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Abstract
In this paper, we propose an ensemble learning algorithm called under-bagging k-nearest
neighbors (under-bagging k-NN ) for imbalanced classification problems. On the theoretical
side, by developing a new learning theory analysis, we show that with properly chosen
parameters, i.e., the number of nearest neighbors k, the expected sub-sample size s, and
the bagging rounds B, optimal convergence rates for under-bagging k-NN can be achieved
under mild assumptions w.r.t. the arithmetic mean (AM) of recalls. Moreover, we show
that with a relatively small B, the expected sub-sample size s can be much smaller than
the number of training data n at each bagging round, and the number of nearest neighbors
k can be reduced simultaneously, especially when the data are highly imbalanced, which
leads to substantially lower time complexity and roughly the same space complexity. On
the practical side, we conduct numerical experiments to verify the theoretical results on the
benefits of the under-bagging technique by the promising AM performance and efficiency
of our proposed algorithm.

Keywords: Imbalanced classification, under-sampling, bagging, k-nearest neighbors,
ensemble learning, arithmetic mean measure, optimal convergence rates, learning theory

1. Introduction

Imbalanced classification has been encountered in multiple areas such as telecommunication
managements (Babu and Ananthanarayanan, 2018; Al_Janabi and Razaq, 2019), bioinfor-
matics (Bugnon et al., 2019; Shanab and Khoshgoftaar, 2020), fraud detection (Li et al.,
2021; Somasundaram and Reddy, 2019), and medical diagnosis (Zhao et al., 2020), and has
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been considered one of the top ten problems in data mining research (Yang and Wu, 2006;
Rastgoo et al., 2016). In fact, the ratio of the size of the majority class to the minority
class can be as huge as 106 (Wu et al., 2008a). It is noteworthy that the imbalanced clas-
sification is emerging as an important issue in designing classifiers (Weiss, 2004; Johnson
and Khoshgoftaar, 2020). Two observations account for this point: on the one hand, the
imbalanced classification is pervasive in a large number of domains of great importance in
the machine learning community, on the other hand, most popular classification learning
algorithms are reported to be inadequate when encountering the imbalanced classification
problem. These classification algorithms involve k-nearest neighbors (Wang et al., 2021),
support vector machines (Raskutti and Kowalczyk, 2004; Pisner and Schnyer, 2020), ran-
dom forest (Chawla et al., 2004; Sohony et al., 2018), and neural networks (Johnson and
Khoshgoftaar, 2019). Typically, imbalanced learning can be categorized into two conven-
tional approaches, namely, data level approaches and algorithm level approaches (He and
Ma, 2013). The typical data level approaches are based on resampling strategies which
aims to develop the under-sampling or over-sampling techniques to compensate for imbal-
anced distributions of the original datasets, see e.g., Wilson (1972); Kubat et al. (1997);
Liu et al. (2008); Smith et al. (2014); Arefeen et al. (2020) for under-sampling and Chawla
et al. (2002); Batista et al. (2003); Han et al. (2005); He et al. (2008); Yan et al. (2019);
Koziarski et al. (2019) for over-sampling with artificially synthetic data generation. How-
ever, under-sampling approaches may throw away potentially useful information of the data
and over-sampling strategies add the computational burden. To overcome this problem, a
variety of ensemble methods combined with resampling strategies have been described in the
related researches, such as Chawla et al. (2003); Seiffert et al. (2009); Galar et al. (2011);
Yang et al. (2018). Different from data-level approaches that change the distribution of
the original data set, algorithm level approaches try to adjust the structure of standard
classifiers to diminish the effect caused by class imbalance. A typical and popular method
is cost-sensitive learning which generally assigns mis-classification costs for each class ap-
propriately, see, e.g, Puthiya Parambath et al. (2014); Zhang et al. (2018); Zhang (2020).
Besides, different algorithm modifications for imbalanced classification have been recently
studied in Liu et al. (2018); Montahaei et al. (2018); Di et al. (2019); Wang et al. (2020).
We refer the reader to Guo et al. (2017) for a general review on imbalanced classification.

k-nearest neighbors (k-NN) is included in the top ten most significant data mining al-
gorithms (Wu et al., 2008b), as it has always been preferred for its non-parametric working
principle, and ease of implementation (Duda et al., 2001). To be specific, k-NN is a lazy
method without model training since it simply tags the new data entry based learning
from historical data. On the other hand, k-NN is known to be a simple yet powerful non-
parametric machine learning algorithm widely used in fields such as genetics (Ayyad et al.,
2019; Arowolo et al., 2020), data compression (Salvador-Meneses et al., 2019; Deng et al.,
2016), economic forecasting (Malini and Pushpa, 2017; Moldagulova and Sulaiman, 2017),
recommendation and rating prediction (Patro et al., 2020; Al-Ghobari et al., 2021). In
fact, companies like Amazon and Netflix use k-NN when recommending books to buy and
movies to watch (Ahuja et al., 2019; Belacel et al., 2020). Constant research is going on
to cope with the shortcomings resulting in various improvements of the k-NN algorithm.
On the one hand, the data level approaches combine resampling techniques with the stan-
dard k-NN classifier to rebalance the training data (Wilson, 1972; Zhang and Mani, 2003;
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Kurniawati et al., 2018; Nwe and Lynn, 2019). Recently, by adapting the ensemble learning
methods to imbalance problem, Guo et al. (2016) implemented the powerful boosting frame-
work Adaboost as the learning model, in which k-NN is chosen as the base classifier and
boosting-by-resample method is used to generate the training set. On the other hand, there
has been a flurry of algorithm approaches to design specific learning algorithms with k-NN
for imbalanced classification, see e.g., Tan (2005); Wang et al. (2008); Li and Zhang (2011);
Dubey and Pudi (2013); Zhang et al. (2017); Liu et al. (2018); Mullick et al. (2018); Yuan
et al. (2021). Recently, Zhang (2020) for the first time designed two efficient cost-sensitive
k-NN classification models by changing the distance function of the standard k-NN classifica-
tion. However, these methods suffer from problems including the involvement of exhaustive
search, the introduction of new parameters, and significant computational overhead, which
hinder the scalability and easy implementation of k-NN. In addition, the effectiveness of
these methods has not been investigated from a theoretical perspective.

In this study, we propose an ensemble learning algorithm named under-bagging k-nearest
neighbors, where the drawback of the standard k-NN classifier for imbalanced classification is
eliminated with the help of the under-bagging technique. More precisely, the under-bagging
k-NN classifier creates an ensemble of base predictors over bootstrap training samples inde-
pendently drawn following the under-sampling rule. In other words, at each bagging round,
we sample several subsets independently from the majority class such that the expected size
of each subset equals to that of the minority class. After that, we build a k-NN classifier
on the newly created balanced training set. The under-bagging k-NN classifier is thus de-
rived based on the averaged posterior probability function. It is worth pointing out that the
under-bagging k-NN classifier enjoys three advantages. Firstly, it preserves the simplicity
of standard k-NN as a lazy learner without building any discriminative function from the
training data, compared with other model-based classification algorithms. Secondly, the
under-bagging k-NN classifier is an effective method targeting at imbalanced classification
by drawing relatively balanced data subsets used at each bagging round. Last but not least,
the bagging technique helps to improve the computational efficiency greatly by reducing the
number of training samples at bagging rounds, while the standard k-NN is problematic to
keep all the training examples in memory, so as to search for all the k nearest neighbors for
a test sample (Zhang, 2020).

The main purpose of this paper is to conduct a theoretical analysis on the under-bagging
k-NN for imbalanced classification from a learning theory perspective (Cucker and Zhou,
2007; Steinwart and Christmann, 2008). In the analysis, we adopt the AM measure which
is shown to be more general and powerful for imbalanced classification, see e.g., Chan and
Stolfo (1998); Menon et al. (2013); Guo et al. (2017); Flach (2019); Grandini et al. (2020).
In fact, as Menon et al. (2013) pointed out, since the Bayes classifier w.r.t. the AM measure
usually differs from that w.r.t. the classification loss, standard algorithms expecting balanced
class distribution are not consistent in terms of the AM measure. Therefore, we investigate
the under-bagging k-NN classifier w.r.t. the AM measure and demonstrate its effectiveness
and efficiency. On the other hand, since bagging is known to reduce the variance of the base
learners, in our analysis, we use Bernstein’s concentration inequality (Massart, 2007; van der
Vaart and Wellner, 1996; Kosorok, 2008) to establish the convergence rates, which allow for
localization due to their specific dependence on the variance (Hang and Steinwart, 2017;
Hang et al., 2016). In this way, our results hold in sense of “with high probability”, which is
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more closely related to practical needs than “in expectation” and “in probability” addressed
commonly in existing statistical analysis, see e.g., Hall and Samworth (2005); Biau et al.
(2010); Biau and Devroye (2015).

The contributions of this paper can be stated as follows.

(i) We present the learning theory analysis on the under-sampling and under-bagging
k-NN for imbalanced multi-class classification w.r.t. the AM measure. We mention that the
learning theory approach distinguishes our work from previous studies. Under the Hölder
smoothness assumption and the margin condition, optimal convergence rates of both under-
sampling k-NN and under-bagging k-NN are established w.r.t. the AM measure with high
probability. It is worth pointing out that our finite sample results demonstrate the explicit
relationship among bagging rounds B, the number of nearest neighbors k, and the expected
under-sampling size s.

(ii) We conduct analysis on both time and space complexity of the under-bagging k-NN
with parameter selection as shown in Theorem 3. We show that under roughly the same
space complexity, with the help of under-bagging, the time complexity of construction can
be reduced from O(n log n) (for the standard k-NN) to O((ρn log(ρn))d/(2α+d)), and the time
complexity in the testing stage can be reduced from O((n log n)2α/(2α+d)) to O(log2(ρn)),
where ρ represents the imbalance ratio. These results indicate that under-bagging helps to
enhance the computational efficiency, especially when the data are highly imbalanced.

(iii) We conduct numerical experiments to verify the theoretical results. We first verify
the relationship among parameters k, s, and B in Theorem 3 based on synthetic datasets.
Then on real datasets, we compare our under-bagging k-NN with the standard k-NN and
the under-sampling k-NN. The results show that the under-bagging k-NN enjoys higher AM
performance on imbalanced datasets. Moreover, the under-bagging technique can signifi-
cantly reduce the running time of k-NN classifiers, which verifies our analysis on the time
complexity of under-bagging k-NN. Furthermore, we can reduce the running time by using
fewer sub-samples with still competitive AM performance. In addition, we also compare our
under-bagging k-NN with other sub-sampling algorithms to demonstrate the effectiveness
and efficiency of our method.

The rest of this paper is organized as follows. Section 2 is a warm-up section for the
introduction of some notations and definitions that are related to multi-class imbalanced
classification. Then we propose the under-sampling and under-bagging k-NN for imbalanced
classification in Section 3. We provide basic assumptions and our main results on the
convergence rates of both the under-sampling and under-bagging k-NN classifiers in Section
4. Some comments and discussions concerning the main results will also be provided in
this section. The analysis on bounding error terms is presented in Section 5. We conduct
numerical experiments to verify our theoretical findings for the under-bagging k-NN classifier
and show the improvements of the under-bagging technique in Section 6. Besides, we
conduct numerical experiments to compare our under-bagging k-NN with other sub-sampling
algorithms for imbalanced classification on real-world datasets in this Section. All the proofs
of Sections 4 and 5 can be found in Section 7.
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2. Preliminaries

2.1 Notations

For 1 ≤ p <∞, the Lp-norm of x = (x1, . . . , xd) is defined as ‖x‖p := (|x1|p+ . . .+ |xd|p)1/p,
and the L∞-norm is defined as ‖x‖∞ := maxi=1,...,d |xi|. For any x ∈ Rd and r > 0, we
denote Br(x) := B(x, r) := {x′ ∈ Rd : ‖x′ − x‖2 ≤ r} as the closed ball centered at x with
radius r. We use the notation an . bn and an = O(bn) to denote that there exists a positive
constant c independent of n such that an ≤ cbn, for all n ∈ N. Similarly, an & bn denotes
that there exists some positive constant c ∈ (0, 1) such that an ≥ c−1bn. Finally, for a set
A ⊂ Rd, the cardinality of A is denoted by #(A) and the indicator function on A is denoted
by 1A or 1{A}.

2.2 Imbalanced Classification

For a classification problem with M classes, we observe data points (x, y) ∈ X ×Y from an
unknown distribution P, where x denotes the feature vector, y is the corresponding label.
Assume that X ⊂ Rd and Y ⊂ [M ] := {1, . . . ,M}. Given n independently observations
Dn := {(Xi, Yi) : i = 1, . . . , n} drawn from P, the conditional distribution PY |X , i.e.,
posterior probability, is defined as η : X → [0, 1]M , where

ηm(x) = P(Y = m|X = x), m = 1, . . . ,M. (1)

To analyze the theoretical properties of the classifier, there is a need to introduce some
more notations to evaluate the performance. To this end, for any measurable decision
function ψ : X → [M ], a loss function L : X × Y × Y → R+ := [0,∞) defines a
penalty incurred on predicting ψ(x) ∈ Y when the true label is y. The risk is defined
by RL,P(ψ) :=

∫
X×Y L(x, y, ψ(x)) dP(x, y). The Bayes risk, which is the smallest possible

risk w.r.t. P and L, is given by R∗L,P := inf{RL,P(ψ) |ψ : X → [M ] measurable}, where the
infimum is taken over all measurable functions ψ : X → [M ]. In addition, a measurable
function ψ∗L,P satisfyingRL,P(ψ∗L,P) = R∗L,P is called a Bayes decision function. For example,
ψ∗Lcl,P

(x) = arg maxm∈[M ] ηm(x) is the Bayes decision function w.r.t. the classification loss
Lcl(x, y, ψ(x)) := 1{ψ(x) 6= y}. We denote R∗Lcl,P

= RLcl,P(ψ∗Lcl,P
) as the corresponding

Bayes risk and RLcl,P
(ψ)−R∗L,P as the classification error for a candidate classifier. For the

sake of brevity, we write η∗Lcl,P
(x) := ηψ∗Lcl,P

(x)(x) in the following.
For imbalanced classification, we need to introduce some additional notations. To this

end, for m ∈ [M ], let D(m) := {(x, y) ∈ Dn | y = m} and n(m) := #(D(m)). Throughout
this paper, without loss of generality, we assume that n(1) ≤ . . . ≤ n(M). In this case, D(1)

is called the minority class. In addition, let πm = P(Y = m) denote the proportion of each
category. Moreover, we denote π := max1≤m≤M πm and π := min1≤m≤M πm. Furthermore,
for 1 ≤ m ≤M , we define the weighted posterior probability function

ηwm(x) =
ηm(x)/πm∑M
m=1 ηm(x)/πm

, (2)

where we assign lower weights to the highly populated classes whereas assign the largest
weight to the minority class. By this means, we attach the same importance of the minority
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class and other classes in the evaluation of the model. In particular, when the class distri-
bution is balanced, i.e. π1 = . . . = πm, the weighted posterior probability function (2) is
the same as (1). Additionally, we define the imbalance ratio ρ ∈ [0, 1] as the ratio of the
minority sample size n(1) to the averaged sample size in each class n/M , namely,

ρ := Mn(1)/n. (3)

Note that when ρ = 1, we have n(1) = · · · = n(M) = n/M . In this case the problem is
reduced to the balanced classification. It is easy to see that the smaller ρ, the higher level
of class imbalance.

However, the usual misclassification loss is ill-suited as a performance measure for im-
balanced classification, since it expects an equal misclassification cost on all classes (He and
Garcia, 2009). In fact, in the presence of imbalanced training data, samples of the minor-
ity class occur sparsely in the data space. As a result, given a test sample, the calculated
k-nearest neighbors bear higher probabilities of samples from the other classes. Hence, test
samples from the minority class are prone to be incorrectly classified (Sun et al., 2009; Leevy
et al., 2018). In particular, in the highly imbalanced binary classification, a classifier can
achieve good performance w.r.t. classification error by predicting all test samples to the
majority class. However, this results in undesirable performance on the minority class. To
tackle this problem, a variety of performance measures have been proposed for evaluating
multi-class classifiers in class-imbalance settings, see e.g., Tallón-Ballesteros and Riquelme
(2014); Flach (2019); Opitz and Burst (2019).

In this paper, we study the statistical convergence of the algorithms w.r.t. one such
performance measure, namely the arithmetic mean of the recall (AM), which was proposed
in Chan and Stolfo (1998) and recently investigated in Menon et al. (2013), which studied
the consistency of algorithms proposed for imbalanced binary classification. We refer the
reader to Guo et al. (2017); Flach (2019); Grandini et al. (2020) for more details. The
AM measure attempts to balance the errors on classes and is shown to be an effective
performance measure for evaluating classifiers in imbalanced classification. We are confined
to this measure since it can be reformulated as the sum of losses on individual samples as is
illustrated in Section 5 and thus is available for theoretical analysis.

