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Abstract
Magnetic resonance (MR) images are frequently corrupted by Rician noise dur-
ing image acquisition and transmission. And it is very challenging to restore MR
data because Rician noise is signal-dependent. By exploring the nonlocal self-
similarity of natural images and further using the low-rank prior of the matrices
formed by nonlocal similar patches for 2D data or cubes for 3D data, we propose
in this paper a new nonlocal low-rank regularization (NLRR) method includ-
ing an optimization model and an efficient iterative algorithm to remove Rician
noise. The proposed mathematical model consists of a data fidelity term derived
from a maximum a posteriori estimation and a NLRR term using the log-
det function. The resulting model in terms of approximated patch/cube matrices
is non-convex and non-smooth. To solve this model, we propose an alternating
reweighted minimization (ARM) algorithm using the Lipschitz-continuity of
the gradient of the fidelity term and the concavity of the logarithmic function in
the log-det function. The subproblems of the ARM algorithm have closed-form
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solutions and its limit points are first-order critical points of the problem. The
ARM algorithm is further integrated with a two-stage scheme to enhance the
denoising performance of the proposed NLRR method. Experimental results
tested on 2D and 3D MR data, including simulated and real data, show that
the NLRR method outperforms existing state-of-the-art methods for removing
Rician noise.

Keywords: MR images, Rician noise, denoising, nonlocal low-rank regulariza-
tion, alternating reweighted minimization

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetic resonance (MR) imaging is an essential technique for the non-invasive observation
of internal organs of the human body and plays an increasingly important role in disease diag-
nosis. However, in the acquisition process, due to the instability of the internal hardware of
MR scanners, MR images are disturbed by the noise of Rician distribution [1]. Noise reduces
the resolution of MR data, affects the accuracy of medical examination, and increases the diffi-
culty of further computer-aided analysis of MR data, including recognition, segmentation and
classification.

To remove Rician noise from MR images, filtering methods such as the anisotropic dif-
fusion filters [2, 3] and wavelet-based filters [4] have been proposed to retain image infor-
mation as much as possible. Total variation (TV) based methods have also been proposed
to preserve edge features. Getreuer et al [5] proposed a maximum a posteriori (MAP) esti-
mation model with a TV regularization. This model is complicated to solve because the
objective function is non-convex. To address this issue, Getreuer et al [5] proposed a con-
vex model, referred to as the GTV model, to approximate the non-convex MAP model and
solved the convex model by the split Bregman iteration (SBI) algorithm. By adding a data
fidelity term to the non-convex MAP model, Chen and Zeng [6] proposed a model that
is strictly convex under some mild conditions. Chen et al [7] further improved the model
using sparse representation and dictionary learning, referred to as the C-KSVD model, and
solved the model using the SBI algorithm. However, the aforementioned convex MAP mod-
els may require bias corrections. In addition to the methods for 2D MR images denoising,
the multi-channel denoising convolutional neural network (MCDnCNN) method [8] for 3D
MR images denoising was proposed based on DnCNN [9] and achieved competitive denoising
performance.

Recently, many works have been developed by exploiting the prior knowledge of nonlocal
self-similarity (NSS) [10] to reduce noise in 2D and 3D MR data. According to NSS, there are
many repeated local patterns in natural images and each pattern in a local patch or cube has
many similar patterns across the entire image. Using the spatial pattern redundancy, Manjón
et al improved the nonlocal means filter [10] for Gaussian noise removal to address the charac-
teristics of Rician noise. They proposed a 2D denoising method [11], referred to as the NLM2D
method, and a prefiltered rotationally invariant 3D denoising method [12], referred to as the
PRI-NLM3D method, which uses a prefiltered image obtained by the oracle DCT3D method
[12]. Foi [13] developed forward and inverse variance-stabilizing transformations (VSTs) to
transform between Rician distribution and Gaussian distribution. Noisy data were first trans-
formed via the forward VST, then restored by denoising methods designed for Gaussian noise
removal, and later transformed back via the inverse VST. Then the benchmark NSS-based
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algorithms such as the block matching 3D (BM3D) algorithm [14] for 2D data and the block
matching 4D (BM4D) algorithm [15] for 3D data can work with VSTs to remove Rician
noise.

NSS implies that the matrix or tensor formed by nonlocal similar patches or cubes has a
low-rank structure. Using this low-rank prior that seeks for sparsity in flexible bases, Zhang
et al [16] adopted the high order singular value decomposition for 3D MR data denoising and
Kong et al [17] adopted the tensor singular value decomposition. However, both methods like
the BM3D and the BM4D methods required the forward and inverse VSTs, and the denoising
process and VSTs were performed separately in sequential order. As a result, any slight per-
turbation in the forward VST may mislead the following denoising methods, and the errors in
the denoising process may be persisted or be enlarged via the inverse VST. This unavoidable
limitation of VST-based methods significantly affects the performance of those NSS-based
methods in MR data denoising.

Inspired by the nonlocal low-rank regularization (NLRR) discussed in [18, 19], we develop
in this paper a novel NLRR method that consists of a new optimization model for Rician
noise removal and a new alternating-minimization-likealgorithm to solve this model. The main
contributions of this paper are summarized as follows.

• We propose a new NLRR based model to reduce Rician noise. The objective function of
the proposed optimization model is composed of a NLRR term and a data fidelity term
over approximated patch/cube matrices. The NLRR term is characterized using the log-
det function as a non-convex non-smooth surrogate of the matrix rank, while the data
fidelity term is derived from the non-convex MAP model based on the Rician distribu-
tion. The proposed model does not require any pre-processing or post-processing such as
forward and inverse VSTs or bias corrections, in contrast to some existing methods for
Rician noise removal such as VST-based methods and convex MAP models.

• We propose a new alternating reweighted minimization (ARM) algorithm by taking advan-
tage of the smoothness of the fidelity term and the concavity of the logarithmic function
in the NLRR term. The subproblems of the proposed ARM algorithm can be computed
explicitly, in contrast to some existing NLRR based methods [18–20] that require either
the ADMM algorithm or Newton’s method to iteratively solve the subproblems.

• We demonstrate that the proposed NLRR method is theoretically and practically reli-
able. On one hand, it can be proven that any limit point of the sequence generated
by the ARM algorithm is a first-order critical point of the objective function. On the
other hand, we further integrate the ARM algorithm with a two-stage scheme with cri-
teria on noise estimations can guarantee the quality of the denoised image is improved
gradually.

• We show the superiority of the proposed NLRR method over several existing methods for
Rician noise removal by state-of-the-art denoising results tested on 2D and 3D MR data,
including simulated and real data.

The rest of this paper is organized as follows. In section 2, we review Rician noise in MR
images and the MAP model. Then we propose in section 3 a new NLRR model for Rician
noise removal and develop in section 4 an ARM algorithm to solve the proposed model
with some convergence results. Later, in section 5, we introduce the NLRR method with a
two-stage scheme and in section 6 we present the numerical results. Finally, we conclude in
section 7.
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2. Background

2.1. Rician noise in MRI

Rician noise naturally occurs in MR magnitude images due to the thermal noise during the
acquisition process. In low signal-to-noise ratio regimes, Rician noise not only causes random
fluctuations in pixel values but also introduces a signal-dependent bias that reduces image
contrast [4]. Thus, it is difficult to separate the image from noise.

