ with out-of-distribution samples of z. We train z with an isotropic Gaussian distribution, and
illustrate upscaling results when scaling z sampled from the isotropic Gaussian distribution

Table 4 Analysis results (PSNR/SSIM) of training IRN with L1 or L2 LR guide and HR reconstruction loss, with/without partial distribution
matching loss, on Set5, Set14, BSD100, Urban100 and DIV2K validation sets with scale 4×
Lguide Lrecon Ldistr ′ Set5 Set14 BSD100 Urban100 DIV2K

L1 L1 Yes 34.75/0.9296 31.42/0.8716 30.42/0.8451 30.11/0.8903 33.64/0.9079

L1 L2 Yes 34.93/0.9296 31.76/0.8776 31.01/0.8562 30.79/0.8986 34.11/0.9116

L2 L1 Yes 36.19/0.9451 32.67/0.9015 31.64/0.8826 31.41/0.9157 35.07/0.9318

L2 L2 Yes 35.93/0.9402 32.51/0.8937 31.64/0.8742 31.40/0.9105 34.90/0.9308

L2 L1 No 36.12/0.9455 32.18/0.8995 31.49/0.8808 30.91/0.9102 34.90/0.9308

Bold italic values indicate the best results

Table 5 Analysis results
(PSNR/SSIM) of training IRN
with different loss weights for
HR reconstruction and LR
guidance loss, for image
reconstruction on Set5, Set14,
BSD100, Urban100 and DIV2K
validation sets with scale 4×

λ1 λ2 Set5 Set14 BSD100 Urban100 DIV2K

1 16 36.19/0.9451 32.67/0.9015 31.64/0.8826 31.41/0.9157 35.07/0.9318

1 160 35.94/0.9439 32.32/0.8961 31.40/0.8757 31.26/0.9121 34.81/0.9276

1 1.6 35.72/0.9391 32.06/0.8863 31.14/0.8676 30.52/0.8992 34.47/0.9221

Bold italic values indicate the best results

Table 6 Analysis results
(PSNR/SSIM) between the LR
images downscaled by IRN
trained by different loss weights
and by Bicubic on Set5, Set14,
BSD100, Urban100 and DIV2K
validation sets with scale 4×

λ1 λ2 Set5 Set14 BSD100 Urban100 DIV2K

1 16 44.60/0.9964 42.47/0.9928 43.24/0.9923 41.28/0.9916 44.37/0.9933

1 160 50.14/0.9988 47.57/0.9977 48.62/0.9976 47.46/0.9977 50.06/0.9980

1 1.6 34.25/0.9820 34.00/0.9764 35.59/0.9755 33.40/0.9720 35.59/0.9782
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Table 7 SSIM results between the images downscaled by IRN and by
Bicubic on the Set5, Set14, BSD100, Urban100 and DIV2K validation
sets

Scale Set5 Set14 BSD100 Urban100 DIV2K

2× 0.9957 0.9936 0.9936 0.9941 0.9945

4× 0.9964 0.9927 0.9923 0.9916 0.9933

8× 0.9958 0.9926 0.9918 0.9879 0.9919

datasets, which hamper the HR reconstruction. As a result,
the reconstruction performance of λ2 = 1.6 is the worst.
Therefore, keeping the losses on the same scale as the origi-
nal setting is the best choice for our model.

4.2.2 Evaluation on Downscaled LR Images

To verify the validity of our downscaling, we evaluate the
quality of IRN-downscaled LR images. Table 7 demon-
strates the similarity index SSIM between our LR images
and Bicubic-based LR images. It quantitatively shows that
the images are extremely similar to each other. More figures
in the appendix illustrate the visual similarity between the
images, demonstrating the proper and valid visual perception
of our LR images similar to Bicubic-based ones. Therefore,
the downscaling of IRN can perform as well and valid as the
guidance Bicubic interpolation.

4.2.3 Ablation on Invertibility

To further demonstrate the effectiveness of the proposed
invertible framework, we conduct ablation comparisons by
simply leveraging IRN architecture to upscale Bicubic-
downscaled images (we denote the model as IRN-U), by
training existing SR models to upscale IRN-downscaled
images (IRN model is pre-trained and we denote it as IRN-
D* here), and by joint training separate IRN-D and IRN-U
models in an encoder-decoder framework.