For any candidate classifier ψ : X → [M ] and m ∈ [M ], we first consider the recall of the
class m defined by rm(ψ) = P(ψ(x) = m | y = m). Larger recall indicates better prediction
of samples in the class m. In particular, rm(ψ) = 1 means that every sample from the class
m is predicted correctly through the classifier ψ. Then we define the AM measure as the
arithmetic mean of these values, that is,

rAM(ψ) =
1

M

M∑
m=1

rm(ψ). (4)

In particular, we define the optimal AM performance by r∗AM := sup{rAM(ψ) |ψ : X →
[M ] measurable}. Moreover, we define the AM-regret of ψ by

RAM(ψ) = r∗AM − rAM(ψ). (5)

It is generally considered that the usual classification error and the AM regret measure
the goodness-of-fit of the classifier under different settings. More specifically, when the
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probability distribution is approximately balanced, the usual classification error is more
suited when we focus on the prediction of each sample individually regardless of which class
the sample is drawn from, let alone the class distribution. By contrast, in the imbalanced
classification, it is argued by Grandini et al. (2020) that the AM regret could be a more
reasonable choice since it is insensitive to imbalanced class distribution and it attaches equal
importance to the recall of each class. In practice, the choice of the performance measure
is usually decided by the type of data encountered. In the statistics and machine learning
literature, the usual classification error has been studied extensively and understood well.
In this study, we focus on the analysis of AM regret for the under-bagging algorithm in the
imbalanced multi-class classification, which has not yet been well studied in the literature.

3. Main Algorithm

The usual Bayes optimal classifier that minimizes the classification error is not optimal
w.r.t. AM regret (Menon et al., 2013; Narasimhan et al., 2015). In fact, according to
Chaudhuri and Dasgupta (2014); Xue and Kpotufe (2018), the standard k-NN classifier
is showed to converge to the Bayes error, and therefore it is not consistent w.r.t. AM regret.
Thus it is emerging as an important issue to design k-NN based classifiers for imbalanced
classification with both solid theoretical guarantees w.r.t. the AM measure and desirable
practical performance. In this paper, we first consider the k-NN classifier built on the under-
sampling data, namely under-sampling k-NN. Moreover, to make full use of the information
that might be overlooked by the under-sampling, we introduce the bagging technique and
propose the under-bagging k-NN classifier.

Before we proceed, we introduce the under-sampling strategy and the related probability
measure. Specifically, suppose that an acceptance probability function a(x, y) ∈ [0, 1] is
given for every data point (x, y) ∈ X × Y. Then each observation (xi, yi), i = 1, . . . , n,
is independently drawn from Dn with probability a(xi, yi). Mathematically speaking, the
under-sampling strategy can be stated as follows:

(i) Sample (X,Y ) ∼ P, where P denotes the distribution of the input data.

(ii) Generate Z(X,Y ) from the Bernoulli distribution with parameter a(X,Y ) ∈ (0, 1]
which will be specified in the following sections.

(iii) If Z(X,Y ) = 1, then accept the candidate (X,Y ). Otherwise, reject (X,Y ) and go to
the beginning.

After the strategy is repeated n times, we obtain an under-sampling dataset Du
n =

{(Xi, Yi) : Z(Xi, Yi) = 1} containing those accepted samples. The joint probability of
{Z(Xi, Yi)}ni=1 conditional on {(Xi, Yi)}ni=1 is denoted by PZ .

3.1 Under-sampling k-NN Classifier

The aim of under-sampling is to create more balanced data subsets from the class-imbalanced
input data set, so that the multi-class classifiers expecting balanced class distribution can
be adapted to imbalanced classification. To be specific, given the minority class D(1) and
the other classes D(m), 2 ≤ m ≤ M , the under-sampling method randomly subsamples

7



Hang, Cai, Yang, Lin

Du
n := {(Xu

1 , Y
u

1 ), . . . , (Xu
su , Y

u
su)}, su = #(Du

n), from Dn with acceptance probability

a(x, y) = n(1)/n(m), if y = m. (6)

In this case, all the samples from the minority class are in the set Du
n.

Let Xu
(i)(x) denote the i-th nearest neighbor of x in the sub-sampling data Du

n w.r.t. the
Euclidean distance and Y u

(i)(x) denote its label. We define the posterior probability estimate
η̂k,u : X → [0, 1]M with the m-th entry by

η̂k,um (x) :=
1

k

k∑
i=1

1{Y u
(i)(x) = m}. (7)

Then the under-sampling k-NN is given by

ψ̂k,u(x) = arg max
m∈[M ]

η̂k,um (x). (8)

3.2 Under-bagging k-NN Classifier

The main drawback of under-sampling is that potentially useful information contained in the
samples not appearing in Du

n is overlooked. Thus we use the bagging technique to further
exploit the samples ignored by under-sampling, that is, samples in Dn \Du

n. More precisely,
let 1 ≤ s ≤Mn(1) be the expected number of bootstrap samples, then on the b-th round of
bagging, we subsample Du

b := {(Xb,u
1 , Y b,u

1 ), . . . , (Xb,u
sb , Y

b,u
sb )} with acceptance probability

a(x, y) = s/(Mn(m)), if y = m. (9)

Our classifier is built upon Du
b , that is, we compute the b-th posterior probability estimate

η̂b,u : X → [0, 1]M on the set Du
b for 1 ≤ b ≤ B, respectively. To be specific, the m-th entry

of η̂b,u is defined by

η̂b,um (x) :=
1

k

k∑
i=1

1
{
Y b,u

(i) (x) = m
}
. (10)

Then the average posterior probability estimate for the class m is

η̂B,um (x) =
1

B

B∑
b=1

η̂b,um (x). (11)

Finally, the under-bagging k-NN classifier is defined by

ψ̂B,u(x) = arg max
m∈[M ]

η̂B,um (x). (12)

We summarize the under-bagging k-NN classifier in Algorithm 1.
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Algorithm 1: Under-bagging k-NN Classifier for Imbalanced Classification
Input: Minority class D(1) and the other classes D(m), 2 ≤ m ≤M .

Bagging rounds B and the expected subsample size s;
Parameter k ∈ N+.

for b = 1→ B do
Randomly sample Du

b from Dn with acceptance probability chosen by (9).
Compute the b-th posterior probability estimate η̂b,u on the set Du

b by (10).
end
Compute the bagged posterior probability estimate η̂B,u by (11).
Output: The under-bagging k-NN classifier (12).

4. Theoretical Results and Statements

In this section, we present main results on the convergence rates of the AM regret of ψ̂k,u

and ψ̂B,u under mild conditions in Section 4.1 and 4.2. Then in Section 4.3 we also present
some comments and discussions on the obtained main results.

Before we proceed, we need to introduce the following restrictions on the probability
distribution to characterize which properties of a distribution most influence the performance
of the classifier for imbalanced classification.

Assumption 1 We make the following assumptions on the probability measure P.

(i) [Smoothness] The posterior probability function η defined by (1) is assumed to be
α-Hölder continuous with a constant cL ∈ (0,∞), that is, for any x, x′ ∈ X , we have

|η(x′)− η(x)| ≤ cL‖x′ − x‖α. (13)

(ii) [Margin] For any x ∈ X , let ηw(m)(x) denote the m-th largest element in {ηwm(x)}Mm=1,
where ηwm(x) is defined by (2). Assume that there exists a constant β > 0 and cβ > 0
such that for all t > 0, there holds

P
(
|ηw(1)(X)− ηw(2)(X)| ≤ t

)
≤ cβtβ. (14)

The α-Hölder smoothness assumption (i) is commonly adopted for k-nearest neighbors
classification, see, e.g., Chaudhuri and Dasgupta (2014); Döring et al. (2017); Xue and
Kpotufe (2018); Khim et al. (2020). In fact, since ηw(x) is the weighted posterior probabil-
ity function, ηw is α-Hölder continuous as long as η is α-Hölder continuous. Note that when
α is small, the posterior probability function fluctuates more sharply, which results in the
difficulty of estimating ηw accurately and thus leads to a slower convergence rates for imbal-
anced classification. It is worth pointing out that the smoothness assumption endows our
model with a global constraints, whereas the margin assumption only reflects the behavior
of ηw near the decision boundary.

The margin assumption (ii) quantifies how well classes are separated on the decision
boundary ∂ := {x : ηw(1)(x) = ηw(2)(x)}, which was adopted for the weighted nearest neigh-
bors for multi-class classification (Khim et al., 2020). In particular, in the usual binary clas-
sification problems, when the probability distribution is balanced in the sense of π1 = π2,
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this condition coincides with Tsybakov’s margin condition (Audibert and Tsybakov, 2007).
We mention that the adjusted posterior probability function ηw(x) defined by (2) attaches
larger weights to the small classes. The restriction on the margin of ηw(x) is more rea-
sonable than η(x) for imbalanced classification. To give a clear explanation, let us con-
sider the binary classification problem, where the decision boundary can be expressed by
∂G := {x : η1(x)/π1 = η2(x)/π2}. In this case, compared with the ordinary boundary
∂G0 = {x : η1(x) = η2(x)}, the decision boundary ∂G move towards the majority class
and more points would be categorized as the minority class. From (14), we clearly see that
when β is smaller, ηw(1)(x) approaches ηw(2)(x) from above more steeply, which reflects a more
complex behavior around the critical threshold ∂G. In this case, the imbalanced multi-class
classification becomes more difficult. In particular, for β = ∞, ηw(1)(x) is far from ηw(2)(x)
with a large probability, which makes the multi-class classification significantly easier. In
general, the margin assumption (ii) does not affect the the smoothness of the posterior
probability functions in condition (i) and vice versa.

In the following two sections, we present main results on the convergence rates for the
under-sampling and under-bagging k-NN classifier w.r.t. the AM measure of type “with high
probability”. It is worth pointing out that our result is built upon the techniques from the
approximation theory (Cucker and Zhou, 2007) and arguments from the empirical process
theory (van der Vaart and Wellner, 1996; Kosorok, 2008), which is essentially different from
the previous work on the consistency of algorithms w.r.t. the AM measure (Menon et al.,
2013; Narasimhan et al., 2015), where several tools such as classification-calibrated losses
(Bartlett et al., 2006) and regret bounds for cost-sensitive classification (Scott, 2012) have
been developed for the study.

4.1 Results on Convergence Rates for the Under-sampling k-NN Classifier

Now we present the convergence rates for the under-sampling k-NN classifier w.r.t. the AM
measure under the above assumptions.

Theorem 1 Let ψ̂k,u be the under-sampling k-NN classifier defined as in (8), where the
acceptance probability is chosen as in (6). Assume that P satisfies Assumptions 1 and PX
is the uniform distribution on [0, 1]d. Then there exists an N∗1 ∈ N, which will be specified
in the proof, such that for all n ≥ N∗1 , by choosing

k = s2α/(2α+d)
u (log su)d/(2α+d) (15)

where su = #(Du
n), there holds

RAM(ψ̂k,u) . (log n/n)α(β+1)/(2α+d) (16)

with probability PZ ⊗ Pn at least 1− 4/n2.

Compared with the standard k-NN where k is of order n2α/(2α+d) up to a logarithm
factor, in Theorem 1 we prove that k is of order (ρn)2α/(2α+d) up to a logarithm factor when
under-sampling is introduced. Especially when the data is highly imbalanced, i.e., ρ is very
small, the value of k can be significantly reduced by the under-sampling technique.

The following Theorem shows that up to a logarithm factor, the convergence rate (16)
of the under-sampling k-NN classifier ψ̂k,u is minimax optimal w.r.t. the AM regret in the
case αβ < d.

10
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Theorem 2 Let F be the set of all measurable functions ψn : (Rd×R)n×Rd → R and P be
the set of all probability distributions satisfying Assumption 1 with αβ < d. Then we have

inf
ψn∈F

sup
P∈P

RAM(ψn) & n−α(β+1)/(2α+d).

The lower bound in Theorem 2 coincides with that for standard classification w.r.t. the
classification error (Audibert and Tsybakov, 2007), although the class of probability dis-
tribution considered in Theorem 2 is different from the one considered in Audibert and
Tsybakov (2007) as stated in the beginning of Section 4.

4.2 Results on Convergence Rates for the Under-bagging k-NN Classifier

We now state our main results on the convergence of the under-bagging k-NN classifier
w.r.t. the AM measure.

Theorem 3 Let ψ̂B,u(x) be the under-bagging k-NN classifier defined as in (12). Assume
that P satisfies Assumption 1 and PX is the uniform distribution on [0, 1]d. Furthermore, let
ρ be the imbalance ratio defined by (3). Then there exists an N∗2 ∈ N, which will be specified
in the proof, such that for all n ≥ N∗2 , by choosing

s &

®
(ρn)d/(2α+d)(log(ρn))2α/(2α+d), if d > 2α,

(ρn log(ρn))1/2, if d ≤ 2α,
(17)

k = s(log(ρn)/ρn)d/(2α+d), (18)

B = kρn/s = (ρn)2α/(2α+d) log(ρn)d/(2α+d), (19)

there holds

RAM(ψ̂B,u) . (log n/n)α(β+1)/(2α+d) (20)

with probability PBZ ⊗ Pn at least 1− 5/n2.

Theorem 3 together with Theorem 2 implies that up to a logarithm factor, the conver-
gence rate (20) of the under-bagging k-NN classifier ψ̂B,u turns out to be minimax optimal
w.r.t. the AM measure, if we choose the expected sub-sample size s, the number of nearest
neighbors k, and the bagging rounds B according to (17), (18) and (19), respectively. In
other words, when the bagging technique is combined with the under-sampling k-NN clas-
sifier, the convergence rates of ψ̂B,u is not only obtainable, but also the same with that of
ψ̂k,u.

Notice that for a given dataset, (18) and (19) yield that k and B is proportional to s
and k/s, respectively. Therefore, only a few independent bootstrap samples are required to
obtain the estimate η̂b,um in (10) for the posterior probability function at each bagging round.
As a result, k is reduced to O(log(ρn)) in (18), instead of O((ρn)2α/(2α+d)(log(ρn))d/(2α+d))
in (15) for the under-sampling k-NN.

In particular, we show in Corollary 4 that k can be further reduced to a constant order
and present the convergence rates of under-bagging 1-NN classifier w.r.t. the AM measure.
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Corollary 4 Let ψ̂B,u(x) be the bagged 1-NN classifier defined by Algorithm 1 with k = 1.
Furthermore, assume P satisfies Assumption 1 and PX is the uniform distribution on [0, 1]d.
Moreover, let ρ be the imbalance ratio defined by (3). Then there exists an N∗3 ∈ N, which
will be specified in the proof, such that for all n ≥ N∗3 , with probability PBZ ⊗ Pn at least
1− 5/n2, the following two statements hold:

(i) If d > 2α, by choosing s = (ρn)
d

2α+d (log(ρn))
2α−d
2α+d and B = (ρn)

2α
2α+d (log(ρn))

d−2α
2α+d , we

have

RAM(ψ̂B,u) . (log2 n/n)α(β+1)/(2α+d). (21)

(ii) If d ≤ 2α, by choosing s = (ρn log(ρn))1/2 and B = (ρn/ log(ρn))1/2, we have

RAM(ψ̂B,u) . max
{

(log n/n)α/(2d), (log3 n/n)1/4
}β+1

.

Again, Theorem 2 yields that up to a logarithm factor, the rate (21) of under-bagging
1-NN classifier is minimax optimal when d > 2α, α ∈ [0, 1], which is usually the case.

4.3 Comments and Discussions

The section presents some comments on the obtained theoretical results on the convergence
rates of the under-sampling classifier ψ̂k,u and ψ̂B,u, and compares them with related findings
in the literature.

4.3.1 Comments on Convergence for Imbalanced Classification

In this paper, we focus on the imbalanced classification problem. As pointed out in
Sections 1 and 2.2, in the context of imbalanced classification, the AM regret is a more
reasonable performance measure instead of the usual classification error. Xue and Kpotufe
(2018); Khim et al. (2020) show that the standard k-NN classifier converges to the Bayes
risk for multi-class classification. Therefore, in general, it can not be consistent w.r.t. the
AM regret, which explains the undesirable performance of standard k-NN classification on
imbalanced data from the theoretical perspective. To tackle this problem, in this study, we
consider the under-sampling and under-bagging k-NN classifiers. Both of them not only
retain the scalability and easy implementation of k-NN method but also have the optimal
convergence rates w.r.t. the AM measure (Theorems 1 and 3). In our analysis, we only make
the α-Hölder continuity and the margin assumption for the posterior probability function
η. As is pointed out in Section 4, for imbalanced classification, the decision boundary is
determined by the weighted posterior probability function ηw by endowing smaller classes
with larger weights. Moreover, it is worth pointing out that the results are of type “with
high probability” by using Bernstein’s concentration inequality that takes into account the
variance information of the random variables within a learning theory framework (Cucker
and Zhou, 2007; Steinwart and Christmann, 2008).