Suppose that x ∈ R
N is the original image. Then the observed magnitude image y ∈ R

N can
be mathematically expressed as

y =
√

(x + η1)2 + η2
2,

where η1, η2 ∼ N(0, δ2). The noise in each pixel follows a Rician distribution [5] with the
probability density function (PDF) defined as

p(yi|xi) =
yi

δ2
e−

y2
i +x2

i
2δ2 B0

(yixi

δ2

)
,

where B0(·) is the modified Bessel function of the first kind with order zero [21] defined as

B0(t) :=
1
π

∫ π

0
e t cos θ dθ. (1)

2.2. The MAP model

To restore MR images corrupted by Rician noise, Getreuer et al [5] proposed a MAP estimation
model. The image x is estimated by MAP probability and applying Bayes’ theorem and the
negative logarithm as follows

max
x

P(x|y) ⇐⇒ min
x
{− log(P(y|x)) − log(P(x))}.

The image x is assumed to follow a TV prior with the PDF as P(x) = exp(−γ‖x‖TV), where
γ is a parameter, ‖x‖TV :=

∑
i

√
(∇1x)2

i + (∇2x)2
i is the TV of x, and ∇1 and ∇2 are discrete

first order difference operators in the horizontal and vertical directions, respectively. Hence,
the MAP model with a TV regularization term is formulated as

min
x

1
2δ2

‖x‖2
2 −

〈
log B0

( xy
δ2

)
, 1
〉
+ γ‖x‖TV, (2)

where B0
( xy
δ2

)
is performed componentwise, B0(·) is defined as in (1) and 1 denotes an N × 1

vector of all ones. Throughout the paper, we refer to model (2) as the MAP model.
Let f : RN → R be the data fidelity term of the MAP model in (2) defined as

f (x) :=
1

2δ2
‖x‖2

2 −
〈

log B0

( xy
δ2

)
, 1
〉
. (3)

The function f is differentiable and its gradient ∇ f can be computed as follows

∇ f (x) =

[
∂ f
∂x1

,
∂ f
∂x2

, . . . ,
∂ f
∂xN

]T

, (4)
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where

∂ f
∂xi

=
1
δ2

xi −
yi

δ2

B′
0

( xiyi
δ2

)
B0

( xiyi
δ2

) .
It is verified in [22] that f is lower bounded and smooth with a Lipschitz-continuous gradient
∇ f as follows.

Definition 1 (Lipschitz continuous). A function f : Rd → R
d′ is Lipschitz continuous

with a Lipschitz constant L > 0 (or called L-Lipschitz continuous) if for all x1, x2 ∈ R
d ,

‖ f (x1) − f (x2)‖2 � L‖x1 − x2‖2.

Proposition 2. Given y ∈ R
N, let f be defined as in (3). Then the following statements hold:

(a) f is lower bounded, that is, infx∈RN f (x) > −∞;
(b) f has a Lipschitz-continuous gradient ∇ f with the Lipschitz constant L = 1

δ2 .

The MAP-based fidelity term defined as in (3) is not widely used in the literature due to
its non-convexity that may make the resulting model difficult to solve. The existing studies
for Rician noise removal focus on its convex approximation, e.g., GTV model and CZ model,
but they may require bias corrections, e.g., mean shifting, leading to unexpected artifacts. As
shown in proposition 2, the lower boundedness of f leads to the existence of minimizers of
the MAP model and the smoothness of f helps develop efficient algorithms to solve the MAP
model. Therefore, we are in favor of the non-convex MAP-based fidelity term (3) over convex
fidelity terms and we will overcome the difficulty in solving a non-convex model by analysing
its Lipschitz-continuous gradient.

3. A new NLRR based model for MRI denoising

In this section, we propose a new model based on NLRR to remove Rician noise in 2D and 3D
MR images.

3.1. Nonlocal low-rank regularization

NSS refers to the assumption that for each patch in a natural image, similar patches can be
found across the image. Intuitively, the matrix formed by nonlocal similar patches should be
low-rank. To regularize the low-rank prior of patch matrices, there are two key components in
NLRR based models [18–20]: patch grouping and low-rank matrix approximation.

First, we group together nonlocal patches with similar patterns by block matching [14] and
formulate the extraction of a nonlocal similar patch matrix. Suppose that x̂ ∈ R

N is an estimated
clean image. For an exemplary patch of size

√
m ×√

m at position j denoted by x̂ j ∈ R
m, we

search within a wide neighborhood (e.g., a 30 × 30 window) for a total of n patches that are
most similar to the exemplary patch in terms of the Euclidean distance. In the patch group Gj

containing those similar patches, a patch matrix R j(x̂) formed by all the patches in G j can be
formulated using an extraction operator R j : RN → R

m×n defined as follows

R j(x) :=
[
R̂ j1x R̂ j2x . . . R̂ jnx

]
, (5)

where R̂ ji ∈ R
m×N is a binary matrix such that R̂ ji x̂ is the ith patch in group G j. According to

NSS, the patch matrix R j(x) with similar structures should be a low-rank matrix if x is close to
the clean image x̂.

5
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Second, after grouping nonlocal similar patches, we regularize the patch matrices using low-
rank constraints. In this paper, we use the log-det function, which is a non-convex surrogate of
the rank function, to characterize the low-rank property of nonlocal similar patch matrices. For
a matrix X ∈ R

m×n, we consider log det((XXT)1/2 + εI) if m � n and log det((XTX)1/2 + εI)
if m > n. The log-det function of X can be further written as

Ψ(X) :=
	∑

i=1

log (σi (X) + ε) , (6)

where σi(X) is the ith largest singular value of X, 	 = min{m, n} and ε represents a small
positive constant. The log-det function can be interpreted as a sum of the logarithms of the
singular values. The logarithmic function is a concave but smooth function.

The NLRR discussed above for 2D data can be extended to 3D data based on the additional
spatial similarity (the depth) in volumetric data or the temporal similarity in videos. We can
group nonlocal similar cubes by cube matching and form nonlocal similar cube matrices by
stacking the vectorized cubes together. The function Ψ defined in (6) can also work efficiently
in regularizing the low-rank property of these nonlocal similar cube matrices.

3.2. Proposed model

We propose to develop a new model by combining the NLRR with the MAP-based data fidelity
to remove Rician noise. The resulting model is a global optimization problem in terms of the
entire unknown image and approximated nonlocal similar patch/cube matrices.