For the first experiment, we pad z by 0 to keep the dimen-
sion in order to train the model. As shown in Table 8, simply
training the architecture of IRN on Bicubic-downscaled
images fails to reach a satisfactory performance. This illus-
trates that our improvement is not from network architecture
or capacity.

For the second experiment, we train the ESRGAN
model (Wang et al., 2018) (one of the state-of-the-art SR
models with codes, we use its PSNR-driven model) on LR
images downscaled by pre-trained IRN. We train a small
model with similar parameters with IRN (we denote it as
ESRGANs), and amodel with original capacity. As shown in
Table 8, without our invertible framework, the performance
will drop much even if more parameters are used.

For the third experiment, we train IRN-D & IRN-U and
IRN under different amount of parameters. As shown in
Table 8, without invertibility, separate IRN-D& IRN-Umod-
els achieve much lower performance, especially when the
amount of parameters is small. This illustrates the improve-
ment by our invertible framework, as well as the highly
efficient utilization of parameters that enables lightweight
models.

4.2.4 Computation Efficiency

The previous results demonstrate the lightweight property
of IRN considering parameters. We further compare detailed
computation efficiency between IRN and other methods with
available open-source code.Wedemonstrate the results of 2×
and 4× here.

Wecalculate theFLOPs andRunTime formodels to down-
scale or upscale images, setting the size of high-resolution
images as 1920×1080, and running on one Tesla-P100GPU.
All methods are implemented in PyTorch, except CAR (Sun
and Chen, 2020) which is partially in CUDA code. As shown
in Table 9, IRN demonstrates overall computation efficiency.

IRNE could improve computation efficiency for larger
scales that require multiple downscaling modules in IRN. As
shown in Table 9, in 4× scale, IRNE could reduce about 50%
of FLOPS and RunTime. Table 10 shows the performance of
IRNE. There might exists a balance between computation
efficiency and performance.

4.2.5 Discussion on Randomness of z

In this subsection, wewould like to have some discussions
on the randomness of z and the current implementation of our
model.

First, when there is information loss, restoration would
certainly contain randomness due to the uncertainty. To fully
model the information loss from the perspective of statistical
modeling, we have to leverage a random latent variable z and
learn the bijective distribution transformation between the
distribution of x and the joint distribution of y and z, and the
randomness of z corresponds to randomness of reasonable
lost contents.

As for our IRN model, which is in the pre-training stage
without the full distribution matching objective and is differ-
ent from IRN+, it does not fully model the full distribution,
but only around the density of training samples of z (see the
paragraph Visualisation on the Influence of z in Section
4.2.1). So for this model, an alternative to not consider the
randomness, e.g. taking z = 0 which has the largest proba-
bility density in the Gaussian distribution, may be still valid
considering the density on this point, as shown in Table 11.
Note that this only encourages the point with the largest prob-
ability density to recover an HR image, and it degrades the
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Table 8 Ablation study on the invertibility

Downscaling and upscaling Param Set5 Set14 BSD100 Urban100 DIV2K

IRN 4.35M 36.19/0.9451 32.67/0.9015 31.64/0.8826 31.41/0.9157 35.07/0.9318

Bicubic & IRN-U 4.35M 32.03/0.8930 28.54/0.7800 27.52/0.7336 25.97/0.7801 30.37/0.8358

IRN-D* & ESRGANs 4.35+4.47M 35.14/0.9365 31.47/0.8807 30.61/0.8588 29.62/0.8903 33.71/0.9150

IRN-D* & ESRGAN 4.35+16.3M 35.87/0.9432 32.31/0.8963 31.37/0.8775 30.98/0.9116 34.75/0.9288

IRN-D & IRN-U (tiny) 1.09M 34.87/0.9283 31.34/0.8721 30.47/0.8510 29.39/0.8790 33.49/0.9061

IRN (tiny) 1.09M 35.64/0.9402 32.00/0.8891 31.12/0.8698 30.36/0.8994 34.41/0.9230

IRN-D & IRN-U (small) 2.18M 35.88/0.9432 32.31/0.8959 31.31/0.8755 30.65/0.9060 34.63/0.9267