As mentioned in Section 1, in the literature, despite many classifiers designed to address
imbalance have been proposed, theoretical studies on these methods w.r.t. the AM measure
are relatively limited. Menon et al. (2013) proved the statistical consistency of two families
of algorithms for imbalanced classification, where the first family of algorithms applies a
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suitable threshold to a class probability estimate obtained by minimizing an appropriate
strongly proper loss, and the second one minimizes a suitably weighted form of an appropri-
ate classification-calibrated loss, i.e., the cost-sensitive learning algorithms. However, it is
well-known that consistency only measures the infinite-sample property of a classifier, while
its finite-sample bounds of convergence rates can hardly be guaranteed. Besides, consistency
did not directly reflect any degree of regularity or smoothness of the underlying posterior
probability function.

4.3.2 Comparison with Previous Bagged k-NN Algorithms and Analysis

We also compare our results with previous theoretical analysis of the k-NN algorithm com-
bined with bagging techniques. Hall and Samworth (2005) demonstrated the consistency
properties of bagged nearest neighbor classifiers to the Bayes classifier. Biau et al. (2010)
studied the rate of convergence of the bagged nearest neighbor estimate w.r.t. the mean
squared error. They derived the optimal rate O(n−2/(2+d)) under the assumption that the
regression function is Lipschitz. Samworth (2012) regarded the bagged nearest neighbor
classifier as a weighted nearest neighbor classifier, and showed that the “infinite simulation”
case of bagged nearest neighbors (with infinite bagging rounds) can attain the optimal con-
vergence rate. It is worth pointing out that our analysis of the under-bagging k-NN presents
in this study is essentially different from that in the previous works.

First of all, we highlight that different from previous statistical analysis, our theoretical
analysis is conducted from a learning theory perspective (Cucker and Zhou, 2007; Steinwart
and Christmann, 2008) using techniques such as approximation theory and empirical process
theory (van der Vaart and Wellner, 1996; Kosorok, 2008).

Secondly, previous works only take into account the uniform resampling method based
on the 1-NN classifier, where the weights of the bagged estimate have an explicit probability
distribution, whereas our work aims at providing a theoretical analysis of the under-sampling
k-NN algorithm (Theorem 1). To this end, we have to explore the more complex Generalized
Pascal distribution (Section 7.2.2).

Thirdly, previous works consider the “infinite simulation” case of bagged k-NN when the
number of bagging round B → ∞, where the results fail to explain the success of bagging
with finite resampling times in practice. By contrast, we provide results of convergence rate
with finite B by exploiting arguments such as Bernstein’s concentration inequality from the
empirical process theory, which enable us to derive the relationships among the number of
bagging rounds B, the number of nearest neighbors k and the expected sub-sample size s
(Theorem 3). Moreover, (19) implies that B = O((ρn)2α/(2α+d)(log(ρn)d/(2α+d))), which is
relatively small especially when ρ is small and when d is large.

Last but not least, results in Biau et al. (2010) hold “in expectation” w.r.t. both the
resampling distribution and input data, and results in Samworth (2012) hold “in probability”,
while results in our study hold “with high probability”, which is a stronger claim since it gives
us a confidence about how well the method has learned for a given data set D of fixed size
n (Steinwart and Christmann, 2008). In other words, Theorem 1 and 3 imply that for most
datasets sampled from Pn the classifiers ψ̂k,u and ψ̂B,u have an almost optimal performance
whenever n is large.
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4.3.3 Comments on Complexity

As a commonly-used algorithm, k-d tree (Bentley, 1975) is used to search the nearest neigh-
bors in NN-based methods. In what follows, we show that under-bagging helps reducing the
time complexity of both the construction and search stages, whereas maintaining roughly
the same space complexity.

Friedman et al. (1977) shows that k-d tree has a time complexity O(nd log n) and a
space complexity O(nd) for the tree construction. By Theorem 3, it suffices to choose
B = O((ρn)2α/(2α+d)(log(ρn)d/(2α+d))) when s = (ρn)d/(2α+d)(log(ρn))2α/(2α+d). Therefore,
compared with the standard k-NN whose complexity is O(nd log n), the time complexity of
construction the k-d tree in our algorithm can be reduced to O((ρn)d/(2α+d)d log(ρn)) with
parallel computing fully employed. Considering the bagging rounds B, the space complexity
of our algorithm turns out to be O(Bsd) = O(kρnd) = O(ρn log(ρn)d), whereas the space
complexity of the standard k-NN is O(nd).

In the search of the k-th nearest neighbor for a test sample, the time complexity is
O(k log n) (Friedman et al., 1977). For the standard k-NN, since the number of nearest
neighbors is O(n2α/(2α+d)) (Chaudhuri and Dasgupta, 2014; Zhao and Lai, 2021), the time
complexity of the search stage turns out to be O(n2α/(2α+d) log n)). According to Theorem
3, thanks to the under-sampling technique, for each base learner, we merely need to search
O(log(ρn)) neighbors among s = (ρn)d/(2α+d)(log(ρn))2α/(2α+d) samples. Thus, the time
complexity of the search stage can be reduced to O(log2(ρn)).

In summary, the bagging technique can enhance the computational efficiency to a con-
siderable amount when parallel computation is fully employed. When the dimension gets
higher, we typically require more samples in the input space, i.e., larger n, and thus an
algorithm requires more time. This phenomenon is often referred to as the curse of dimen-
sionality. We mention that the under-bagging technique can actually alleviate this problem
by enjoying smaller time complexity. Furthermore, by adopting the under-sampling rule,
the expected number of samples in each class is equal to the sample size of the minority
class, and thus the size of training samples at each bagging round can be greatly reduced
when the data distribution is highly imbalanced, reflected in a very small value of ρ.

5. Error Analysis

In this section, we conduct error analysis for the under-sampling and under-bagging k-NN
classifier respectively by establishing its convergence rates, which are stated in the above
section in terms of the AM measure. The downside of using the AM measure is that it does
not admit an exact bias-variance decomposition and the usual techniques for classification
error estimation may not apply directly. Nonetheless, if we introduce the balanced version
of the classification loss,

Lbal(x, y, ψ(x)) = Lcl(x,m,ψ(x))/(Mπm) = 1{ψ(x) 6= m}/(Mπm), if y = m. (22)

where a wrong classification of an instance from the minority class is punished stronger
than a wrong classification of an instance from the majority class, we are able to reduce the
problem of analyzing the AM regret to the problem of analyzing the expectation or sum of a
loss on individual samples. In fact, the balanced loss is a useful tool to study the statistical
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consistency of algorithms for ranking and imbalanced classification (Kotlowski et al., 2011;
Menon et al., 2013). According to Proposition 6 in Narasimhan et al. (2015), the Bayes
classifier w.r.t. the balanced loss can be expressed as

ψ∗Lbal,P
(x) = arg min

m∈[M ]

M∑
i=1

ηi(x)Lbal(x,m, i) = arg min
m∈[M ]

M∑
i=1

ηi(x)1{i 6= m}/πi

= arg min
m∈[M ]

Å M∑
i=1

ηi(x)/πi − ηm(x)/πm

ã
= arg max

m∈[M ]
ηwm(x). (23)

For brevity, we write η∗Lbal,P
(x) := ηψ∗Lbal,P

(x)(x) in the following. From (23) we see that the
Bayes classifier in terms of the balanced loss depends on the weighted posterior probability
function ηw instead of η. To explain, let us consider the binary classification problem
ψ : X → {+1,−1} with π+1 ≥ π−1. Then (23) takes the following form

ψ∗Lbal,P
(x) = sign

(
η+1(x)/π+1 − η−1(x)/π−1

)
= sign

(
η+1(x)/π+1 − (1− η+1(x))/π−1

)
= sign(η+1(x)− π+1),

where sign(x) = 1 if x > 0 and sign(x) = −1 otherwise. It is easy to see that the decision
boundary changes from 1/2 for usual classification to π+1, which expands the region where
the prediction is the minority class. In particular, if πm = 1/M for 1 ≤ m ≤ M , then we
have Lbal(x, y, ψ(x)) = Lcl(x, y, ψ(x)), then the balanced loss is equal to the classification
loss, which leads to the same Bayes classifier.

In what follows, Proposition 5, Theorem 6 and Proposition 7 tell us how to reduce the
problem of bounding the AM regret to the problem of bounding the estimation error of the
posterior probability function, which supplies the key to the proof of both under-sampling
and under-bagging k-NN classifier. The proofs of these propositions are given in Section 7.

We start with Proposition 5 which indicates that to analyze the AM-regret of a classifier,
it suffices to analyze its balance risk.

Proposition 5 For any classifier ψ : X → [M ], we have rAM(ψ) = 1−RLbal,P(ψ).

The above proposition directly yields that r∗AM = 1 − R∗Lbal,P
, which implies that the

AM-regret is equal to the excess balanced error. As a result, the AM-regret in (5) can be
re-expressed as

RAM(ψ) = RLbal,P(ψ)−R∗Lbal,P
. (24)

To bound the right-hand side of (24), the main idea here is to build a new probability
distribution to convert the excess balanced error into the excess classification error so that
the approximation theory and the Bernstein’s concentration inequality for multi-class clas-
sification can be applied. To this end, note that (23) implies that the Bayes classifier in
terms of the balanced loss depends on ηw, which inspires us to consider a new probability
distribution Pw with the posterior probability function ηw. To be specific, let P(X,Y ) be the
probability distribution of the samples, then we define the balanced probability distribution
Pw(X,Y ) whose marginal distribution satisfies

πwm := Pw(Y = m) = 1/M for 1 ≤ m ≤M, (25)
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and the conditional density function satisfies

fw(x|Y = m) = ηm(x)fX(x)/πm. (26)

Consequently, combining (25) and (26), we obtain the marginal density fwX(x) given by

fwX(x) =
M∑
m=1

πwmf
w(x|y = m) =

M∑
m=1

ηm(x)fX(x)/(Mπm). (27)

Thus, for the probability measure Pw(x, y), the Bayes classifier w.r.t. the classification loss
is

ψ∗Lcl,Pw
(x) = arg max

m∈[M ]
ηwm(x) = ψ∗Lbal,P

(x). (28)

With these preparations, we present the next theorem showing the equivalence between
the excess balanced error w.r.t. P and the excess classification error w.r.t. Pw defined as
above, which supplies the key to the proof of the convergence rates of the candidate classifier
w.r.t. the AM measure.

Theorem 6 Let Pw be the probability measure defined by (25) and (26). Then for any
classifier ψ : X → Y, we have RLbal,P(ψ)−R∗Lbal,P

= RLcl,Pw(ψ)−R∗Lcl,Pw
.

Combining Theorem 6 with (24), we see that the standard techniques can also be applied
to analyzing the classification error w.r.t. the balanced probability distribution Pw to derive
the convergence rates of AM regret.

The following Lemma enables us to reduce the problem of bounding the excess multi-
class classification error to the problem of bounding the estimation error of the posterior
probability function.

Proposition 7 Let η̂ : X → [0, 1]M be an estimate of ηw and ψ̂(x) = arg maxm∈[M ] η̂m(x).
If (Pw)n(‖η̂(X) − ηw(X)‖∞ ≤ φn) ≥ 1 − δ, where (φn) is a positive sequence, then with
probability (Pw)n at least 1− δ, there holds RLcl,Pw(ψ̂)−R∗Lcl,Pw

≤ cβ(2φn)β+1.

Therefore, to further our analysis, we first need to bound the L∞-distance ‖η̂k,u− ηw‖∞
and ‖η̂B,u − ηw‖∞, where η̂k,u and η̂B,u are the posterior probability function estimator
for the under-sampling and under-bagging k-NN defined by (7) and (11), respectively. We
present the error analysis for the under-sampling and under-bagging k-NN classifiers in the
following two sections.

5.1 Analysis for the Under-Sampling k-NN Classifier

In this Section, we conduct error analysis for the under-sampling k-NN classifier by es-
tablishing error decomposition for the term ‖η̂k,u(x) − ηw(x)‖∞ in (32). Then in Sections
5.1.1-5.1.3, we bound the sample error, the approximation error and the under-sampling
error respectively. These three terms play an essential role in establishing the convergence
rates of the under-sampling k-NN classifier and the minimax lower bound as stated in Theo-
rems 1 and 2 in Section 4.1. All the proofs related to Sections 5.1.1-5.1.3 are given in Section
7.1.
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The downside of under-sampling strategy is that it changes the probability distribution
of the training data, that is, the under-sampling subset Du

n in Section 3.1 dose not have the
distribution P. In the sequel, let Pu denote the probability distribution of the accepted sam-
ples by the under-sampling strategy discussed in Section 3.1 and ηu(x) be the corresponding
posterior probability function. By Lemma 19 in Section 7.1.1, for 1 ≤ m ≤ M , ηum(x) can
be expressed as

ηum(x) =
ηm(x)/n(m)∑M
m=1 ηm(x)/n(m)

. (29)

It thus follows that

‖η̂k,u(x)− ηw(x)‖∞ ≤ ‖η̂k,u(x)− ηu(x)‖∞ + ‖ηu(x)− ηw(x)‖∞. (30)

It is easy to see that the first term of the right-hand side of (30) represents the error for
applying k-NN on the subset Du

n and thus it admits the usual decomposition for error
estimation whereas the second term, namely under-sampling error is brought about by the
under-sampling strategy from the training data. To bound the first term ‖η̂k,u − ηu‖∞, we
need to define ηk,u : X → [0, 1]M , where its m-th entry

ηk,um (x) = E[η̂k,um (x)|Du
n] =

1

k

k∑
i=1

ηum(Xu
(i)(x)). (31)

In other words, ηk,u denotes the conditionally expectation of η̂k,u on the under-sampling
data Du

n. Thus we obtain the error decomposition for the posterior probability function
w.r.t. the under-sampling k-NN classifier as follows:

‖η̂k,u(x)− ηw(x)‖∞
≤ ‖ηu(x)− ηw(x)‖∞ + ‖η̂k,u(x)− ηk,u(x)‖∞ + ‖ηk,u(x)− ηu(x)‖∞. (32)

Apart from the under-sampling error mentioned above, the second term on the right-hand
side of (32) is called the sample error since it is associated with the empirical measure Du

n

and the last term of (32) is called approximation error since it indicates how the error is
propagated by the under-sampling k-NN algorithm.

5.1.1 Bounding the Sample Error Term

We now establish the oracle inequality for the under-sampling posterior probability function
η̂k,u under L∞-norm. This oracle inequality will be crucial in establishing the convergence
results of the estimator.

Proposition 8 Let η̂k,u and ηk,u be defined by (7) and (31), respectively. Then there exists
an N1 ∈ N, which will be specified in the proof, such that for all n > N1, with probability
Pn ⊗ PZ at least 1− 1/n2, there holds

‖η̂k,u(x)− ηk,u(x)‖∞ .
»

log su/k. (33)
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5.1.2 Bounding the Approximation Error Term

The result on bounding the deterministic error term shows that the L∞-distance between
ηk,u and ηu can be small by choosing k appropriately.

Proposition 9 Let ψ̂k,u be the under-sampling k-NN classifier defined by (8). Assume that
PX is the uniform distribution on [0, 1]d and Assumption 1 is satisfied. Then there exists an
N2 ∈ N, which will be specified in the proof, such that for all n ≥ N2, there holds

‖ηk,u(x)− ηu(x)‖∞ . (k/su)α/d

with probability Pn ⊗ PZ at least 1− 1/n2.

5.1.3 Bounding the Under-sampling Error Term

The next proposition shows that the L∞-norm distance between ηu and ηw, which possess
a polynomial decay w.r.t. the number of the training data. The following result is crucial
in our subsequent analysis on the converge rates of both under-sampling and under-bagging
k-NN classifier.

Proposition 10 Let ηwm(x) and ηum(x) be defined by (2) and (29) respectively. Then there
exists an N3 ∈ N, which will be specified in the proof, such that for all n ≥ N3, there holds

‖ηu(x)− ηw(x)‖∞ .
»

log n/n (34)

with probability Pn at least 1− 1/n2.