Let y ∈ R
N denote the noisy image and let x ∈ R

N denote the unknown clean image. We
consider the patch/cube matrices Rj(x) and R j(y) extracted from x and y, respectively. Then
R j(y) corrupted with Rician noise can be expressed as

Rj (y) =
√

(R j(x) + η1)2 + η2
2,

where R j(x) is the clean patch/cube matrix and η1, η2 ∼ N(0, δ2).
First, to measure the closeness between R j(x) and Rj(y), we extend the MAP-based fidelity

term defined as in (3) to be a fidelity term in terms of a patch/cube matrix X j ∈ R
m×n as follows

f j (X j) :=
1

2δ2
‖X j‖2

F − 〈log B0

(
X jY j

δ2

)
, 1〉, (7)

where Yj = R j(y), B0(·) is defined as in (1), log B0

(
X jY j

δ2

)
is performed componentwise, 1

denotes an m × n matrix of all ones and ‖ · ‖F is the Frobenius norm for matrices.
Second, to characterize the low-rank property on R j(x), we consider the NLRR defined as

in (6). Then a NLRR based model for Rician noise removal can be written as follows

min
x

J∑
j=1

[
f j (R j (x)) + λ jΨ(R j (x))

]
, (8)

where λ j > 0 is a regularization parameter. Due to the non-convexity of f j and the non-
convexity and non-smoothness of Ψ, model (8) is non-convex and non-smooth and is difficult
to solve. Furthermore, the model is a composite optimization problem with a linear but not
invertible operator Rj, which significantly increases the complexity of the model.

6
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Lastly, to overcome the difficulty in solving the composite optimization problem (8), we
apply the variable splitting method to relax the model. By introducing auxiliary variables
X j ∈ R

m×n such that X j = R j(x), j = 1, 2, . . . , J, and then relaxing these equalities, we obtain
the following model

min
x,X1,...,XJ

J∑
j=1

[
1
2
‖X j − R j(x)‖2

F + μ j f j(X j) + λ jΨ(X j)

]
, (9)

where f j is the MAP-based defined as in (6), R j is the patch/cube matrix extraction operator
defined as in (5), μ j > 0 is a fidelity parameter and λ j > 0 is a regularization parameter.

This new model enforces the MAP-based fidelity and the low-rank regularization over
approximated nonlocal similar patch/cube matrices X j and aims to restore the entire image
x by minimizing the Euclidean distance between the desired patch/cube matrices R j(x) and the
approximated patch/cube matrices X j. Compared to existing NLRR based models [18–20], the
proposed model in terms of approximated patch/cube matrices has low complexity. This helps
develop efficient algorithms, especially using the smoothness of the fidelity term. Moreover, the
proposed model of a general form can be extended to other applications in image processing,
especially in the case that the data fidelity term has a Lipschitz-continuous gradient.

In section 4, we will show that model (9) can be efficiently solved by a reweighted version
of alternating minimization (AM) algorithm whose limit points are first-order critical points
of the problem; and in section 6, the experimental results will demonstrate that our proposed
model can outperform other existing methods for Rician noise removal.

4. ARM algorithm and convergence analysis

In this section, we propose a new optimization algorithm to solve model (9) and provide a
convergence analysis of the proposed algorithm.

To begin with, we denote the objective function of model (9) as

Φ(X1, . . . , XJ , x) :=
J∑

j=1

F j(X j, x), (10)

where the function F j : Rm×n × R
N → R is defined as

F j(X j, x) :=
1
2
‖X j − R j(x)‖2

F + μ j f j(X j) + λ jΨ(X j), (11)

f j is defined as in (7), Ψ is defined as in (6) and R j is defined as in (5).
The objective function Φ is non-convex and non-smooth because f j is non-convex and Ψ

is non-convex and non-smooth. Fortunately, f j is lower bounded and smooth according to
proposition 2. The lower boundedness of f j implies that the solutions of model (9) exist. The
smoothness of f j helps develop efficient algorithms for solving model (9).

In the following, we first introduce a class of first-order critical points of Φ, then develop
an ARM algorithm, and later establish a convergence analysis of the proposed algorithm.

4.1. Critical points of the proposed model

Before characterizing the first-order critical points of the objective function Φ, we first
introduce some notations.

7
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First, we introduce the transpose of Rj, which is linear. Define RT
j : Rm×n → R

N as

RT
j (X) :=

n∑
i=1

R̂T
jixi, (12)

where xi ∈ R
m is the ith vector of X. Note that 〈R j(x), X〉F = 〈x, RT

j (X)〉, for all x ∈ R
N and

X ∈ R
m×n. Let

W :=
J∑

j=1

RT
j ◦ R j =

J∑
j=1

n∑
i=1

R̂T
jiR̂ ji. (13)

Since R̂ ji has linearly independent rows, R̂T
jiR̂ ji is a diagonal matrix. Then W is a diagonal

matrix whose diagonal entries are the counts for each pixel. As we assume each pixel belongs
to at least one nonlocal similar patch/cube group, W is invertible.

Then we recall some notations for the SVD. For a vector a ∈ R
	, let Diag(a) denote

the 	× 	 diagonal matrix whose ith diagonal element is ai. For a matrix X ∈ R
m×n,

the SVD of X is expressed as X = UΣVT, where U ∈ R
m×	 and V ∈ R

n×	 are
orthogonal matrices with UTU = VTV = I, and Σ ∈ R

	×	 is a diagonal matrix with
Σ = Diag(σ(X)), σ(X) := [σ1(X), . . . , σ	(X)]T, where σi(X) is the ith largest singular value of
X and 	 = min{m, n}.

Next, motivated by the class of first-order critical points for 	p regularized low-rank approx-
imation problems introduced in [23], we define a class of first-order critical points for model
(9) using

M̄(X) :=
{

(Ū, V̄) ∈ R
m×r × R

n×r : ŪTŪ = V̄TV̄ = I and X = ŪDiag(σ̄(X))V̄T
}

,

where σ̄(X) := [σ1(X), . . . , σr(X)]T and r = rank(X). Note that M̄(X) is the set of all such pairs
(Ū, V̄) of the rank reduced SVD of X.

Definition 3. A point
(
X∗

1, . . . , X∗
J , x∗

)
is a first-order critical point of problem (9) if

x∗ = W−1
J∑

j=1

RT
j

(
X∗

j

)
, (14)

and for all j = 1, 2, . . . , J,

0 ∈
{

ŪT
j

(
X∗

j − R j(x
∗) + μ j∇ f j(X

∗
j )
)

V̄ j+ λ j Diag((σ̄(X∗) + ε)−1) : (Ū j, V̄ j) ∈ M̄
(
X∗

j

)}
,

(15)

where RT
j is defined as in (12) and W is defined as in (13).

The next theorem shows that a local minimizer of problem (9) is a first-order critical point.

Theorem 4. Suppose that
(
X∗

1, . . . , X∗
J , x∗

)
is a local minimizer of problem (9). Then(

X∗
1, . . . , X∗

J , x∗
)

is a first-order critical point of problem (9), that is, (14) and (15) hold at(
X∗

1, . . . , X∗
J , x∗

)
.

Proof. If
(
X∗

1, . . . , X∗
J , x∗

)
is a local minimizer of problem (9), then (a) x∗ is a local minimizer

of Φ(X∗
1, . . . , X∗

J , x) with respect to x; (b) X∗
j is a local minimizer of F j(X j, x∗) with respect to

X j, for all j = 1, 2, . . . , J.

8
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Since Φ(X∗
1, . . . , X∗

J , x) is differentiable with respect to x, then (a) implies
0 = ∇xΦ(X∗

1, . . . , X∗
J , x∗) = Wx∗ −

∑J
j=1 RT

j (X∗
j ). Hence, x∗ = W−1

∑J
j=1 RT

j

(
X∗

j

)
.