IRN (small) 2.18M 36.04/0.9432 32.49/0.8955 31.45/0.8764 31.13/0.9102 34.84/0.9279

IRN-D & IRN-U 4.35M 35.93/0.9418 32.57/0.8974 31.41/0.8750 31.31/0.9124 34.77/0.9265

IRN 4.35M 36.19/0.9451 32.67/0.9015 31.64/0.8826 31.41/0.9157 35.07/0.9318

IRN-D & IRN-U (large) 8.70M 36.21/0.9450 32.84/0.9008 31.57/0.8772 31.59/0.9169 35.05/0.9297

IRN (large) 8.70M 36.32/0.9461 32.86/0.9032 31.74/0.8845 31.59/0.9179 35.18/0.9330

Bold values indicate the better results under the same amount of parameters
Quantitative results (PSNR/SSIM) for 4× scale on the Set5, Set14, BSD100, Urban100 and DIV2K validation sets are reported

Table 9 Computation efficiency results of different methods for downscaling or upscaling images by different scales, with the HR image size
1920×1080

Downscaling and
upscaling method

Scale Param (Down+Up) FLOPs (Down) FLOPS (Up) RunTime (ms) (Down) RunTime (ms) (Up)

Bicubic & RCAN (Zhang
et al., 2018a)

2× 15.4M / 7.96×1012 / 2188

Bicubic &
ESRGAN (Wang et al.,
2018)

2× 16.7M / 9.31×1012 / 2251

CAR & EDSR (Sun and
Chen, 2020)

2× 10.7M + 40.73M 2.12×1012 2.11×1013 228 2476

IRN (ours) 2× 1.67M 8.66×1011 8.66×1011 344 347

Bicubic & RCAN (Zhang
et al., 2018a)

4× 15.6M / 2.07×1012 / 633

Bicubic &
ESRGAN (Wang et al.,
2018)

4× 16.7M / 2.33×1012 / 593

CAR & EDSR (Sun and
Chen, 2020)

4× 9.89M + 43.09M 8.97×1011 6.52×1012 107 706

IRN (ours) 4× 4.36M 1.21×1012 1.21×1012 515 521

IRNE (ours) 4× 5.37M 6.97×1011 6.97×1011 264 269

Table 10 Quantitative results (PSNR/SSIM) of IRN and IRNE for 4× scale on the Set5, Set14, BSD100, Urban100 and DIV2K validation sets

Downscaling and upscaling Param Set5 Set14 BSD100 Urban100 DIV2K

IRN 4.35M 36.19/0.9451 32.67/0.9015 31.64/0.8826 31.41/0.9157 35.07/0.9318

IRNE 5.37M 35.52/0.9393 32.14/0.8935 31.17/0.8777 30.65/0.9107 34.53/0.9282

Table 11 Quantitative evaluation results (PSNR/SSIM) of IRN and IRN (z = 0) on benchmark datasets: Set5, Set14, BSD100, Urban100, and
DIV2K validation set

Downscaling and upscaling Scale Param Set5 Set14 BSD100 Urban100 DIV2K

IRN 4× 4.35M 36.19/0.9451 32.67/0.9015 31.64/0.8826 31.41/0.9157 35.07/0.9318

IRN (z = 0) 4× 4.35M 36.23/0.9463 32.70/0.9019 31.63/0.8832 31.22/0.9137 35.04/0.9321

123



International Journal of Computer Vision (2023) 131:134–159 153

Table 12 Quantitative results
(PSNR) of different
decolorization–colorization
methods for image
reconstruction on the Set5,
Set14, BSD100, Urban100 and
DIV2K validation sets

Method Set5 Set14 BSD100 Urban100 DIV2K

Baseline (Kim et al., 2018) 19.12 21.14 24.21 23.29 21.10

TAD-G & TAU-C 35.22 32.67 32.73 30.98 36.63

IRNcolor (ours) 40.86 36.78 42.43 38.77 42.65

Bold italic values indicate the best results

bijective transformation between two distributions into the
bijective transformation between two points (i.e. it does not
model the distribution or consider randomness by choosing
only one preferred point in the distribution). In this setting,
the losses for IRNmay correspond to the losses tomatch data
points. The results show that our invertible model is valid for
this degraded condition as well.