5.2 Analysis for the Under-bagging k-NN Classifier

In this Section, we proceed with the estimation of the posterior probability error term
‖η̂B,u(x)−ηw(x)‖∞ for the under-bagging k-NN classifier by establishing error decomposition
for ‖η̂B,u(x) − ηw(x)‖∞ in (39). Then in Sections 5.2.1-5.2.3, we bound the bagging error,
the bagged approximation error, and the bagged sample error, respectively. Together with
the bound of the under-sampling error in Section 5.1.3, we are able to derive the convergence
rates of the under-bagging k-NN classifier as stated in Theorem 3 and Corollary 4 in Section
4.2. All the proofs related to Sections 5.2.1-5.2.3 are given in Section 7.2.

We first show that the under-bagging k-NN classifier can be re-expressed as a weighted k-
NN, which is amenable to statistical analysis. To be specific, let X(i)(x) be the i-th nearest
neighbor of x in Dn w.r.t. the Euclidean distance and Y(i)(x) denote its label. Then for
1 ≤ b ≤ B, we re-express the posterior probability estimate η̂b,u : X → [0, 1]M on the under-
sampling set Du

b with its m-th entry defined by η̂b,um (x) =
∑n

i=1 V
b,u
i (x)1

{
Y(i)(x) = m

}
.

Here, V b,u
i (x) equals 1/k if

∑i
j=1 Z

b(X(j)(x), Y(j)(x)) ≤ k and 0 otherwise, where Zb(x, y),
1 ≤ b ≤ B, are i.i.d. Bernoulli random variables with parameter a(x, y). Then the posterior
probability estimate (11) can be re-expressed as

η̂B,um (x) =
1

B

B∑
b=1

η̂b,um (x) =
1

B

B∑
b=1

n∑
i=1

V b,u
i (x)1

{
Y(i)(x) = m

}
. (35)
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To bound ‖η̂B,u(x)−ηw(x)‖∞, we need to consider the bagged posterior probability function
estimator, that is, we repeat under-sampling an infinite number of times, and take the
average of the individual outcomes. To be specific, we define η̃B,u : X → [0, 1]M , with the
m-th entry

η̃B,um (x) = EBPZ [η̂B,um (x)|{(Xi, Yi)}ni=1] :=
n∑
i=1

V
u
i (x)1

{
Y(i)(x) = m

}
, (36)

where

V
u
i (x) = EPZ

[
V b,u
i (x)

∣∣{(Xi, Yi)}ni=1

]
. (37)

In fact, for any x ∈ X , by the law of large numbers, we have η̂B,um (x) → η̃B,um (x) almost
surely as B → ∞. Then we define the population version of the bagged estimator η̃B,um (x)
as follows:

ηB,um (x) = E[η̃B,um |X1, . . . , Xn] =

n∑
i=1

V
u
i (x)ηum(X(i)(x)), (38)

where the conditional expectation is taken w.r.t. (Pu)nY |X . With these preparations, we are
able to make the following error decomposition:

‖η̂B,u(x)− ηw(x)‖∞ ≤ ‖η̂B,u(x)− η̃B,u(x)‖∞ + ‖ηB,u(x)− η̃B,u(x)‖∞
+ ‖ηB,u(x)− ηu(x)‖∞ + ‖ηu(x)− ηw(x)‖∞. (39)

Compared with the analysis for the under-sampling k-NN classifier in (32), there are four
terms on the right hand side of (39). Since we are not able to repeat the sampling strategy an
infinite number of times, the bagging procedure brings about the error term ‖η̂B,u− η̃B,u‖∞,
which is called bagging error in what follows. In addition, the second and the third term
on the right hand-side of (39) can be viewed as the bagged sample error and the bagged
approximation error for the bagged posterior probability function estimator η̃B,um by similar
arguments in the analysis for under-sampling k-NN classifier. Finally, the last term of (39)
is the under-sampling error as mentioned in (32).

5.2.1 Bounding the Bagging Error Term

The next proposition shows that the bagging error term can be bounded in term of the
number of bagging rounds B.

Proposition 11 Let η̂B,u and η̃B,u be defined by (35) and (36), respectively. Suppose that
9B ≥ 2(2d+ 3) log n. Then there exists an N4 ∈ N, which will be specified in the proof, such
that for all n ≥ N4, there holds

‖η̃B,u(x)− η̂B,u(x)‖∞ .
»

log n/B

with probability PBZ ⊗ Pn at least 1− 1/n2.
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5.2.2 Bounding the Bagged Approximation Error Term

We now show that the L∞ distance between ηB,u and ηu can be bounded by two terms. The
first term is determined by the ratio k/s and the smoothness of the posterior probability
function whereas the second term results from the under-sampling strategy, which possess
an exponential decay w.r.t. (s/n)2.

Proposition 12 Let ηB,u be defined by (38) with k ≥ d48(2d + 9) log ne and ηu be defined
by (29). Assume that P satisfies Assumption 1 and PX is the uniform distribution on [0, 1]d.
Moreover, suppose that s exp(−(s/M − k)2/(2n)) ≤ Mπ/2. Then there exists an N5 ∈ N,
which will be specified in the proof, such that for all n ≥ N5, there holds

‖ηB,u(x)− ηu(x)‖∞ . (k/s)α/d + exp
(
−(s− k)2/(2n)

)
with probability Pn not less than 1− 1/n2.

5.2.3 Bounding the Bagged Sample Error Term

We now establish the oracle inequality for the bagged posterior probability function η̃B,u

in terms of L∞ norm. The oracle inequality will be crucial in establishing the convergence
results for the under-bagging k-NN classifier.

Proposition 13 Let η̃B,u and ηB,u be defined by (36) and (38), respectively. Then there
exists an N6 ∈ N, which will be specified in the proof, such that for all n ≥ N6, there holds

‖η̃B,u(x)− ηB,u(x)‖∞ .
»
s log n/(kMn(1))

with probability PBZ ⊗ Pn at least 1− 1/n2.

6. Experiments

6.1 Performance Evaluation Metrics

Compared with typical supervised learning, imbalanced learning pays more attention to the
classification performance of the minority classes. Therefore, instead of the overall accuracy,
we use the AM measure defined by (4) to evaluate the performance of different classifiers.

6.2 Hyper-parameter Analysis

There are three hyper-parameters in the under-bagging k-NN for imbalanced classification:
the bagging rounds B, the number of nearest neighbors k, and the expectation of subsample
size s. Before we conduct parameter through synthetic experiments, we first introduce the
data generation procedure. We use a simple toy dataset containing two interleaving half
circles. In detail, we use two half moon functions with Gaussian noises added to synthesize
the samples, where each half represents an unique class. The standard deviation of the
Gaussian noises is 0.2. We generate 20, 000 positive samples and 200 negative samples in
each run for training, and 200, 000 positive samples and 2, 000 negative samples for testing.
We repeat the synthetic experiments for 100 times and record the averaged recall score. One
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Figure 1: One Visualization of the Generated Synthetic Dataset

visualization of synthetic dataset is shown in Figure 1, with the ratio of the majority class
(marked in blue) and the minority class (marked in orange) 100 : 1.

Parameter Analysis on B and k. To study these two hyper-parameters B and k, we fix
the expected sub-sample size s = Mn(1), and vary the bagging rounds B ∈ {1, 2, 5, 10, 20, 50}
and the number of neighbors k ∈ {1, 2, . . . , 30}. The averaged AM measure among different
B and k are shown in Figure 2. As expected, we can choose a sufficient large B and the
optimal number of neighbors k for a good performance. Moreover, as the bagging rounds
B increases, the performance of a bagging classifier is robust under a wide range of hyper-
parameter k, which reduces the difficulty of selecting the optimal hyper-parameter k. In
addition, from the practical perspective, we can use a relatively large B to achieve a high
AM measure performance with a low running time, since we can easily save running time
under the parallelism of bagging rounds B.
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Figure 2: Parameter Analysis between B and k.
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Parameter Analysis on the Expected Sub-Sample Size s. To study the empirical
performance of under-bagging k-NN with different expected sub-sample size s, we fix the
bagging rounds B = 20, and explore the performance under different sub-sample size s =
aMn(1) with a ∈ {0.2, 0.4, . . . , 1.0}. In fact, according to (6), a represents the acceptance
probability of the samples in the minority class. As is shown in Figure 3, as the expected sub-
sample size becomes larger, the results of the AMmeasure become better, since more samples
are taken into consideration in each round of bagging. However, the difference in the best
AM measure gets smaller while the expected sub-sample size is close toMn(1), which means
that when coping with massive imbalanced data, under-bagging k-NN achieves competitive
empirical performance with a relatively small sub-sample size s w.r.t. n. Moreover, the
optimal number of nearest neighbors k required reduces with the expected sub-sample size
s, which coincides with the theoretical results that k = s(log(ρn)/ρn)d/(2α+d) in Theorem
3. The reduction of a and k results in a higher computational efficiency.
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Figure 3: Parameter analysis of the expected sub-sample size s.

6.3 Numerical Comparison on Real-world Imbalanced Datasets

6.3.1 Experimental Settings

To verify the effectiveness of our proposed under-bagging k-NN for imbalanced classification,
we conduct extensive experiments on nine real-world imbalanced datasets, including binary-
class and multi-class data sets. These imbalanced datasets comes from the UCI Machine
Learning Repository (Dua and Graff, 2017). As some data sets contain missing values,
we impute the missing values of numerical features and categorical features with the mean
value and the most frequent value of the non-missing values for those features respectively.
The details of datasets, including size and dimension are listed in Table 1. Besides, we
show the proportion of the majorities and minorities in each data set, and then calculate
the imbalance ratio ρ. We mention that the number of features in Table 1 are provided
after the preprocessing of the one-hot encoding for categorical features. We use the one-hot
encoding to transform a categorical feature with k categories into k binary features. We
apply standardization of datasets by scaling features to the range of [0, 1]. We apply 2 times
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10-fold cross-validation with a total of 20 runs for repeated experiments, and then report
the average results of AM measure and running time. All experiments are conducted on a
64-bit machine with 24-cores Intel Xeon 2.0GHz CPU (E5-4620) and 64GB main memory.

Table 1: Description of Real-World Data Sets

Datasets #Instances #Features #Classes %Majority %Minority ρ

APSFailure 76,000 170 2 98.19 1.81 3.62%
ActivityRecognition 22,646 9 4 90.69 1.48 5.92%
Adult 48,842 105 2 76.07 23.93 47.86%
Bitcoin 2,916,697 6 2 98.58 1.42 2.84%
BuzzInSocialMedia 140,707 77 2 99.16 0.84 1.68%
CencusIncomeKDD 299,285 503 2 93.8 6.2 12.4%
CreditCardClients 30,000 32 2 77.88 22.12 44.24%
OccupancyDetection 20,560 5 2 76.9 23.1 46.2%
p53Mutants 31,420 5408 2 99.52 0.48 0.96%

We verify the effectiveness of our under-bagging technique for the k-NN classifier, we
compare the following cases:

(i) The standard k-NN classifier;

(ii) The k-NN classifier with under-sampling of the majority classes, corresponding to our
under-bagging k-NN classifier with B = 1 and a = 1;

(iii) Our under-bagging k-NN classifier with B = 5 and s = Mn(1), which means that we
use all samples of the minority class;

(iv) Our under-bagging k-NN classifier withB = 5 and s = 0.5Mn(1), which means that the
expected sub-sample size turns out to be a half of that in (iii) for efficient computing.

We use the scikit-learn and imbalanced-learn implementations in Python and tune the
number of neighbors k by cross-validation.

Moreover, we compare our under-bagging k-NN classifier to the following under-sampling
and over-sampling methods, including

(i) Edited Nearest Neighbours (ENN) (Wilson, 1972) is an under-sampling technique
which uses a selection criterion to remove samples from the class to be under-sampled.
The selection creterion is to remove samples when the majority of their nearest-
neighbbors do not belong to the the same class as the samples. The number of
neighbors k to use in this technique is the hyper-parameter.

(ii) NearMiss (Mani and Zhang, 2003) is an under-sampling technique which uses some
heuristic rules to select samples. It selects samples from majority classes for which
the average distance to the N closest samples of the minority class is the smallest.
The parameter N , the size of the neighborhood, is the hyper-parameter of this under-
sampling technique.
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(iii) One Sided Selection (OSS) (Kubat et al., 1997) is an under-sampling technique
which uses a 1 nearest neighbor rule to iteratively decide if a sample from major-
ity classes should be removed or not. TomekLinks is further used after the nearest
neighbor rule to remove noisy samples.

(iv) TomekLinks (Tomek, 1976) is an under-sampling technique which uses some heuristic
rules to clean the dataset. It uses the Tomek’s links to detect paired samples and
remove the point from the majority class.

(v) Random Over-sampling (RO) (Menardi and Torelli, 2014) aims to over-sample the mi-
nority class(es) by picking samples at random with replacement. Then the augmented
data set is used instead of the original data set to train a classifier.

(vi) SMOTE (Chawla et al., 2002) is an over-sampling approach. It takes the difference
between the samples under consideration and its nearest neighbor. Then a random
point is selected along the line segment between two specific features. This approach
effectively forces the decision region of the minority class to become more general.

(vii) ADASYN (He et al., 2008) uses Adaptive Synthetic algorithm for oversampling. This
method is similar to SMOTE but it generates different number of samples depending
on an estimate of the local distribution of the class to be over-sampled.

We use the imbalanced-learn implementations in Python. To mention, we use the standard
k-NN classifier on the under-sampled and over-sampled data points generated from these
under-sampling and over-sampling methods.

6.3.2 Descriptions of Datasets

The data sets are from the UCI machine learning repository (Dua and Graff, 2017).

• APSFailure: The APS Failure at Scania Trucks Data Set (Biteus and Lindgren, 2017)
contains 76,000 samples and 170 attributes. The dataset is collected for the prediction
of failures in the Air Pressure System of Scania heavy trucks.

• ActivityRecognition: The goal of the dataset Activity Recognition with Healthy
Older People Using a Batteryless Wearable Sensor Data Set (Shinmoto Torres et al.,
2013) is to predict the activity type using a batteryless, wearable sensor on top of
elder people’s clothing. There are two room settings (S1 and S2), and we choose the
S2 setting, where the sample size is 22,646 and the feature size is 9.

• Adult: The Adult Data Set is to predict whether the income is more than 50 thousands
per year based on census data. It contains 48,842 data points with six numerical
attributes and eight categorical attributes. We preprocess the categorical attributes
by one-hot encodings, and the feature size of the preprocessed dataset is 105.

• Bitcoin: The Bitcoin Heist Ransomware Address Data Set (Akcora et al., 2020) has
2,916,697 data points and 6 predictive attributes. This dataset aims at identifying
ransomware payments. The original labels are multiclass, containing the ‘white’ label
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(i.e., not known to be ransomware) and a series of ransomware types. As the sam-
ple size of each ransomware type is small, we combine all ransomware types into a
‘ransomware’ label to build a binary-class imbalanced dataset.

• BuzzInSocialMedia: The Buzz in social media Data Set (Kawala et al., 2013) contains
two different social networks: Twitter and Tom’s Hardware, and we choose the Twitter
part. There are 140,707 samples with 77 features representing time-windows. The
classification task is to predict whether these time-windows are followed by buzz events
or not.

• CensusIncomeKDD: The Census-Income (KDD) Data Set contains weighted census data
extracted from the 1994 and 1995 current population surveys conducted by the U.S.
Census Bureau. There are 299,285 instances with 40 categorical and numerical at-
tributes. We use one-hot encodings to preprocess the categorical attributes, leading
to 503 features in the end.

• CreditCardClients: The response variable of the Default of Credit Card Clients Data
Set (Yeh and Lien, 2009) is the default payment, with 23 numerical and categorical
explanatory variables. We one-hot encode the categorical variables, and there are
finally 32 attributes in total. The number of instances is 30,000.

• OccupancyDetection: The Occupancy Detection Data Set (Candanedo and Feldheim,
2016) uses temperature, humidity, light, and CO2 to predict room occupancy. The
sample size is 20,560 and the number of predictive variables is 5.

• p53Mutants: The classification task of the p53 Mutants Data Set (Danziger et al.,
2006) is to predict the transcriptional activity (active vs inactive) of p53 proteins.
There are 31,420 samples with 5,408 attributes.

6.3.3 Experimental Results

Tables 2(a)-2(c) summarize the averaged performance of the AM measure and Tables 3(a)-
3(c) show the computational performance w.r.t. the averaged running time. The best results
are marked in bold, the second best marked in underline, and the standard deviations are
shown in parentheses.

The numerical experiments verify the theoretical results in the following ways:
(i) For imbalanced classification, under-sampling k-NN and under-bagging k-NN classi-

fier significantly outperform the standard k-NN classifier by a large margin, which empiri-
cally verifies the results in Theorems 1 and 3 that under-sampling and under-bagging k-NN
classifiers converge to the optimal classifier w.r.t. the AM measure, whereas the standard
k-NN turns out to be inconsistent w.r.t. this measure.