Let X∗
j = U j Diag(σ̄(X∗

j ))V
T
j for some (U j, V j) ∈ M̄(X∗

j ) and r j = rank(X∗
j ). Then (b)

implies that 0 is a local minimizer of the following problem

min
Z∈Rr j×r j

{
1
2

∥∥(X∗
j + U jZVT

j ) − R j(x∗)
∥∥2

F
+ μ j f j(X∗

j + U jZVT
j )+ λ jΨ(X∗

j + U jZVT
j )

}
.

This together with the fact

Ψ
(
X∗

j + U jZVT
j

)
= Ψ

(
U j Diag(σ̄(X∗

j ))V
T
j + U jZVT

j

)
= Ψ

(
Diag(σ̄(X∗

j )) + Z
)

,

implies that 0 is a local minimizer of the problem

min
Z∈Rr j×r j

{
1
2

∥∥(X∗
j + U jZVT

j ) − R j(x
∗)
∥∥2

F
+ μ j f j(X

∗
j + U jZVT

j ) + λ jΨ(Diag(σ̄(X∗
j )) + Z)

}
.

(16)

Let S(Z ) denote the objective function of problem (16). By theorem 7.1 in [24] and the
definition of M̄(·), the subdifferential of S(Z) at Z = 0 is given by

∂S(0) =
{

UT
j

(
X∗

j − R j(x∗) + μ j∇ f j(X∗
j )
)

V j

+ λ jŨ j Diag((σ̄(X∗
j ) + ε)−1)ṼT

j : (Ũ j, Ṽ j) ∈ M̄
(
Diag(σ̄(X∗

j ))
)}

.

Since 0 is a local minimizer of problem (16), the first-order optimality condition of (16) yields
0 ∈ ∂S(0). Hence, there exists some (Ũ j, Ṽ j) ∈ M̄

(
Diag(σ̄(X∗

j ))
)

such that

UT
j

(
X∗

j − R j(x
∗) + μ j∇ f j(X

∗
j )
)

V j + λ jŨ j Diag((σ̄(X∗
j ) + ε)−1)ṼT

j = 0. (17)

Upon pre- and post-multiplying (17) by ŨT
j and Ṽ j, and using ŨT

j Ũ j = ṼT
j Ṽ j = I, we obtain

ŪT
j

(
X∗

j − R j(x∗) + μ j∇ f j(X∗
j )
)

V̄ j + λ j Diag((σ̄(X∗
j ) + ε)−1) = 0,

where Ū j = U jŨ j and V̄ j = V jṼ j. Since (U j, V j) ∈ M̄(X∗
j ) and (Ũ j, Ṽ j) ∈ M̄

(
Diag(σ̄(X∗

j ))
)
,

then we have

Ū j Diag(σ̄(X∗
j ))V̄

T
j = U j

(
Ũ j Diag(σ̄(X∗

j ))Ṽ
T
j

)
VT

j = U j Diag(σ̄(X∗
j ))V

T
j = X∗

j .

�
Hence, (Ū j, V̄ j) ∈ M̄(X∗

j ) and (15) holds.

4.2. Proposed algorithm

We aim to develop a new algorithm to solve model (9). The AM algorithm and the well-known
ADMM algorithm are not applicable to this problem because it is challenging to minimize
Fj (X j, x) with respect to Xj due to the non-convexity of f j and the non-convexity and non-
smoothness of Ψ. To overcome this challenge, we take advantage of the Lipschitz continuity
of ∇ f j and the concavity of the logarithmic function in Ψ and further propose an efficient
algorithm whose subproblems have closed-form solutions and which has convergence results.

9
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We first recall a descent lemma [25] for functions with a Lipschitz continuous gradient and
a lemma derived from the concavity of a smooth logarithmic function.

Lemma 5 (Descent lemma). Let f : Rm×n → R be a continuously differentiable function
with gradient ∇f assumed L-Lipschitz continuous. Then, for all X1, X2 ∈ R

m×n,

f (X1) � f (X2) + 〈X1 − X2,∇ f (X2)〉+ L
2
‖X1 − X2‖2

F.

Lemma 6 (Property of log-det). Let Ψ : Rm×n → R be defined as in (6). Then, for all
X1, X2 ∈ R

m×n,

Ψ(X1) � Ψ(X2) +
	∑

i=1

wi(σi(X1) − σi(X2)),

where wi =
1

σi(X2)+ε
, i = 1, 2, . . . , 	.

Proof. Since the logarithmic function log(t + ε) is concave and continuously differentiable
on [0,∞), by the definition of supergradients, we have

log(σi(X1) + ε) � log(σi(X2) + ε) + wi(σi(X1) − σi(X2)),

where wi =
1

σi(X2)+ε
, i = 1, 2, . . . , 	. By summing the inequality from i = 1 to i = 	, the result

holds. �

To tackle the challenge in minimizing F j(X j, x) with respect to X j, we apply the above lem-
mas to approximate F j(X j, x). In particular, we apply lemma 5 to 1

2‖X j − R j(x)‖2
F + μ j f j(X j) at

points X1 = X j and X2 = Xk
j and achieve a quadratic upper approximation; and we use lemma

6 at points X1 = X j and X2 = Xk
j and achieve a linear upper approximation of Ψ(X j) with a

reweighted scheme.
Now we propose to develop an ARM algorithm. That is, starting with some given initial

point (X0
1, . . . , X0

J , x0), we generate a sequence {(Xk
1, . . . , Xk

J , xk)}k∈N by alternately minimiz-
ing an approximation of the objective function Φ with respect to the approximated low-rank
patch/cube matrix X j and the entire image x as follows

Xk+1
j = argmin

X j

{
〈X j − Xk

j , Xk
j − R j(xk) + μ j∇ f j(Xk

j )〉+
c j

2
‖X j − Xk

j‖2
F + λ j

	∑
i=1

(wk
j )iσi(X j)

}
, (18)

xk+1 = W−1
J∑

j=1

RT
j (Xk+1

j ), (19)

where (wk
j)i =

1
σi(Xk

j )+ε
and c j > 0, j = 1, 2, . . . , J.

We observe that the update of Xk+1
j in (18) at the (k + 1)th step is equivalent to

Xk+1
j = argmin

X j

{
λ j

	∑
i=1

(wk
j)iσi(X j)+

c j

2

∥∥X j −
(
Xk

j −
(
Xk

j − R j(x
k) + μ j∇ f j(X

k
j )
)
/c j

)∥∥2

F

}
.

(20)

10
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Algorithm 1. ARM.

Input: Noisy image y, initial image x0

Initialize: μ j > 0, λ j > 0, ε > 0, c j > 1 + μ jL,
X0

j = R j(x0), (w0
j )i =

1
σi(X

0
j )+ε

, k = 0

1: Set Rj via block/cube matching based on x0

2: repeat
3: for j from 1 to J do
4: Zk

j = Xk
j −

(
Xk

j − R j(xk) + μ j∇ f j(Xk
j )
)
/c j

5: [Uk
j ,Λ

k
j, Vk

j ] = SVD
(
Zk

j

)
6: Σk+1

j = Sλ j/c j,w
k
j
(Λk

j)

7: Xk+1
j = Uk

jΣ
k+1
j (Vk

j )
T

8: (wk+1
j )i = 1/((Σk+1

j )ii + ε)
9: end for

10: xk+1 = W−1∑J
j=1 RT

j

(
Xk+1

j

)
11: k ← k + 1
12: until stopping criterion is satisfied
Output: xk+1

Note that the weight vector wk
j = [(wk

j)1, (wk
j)2, . . . , (wk

j)	]
T is in an ascending order, that is,

0 � (wk
j)1 � (wk

j)2 � · · · � (wk
j)	, since σ1(Xk

j ) � σ2(Xk
j ) � · · · � σ	(Xk

j) � 0. Then the solu-
tion of (20) can be uniquely obtained by the weighted singular value thresholding operator in
the following theorem from [26].