However, our general goal is to model the full distribution
as IRN+,which is amore general case and hasmore potential.
For example, the reconstructedHR images should havemany
different possible realistic high-frequency details, and our
general framework has the potential to model such diversity
according to the randomness of z.

In our current experiments, because the training dataset
does not contain enough such diversity information, e.g.
different perceptible high-frequency textures of similar low-
frequency contents, and one of our main training objectives
during pre-training is to encourage the pixel level similarity
of reconstructed and original HR images, the diversity with
different z mainly lies in the randomness of imperceptible
high-frequency details, and the PSNR scores are similar. In
potential future applications, it is possible for realistic diver-
sities with proper datasets.

In this work, we present our general invertible framework
that canmodel the full distribution of lost information, which
may have more potential future applications.

4.3 Invertible Image Decolorization–Colorization

As described in Sect. 3.4, the proposed invertible frame-
work and model can be extended to other bidirectional tasks,
such as image decolorization–colorization. In this section,
we present experiments of the extended model under this
task, to illustrate the generalization ability of our model.

WecompareourmodelwithTADGray&TAUColor (Kim
et al., 2018) and invertible grayscale (Xia et al., 2018), which
all follow the encoder-decoder framework. BecauseXia et al.
(2018) has different training settings and datasets, we train
and test their model under a similar setting as theirs on the
DIV2K dataset that is rescaled to 256×256. We also test our
model that is trained on the original DIV2K dataset on this
rescaled dataset.

As shown in Table 12, IRNcolor can perfectly reconstruct
the original color images from grayscale ones, with most
RGB PSNR results above 40 dB, which indicates that the

Table 13 Quantitative results (PSNR/SSIM) of different decolorization–
colorizationmethods for image reconstruction on the DIV2K validation
set that is rescaled to 256×256

Method Param DIV2K_256×256

Invertible Grayscale 7.42M 31.52/0.9475

IRNcolor (ours) 1.41M 37.27/0.9800

Bold italic values indicate the best results

Fig. 7 Qualitative demonstration of decolorization–colorization by
IRNcolor

Fig. 8 Qualitative comparison of colorization reconstruction for
grayscale images between different methods

reconstructed images are almost the same as original ones.
And compared with TAD Gray & TAD Color (Kim et al.,
2018), IRNcolor demonstrates the significant improvement of
the quality of reconstructed images, indicating the advantage
of our invertible framework.
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Table 14 Comparison results of
combination between image
rescaling and lossless image
compression methods on
average RGB PSNR and total
storage size of DIV2K
validation set

Method Scale PSNR (dB) Storage (MB)

PNG / / 470

FLIF / / 294

JPEG (Q=20) / 29.59 16.2

Bicubic&ESRGAN+PNG 4× 29.47 32.4 (+100.0%)

Bicubic&ESRGAN+FLIF 4× 29.47 22.4 (+38.3%)

JPEG (Q=32) / 31.11 21.7

CAR&EDSR+PNG 4× 31.09 30.2 (+39.2%)

CAR&EDSR+FLIF 4× 31.09 21.3 (– 1.8%)

JPEG (Q=57) / 32.94 31.4

IRN+PNG 4× 32.95 34.9 (+11.1%)

IRN+FLIF 4× 32.95 28.7 (– 8.6%)

JPEG (Q=96) / 40.70 122

IRN+PNG 2× 40.87 131 (+7.3%)

IRN+FLIF 2× 40.87 108 (– 11.5%)

JPEG (Q=14) / 28.36 13.07

IRN+PNG 8× 28.50 9.16 (– 29.9%)

IRN+FLIF 8× 28.50 7.68 (– 41.2%)

Bold italic means our results that are better than JPEG with the similar PSNR

(a) (b)

Fig. 9 Results of combination between image rescaling and lossy image compression methods on different datasets. The rescaling scale is 2×. We
tune the quality of JPEG algorithm for different compression ratios. RGB PSNR and bit rate (bit per pixel, bpp) are evaluated

Table 13 also demonstrates the significant improvement of
IRNcolor comparedwithXia et al. (2018). Note that under this
test setting, the distribution of images could be inconsistent
with training images for IRNcolor due to the degradation by
rescaling images to the size 256×256. Despite this, IRNcolor

still outperforms Xia et al. (2018) by 5.75 dB with much
fewer parameters, further indicating the effectiveness and
high efficiency of the proposed model.