(ii) The theoretical relationship between the expected sub-sample size s w.r.t. n shown
in Theorem 3 is also numerically verified. When we compare our under-bagging k-NN with
s = Mn(1) to our under-bagging k-NN with s = 0.5Mn(1), we find in Tables 2(a) and 3(a)
that the AM performance trained with smaller sub-sample size does not degrade too much,
and sometimes can be even slightly better, whereas the running time of our under-bagging
k-NN with s = 0.5Mn(1) is much smaller than that with s = Mn(1). This indicates that we
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Table 2: Average AM measure among Different Methods on Real-World Data Sets

(a) Part 1/3

Datasets k-NN Under-bagging with s = Mn(1) s = 0.5Mn(1)

B = 1 B = 5 B = 5

APSFailure 0.7917 (0.0226) 0.9401 (0.0098) 0.9464 (0.0100) 0.9444 (0.0100)
ActivityRecognition 0.8439 (0.0228) 0.8499 (0.0181) 0.8571 (0.0203) 0.8485 (0.0210)
Adult 0.7491 (0.0054) 0.8020 (0.0067) 0.8047 (0.0070) 0.8046 (0.0057)
Bitcoin 0.5638 (0.0062) 0.6630 (0.0031) 0.6740 (0.0024) 0.6694 (0.0032)
BuzzInSocialMedia 0.7959 (0.0215) 0.9411 (0.0125) 0.9433 (0.0122) 0.9425 (0.0124)
CensusIncomeKDD 0.6799 (0.0058) 0.8412 (0.0042) 0.8459 (0.0038) 0.8435 (0.0033)
CreditCardClients 0.6373 (0.0084) 0.6829 (0.0095) 0.6892 (0.0102) 0.6868 (0.0094)
OccupancyDetection 0.9930 (0.0024) 0.9941 (0.0018) 0.9942 (0.0019) 0.9938 (0.0020)
p53Mutants 0.7733 (0.0601) 0.8824 (0.0449) 0.9006 (0.0408) 0.8911 (0.0460)

(b) Part 2/3

Datasets ENN NearMiss OSS TomekLinks

APSFailure 0.8938(0.0097) 0.8593(0.0121) 0.7978(0.0223) 0.7976(0.0223)
ActivityRecognition 0.8453(0.0228) 0.8181(0.0232) 0.8440(0.0233) 0.8437(0.0229)
Adult 0.8041(0.0061) 0.7480(0.0063) 0.7712(0.0053) 0.7712(0.0053)
Bitcoin 0.6511(0.0035) 0.5361(0.0016) 0.6206(0.0032) 0.6206(0.0031)
BuzzInSocialMedia 0.8893(0.0190) 0.8111(0.0073) 0.8078(0.0221) 0.8078(0.0221)
CensusIncomeKDD 0.8164(0.0128) 0.6958(0.0048) 0.7023(0.0063) 0.7016(0.0060)
CreditCardClients 0.6831(0.0089) 0.6539(0.0104) 0.6548(0.0088) 0.6548(0.0087)
OccupancyDetection 0.9945(0.0020) 0.9924(0.0034) 0.9933(0.0022) 0.9933(0.0022)
p53Mutants 0.8149(0.0635) 0.7608(0.0476) 0.7832(0.0595) 0.7832(0.0595)

(c) Part 3/3

Datasets RO SMOTE ADASYN

APSFailure 0.9293(0.0143) 0.9481(0.0124) 0.9507(0.0105)
ActivityRecognition 0.8372(0.0374) 0.8692(0.0223) 0.8705(0.0246)
Adult 0.7948(0.0065) 0.7936(0.0056) 0.7821(0.0071)
Bitcoin 0.6360(0.0026) 0.6525(0.0027) 0.6512(0.0033)
BuzzInSocialMedia 0.9112(0.0105) 0.9294(0.0086) 0.9321(0.0081)
CensusIncomeKDD 0.8283(0.0071) 0.8277(0.0050) 0.8255(0.0057)
CreditCardClients 0.6716(0.0115) 0.6755(0.0085) 0.6667(0.0066)
OccupancyDetection 0.9954(0.0019) 0.9960(0.0018) 0.9955(0.0019)
p53Mutants 0.8629(0.0698) 0.9129(0.0514) 0.9129(0.0514)

can use a relative small sub-sample size to speed up the under-bagging k-NN and still keep
a good performance in terms of the AM measure.

(iii) The running time of our under-bagging k-NN classifier demonstrates its computa-
tional efficiency compared with the standard k-NN classifier, especially when the sample size
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Table 3: Average Running Time among Different Methods on Real-World Data Sets

(a) Part 1/3

Datasets k-NN Under-bagging with s = Mn(1) s = 0.5Mn(1)

B = 1 B = 5 B = 5

APSFailure 5.33 (0.07) 0.48 (0.07) 0.84 (0.07) 0.52 (0.05)
ActivityRecognition 0.56 (0.10) 0.06 (0.02) 0.17 (0.04) 0.13 (0.02)
Adult 4.37 (0.15) 2.05 (0.16) 2.92 (0.14) 1.59 (0.10)
Bitcoin 16885.49 (834.14) 10.21 (1.42) 11.88 (1.16) 8.11 (0.86)
BuzzInSocialMedia 21.86 (5.36) 0.69 (0.10) 1.08 (0.13) 0.65 (0.10)
CensusIncomeKDD 107.43 (0.41) 21.11 (1.01) 37.22 (0.60) 19.00 (0.81)
CreditCardClients 1.51 (0.20) 0.71 (0.05) 1.02 (0.06) 0.65 (0.04)
OccupancyDetection 0.49 (0.03) 0.24 (0.05) 0.40 (0.06) 0.25 (0.03)
p53Mutants 2.72 (0.00) 1.51 (0.07) 3.20 (0.08) 2.22 (0.07)

(b) Part 2/3

Datasets ENN NearMiss OSS TomekLinks

APSFailure 113.76(3.53) 2.06(0.10) 51.33(8.33) 0.98(1.24)
ActivityRecognition 1.01(0.17) 0.48(0.05) 1.57(0.06) 0.93(0.25)
Adult 36.98(0.73) 6.79(0.18) 30.35(0.37) 30.94(0.59)
Bitcoin 492.15(98.29) 83.43(12.23) 523.43(19.73) 449.59(101.17)
BuzzInSocialMedia 341.22(8.04) 4.02(0.13) 162.30(35.68) 244.52(6.45)
CensusIncomeKDD 1728.47(56.86) 82.72(0.88) 1008.89(206.21) 1367.94(8.67)
CreditCardClients 13.12(0.84) 2.40(0.28) 10.99(0.15) 11.38(0.24)
OccupancyDetection 0.24(0.05) 0.21(0.04) 0.61(0.01) 0.23(0.04)
p53Mutants 35.25(1.99) 3.56(0.20) 29.40(3.53) 32.70(0.53)

(c) Part 3/3

Datasets RO SMOTE ADASYN

APSFailure 19.02(0.74) 20.24(1.12) 21.60(1.40)
ActivityRecognition 0.26(0.02) 0.29(0.02) 0.96(0.02)
Adult 6.35(0.36) 8.79(0.40) 17.24(2.71)
Bitcoin 84.70 (1.12) 84.90(1.29) 82.58(1.20)
BuzzInSocialMedia 55.81(1.92) 52.50(3.08) 53.36(1.39)
CensusIncomeKDD 348.61(23.67) 351.45(13.42) 464.12(13.89)
CreditCardClients 2.39(0.08) 3.13(0.04) 6.93(0.12)
OccupancyDetection 0.09(0.00) 0.11(0.00) 0.31(0.00)
p53Mutants 8.54(0.19) 10.78(0.26) 13.10(1.12)

is large. As our complexity analysis in Section 4.3.3 show, the time complexity of construc-
tion can be reduced from O(n log n) (for the standard k-NN) to O((ρn log(ρn))d/(2α+d)),
and the time complexity in the testing stage can be reduced from O((n log n)2α/(2α+d)) to
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O(log2(ρn)). To verify the complexity results, we compare the running time of the under-
bagging k-NN (B = 1) with that of the standard k-NN, and we observe that the under-
bagging technique significantly reduces the running time. In Table 3(a), the under-bagging
technique can reduce at least half the running time of the standard k-NN. In particular, on
Bitcoin, where the sample size is up to 3 million and the imbalance ratio is about 3%, the
running time can even be reduced by 99.4%. Besides, when we adopt more bagging rounds
B = 5, the performance of the under-bagging k-NN w.r.t. the AM measure further enhances
with a mild increase of the running time.

(iv) From Tables 2(a), 2(b), 3(a), and 3(b), our under-bagging k-NN classifier not only
outperforms the comparing under-sampling algorithms, but also it’s competitive in com-
putational efficiency. For example, the averaged AM measure score of our under-bagging
k-NN with s = Mn(1) and B = 5 is 0.9464 on the dataset APSFailure, which significantly
outperforms other four under-sampling algorithms with AM measure 0.8938, 0.8593, 0.7978,
and 0.7976, respectively. Moreover, the averaged running time of our under-bagging k-NN
is also much smaller than other competitive under-sampling methods, at least saving 60% of
the running time (NearMiss 2.1s v.s. ours under-bagging 0.84s) for the dataset APSFailure.
The advantages of our under-bagging k-NN in practice can be explained from two aspects.
On the one hand, our under-bagging k-NN utilize more information from samples in the
majority classes as the bagging size B increases. By contrast, under-sampling methods may
throws away potentially useful information of the data as discussed in Section 1, which leads
to the poor AM measure. On the other hand, we mention that our under-bagging k-NN is
based on the random sampling procedure with smaller computation complexities than other
under-sampling methods which either selects the best prototype or cleans noisy samples
from the majority classes.

(v) In Tables 2(a), 2(c), 3(a) and 3(c), we compare our under-bagging k-NN with over-
sampling algorithms. From the perspective of the AM measure, our under-bagging k-NN
shows the best performance on 5 datasets, and shows comparable performance to SMOTE
and ADADYN on the remaining 4 datasets. Note that our under-bagging k-NN outperforms
RO on most datasets since random over-sampling doesn’t significantly improve minority
class recognition as discussed in Japkowicz (2000); Chawla et al. (2002). Moreover, from
the computational perspective, our running time is significantly smaller than those of the
over-sampling algorithms on most of the datasets, since our under-bagging k-NN doesn’t
involve additional synthetic data generation to rebalance the data and the size of training
data at each bagging round is reduced by the under-sampling strategy.

7. Proofs

In this section, we first prove the fundamental results related to the AM measure in Section
5, which play an essential role in establishing the convergence rates for both under-sampling
and under-bagging k-NN classifiers. Then in Section 7.1 and Section 7.2, we present the
proofs of the theoretical results related to the under-sampling k-NN in Section 5.1 and the
under-bagging k-NN in Section 5.2, respectively.
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Proof [of Proposition 5] By the definition of the balanced loss in (22), we have

1−RLbal,P(ψ) = 1−
M∑
i=1

P(y = i, ψ(x) 6= y)/(Mπi) =
1

M

M∑
i=1

(πi − P(y = i, ψ(x) 6= y))/πi

=
1

M

M∑
i=1

P(y = i, ψ(x) = i)/πi =
1

M

M∑
i=1

P(ψ(x) = i|y = i) = rAM(ψ).

This completes the proof of Proposition 5.

The following lemma is needed in the proof of Theorem 6, which provides a new formu-
lation of the excess risk w.r.t. the balanced loss.

Lemma 14 Let the balanced loss be defined in (23). Then we have

RLbal,P(ψ)−R∗Lbal,P
=

M∑
m=1

(ηm(x)/(Mπm))EPX

[
ηwLbal,P

(x)− ηwψ(x)(x)
]
,

where we write ηwLbal,P
(x) := ηwψ∗Lbal,P

(x)(x).

Proof [of Lemma 14] By the definition of the balanced loss (23), we have

RLbal,P(ψ) = EPX

ï
EPY |X

ï M∑
m=1

1{Y = m}1{ψ(x) 6= Y }/(Mπm)

ò∣∣∣∣X = x

ò
= EPX

ï
EPY |X

ï M∑
j=1

Å
1{ψ(x) = j}

M∑
m=1

1{Y = m}1{Y 6= j}/(Mπm)

ãò∣∣∣∣X = x

ò
= EPX

ï M∑
j=1

Å
1{ψ(x) = j}EPY |X

ï M∑
m=1

1{Y = m}1{Y 6= j}/(Mπm)

òã∣∣∣∣X = x

ò
= EPX

ï M∑
j=1

Å
1{ψ(x) = j}

M∑
m6=j

ηm(x)/(Mπm)

ãò
= EPX

ï M∑
m6=ψ(x)

ηm(x)/(Mπm)

ò
.

Consequently we find

RLbal,P(ψ)−R∗Lbal,P
= EPX

ï M∑
m 6=ψ(x)

ηm(x)/(Mπm)

ò
− EPX

ï M∑
m 6=ψ∗Lbal,P

(x)

ηm(x)/(Mπm)

ò
=

M∑
m=1

(ηm(x)/(Mπm))EPX

[
ηwLbal,P

(x)− ηwψ(x)(x)
]
,
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where ηwLbal,P
(x) = ηwψ∗Lbal,P

(x)(x). Thus we obtain the assertion.

Proof [of Theorem 6] An elementary calculation yields

RLcl,Pw(ψ)−R∗Lcl,Pw
= EPwX

[
EPw

Y |X
[1{ψ(x) 6= Y } − 1{ψ∗Lcl,Pw

(x) 6= Y }]
∣∣X = x

]
= EPwX

[
ηw,∗Lcl,Pw

(x)− ηwψ(x)(x)
]
,

where we write ηw,∗Lcl,Pw
(x) := ηwψ∗Lcl,P

w (x)(x). By (28), we find

RLcl,Pw(ψ)−R∗Lcl,Pw
= EPwX

[
ηw,∗Lbal,P

(x)− ηwψ(x)(x)
]
,

where we write ηw,∗Lcl,Pw
:= ηwf∗Lbal,P

(x)(x). This together with (27) implies

RLcl,Pw(ψ)−R∗Lcl,Pw
=

M∑
m=1

(ηm(x)/(Mπm)) · EPX

[
ηwLbal,P

(x)− ηwψ(x)(x)
]
.

Combining this with Lemma 14, we obtain the assertion.

To prove Proposition 7, we need the following Lemmas 15 and 16, which reduce the
problem of analyzing the excess classification risk to the problem of analyzing the error
estimation of posterior probability function.

Lemma 15 Let η̂ : X → [0, 1]M be an estimate of ηw and ψ̂(x) = arg maxm∈[M ] η̂m(x). If
(Pw)n(‖η̂(x)− ηw(x)‖∞ ≤ φ) ≥ 1− δ, then with probability (Pw)n at least 1− δ, there holds
‖ηw,∗Lcl,Pw

(x)− ηw
ψ̂(x)

(x)‖∞ ≤ 2φ, where ηw,∗Lcl,Pw
(x) = ηψ∗Lcl,P

w (x)(x).

Proof [of Lemma 15] Fix an x ∈ X with ‖η̂(x)−ηw(x)‖∞ ≤ φ. Letm∗ = arg maxm∈[M ] η
w
m(x)

and m = ψ̂(x). Then we have ηwm∗(x) ≤ η̂m∗(x) + φ and ηwm(x) ≥ η̂m(x)− φ. Thus, we find

ηwm∗(x)− ηwm(x) ≤ (η̂m∗(x) + φ)− (η̂m(x)− φ) = (η̂m∗(x)− η̂m(x)) + 2φ.

Since m = ψ̂(x) is the maximum entry of η̂m(x), we have η̂m∗(x) ≤ η̂m(x) and consequently
ηwm∗(x)−ηwm(x) ≤ 2φ. In other words, we show that the event {x ∈ X : ‖η̂(x)−ηw(x)‖∞ ≤ φ}
is contained in {ηwm∗(x) − ηwm(x) ≤ 2φ}. This implies that for all x ∈ X , with probability
(Pw)n at least 1− δ, there holds ηw,∗Lcl,Pw

(x)− ηw
ψ̂(x)

(x) ≤ 2φ, which finishes the proof.

Lemma 16 Let η̂ : X → [0, 1]M be an estimate of ηw and ψ̂(x) = arg maxm∈[M ] η̂m(x).
Moreover, let Assumption 1 hold. Suppose that ‖ηw,∗Lcl,Pw

− ηw
ψ̂(x)
‖∞ ≤ 2φ holds for some

φ > 0 with probability (Pw)n at least 1 − δ, where ηw,∗Lcl,Pw
(x) = ηwψ∗Lcl,P

w (x)(x). Then with

probability (Pw)n at least 1− δ, there holds

RLcl,Pw(ψ̂)−R∗Lcl,Pw
≤ (cβ/(Mπ)(2φ)β+1
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Proof [of Lemma 16] Let m = ψ∗Lcl,Pw
(x). By the definition of the excess risk, we have

RL,Pw(ψ̂(x))−R∗L,Pw = EPwX

[
ηwm(x)− ηw

ψ̂(x)
(x)
]
.