Theorem 7. For Y ∈ R
m×n, λ > 0 and w = [w1,w2, . . . ,w	]T such that 0 � w1 � w2 �

· · · � w	, 	 = min{m, n}, the following problem

X̂ = argmin
X

{
1
2
‖X − Y‖2

F + λ

	∑
i=1

wiσi(X)

}
,

has a global optimal solution which is given by

X̂ = USλ,w (Σ) VT,

where Y = UΣVT is the SVD of Y, and Sλ,w(Σ) is the weighted singular value thresholding
operator of diagonal matrix Σ with its (i, i)-entry given by

Sλ,w(Σ)ii = max (Σii − λwi, 0) .

In algorithm 1, we present the proposed ARM algorithm for solving model (9). In particular,
the solution of (20) is computed in line 4–7 according to theorem 7.

4.3. Convergence analysis

We prove that any limit point of the sequence {(Xk
1, . . . , Xk

J , xk)}k∈N generated by the ARM
algorithm in algorithm 1 is a first-order critical point of Φ.

First, we show that Φ(Xk
1, . . . , Xk

J , xk) is decreasing as k goes to ∞ and the distance between
two successive iterates tends to 0.

Theorem 8. Let Φ be the objective function of model (9) and let {(Xk
1, . . . , Xk

J , xk)}k∈N
be a sequence generated by the ARM algorithm in algorithm 1. Suppose cj > 1 + μjL,
j = 1, 2, . . . , J. Then the following statements hold:

11
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(a) For all k ∈ N,

Φ(Xk
1, . . . , Xk

J , xk) − Φ(Xk+1
1 , . . . , Xk+1

J , xk+1)

�
J∑

j=1

c j − (1 + μ jL)
2

‖Xk+1
j − Xk

j‖2
F > 0. (21)

(b) limk→∞‖Xk+1
j − Xk

j‖2
F = 0, j = 1, 2, . . . , J, and limk→∞‖xk+1 − xk‖2

2 = 0.

Proof.

(a) Let F j be defined as in (11). By first applying lemmas 5 and 6 to F j(X j, xk) and then
substituting X j = Xk+1

j , we have

F j(X
k+1
j , xk) � F j(Xk

j , xk) +
1 + μ jL

2
‖Xk+1

j − Xk
j‖2

F

+ 〈Xk+1
j − Xk

j , Xk
j − R j(x

k) + μ j∇ f j(X
k
j )〉

+ λ j

	∑
i=1

(wk
j)i

(
σi(X

k+1
j ) − σi(Xk

j )
)

� F j(Xk
j , xk) − c j − (1 + μ jL)

2
‖Xk+1

j − Xk
j‖2

F,

where (wk
j)i =

1
σi(Xk

j )+ε
, i = 1, 2, . . . , 	, 	 = min{m, n}, and the last inequality is derived

from (18). Summing this inequality from j = 1 to J, we have

Φ(Xk+1
1 , . . . , Xk+1

J , xk) � Φ(Xk
1, . . . , Xk

J , xk)

−
J∑

j=1

c j − (1 + μ jL)
2

‖Xk+1
j − Xk

j‖2
F.

Also, the update of xk+1 given in (19) implies that Φ(Xk+1
1 , . . . , Xk+1

J , xk+1) �
Φ(Xk+1

1 , . . . , Xk+1
J , xk) and then statement (a) holds.

(b) Summing two sides of (21) from k = 0 to ∞, we have

J∑
j=1

c j − (1 + μ jL)
2

∞∑
k=0

‖Xk+1
j − Xk

j‖2
F � Φ(X0

1, . . . , X0
J , x0)

− Φ(X∞
1 , . . . , X∞

J , x∞) < ∞,

since inf Φ > −∞.

As we assume c j > 1 + μ jL, j = 1, 2, . . . , J, we have limk→∞‖Xk+1
j − Xk

j‖2
F = 0,

j = 1, 2, . . . , J. Due to (19), we also have limk→∞‖xk+1 − xk‖2
2 = 0.

Second, we show that the sequence {(Xk
1, . . . , Xk

J , xk)}k∈N is bounded, which implies the
existence of limit points. Then we further prove that any limit point is a first-order critical
point of problem (9).

12
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Theorem 9. Let {(Xk
1, . . . , Xk

J , xk)}k∈N be a sequence generated by algorithm 1. Then the
following statements hold:

(a) The sequence {(Xk
1, . . . , Xk

J , xk)}k∈N is bounded;
(b) Let (X∗

1, . . . , X∗
J , x∗) be any limit point of {(Xk

1, . . . , Xk
J , xk)}k∈N. Then (X∗

1, . . . , X∗
J , x∗) is a

first-order critical point of problem (9), i.e., (14) and (15) hold at (X∗
1, . . . , X∗

J , x∗).

Proof.

(a) We know that Φ(Xk
1, . . . , Xk

J , xk) � Φ(X0
1, . . . , X0

J , x0) for all k ∈ N. This together with the
definition of Φ and F =

∑J
j=1 infX j∈Rm×n f j(X j) implies that

F +

J∑
j=1

λ jΨ(Xk
j) �

J∑
j=1

(
1
2

∥∥Xk
j − R j(x

k)
∥∥2

F
+ μ j f j(X

k
j) + λ jΨ(Xk

j )

)

�Φ(X0
1, . . . , X0

J , x0) < ∞.

Since lim‖X‖F→∞ Ψ(X) = ∞, {Xk
j}k∈N is bounded for j = 1, 2, . . . , J. Due to (19), we

know {xk}k∈N is also bounded. Hence, {(Xk
1, . . . , Xk

J , xk)}k∈N is bounded.
(b) Since (X∗

1, . . . , X∗
J , x∗) is a limit point of {(Xk

1, . . . , Xk
J , xk)}k∈N, there exists a subsequence

{(Xk
1, . . . , Xk

J , xk)}k∈K such that {(Xk
1, . . . , Xk

J , xk)}k∈K → (X∗
1, . . . , X∗

J , x∗).

Since Xk+1
j = Uk

jΣ
k+1
j (Vk

j )
T is the SVD of Xk+1

j and {Xk+1
j }k∈K → X∗

j , we have

{
(Σk+1

j )ii

}
k∈K → σi(X∗

j ), ∀ i = 1, 2, . . . , 	, (22)

where 	 = min{m, n}.
Let r j = rank

(
X∗

j

)
. Then it follows from (22) that there exists some k0 > 0 such that

(Σk+1
j )ii > 0 for all 1 � i � r j and k ∈ K0 = {k ∈ K : k > k0}. This together with Σk+1

j =

Sλ/c j,w
k
j
(Λk

j) leads to

(Σk+1
j )ii = (Λk

j)ii − λ j(w
k
j)i/c j, ∀ 1 � i � r j, k ∈ K0.