Figures 7 and 8 illustrate the visual quality of the grayscale
and reconstructed images, as well as the comparison with
other methods. It shows that the reconstructed images could
have almost the same perception as the original ones. And

comparedwithXia et al. (2018), whose reconstructed images
may contain some noise or strange variegation, IRNcolor

achieves more fidelity and better visual perception.

4.4 Combination with Image Compression

In this section, we evaluate the combination of image rescal-
ing and image compressionmethods as described in Sect. 3.5.

For the combination with lossless image compression, we
choose two representativemethods, i.e. PNGandFLIF (Sney-
ers and Wuille, 2016), as an example. PNG is a classical
lossless image compression algorithm, while FILF is a more
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Fig. 10 Qualitative results of image compression methods
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recent one based onmachine learning algorithms.We choose
the popular JPEG lossy image compression method as the
comparison standard for the trade-off between compression
ratio and image quality. Because there is no hyper-parameter
for image rescaling and lossless image compression to con-
trol the compression ratio, we tune the quality of JPEG to
compare the compression performance with different rescal-
ing methods under similar image quality respectively. We
evaluate the total storage size for the DIV2K validation set,
which contains 100 images, as compression performance,
and average RGB PSNR as image quality.

As shown in Table 14, when compared with other image
downscaling and upscaling methods, IRN always shows its
advantage in the trade-off between compression ratio and
image quality. When compared with classical lossy image
compression methods, IRNwith advanced lossless compres-
sion methods can directly outperform JPEG. IRN could get
promising results, especially under the condition that high
compression performance is required.

For the combination with lossy image compression, we
choose the classical JPEG algorithm as an example. As
described in Sect. 3.5, we train a Compression Restore Mod-
ule (CRM) to restore the lost information in compression,
which is a neural network consisting of eight residual in
residual dense blocks (RRDB) introduced in the ESRGAN
model (Wang et al., 2018). We tune the quality of JPEG,
and the R-D curves are shown in Fig. 9. As explained
in Sect. 3.5, directly combining IRN and JPEG may not
perform well because JPEG introduces additional infor-
mation loss which goes against our invertible framework.
This problem is mitigated by CRM. Results demonstrate
that IRN combined with JPEG and CRM achieves satis-
factory compression performance compared with traditional
image rescaling and compression methods. Also, the abla-
tion experiments of Bicubic+JPEG, Bicubic+JPEG+CRM,
and IRN+JPEG illustrate that the performance improvement
is not majorly owed to CRM, but the effectiveness of our
proposed combination between the invertible framework and
restoration from existing degradation methods. Additionally,
we present qualitative visual results in Fig. 10. It demon-
strates the improvement of our proposed model for clearer
details under similar compression ratios.

5 Conclusion

In this paper, we propose a novel invertible framework
for the bidirectional image degradation–restoration task,
which models degradation and restoration from the per-
spective of invertible transformation to largely mitigate the
ill-posed problem. By bijectively transforming the distri-
bution of image-specific lost contents into a pre-specified
image-agnostic distribution together with the generation of

degraded images, the proposed invertible framework can
model lost information and keep the knowledge of distribu-
tion transformation in the invertible model. In the inverse
restoration, an easily sampled latent variable in company
with the generated degraded image is able to reconstruct
images through the inverse transformation. Our deliberately
designed architecture and effective training objectives enable
the proposed IRN model to achieve the goals of the invert-
ible framework in the image rescaling scenario, and it is
easily adapted to similar tasks such as image decolorization–
colorization. Further, we propose the combination between
our invertible framework and restoration fromexisting degra-
dation methods for wider applications, with an instantiation
of the combination of image rescaling and compression. Our
extensive experiments demonstrate the significant improve-
ment of our model both quantitatively and qualitatively, as
well as the lightweight property and high efficiency of our
model.More ablation and extension experiments further pro-
vide detailed analysis and illustrate the generalization ability
of the proposed method.
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