Let ηw(m)(x) denote the m-th largest entry of the vector ηw(x) = (ηw1 (x), . . . , ηwM (x))> and
define δ(x) := ηw(1)(x)− ηw(2)(x). Moreover, let ∆n := {x : X : δ(x) ≥ 2φ}. Then we have

EPwX
[ηwm(x)− ηw

ψ̂(x)
(x)] =

∫
∆n

(ηwm(x)− ηw
ψ̂(x)

(x)) dPwX(x) +

∫
∆c
n

(ηwm(x)− ηw
ψ̂(x)

(x)) dPwX(x).

Now we consider the two regions ∆n and ∆c
n separately to bound the error. If δ(x) ≥ 2φ,

since ηw(1)(x) = ηwm(x), we have ηwm(x)−ηw
ψ̂(x)

(x) < 2φ ≤ ηw(1)(x)−ηw(2)(x). In other words, we
find ηw

ψ̂(x)
(x) is larger than ηw(2)(x), which yields ηw

ψ̂(x)
(x) = ηw(1)(x) = ηwm(x). Consequently,

we obtain ∫
∆n

(ηwm(x)− ηw
ψ̂(x)

(x)) dPwX(x) = 0. (40)

Otherwise if δ(x) ≤ 2φ, then by (27), we have∫
∆c
n

(ηwm(x)− ηw
ψ̂(x)

(x)) dPwX(x) =

∫
∆c
n

M∑
m=1

(ηm(x)/(Mπm))(ηwm(x)− ηw
ψ̂(x)

(x)) dPX(x)

≤ 1

Mπ

∫
∆c
n

(ηwm(x)− ηw
ψ̂(x)

(x)) dPX(x)

≤ PX(δ(x) ≤ 2φ)/(Mπ).

Using Condition (i) in Assumption 1, we get∫
∆c
n

(ηwm(x)− ηw
ψ̂(x)

(x)) dPwX(x) ≤ (cβ/(Mπ))(2φ)β+1. (41)

Combining (40) and (41), we obtain the assertion.

Proof [of Proposition 7] Proposition 7 is a straightforward consequence of Lemma 15 and
Lemma 16.

Before we proceed, we list two lemmas that will be used frequently in the proofs. Lemma
17 is Hoeffding’s inequality, which was established in Hoeffding (1963) and Lemma 18 is
Bernstein’s inequality, which was introduced in Bernstein (1946). Both concentration in-
equalities can be found in many statistical learning textbooks, see e.g., Massart (2007);
Cucker and Zhou (2007); Steinwart and Christmann (2008).

Lemma 17 (Hoeffding’s inequality) Let a < b be two real numbers, n ≥ 1 be an integer,
and ξ1, . . . , ξn be independent random variables satisfying ξi ∈ [a, b], for 1 ≤ i ≤ n. Then,
for all τ > 0, we have

P

Å
1

n

n∑
i=1

(ξi − EPξi) ≥ (b− a)

…
τ

2n

ã
≤ e−τ .
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Lemma 18 (Bernstein’s inequality) Let B > 0 and σ > 0 be real numbers, and n ≥ 1 be
an integer. Furthermore, let ξ1, . . . , ξn be independent random variables satisfying EPξi = 0,
‖ξi‖∞ ≤ B, and EPξ

2
i ≤ σ2 for all i = 1, . . . , n. Then for all τ > 0, we have

P

Å
1

n

n∑
i=1

ξi ≥

 
2σ2τ

n
+

2Bτ

3n

ã
≤ e−τ .

7.1 Proofs Related to the Under-sampling k-NN Classifier

In this section, we first present in Sections 7.1.1-7.1.3 the proof of the theoretical results on
bounding the sample error in Section 5.1.1, the approximation error in Section 5.1.2, and
the under-sampling error in Section 5.1.3, respectively. Then, in Section 7.1.4, we prove the
main result on the convergence rates of the under-sampling k-NN classifier and the minimax
lower bound, i.e., Theorems 1 and 2 in Section 4.1.

7.1.1 Proofs Related to Section 5.1.1

The following lemma providing an explicit expression for the under-sampling distribution
discussed in Section 5.1, which supplies the key to the proof of Lemma 21 and Proposition
10.

Lemma 19 Let Pu be the probability distribution of the accepted samples by the under-
sampling strategy in Section 3.1. Then we have

Pu(X ∈ A, Y = m) =

∫
A ηm(x)fX(x) dx/n(m)∑M

m=1 πm/n(m)

.

Moreover, the marginal distribution can be expressed as

πum := Pu(Y = m) =

∫
X ηm(x)fX(x) dx/n(m)∑M

m=1 πm/n(m)

=
πm/n(m)∑M
m=1 πm/n(m)

. (42)

In addition, the conditional density function is fu(x|y = m) = ηm(x)fX(x)/πm and the
posterior probability function is given by

ηum(x) := Pu(Y = m|X = x) =
πumf

u(x|y = m)∑M
m=1 π

u
mf

u(x|y = m)
=

ηm(x)/n(m)∑M
m=1 ηm(x)/n(m)

(43)

Furthermore, the marginal distribution fuX(x) can be expressed as

fuX(x) =

M∑
m=1

πum(x)f(x|y = m). (44)

Proof [of Lemma 19] Let PX,Y,Z = PX,Y × PZ|(X,Y ) denote the joint probability measure.
Then we can calculate the probability of Z(X,Y ) = 1, that is, (X,Y ) is accepted in the
under-sampling strategy, as follows:

PX,Y,Z(Z(X,Y ) = 1) =

∫
X×Y

P(Z(X,Y ) = 1|(X,Y ) = (x, y)) dP(x, y)
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=
M∑
m=1

πm

∫
X

P(Z(X,Y ) = 1|(X,Y ) = (x,m)) dP(x|y = m)

=
M∑
m=1

πm

∫
X
a(x,m)f(x|y = m) dx.

Thus, for any measurable set A of X , an elementary calculation yields

PX,Y,Z(X ∈ A, Y = m,Z(X,Y ) = 1)

=

∫
X×Y

1{x ∈ A}1{Y = m}P(Z(x, y) = 1|(X,Y ) = (x, y)) dP(x, y)

= πm

∫
X
1{x ∈ A}P(Z(x,m) = 1|(X,Y ) = (x,m)) dP(x|y = m)

= πm

∫
X
1{x ∈ A}a(x,m)f(x|y = m) dx

= πm

∫
A
a(x,m)f(x|y = m) dx.

Consequently, the distribution function of the accepted samples is given by

Pu(X ∈ A, Y = m) = PX,Y,Z(X ∈ A, Y = m|Z(X,Y ) = 1)

=
Pu(X ∈ A, Y = m,Z(X,Y ) = 1)

Pu(Z(X,Y ) = 1)

=
πm
∫
A a(x,m)f(x|y = m) dx∑M

m=1 πm
∫
X a(x,m)f(x|y = m) dx

.

Combining this with (9), we find

Pu(X ∈ A, Y = m) = P(X ∈ A, Y = m|Z(X,Y ) = 1) =

∫
A ηm(x)fX(x) dx/n(m)∑M

m=1 πm/n(m)

. (45)

Thus we finish the proof with straightforward application of the joint probability measure
in (45) for calculating πum, fu(x|y = m), ηum and fuX(x).

To prove Proposition 8, we need to bound the number of reorderings of the data. To be
specific, for fixed x ∈ Rd, we reorder samples, X1, . . . , Xn, according to increasing values of
‖Xi−x‖ with breaking ties by considering indices, i.e., ‖Xσ1−x‖ ≤ · · · ≤ ‖Xσn−x‖, where
(σ1, . . . , σn) is a permutation of (1, . . . , n). Then we define the inverse of the permutation,
namely the rank Σi by Σi := {1 ≤ ` ≤ n : Xσ` = Xi}. Since we break ties by considering
indices, the rank Σi is unique for all 1 ≤ i ≤ n. Therefore, the rank vector (Σ1, . . . ,Σn)
for x ∈ Rd is well-defined. Let S = {(Σ1, . . . ,Σn), x ∈ Rd} be the set of all rank vectors
one can observe by moving x around in space and we use the notation |S| to represent the
cardinality of S.

The next lemma provides the upper bound for the number of reorderings, which plays a
crucial rule to derive the uniform bound for the proof of Propositions 8, 11 and 13.
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Lemma 20 For any d ≥ 1 and all n ≥ 2d, there holds |S| ≤ (25/d)dn2d.

Proof [of Lemma 20] The hyperplane ‖x−Xi‖2 = ‖x−Xj‖2 generates a sign function

pij(x) =


1 if ‖x−Xi‖2 > ‖x−Xj‖2,
0 if ‖x−Xi‖2 = ‖x−Xj‖2,
−1 if ‖x−Xi‖2 < ‖x−Xj‖2.

The collection of the sign functions {pij(x), 1 ≤ i ≤ j ≤ n}, called the sign pattern,
determines the ordering of ‖x − xi‖2 and identifies all ties. Theorem 6.2.1 in Matousek
(2013) shows that the maximal number of sign pattern is not larger than (50DN/d)d for any
d ≥ 1 and N ≥ 2d, where D denote the maximum degree of the {pij(x), 1 ≤ i ≤ j ≤ n} and
N denote the number of sign functions. Clearly, we have d = 1 and N =

(n
2

)
. Therefore,

for any d ≥ 1 and all n ≥ 2d, the number of sign pattern is not more than (25/d)dn2d. This
completes the proof.

The next lemma states that the under-sampling distribution Pu is relatively close to
the balanced distribution Pw with high probability. To be specific, (46) bounds the sub-
sample size of each class n(m) and the marginal density function fuX(x). In addition, (47)
implies that if ηm(x) is assumed to be α-Hölder continuous, ηum(x) remains to be α-Hölder
continuous. This lemma will be used several times in the sequel, which is crucial in the
proof of Propositions 8 and 9.

Lemma 21 Let ηwm(x), ηum(x) and fuX(x) be defined as in (2), (29), and (44), respectively.
Assume that P satisfies Assumption 1 and PX is the uniform distribution on [0, 1]d. Then
there exists an n1 ∈ N such that for all 1 ≤ m ≤M and all n ≥ n1, there hold

nπm/2 ≤ n(m) and 1/(2Mπ) ≤ fuX(x) ≤ 2/(Mπ) (46)

with probability Pn at least 1− 2M/n3. Moreover, for x, x′ ∈ X , we have

|ηum(x′)− ηum(x)| ≤ 4cL‖x− x′‖α. (47)

Proof [of Lemma 21] For any 1 ≤ m ≤ M , let ζi := 1{Yi = m} − πm. Then ζi’s are
independent random variables such that EP[ζi] = 0 and EPζ

2
i ≤ 1/4 for 1 ≤ i ≤ n. Using

Bernstein’s inequality in Lemma 18, we obtain that for any τ > 0, there holds

Pn
Å

1

n

n∑
i=1

1{Yi = m} ≥ πm +

…
τ

2n
+

2τ

3n

ã
≤ e−τ .

Setting τ := 3 log n, we get

Pn
(
n(m)/n ≥ πm + 2

»
log n/n

)
≤ 1/n3. (48)

On the other hand, let ζ ′i := 1{Yi 6= m} − (1 − πm), then ζ ′i’s are independent random
variables such that EP[ζ ′i] = 0 and EPζ

′2
i ≤ 1/4 for 1 ≤ i ≤ n. Again, by using Bernstein’s

inequality in Lemma 18, we obtain that for any τ > 0, there holds

Pn
Å

1− 1

n

n∑
i=1

1{Yi = m} ≥ 1− πm +

…
τ

2n
+

2τ

3n

ã
≤ 1/n3.
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Setting τ := 3 log n, we obtain

Pn
(
πm ≥ n(m)/n+ 2

»
log n/n

)
≤ 1/n3. (49)

Now, (48) together with (49) and a union bound argument yields

Pn
(

1− (2/π)
»

log n/n ≤ n(m)/(nπm) ≤ 1 + (2/π)
»

log n/n, ∀1 ≤ m ≤M
)
≥ 1− 2M/n3,

(50)

where π = max1≤m≤M πi and π = min1≤m≤M πi. Let the event E be defined by

E :=
{

1− (2/π)
»

log n/n ≤ n(m)/(nπm) ≤ 1 + (2/π)
»

log n/n, ∀1 ≤ m ≤M
}

and the integer n1 ∈ N+ satisfy log n1/n1 ≤ min{π2/4, π2/16}. The following arguments
will be made on the event E if n > n1.

(i) Since n > n1, the definition of the event E implies that 1/2 < n(m)/(nπm) for
1 ≤ m ≤M . Consequently we have nπm/2 ≤ n(m) ≤ n.

(ii) By (42), we have for 1 ≤ m ≤M ,

|πum − 1/M | =
∣∣∣∣ nπm/n(m)∑M

m=1 nπm/n(m)

− 1/M

∣∣∣∣ =
|Mnπm/n(m) −

∑M
m=1 nπm/n(m)|

M
∑M

m=1 nπm/n(m)

.

On the event E, there holds

|πum − 1/M | ≤ (4/(Mπ))
»

log n/n ·
(
1 + (2/π)

»
log n/n

)
·
(
1− (2/π)

»
log n/n

)−1
.

Since n > n1, we have |πum − 1/M | ≤ (16/(Mπ)
√

log n/n and consequently

1/(2Mπ) ≤
M∑
m=1

ηm(x)/(2Mπm) ≤
M∑
m=1

πumηm(x)/πm ≤
M∑
m=1

2ηm(x)/(Mπm) ≤ 2/(Mπ).

This together with fuX(x) =
∑M

m=1 π
u
m(x)f(x|y = m) = fX(x)

∑M
m=1 π

u
m(x)ηm(x)/πm yields

(1/(2Mπ))fX(x) ≤ fuX(x) ≤ (2/(Mπ))fX(x).
(iii) For any 1 ≤ m ≤M and x, x′ ∈ X , by (13) and (29), we have

|ηum(x′)− ηum(x)| ≤ cL‖x′ − x‖α ·
n/n(m)∑M

m=1 nηm(x)/n(m)

.

On the event E, for n > n1, there holds

|ηum(x′)− ηum(x)| ≤ cL‖x′ − x‖α
(
1− (2/π)

»
log n/n

)−1
Å M∑
m=1

nηm(x)/n(m)

ã−1

≤ cL‖x′ − x‖α
(
1− (2/π)

»
log n/n

)−1(
1 + (2/π)

»
log n/n

)
≤ 4cL‖x′ − x‖α.

Thus, (50) implies that (46) and (47) hold with probability Pn at least 1 − 2M/n3 if
n > n1, which completes the proof.

The following technical lemma is needed in the proof of Proposition 8.
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Lemma 22 Let Z1, . . . , Zn be a sequence of independent zero-mean real-valued random vari-
ables with |Zi| ≤ C for some constant C > 0. Let (v1, . . . , vn) be a weight vector, with
vmax = maxi |vi| > 0. Then for all ε > 0, we have

P

Å n∑
i=1

viZi ≥ ε
ã
≤ 2 exp

Å
− ε2

2C2vmax
∑n

i=1 |vi|

ã
.

Proof [of Lemma 22] For 1 ≤ i ≤ n, we have |viZi| ≤ Cvi. Applying Hoeffding’s inequality
in Lemma 17, we get P

(∑n
i=1 viZi ≥ ε

)
≤ 2 exp

(
−2ε2/

∑n
i=1(2Cvi)

2
)
. This together with

the inequality
∑n

i=1(2Cvi)
2 = 4C2

∑n
i=1 v

2
i ≤ 4C2vmax

∑n
i=1 |vi| yields the assertion.

Proof [of Proposition 8] By the definition of η̂k,u and ηk,u, we have

η̂k,um (x)− ηk,um (x) =
1

k

k∑
i=1

(
1{Y u

(i)(x) = m} − ηum(Xu
(i)(x))

)
.

Conditional on Du
b , the random variables 1{Y u

(1)(x) = m} − ηum(Xu
(1)(x)), . . . ,1{Y u

(su)(x) =

m}−ηum(Xu
(su)(x)) are independent with zero mean and |1{Y u

(1)(x) = m}−ηum(Xu
(1)(x))| ≤ 1.