Since Xk+1
j = Uk

jΣ
k+1
j (Vk

j )
T and Zk

j = Uk
jΛ

k
j(V

k
j )

T, then for all k ∈ K0

Xk+1
j −

	∑
i=r j+1

(Σk+1
j )ii(U

k
j )i(V

k
j )

T
i

= Zk
j −

	∑
i=r j+1

(Λk
j)ii(Uk

j)i(Vk
j )

T
i − λ j

c j

r j∑
i=1

(wk
j)i(Uk

j )i(Vk
j )

T
i .

Using Zk
j = Xk

j − 1
c j

(
Xk

j − R j(xk) + μ j∇ f j(Xk
j)
)
, we obtain

Xk+1
j − Xk

j +
1
c j

(
Xk

j − R j(x
k) + μ j∇ f j(X

k
j )
)
−

	∑
i=r j+1

(
(Σk+1

j )ii − (Λk
j)ii

)
(Uk

j )i(V
k
j )

T
i

+
λ j

c j

r j∑
i=1

(wk
j)i(Uk

j )i(Vk
j )

T
i = 0.

(23)

13
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Let Ūk
j = [(Uk

j)1 . . . (Uk
j )r j] and V̄k

j = [(Vk
j )1 . . . (Vk

j )r j]. Upon pre- and post-multiplying (23)
by (Ūk

j)
T and V̄k

j, and using (Ūk
j)

TŪk
j = (V̄k

j)
TV̄k

j = I, we can see that for all k ∈ K0,

c j(Ūk
j)

T(Xk+1
j − Xk

j )V̄
k
j + λ jDiag((wk

j)1, . . . , (wk
j)r j)

+ (Ūk
j)

T
(
Xk

j − R j(xk) + μ j∇ f j(Xk
j )
)

V̄k
j = 0. (24)

Notice that {Ūk
j}k∈K and {V̄k

j}k∈K are bounded. Considering a convergent subsequence if
necessary, assume without loss of generality that {Ūk

j}k∈K → Ū∗
j and {V̄k

j}k∈K → V̄∗
j . Since

{Xk+1
j }k∈K → X∗

j , we have {(wk
j)i}k∈K → (w∗

j )i, where (w∗
j )i = (σi(X∗

j ) + ε)−1. Taking limits

on both sides of (24) as k ∈ K0 →∞ and using {‖Xk+1
j − Xk

j‖F}k∈K → 0, {Xk+1
j }k∈K → X∗

j ,
{xk}k∈K → x∗, we can get

λ j Diag((σ(X∗
j ) + ε)−1) + (Ū∗

j)
T
(
X∗

j − R j(x∗) + μ j∇ f j(X∗
j )
)

V̄∗
j = 0. (25)

Taking limits as k ∈ K0 →∞ to (Ūk
j)

TŪk
j = (V̄k

j)
TV̄k

j = I, we have (Ū∗
j)

TŪ∗
j = (V̄∗

j)
T

V̄∗
j = I. Using Xk+1

j = Uk
jΣ

k+1
j (Vk

j )
T, (22), r j = rank(X∗

j ), {Xk+1
j }k∈K → X∗

j , {Ūk
j}k∈K → Ū∗

j

and {V̄k
j}k∈K → V̄∗

j , one can get that X∗
j = Ū∗

j Diag(σ(X∗
j ))(V̄

∗
j)

T. Hence, (Ū∗
j , V̄∗

j) ∈ M̄(X∗
j ).

Using those relations and (25), we can conclude that (15) holds at (X∗
1, . . . , X∗

J , x∗) with
U j = Ū∗

j , V j = V̄∗
j .

On the other hand, due to {xk}k∈K → x∗, {Xk+1
j }k∈K → X∗

j and (19), we have that (14)
holds. �

Note that the function f j(X j) in Φ may not have a Kurdyka–Łojasiewicz property at X j = 0
and hence the convergence analysis in [27, 28] is not applicable to algorithm 1.

5. Rician noise removal via the NLRR method

In this section, we propose the NLRR method with a two-stage method to efficiently remove
Rician noise in MR images.

The proposed method for Rician noise removal has two stages as shown in algorithm 2.
The first stage yields a preliminary estimation of the image by iteratively applying the ARM
algorithm to remove most of the noise, and the second stage further refines the output of the
first stage. The ARM algorithms in these two stages use the same noisy image as an input, but
they have different initial images and stopping criteria.

In the first stage, the iterative scheme updating the initial image helps boost the denoising
performance because the patch/cube matrix extraction operator R j becomes more and more
accurate in collecting patches/cubes with similar textures as the initial image is updated at each
iteration. And the stopping criterion of the ARM algorithm based on the standard deviation of
Rician noise in the denoised image guarantees that the noise is reduced gradually and that
the ARM algorithm is efficiently terminated. In the second stage, the quality of the denoised
image is further improved using the estimated image in the first stage as the initial image and
the final estimated image is achieved in a reliable manner using the relative error in the stopping
criterion of the ARM algorithm.

14
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Algorithm 2. The NLRR method for Rician noise removal.

Input: Noisy image y
Initialize: 0 < ρ < 1, δtol > 0, εtol > 0,

x0 = y, δ0 = δ, t = 0
• Stage 1:

repeat
xt+1 = ARM(y, xt)

with stopping criterion: δest(xt+1) < ρ · δt

δt+1 = δest(xt+1)
t ← t + 1

until δt+1 < δtol

• Stage 2:

x̂ = ARM(y, xt+1)

with stopping criterion: relative error <εtol

Output: x̂

6. Numerical experiments

In this section, we perform numerical experiments on 2D medical images, and 3D volumetric
medical data to demonstrate the superiority of our proposed NLRR method in removing Rician
noise. All the experiments were performed in Matlab R2020a running a 64 bit Windows 10
system and executed on an eight-core Intel Core i9-9900K 64 GB CPU at 3.60 GHz with one
NVIDIA GeForce GTX 1660 Ti 32 GB GPU.

All of the denoising methods were tested on both simulated and real data. The simulated
data, including T1 weighted (T1w), T2 weighted (T2w) and proton density weighted (PDw)
images, is degraded by Rician noise with noise level ranging from 1% to 19%, where the noise
level denotes the percentage of noise standard deviation δ relative to the maximum value of the
original data. And the quality of restored data were evaluated using the peak-signal-to-noise
ratio (PSNR) [29] and the structural similarity index measure (SSIM) [12, 30]. PSNR is based
on the root mean squared error (RMSE) and is defined as

PSNR = 20 log10

(
MAXI

RMSE

)
,

where MAXI is the maximum possible pixel value. SSIM is a measure more consistent with the
human visual system, and is defined as in [30] for 2D images and defined as in [12] for 3D data.
Both PSNR and SSIM values were computed only in the region of interest (tissues) obtained
with the background removed. The larger values of PSNR and SSIM, the better quality of the
restored data. The real test data, including T1w and diffusion tensor imaging (DTI) data, is
naturally contaminated by noise and the noise level is approximately 1.5%–4% according to
the noise estimation [13] on the region of interest. And the residual image is used to eval-
uate the quality of the restored T1w images, which measures pointwise difference between
the noisy and estimated data; the fractional anistropy (FA) map and color FA map computed
via DSI Studio6 are used to assess the DTI data. In particular, FA measures the directional-
ity of molecular displacement by diffusion and varies between 0 (isotropic diffusion) and 1
(anisotropic diffusion); color FA is color-coded by the orientation of the principal eigenvector
of the diffusion tensor.

6 http://dsi-studio.labsolver.org/.
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Table 1. Parameter settings.

Data Parameters
Noise level (%)

�1 �3 �7 �11 �15 >15

2D
Patch size 6 6 6 7 8 9

Group size (n) 45 50 50 80 90 120
λ j/(δ2√n) 7 6.4 5.8 5.8 5.8 5.4

3D
Cube size 4 4 4 5 5 6

Group size (n) 60 60 60 100 100 170
λ j/(δ2√n) 15.2 13.6 10.4 11.6 11.2 10.8

Figure 1. Original images.

Next, we give the parameter settings of the proposed method. In stage 1 of algorithm 2, we
use the noise estimation approach introduced in [13] as δest(·) to estimate the standard deviation
δ of Rician noise in the estimated image, and set δtol = 1 and ρ = 0.2; in stage 2, we set the
stopping condition based on the following relative improvement inequality:

‖xk+1 − xk‖2

‖xk‖2
< εtol,

where εtol (e.g., 10−3) is the error tolerance. Moreover, the parameter settings of the ARM
algorithm in these two stages are the same. We set c j = 1.01 · (1 +

μ j
δ2 ), ε = 10−16 and

μ j =
δ2

0.003 2 ·mean(R j(x0)) + 1.8
.

And as shown in table 1, the settings for block/cube matching and parameter λ j are chosen
dependent upon the noise level.

6.1. Denoising of 2D MR images

To demonstrate the superior performance of the proposed method in removing Rician noise
in 2D MR images, we compare the proposed NLRR method with the GTV [5], NLM2D [11],
C-KSVD [7], and VST-BM3D [13, 14] methods. And we test all the denoising methods on 18
simulated 2D T1w, T2w and PDw images generated from selected slices of IXI database7, see
figure 1, and we test on real 2D T1w image ‘OAS1_0092’ (256 × 256) from a selected slice
of open access series of imaging studies database [31], see figure 5(a).

7 http://brain-development.org/ixi-dataset/.
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Table 2. Average PSNR and SSIM values tested on 2D data by different denoising
methods.

Noise GTV NLM2D C-KSVD VST-BM3D NLRR (ours)

level (%) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 40.82 0.977 38.21 0.973 15.96 0.285 42.55 0.986 42.81 0.987
3 33.33 0.893 33.87 0.914 32.73 0.931 35.75 0.941 36.06 0.944
5 30.10 0.807 30.58 0.839 30.16 0.861 32.77 0.893 33.03 0.899
7 29.02 0.775 28.19 0.765 27.43 0.772 30.96 0.848 31.32 0.855
9 27.33 0.705 26.28 0.693 25.46 0.686 29.60 0.805 29.94 0.814
11 26.65 0.680 24.76 0.626 24.10 0.615 28.53 0.764 28.87 0.770
13 25.40 0.626 23.40 0.563 23.18 0.566 27.63 0.724 27.93 0.732
15 24.53 0.594 22.13 0.501 22.56 0.533 26.81 0.686 27.22 0.694
17 22.49 0.480 21.01 0.441 22.20 0.510 26.10 0.649 26.50 0.652
19 21.91 0.460 19.97 0.381 22.02 0.496 25.40 0.618 25.90 0.629

Figure 2. Average numerical results tested on 2D data. (a) The average PSNR (dB)
values; (b) the average SSIM values.

Table 2 presents the average PSNR and SSIM values of the restored images tested on sim-
ulated data and figure 2 plots the average PSNR and SSIM values versus the noise level (%).
In terms of PSNR values, the proposed NLRR method outperforms other methods for every
test image at every noise level. In particular, at noise level 19%, the average PSNR value of
the image obtained by the proposed method is 5.9 dB larger than the NLM2D method, 3.8 dB
larger than the GTV and C-KSVD method, and 0.5 dB larger than the benchmark VST-BM3D
method.

Figures 3 and 4 present the restored images with zoomed-in views tested on simulated data
at noise level 5%. And figure 5 presents the restored images and the residual image tested on
real data at noise level 4%. In terms of visual quality, the restored images of the proposed
NLRR method have less noise and fewer artifacts and retain more details than other methods.
For example, the GTV method in figures 3(c), 4(c) and 5(b) has some noise and artifacts. The
NLM2D method in figures 3(d), 4(d) and 5(c) and the C-KSVD method in figures 3(e), 4(e)
and 5(d) are too smooth after denoising. As for the loss of details, the proposed method has
a better trade-off than the other four methods between retaining fine details while removing
noise. For example, the proposed method preserves more neck textures in the left lower box
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Figure 3. Denoised results tested on ‘Brain 1’ at noise level 5%. From top to bottom, the
images are the original and zoomed-in views of denoised images. From left to right, the
denoising methods with (PSNR, SSIM) values are (a) ground truth; (b) noisy image; (c)
GTV (29.87 dB, 0.819); (d) NLM2D (30.18 dB, 0.836); (e) C-KSVD (30.19 dB, 0.860);
(f) VST-BM3D (31.93 dB, 0.888); (g) NLRR (ours) (32.23 dB, 0.898).

Figure 4. Denoised results tested on ‘Brain 2’ at noise level 5%. From left to right,
the images are the original and zoomed-in views of denoised images. From left upper
to right lower, the denoising methods with (PSNR, SSIM) values are (a) ground
truth; (b) noisy image; (c) GTV (29.56 dB, 0.839); (d) NLM2D (29.53 dB, 0.834);
(e) C-KSVD (30.01 dB, 0.864); (f) VST-BM3D (31.84 dB, 0.896); (g) NLRR (ours)
(32.10 dB, 0.904).

of figure 3(g) and more brain details in the right upper box of figure 4(g) than the VST-BM3D
method in figures 3(f) and 4(f), respectively. Also, the residual images in figure 5 show that
the noise removed by the proposed method is relatively random with less geometric structures
than other methods.
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Figure 5. Denoised results tested on ‘OAS1_0092’ at approximated noise level 4.5%.
From top to bottom, the images are the original, zoomed-in views, and residual images
of denoised images. From left to right, the denoising methods are (a) noisy image;
(b) GTV; (c) NLM2D; (d) C-KSVD; (e) VST-BM3D; (f) NLRR (ours).

Table 3. Average PSNR and SSIM values tested on 3D data by different denoising
methods.