Applying Lemma 22, we get (PuY |X)su
(
|η̂k,um (x)−ηk,um (x)| ≥ ε|Du

n

)
≤ 2 exp(−ε2k/2). Setting

ε :=
√

2(2d+ 3) log su/k, we get

(PuY |X)su
(
|η̂k,um (x)− ηk,um (x)| ≥ ε|Du

n

)
≤ 2s−(2d+3)

u . (51)

Note that this inequality holds only for a fixed x. To derive the uniform upper bound over
X , let S :=

{
(σ1, . . . , σsu) : all permutations of (1, . . . , su) obtainable by moving x ∈ Rd

}
.

Then we have

(PuY |X)su
Å

sup
x∈Rd

(
|η̂k,um (x)− ηk,um (x)| − ε

)
> 0

∣∣∣∣Du
n

ã
≤ (PuY |X)su

Å ⋃
(σ1,...,σsu )∈S

∣∣∣∣ k∑
i=1

k−1(1{Yσi = m} − ηum(Xσi))

∣∣∣∣ > ε

∣∣∣∣Du
n

ã
≤

∑
(σ1,...,σsu )∈S

(PuY |X)su
Å∣∣∣∣ k∑

i=1

k−1(1{Yσi = m} − ηum(Xσi))

∣∣∣∣ > ε

∣∣∣∣Du
n

ã
.

For any (σ1, . . . , σsu) ∈ S, by (51), we have

(PuY |X)su
Å∣∣∣∣ k∑

i=1

k−1
(
1{Yσi = m} − ηum(Xσi)

)∣∣∣∣ > ε

∣∣∣∣Du
n

ã
≤ 2/s2d+3

u .

This together with Lemma 20 implies

(PuY |X)su
(

sup
x∈Rd

(|η̂m(x)− ηm(x)| − ε) > 0
∣∣∣Du

n

)
≤ 2(25/d)d/s3

u.
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when su ≥ 2d. Then a union bound argument with c1 := 2(2d+ 3) yields

(PuY |X)su
(
‖η̂k,u − ηk,u‖∞ ≤

»
c1 log su/k

∣∣Du
n

)
≥ 1− 2M(25/d)d/s3

u.

By (46) in Lemma 21, if n ≥ n1, then we have su ≥ n(1) ≥ nπ/2 with probability Pn at
least 1−2M/n3. Consequently, if n > max{n1, d4d/πe}, there holds ‖η̂k,u(x)−ηk,u(x)‖∞ ≤√
c1 log su/k with probability Pn⊗PZ at least 1− (2M+16M(25/d)d/π3)/n3. Therefore, if

n ≥ N1 := max{n1, d4d/πe, d2M + 16M(25/d)d/πe}, then we have ‖η̂k,u(x)− ηk,u(x)‖∞ ≤√
c1 log su/k with probability Pn ⊗ PZ at least 1− 1/n2, which completes the proof.

7.1.2 Proofs Related to Section 5.1.2

To conduct our analysis, we first need to recall the definitions of VC dimension (VC index )
and covering number, which are frequently used in capacity-involved arguments and measure
the complexity of the underlying function class (van der Vaart and Wellner, 1996; Kosorok,
2008; Giné and Nickl, 2021).

Definition 23 (VC dimension) Let B be a class of subsets of X and A ⊂ X be a finite
set. The trace of B on A is defined by {B∩A : B ⊂ B}. Its cardinality is denoted by ∆B(A).
We say that B shatters A if ∆B(A) = 2#(A), that is, if for every A′ ⊂ A, there exists a
B ⊂ B such that A′ = B ∩A. For n ∈ N, let

mB(n) := sup
A⊂X ,#(A)=n

∆B(A). (52)

Then, the set B is a Vapnik-Chervonenkis class if there exists n <∞ such that mB(n) < 2n

and the minimal of such n is called the VC dimension of B, and abbreviate as VC(B).

Since an arbitrary set of n points {x1, . . . , xn} possess 2n subsets, we say that B picks out
a certain subset from {x1, . . . , xn} if this can be formed as a set of the form B∩{x1, . . . , xn}
for a B ∈ B. The collection B shatters {x1, . . . , xn} if each of its 2n subsets can be picked
out in this manner. From Definition 23 we see that the VC dimension of the class B is the
smallest n for which no set of size n is shattered by B, that is,

VC(B) = inf
{
n : max

x1,...,xn
∆B({x1, . . . , xn}) ≤ 2n

}
,

where ∆B({x1, . . . , xn}) = #{B ∩ {x1, . . . , xn} : B ∈ B}. Clearly, the more refined B is, the
larger is its index.

Definition 24 (Covering Number) Let (X , d) be a metric space and A ⊂ X . For ε > 0,
the ε-covering number of A is denoted as

N (A, d, ε) := min

ß
n ≥ 1 : ∃x1, . . . , xn ∈ X such that A ⊂

n⋃
i=1

B(xi, ε)

™
,

where B(x, ε) := {x′ ∈ X : d(x, x′) ≤ ε}.
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The following Lemma, which is needed in the proof of Lemma 26, provides the covering
number of the indicator functions on the collection of the balls in Rd.

Lemma 25 Let B := {B(x, r) : x ∈ Rd, r > 0} and 1B := {1B : B ∈ B}. Then for any
ε ∈ (0, 1), there exists a universal constant C such that

N (1B, ‖ · ‖L1(Q), ε) ≤ C(d+ 2)(4e)d+2ε−(d+1)

holds for any probability measure Q.

Proof [of Lemma 25] For the collection B := {B(x, r) : x ∈ Rd, r > 0}, Dudley (1979) shows
that for any set A ∈ Rd of d + 2 points, not all subsets of A can be formed as a set of the
form B∩A for a B ∈ B. In other words, B can not pick out all subsets from A ∈ Rd of d+ 2
points. Therefore, the collection B fails to shatter A. Consequently, according to Definition
23, we have VC(B) = d+ 2. Using Theorem 9.2 in Kosorok (2008), we immediately obtain
the assertion.

To prove Proposition 9 and Lemma 31, we need the following lemma, which provides
a high probability uniform bound on the distance between any point and its k-th nearest
neighbor. When we consider the approximation of the under-sampling k-NN classifier,
the sub-samples need to follow the under-sampling distribution Pu whose density satisfies
fuX(x) > 1/(2Mπ) with high probability as shown in (46). Therefore, in Lemma 26 it is
necessary to assume that the density is bounded below by a positive constant.

Lemma 26 Let R(k)(x) := ‖X(k)(x) − x‖ denote the distance from x to its k-th nearest
neighbor, 1 ≤ k ≤ n. Moreover, let fX be the density function of PX and suppose that there
exists a constant c > 0 such that fX(x) ≥ c. Then there exists an n2 ∈ N and c0 = 2/c > 0
such that for all n > n2, there holds

sup
x∈X

sup
k≥48(2d+9) logn

R(k)(x)α ≤ (c0k/n)α/d

with probability Pn at least 1− 1/n3.

Proof [of Lemma 26] For x ∈ X and η ∈ [0, 1], we define the η-quantile diameter

ρx(η) := inf
{
r : P(B(x, r)) ≥ η

}
.

Let us first consider the set B+
k :=

{
B
(
x, ρx

(
(k +

√
3τk)/n

))
: x ∈ X

}
⊂ B. Lemma 25

implies that for any probability Q, there holds

N (1B+
k
, ‖ · ‖L1(Q), ε) ≤ N (1B, ‖ · ‖L1(Q), ε) ≤ C(d+ 2)(4e)d+2ε−(d+1). (53)

By the definition of the covering number, there exists an ε-net {Aj}Jj=1 ⊂ B
+
k with J :=

bC(d+ 2)(4e)d+2ε−(d+1)c and for any x ∈ X , there exists some j ∈ {1, . . . , J} such that∥∥1{B(x, ρx((k +
√

3τk)/n
))}
− 1Aj

∥∥
L1(D)

≤ ε. (54)
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For any i = 1, . . . , n, let the random variables ξi be defined by ξi = 1Aj (Xi)− (k+
√

3τk)/n.
Then we have ‖ξi‖∞ ≤ 1, EPξi = 0 and EPξ

2
i ≤ EPξi = (k+

√
3τk)/n. Applying Bernstein’s

inequality in Lemma 18, we obtain

1

n

n∑
i=1

1Aj (Xi)− (k +
√

3τk)/n ≥ −
»

2τ(k +
√

3τk)/n− 2τ/(3n)

with probability Pn at least 1 − e−τ . Then the union bound together with the covering
number estimate (53) implies that for any Aj , j = 1, · · · , J , there holds

1

n

n∑
i=1

1Aj (Xi)− (k +
»

3(τ + log J)k)/n

≥ −
√

2(τ + log J)
(
k +
»

3(τ + log J)k
)
/n− 2(τ + log J)/(3n)

with probability Pn at least 1 − e−τ . This together with (54) yields that for any x ∈ X ,
there holds

1

n

n∑
i=1

1
{
B
(
x, ρx

(
(k +

√
3τk)/n

))}
(Xi)− (k +

»
3(τ + log J)k)/n

≥ −
√

2(τ + log J)
(
k +
»

3(τ + log J)k
)
/n− 2(τ + log J)/(3n)− ε

with probability Pn at least 1− e−τ .
Now, if we take ε = 1/n, then for any n > n2 := max{4e, d+ 2, C}, there holds

log J = logC + log(d+ 2) + (d+ 2) log(4e) + (d+ 1) log n ≤ (2d+ 5) log n.

Let τ := log(n4). A simple calculation yields that if k ≥ 48(2d+ 9) log n, then we have√
2(τ + log J)

(
k +
»

3(τ + log J)k
)
/n ≤

»
5(τ + log J)k/2/n.

Consequently, for all n > n2, there holds√
2(τ + log J)

(
k +
»

3(τ + log J)k
)
/n+ 2(τ + log J)/(3n) + 1/n ≤

»
3(τ + log J)k/n.

Consequently for all x ∈ X , there holds 1
n

∑n
i=1 1

{
B
(
x, ρx

(
(k +

√
3τk)/n

))}
(Xi) ≥ k/n

with probability Pn at least 1− 1/n4. By the definition of R(k)(x), there holds

R(k)(x) ≤ ρx
(
(k +

√
3τk)/n

)
(55)

with probability Pn at least 1−1/n4. For any x ∈ X , we have PX
(
B
(
x, ρx

(
(k+
√

3τk)/n
)))

=

(k +
√

3τk)/n. Since the density fX(x) satisfies c ≤ fX(x) ≤ c, we have (k +
√

3τk)/n ≥
cρdx
(
(k +

√
3τk)/n

)
and consequently

ρx
(
(k +

√
3τk)/n

)
≤
(
(k +

√
3τk)/(cn)

)1/d ≤ ((k + 3
√
k log n)/(cn)

)1/d
. (56)
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Combining (55) with (56), we obtain that R(k)(x) ≤
(
(k + 3

√
k log n)/(cn)

)1/d holds for all
x ∈ X with probability Pn at least 1−1/n4. Therefore, a union bound argument yields that
for all x ∈ X , there holds

sup
k≥48(2d+9) logn

R(k)(x) ≤
(
(k + 3

√
k log n)/(cn)

)1/d ≤ (2k/(cn)
)1/d

with probability Pn at least 1 − 1/n3 for all n ≥ n2, which yields to the assertion with
c0 = 2/c.

Proof [of Proposition 9] Let n1 ∈ N+ satisfy log n1/n1 ≤ min{π2/4, π2/16}. By Lemma 21,
we see that for 1 ≤ m ≤M , if n > n1, there hold

nπm/2 ≤ n(m), 1/(2Mπ) ≤ fuX(x) ≤ 2/(Mπ), (57)

and

|ηum(x′)− ηum(x)| ≤ 4cL‖x− x′‖α, (58)

with probability Pn at least 1− 2M/n3, since (57) implies that Pu satisfies the assumptions
of Lemma 26, we find that for all x ∈ X and su ≥ n2, there holds

sup
k≥48(2d+9) log su

‖Xu
(k)(x)− x‖α ≤ (4Mπk/su)α/d (59)

with probability Pn⊗PZ at least 1−1/s3
u. By using su ≥ n(1) ≥ nπ1/2 in (57), we find that

if n ≥ N2 := max{n1, d2n2/πe, d8/π3 + 2Me}, then (59) holds with probability Pn ⊗ PZ at
least 1− 1/s3

u − 2M/n3 ≥ 1− (8/π3 + 2M)/n3 ≥ 1− 1/n2.
Let Ru(i)(x) := ‖Xu

(i)(x) − x‖ and aun := d48(2d + 9) log sue. Then (58) implies that for
any 1 ≤ m ≤M ,

k∑
i=1

k−1
∣∣ηum(Xu

(i)(x))− ηum(x)
∣∣ ≤ (4/k)

aun∑
i=1

cL(Ru(i)(x))α + (4/k)
k∑

i=aun+1

cL(Ru(i)(x))α

≤ (4/k)

aun∑
i=1

cL(Ru(aun+1)(x))α + (4/k)

k∑
i=aun+1

cL(Ru(i)(x))α

≤ (4cLa
u
n/k)

(
4Mπ(aun + 1)/su

)α/d
+

k∑
i=1

(4cL/k)(4Mπi/su)α/d

≤ 4cL(8Mπk/su)α/d +

k∑
i=1

(4cL/k)(4Mπi/su)α/d.

Since the function g(t) := tα/d is increasing in (0,∞), we have

k∑
i=1

k−1(i/su)α/d ≤ (su/k)

∫ (k+1)/su

0
g(t) dt
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≤ (su/k)(d/(α+ d))
(
(k + 1)/su

)(α+d)/d ≤ 2(α+d)/d(d/(α+ d))(k/su)α/d,

which yields ‖ηk,u(x)−ηu(x)‖∞ ≤ c2(k/su)α/d with constant c2 := 4cL(8Mπ)α/d+4cL(4Mπ)α/d·
2(α+d)/dd/(α+ d). Thus we finish the proof.

7.1.3 Proofs Related to Section 5.1.3

Proof [of Proposition 10] Let the event E be defined by

E :=
{

1− (2/π)
»

log n/n ≤ n(m)/(nπm) ≤ 1 + (2/π)
»

log n/n, ∀1 ≤ m ≤M
}

and the number n1 ∈ N+ satisfy log n1/n1 ≤ min{π2/4, π2/16}. The following arguments
will be made on the event E and for n > n1. An elementary calculation implies that for any
1 ≤ m ≤M and x ∈ X , there holds∣∣nηm(x)/n(m) − ηm(x)/πm

∣∣ ≤ ∣∣n/n(m) − 1/πm
∣∣ =

∣∣(nπm − n(m))/(niπm)
∣∣

= |1− n(m)/(nπm)|/
(
πm(n(m)/(nπm)− 1) + πm

)
.

Thus, on the event E, there holds

∣∣nηm(x)/n(m) − ηm(x)/πm
∣∣ ≤ (2/π)

»
log n/n

/(
πm − (2/π)

»
log n/nπm

)
.

Therefore, for n > n1, we have

∣∣nηm(x)/n(m) − ηm(x)/πm
∣∣ ≤ (4/πmπ)

»
log n/n ≤ (4/(ππ))

»
log n/n. (60)

Consequently, for any 1 ≤ m ≤M and x ∈ X , there holds

∣∣ηwm(x)− ηum(x)
∣∣ ≤ ∣∣∣∣ nηm(x)/n(m)∑M

i=1 nηi(x)/ni
− ηm(x)/πm∑M

i=1 ηi(x)/πi

∣∣∣∣
≤
∣∣∣∣ nηm(x)/n(m)∑M

i=1 nηi(x)/ni
−

nηm(x)/n(m)∑M
i=1 ηi(x)/πi

∣∣∣∣+

∣∣∣∣ nηm(x)/n(m)∑M
i=1 ηi(x)/πi

− ηm(x)/πm∑M
i=1 ηi(x)/πi

∣∣∣∣
≤
|nηm(x)/n(m) − ηm(x)/πm|∑M

i=1 ηi(x)/πi
+

∑M
m=1 |nηm(x)/n(m) − ηm(x)/πm|∑M

i=1 ηi(x)/πi
. (61)

Obviously, we have
∑M

i=1 ηi(x)/πi ≥
∑M

i=1 ηi(x)/π = 1/π. This together with (60) and (61)
yields that ‖ηwm − ηum‖∞ ≤ (4(1 + M)/π)

√
log n/n holds for 1 ≤ m ≤ M , which together

with (50) implies that for all n > n1, (34) holds with probability Pn at least 1 − 2M/n3.
Therefore, for all n ≥ N3 := max{n1, 2M}, there holds (34) with probability Pn at least
1− 1/n2. Thus we complete the proof of Proposition 10.
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7.1.4 Proofs Related to Section 4.1

Proof [of Theorem 1] Propositions 8 and 9 imply that if n ≥ max{N1, N2}, there hold
‖ηk,u(x) − ηu(x)‖∞ . (k/su)α/d and ‖η̂k,u(x) − ηk,u(x)‖∞ .