Noise PRI-NLM3D MCDnCNN VST-BM4D VST-tSVD NLRR (ours)

level (%) PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 43.17 0.995 38.09 0.989 43.43 0.995 44.23 0.996 44.52 0.996
3 36.83 0.983 34.77 0.974 37.21 0.983 37.84 0.985 38.11 0.986
5 33.96 0.968 32.85 0.960 34.58 0.971 35.01 0.972 35.33 0.974
7 31.96 0.951 31.48 0.946 32.84 0.958 33.27 0.961 33.43 0.961
9 30.49 0.932 30.42 0.932 31.55 0.946 31.94 0.948 32.28 0.951
11 29.26 0.911 29.47 0.918 30.51 0.932 30.86 0.935 31.14 0.937
13 28.24 0.889 28.77 0.903 29.60 0.917 29.92 0.920 30.25 0.924
15 27.34 0.868 28.08 0.888 28.82 0.903 29.12 0.906 29.42 0.909
17 26.54 0.846 27.43 0.871 28.10 0.887 28.38 0.892 28.82 0.902
19 25.87 0.826 26.88 0.855 27.47 0.872 27.73 0.876 28.33 0.892

In summary, the proposed NLRR method achieves the best quantitative assessments among
all the methods for denoising 2D MR images and provides smoother areas, better shape reten-
tion, and better detail preservation than other methods in the denoised images. Other competing
methods suffer from some limitations. The GTV method uses the TV regularization, which
may cause staircase artifacts; the C-KSVD and NLM2D method require a bias correction to
estimate the mean value of the clean image, which may cause issues with image contrast; and
the VST-BM3D method requires forward and inverse VSTs, which may introduce unexpected
errors.

6.2. Denoising of 3D MR data

To show the great performance of the proposed NLRR method in 3D MR data denoising, we
compare the proposed method with the PRI-NLM3D [12], VST-BM4D [15], VST-tSVD [17]
and MCDnCNN [8] methods. The MCDnCNN method is trained with unknown noise level on
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Figure 6. Average numerical results tested on 3D data. (a) The average PSNR (dB)
values; (b) the average SSIM values.

Figure 7. Denoised results tested on T1w data at noise level 13%. From top to bottom,
the images are the original and zoomed-in views of selected slides of denoised images.
From left to right, the denoising methods with (PSNR, SSIM) values are (a) ground truth;
(b) noisy image; (c) PRI-NLM3D (29.76 dB, 0.893); (d) MCDnCNN (30.34 dB, 0.909);
(e) VST-BM4D (30.89 dB, 0.916); (f) VST-tSVD (31.09 dB, 0.917); (g) NLRR (ours)
(31.49 dB, 0.923).

healthy subjects randomly selected from IXI database, including T1w, T2w and PDw images.
Ten images for each type of MR images were used for training. The simulated 3D MR data are
T1w, T2w, and PDw volumes from BrainWeb phantoms [32] of size 181 × 217 × 181 with
1 × 1 × 1 mm3 resolution. The real 3D MR data includes T1w volume from ‘OAS1_0105’ of
size 256 × 256 × 128 with 1 × 1 × 1.25 mm3 resolution and DTI data8 (30 directions) of size
112 × 112 × 50 with 2 × 2 × 2 mm3.

Table 3 presents the average PSNR and SSIM values of the restored volumetric data tested
on simulated data, and figure 6 plots the average PSNR values versus the noise level (%). It
is shown that the proposed NLRR method achieves the best average PSNR and SSIM values.
For example, at noise level 19%, the image obtained by the proposed method has 2.5 dB larger
average PSNR value and 0.07 larger average SSIM value than the PRI-NLM3D methods.

Figures 7 and 8 present with zoomed-in views the selected slides of the MR data tested on
simulated data at noise level 13%. Figure 9 presents the denoised MR data and its residual

8 http://cmic.cs.ucl.ac.uk/camino//uploads/Tutorials/example_dwi.zip.
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Figure 8. Denoised results tested on T2w data at noise level 13%. From top to bottom,
the images are the original and zoomed-in views of selected slides of denoised images.
From left to right, the denoising methods with (PSNR, SSIM) values are (a) ground truth;
(b) noisy image; (c) PRI-NLM3D (26.62 dB, 0.909); (d) MCDnCNN (27.02 dB, 0.921);
(e) VST-BM4D (27.85 dB, 0.929); (f) VST-tSVD (28.33 dB, 0.935); (g) NLRR (ours)
(28.75 dB, 0.940).

Figure 9. Denoised results tested on ‘OAS1_0105’ at approximated noise level 3%.
From top to bottom, the images are the original, zoomed-in views, and residual images
of denoised images. The denoising methods are (a) noisy image; (b) PRI-NLM3D;
(c) MCDnCNN; (d) VST-BM4D; (e) VST-tSVD; (f) NLRR (ours).
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Figure 10. Denoised results tested on DTI data at approximated noise level between
1.5% and 2.5%. From top to bottom, the images are the noisy/denoised image (b = 0),
the noisy/denoised image (b = 1000), FA map, color FA map and zoomed-in views.
From left to right, the denoising methods are (a) noisy image; (b) PRI-NLM3D;
(c) MCDnCNN; (d) VST-BM4D; (e) VST-tSVD; (f) NLRR (ours).

images tested on real T1w data. The restored MR data of the proposed NLRR method gen-
erate smoother tissue textures and fewer artifacts, and preserve more fine details as shown in
figures 7, 8(g) and 9(f). On the contrary, the PRI-NLM3D method tends to over-smooth the
edges of brain layers in figure 7(c) and remove some fine details of brain tissues in figure 9(b).
And due to the limitation of VSTs, the stated-of-the-art 3D denoising methods such as the
VST-BM4D and VST-tSVD methods suffer from unexpected artifacts. For example, there are
mosaic patterns in the second zoomed-in view of figures 8(e) and (f) and the third zoomed-
in view of figures 9(d) and (e). Also, the MCDnCNN method tends to remove more noise in
brighter regions and less noise in darker regions as shown in its residual image in figure 9(c).
Moreover, the denoising results in figure 10 tested on real DTI data also demonstrate the great
capability of the proposed method in removing noise. The FA map and color FA map derived
from the proposed method in figure 10(f) have fewer artifacts and more natural transition.

In summary, quantitative results and denoised images demonstrate the superiority of the
proposed method in denoising 3D MR data. The MCDnCNN method relies on the training
dataset and its performance seems not stable. And NSS-based methods with flexible bases,
like the VST-tSVD and the proposed method, outperform the NSS-based methods with fixed
bases, like the PRI-NLM3D and VST-BM4D method. Also, the proposed method introduces
fewer artifacts than the methods required VSTs.
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7. Conclusion

In this paper, we propose a new optimization model that employs a NLRR and a MAP-based
fidelity term for denoising of MR images with Rician noise. Specifically, we utilize the log-
det function to regularize the low-rank prior of nonlocal similar patch/cube matrices and adopt
the data fidelity term of the MAP model to reflect the statistics of Rician noise. Using the
facts that the logarithmic function in the log-det function is concave and that the MAP-based
fidelity term has a Lipschitz continuous gradient, we develop the ARM algorithm to solve the
proposed model and prove that any limit point of the sequence generated by the ARM algorithm
is a first-order critical point of the objective function. Then a two-stage method enhances the
ARM algorithm for removing Rician noise. Furthermore, numerical experiments on 2D and 3D
denoising demonstrate the effectiveness of the proposed NLRR method for removing Rician
noise and the superiority over the state-of-the-art VST-based and DnCNN-based methods in
terms of average PSNR and SSIM values and of the visual quality of restored images.
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