√
log su/k with probability

PZ ⊗ Pn at least 1− 2/n2. Consequently, we have

‖η̂k,u(x)− ηu(x)‖∞ ≤ ‖η̂k,u(x)− ηk,u(x)‖∞ + ‖ηk,u(x)− ηu(x)‖∞

. (k/su)α/d +
»

log su/k . (log su/su)α/(2α+d).

According to (46) in Lemma 21, we have su ≥ n(1) ≥ nπ1/2 with probability Pn at least
1− 2M/n3 ≥ 1− 1/n2. Since g(x) := log(x)/x is decreasing on [e,∞), we have

‖η̂k,u(x)− ηu(x)‖∞ . (log(nπ1/2)/(nπ1/2))α/(2α+d) . (log n/n)α/(2α+d).

This together with Proposition 10 yield that if n ≥ N∗1 := max{N1, N2, N3}, there holds

‖η̂k,u(x)− ηw(x)‖∞ = ‖η̂k,u(x)− ηu(x)‖∞ + ‖ηu(x)− ηw(x)‖∞

. (log n/n)α/(2α+d) +
»

log n/n . (log n/n)α/(2α+d).

with probability Pn at least 1− 4/n2. Consequently, Lemma 15 yields that

‖ηw,∗Lcl,Pw
(x)− ηw

ψ̂k,u(x)
(x)‖∞ . (log n/n)α/(2α+d)

holds with probability PZ ⊗ Pn at least 1− 4/n2, where ηw,∗Lcl,Pw
(x) = ηwψ∗Lcl,P

w (x)(x), i.e, the

Bayes classifier w.r.t. the classification loss Lcl and the balanced distribution Pw. Using
Lemma 16, we obtain

RLcl,Pw(ψ̂k,u)−R∗Lcl,Pw
. (log n/n)α(β+1)/(2α+d)

with probability PZ ⊗Pn at least 1− 4/n2. This together with (24) and Theorem 6 implies
RAM(ψ̂k,u) . (log n/n)α(β+1)/(2α+d), which completes the proof.

Proof [of Theorem 2] We use Theorem 3.5 in (Audibert and Tsybakov, 2007) to prove
Theorem 2. First of all, we verify as follows that for any probability distribution P ∈ P,
the balanced version of it, Pw belongs to a certain class of probability distributions PΣ in
Definition 3.1 in Audibert and Tsybakov (2007).

(i) Condition (i) in Assumption 1 implies that Pw satisfies the margin assumption.
(ii) For any 1 ≤ m ≤M and x, x′ ∈ X , by (2), we have

|ηwm(x′)− ηwm(x)| = |ηm(x′)− ηm(x)|
πm
∑M

m=1 ηm(x)/πm
≤ (π/π) · |ηm(x′)− ηm(x)|.

Condition (ii) in Assumption 1 then yields |ηwm(x′)−ηwm(x)| ≤ 4cL(π/π)·‖x′−x‖α. Therefore,
the posterior probability function ηw belongs to the Hölder class.

(iii) Since PX is the uniform distribution on [0, 1]d, (27) yields

1/(Mπ) ≤ fwX(x) = fX(x)

M∑
m=1

ηm(x)/(Mπm) ≤ 1/(Mπ)
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for x ∈ [0, 1]d and fwX(x) = 0 otherwise, which implies that the strong density assumption
on PwX is satisfied.

Therefore, applying Theorem 3.5 in (Audibert and Tsybakov, 2007), there exists a con-
stant C > 0 such that for any ψn ∈ F , there holds

sup
Pw∈PΣ

RLcl,Pw(ψn)−R∗Lcl,Pw
≥ Cn−α(β+1)/(2α+d).

This together with (24) and Theorem 6 implies

sup
P∈P

r∗AM − rAM(ψn) ≥ Cn−α(β+1)/(2α+d).

Thus the assertion is proved since ψn ∈ F is an arbitrary classifier.

7.2 Proofs Related to the Under-bagging k-NN Classifier

In this section, we first present in Sections 7.2.1-7.2.3 the proofs of the theoretical results
on bounding the bagging error in Section 5.2.1, the bagged approximation error in Section
5.2.2, and the bagged sample error in Section 5.2.3, respectively. Then in Section 7.1.4, we
prove the main results on the convergence rates of the under-bagging k-NN classifier, i.e.,
Theorem 3 and Corollary 4 in Section 4.2.

7.2.1 Proofs Related to Section 5.2.1

Proof [of Proposition 11] By the definition of η̂B,u(x) and η̃B,u(x), we have

|η̂B,um (x)− η̃B,um (x)| =
∣∣∣∣ 1

B

B∑
b=1

n∑
i=1

V b,u
i (x)1{Y(i)(x) = m} −

n∑
i=1

V
u
i (x)1{Y(i)(x) = m}

∣∣∣∣.
Let ξb :=

∑n
i=1(V b,u

i (x)− V u
i (x))1{Y(i)(x) = m}. Then we have

‖ξb‖∞ ≤ max

ß n∑
i=1

V b,u
i (x),

n∑
i=1

V
u
i (x)

™
≤ 1.

This yields that E[ξ2
b |Dn] ≤ 1. Applying Bernstein’s inequality in Lemma 18, we obtain

that for every τ > 0,

PBZ

Å
|η̂B,um (x)− η̃B,um (x)| ≥

…
2τ

B
+

2τ

3B

∣∣∣∣Dn

ã
≤ e−τ .

Then with τ := (2d+ 3) log n, we have

PBZ

Å
|η̂B,um (x)− η̃B,um (x)| ≤

 
2(2d+ 3) log n

B
+

2(2d+ 3) log n

3B

∣∣∣∣Dn

ã
≥ 1− 1/n2d+3.

Setting ε :=
√

8(2d+ 3) log n/B, then the condition 9B ≥ 2(2d+ 3) log n implies that

PBZ (|η̂B,um (x)− η̃B,um (x)| ≤ ε|Dn) ≥ 1− 1/n2d+3. (62)
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In order to derive the uniform upper bound over X , let

S :=
{

(σ1, . . . , σn) : all permutations of (1, . . . , n) obtainable by moving x ∈ Rd
}
.

Then we have

PBZ

Å
sup
x∈Rd

Å
|η̂B,um (x)− η̃B,um (x)| − ε

ã
> 0

∣∣∣∣Dn

ã
≤ PBZ

Å ⋃
(σ1,...,σn)∈S

∣∣∣∣ 1

B

B∑
b=1

n∑
i=1

V b,u
i,σ (x)1{Yσi(x) = m} −

n∑
i=1

V
u
i,σ(x)1{Yσi(x) = m}

∣∣∣∣ > ε

∣∣∣∣Dn

ã
≤

∑
(σ1,...,σn)∈S

PBZ

Å∣∣∣∣ 1

B

B∑
b=1

n∑
i=1

V b,u
i,σ (x)1{Yσi(x) = m} −

n∑
i=1

V
u
i,σ(x)1{Yσi(x) = m}

∣∣∣∣ > ε

∣∣∣∣Dn

ã
,

where V b,u
i,σ (x) equals 1/k if

∑i
j=1 Z

b(Xσj (x), Yσj (x)) ≤ k, and 0 otherwise, and V u
i,σ(x) =

k−1PZ(
∑i

j=1 Z
b(Xσj (x), Yσj (x)) ≤ k|{Xi, Yi}ni=1). For any (σ1, . . . , σn) ∈ S, (62) implies

PBZ

Å∣∣∣∣ 1

B

B∑
b=1

n∑
i=1

V b,u
i,σ (x)1{Yσi(x) = m} −

n∑
i=1

V
u
i,σ(x)1{Yσi(x) = m}

∣∣∣∣ > ε

∣∣∣∣Dn

ã
≤ 1/n2d+3.

This together with Lemma 20 yields

PBZ

Å
sup
x∈Rd

(|η̂B,um (x)− η̃B,um (x)| − ε) > 0

∣∣∣∣Dn

ã
≤ (25/d)d/n3

for all n ≥ 2d. Then a union bound argument implies

PBZ
(
‖η̂B,u(x)− η̃B,u(x)‖∞ ≤

»
8(2d+ 3) log n/B

∣∣Dn

)
≥ 1−M(25/d)d/n3.

Consequently, if n ≥ N4 := max{dM(25/d)de, 2d}, then we have

PBZ ⊗ Pn
(
‖η̃B,u(x)− ηB,u(x)‖∞ ≤

»
8(2d+ 3) log n/B

)
≥ 1−M(25/d)dn3 ≥ 1− 1/n2,

which completes the proof.

7.2.2 Proofs Related to Section 5.2.2

To bound the bagged approximation error ‖ηB,u(x) − ηu(x)‖∞, the theoretical property of
V
u
i (x) plays a crucial role. In fact, by the definition of ηB,u and ηu, we have

‖ηB,u(x)− ηu(x)‖∞ =

∥∥∥∥ n∑
i=1

V
u
i (x)ηum(X(i)(x))− ηu(x)

∥∥∥∥
∞

≤
∥∥∥∥ n∑
i=1

V
u
i (x)

(
ηum(X(i)(x))− ηu(x)

)∥∥∥∥
∞

+

∥∥∥∥ n∑
i=1

V
u
i (x)− 1

∥∥∥∥
∞
.
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Let ξi := Zb(X(i)(x), Y(i)(x)), i ≥ 1. According to (37), V u
i (x) can be re-expressed as

V
u
i (x) =

1

k
PZ

Å i∑
l=1

ξl ≤ k, ξi = 1

∣∣∣∣{(Xi, Yi)}ni=1

ã
=

1

k

k∑
j=1

pui,j(x). (63)

where

pui,j(x) = PZ

Å i∑
l=1

ξl = j, ξi = 1

∣∣∣∣{(Xi, Yi)}ni=1

ã
. (64)

As a result, it is necessary to investigate the properties of pui,j(x) for all x ∈ X . Note
that {ξi, i ≥ 1} can be regarded as a sequence of independent Bernoulli trials with the
probabilities of success a(X(i)(x), Y(i)(x)), that is,

P(ξi = 1) = a(X(i)(x), Y(i)(x)), (65)

P(ξi = 0) = 1− a(X(i)(x), Y(i)(x)). (66)

Then by (64), pui,j(x) represents the probability when we observing the sequence {ξi, 1 ≤ i ≤
n} until j successes have occurred, the total number of trials equals to i.

Recall that the classical Pascal distribution models the number of successes in a sequence
of i.i.d. Bernoulli trials before a specified number of failures occurs. We refer the readers to
Spiegel (1992); DeGroot (2012) for more details. However, (65) implies that the probabilities
of success for the Bernoulli trials {ξi, i ≥ 1} are not the same. Therefore, it is necessary to
consider a Generalized Pascal (GP) distribution where the probabilities of success depend
on the location of x in Rd. To this end, we introduce some basic notations. Suppose that
{ξi, i ≥ 1} is a sequence of independent Bernoulli trials. In each trial, we have the probability
of success P(ξi = 1) = pi and the probability of failure P(ξi = 0) = 1−pi. The total number
of trials we have seen until j successes have occurred, namely X, are said to have the
Generalized Pascal distribution with parameters j and p = {pi}∞i=1, that is, X ∼ GP(j, p).
For i ≥ j, let Ω(j, i) := {ω = {ω1, . . . , ωj} : 1 ≤ ω1 < ω2 < · · · < ωj−1 < ωj = i}. Then the
probability mass function of the Generalized Pascal distribution is

PGP(X = i) = fGP(i; j, p) =
∑

ω∈Ω(j,i)

p`

i−1∏
i=1

p
1{i∈ω}
i (1− pi)1{i/∈ω}, i ≥ j, i ∈ N+. (67)

In fact, according to (64), pui,j(x) can be re-expressed as

pui,j(x) = fGP(i, j, p(x)), (68)

where p(x) = (p1(x), . . . , pn(x), . . .) with elements defined by pi(x) = a(X(i)(x), Y(i)(x)),
1 ≤ i ≤ n. According to the acceptance probability (9) in Section 3.2, it is easy to see that
for all x ∈ X , we have

p(x) ∈ Sν :=

ß
p = {pi}∞i=1 : (p1, . . . , pn) = (νσ1 , . . . , νσn) and pi = νn for i > n,

where {σ1, . . . , σn} is a permutation of {1, . . . , n}
™
.

(69)
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where ν = (ν1, . . . , νn, . . .) is an infinite-dimensional vector with elements defined by

νi =


s

Mn(M)
, if 1 ≤ i ≤ n(M),

s
Mn(m)

, if
∑M

`=m+1 n` < i ≤
∑M

`=m n` and 1 ≤ m ≤M − 1,

s
Mn(1)

, if i > n.

(70)

Therefore, in our analysis on pui,j(x), it suffices to study the property of the distribution
function fGP(i, j, p) with p restricted on the set Sν .

In the following, we present some results on the Generalized Pascal distribution, which
is later crucial for the proof of Lemmas 31 and 32. The first lemma gives a uniform upper
bound of the tail probability of the Generalized Pascal distribution.

Lemma 27 Let p ∈ Sν and suppose that
∑`

i=1 pi ≥ j. Then we have

∞∑
i=`+1

fGP(i; j, p) ≤ exp

Å
− 1

2`

Å∑̀
i=1

pi − j
ã2ã

.

Proof [of Lemma 27] Let {ξi, i ≥ 1} be a sequence of independent Bernoulli trials such
that P(ξi = 1) = pi and P(ξi = 0) = 1 − pi. By the definition of the Generalized Pascal
distribution, we have

∑∞
i=`+1 fGP(i; j, p) = P

(∑`
i=1 ξi < j

)
. Let ξ′i = 1 − ξi for 1 ≤ i ≤ `.

Then we have
∞∑

i=`+1

fGP(i; j, p) = P

Å∑̀
i=1

ξ′i > `− j
ã

= P

Å
1

`

∑̀
i=1

ξ′i > 1− j

`

ã
. (71)

Moreover, there hold P(ξ′i = 1) = 1 − pi and P(ξ′i = 0) = pi. Consequently we have
E[ξ′i] = 1− pi and Var[ξ′i] ≤ 1/4. Using Bernstein’s inequality in Lemma 18, for any τ > 0,
there holds

1

`

∑̀
i=1

ξ′i ≥
…
τ

2`
+

2τ

3`
+ 1− 1

`

∑̀
i=1

pi (72)

with probability at most e−τ . Let τ := 1
2`(
∑`

i=1 pi− j)2. Then we have τ ≤ (`− j)2/(2`) ≤
`/2 and consequently (72) implies

1

`

∑̀
i=1

ξ′i ≥
…

2τ

`
+ 1− 1

`

∑̀
i=1

pi ≥
1

`

Å∑̀
i=1

pi − j
ã

+ 1− 1

`

∑̀
i=1

pi = 1− j

`
.

Therefore, we have

P

Å
1

`

∑̀
i=1

ξ′i > 1− j

`

ã
≤ e−τ . (73)

Combining (71) with (73), we obtain the assertion.

The next lemma provides the effect of changing the position of entries of p ∈ Sν on the
Generalized Pascal distribution.
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Lemma 28 Given 1 ≤ q ≤ n − 1, let p ∈ Sν such that pq ≥ pq+1. We define a map
hq : Sν → Sν such that the elements of p′ = hq(p) satisfying

p′i :=


pi, if i < q or i > q + 1,

pq+1, if i = q,

pq, if i = q + 1.

(74)

Then for any i ≥ j, the following statements hold:

(i) If i < q or i > q + 1, then we have

fGP(i; j, p) = fGP(i; j, p′); (75)

(ii) If i = q, then we have

fGP(i; j, p) ≥ fGP(i; j, p′); (76)

(iii) If i = q + 1, then we have

fGP(i; j, p) ≤ fGP(i; j, p′). (77)

Proof [of Lemma 28] (i) If i < q, by the definition of p′ in (74), we have p′i = pi for i ≤ i.
Thus, by (67), there holds

fGP(i; j, p) =
∑

ω∈Ω(j,i)

pi

i−1∏
`=1

p
1{`∈ω}
i (1− pi)1{`/∈ω}

=
∑

ω∈Ω(j,i)

p′i

i−1∏
`=1

p
′1{`∈ω}
i (1− p′i)1{`/∈ω} = PGP(X ′ = i).

If i > q + 1, then we define the map g : Ω(j, i)→ Ω(j, i) by

g(ω) :=


ω, if {q, q + 1} ⊂ ω or {q, q + 1} * ω,

ω \ {q} ∪ {q + 1}, if q ∈ ω and q + 1 /∈ ω,
ω \ {q + 1} ∪ {q}, if q + 1 ∈ ω and q /∈ ω.

By the definition of p′ in (74), for every ω ∈ Ω(j, i), there holds

pi

i−1∏
`=1

p
1{`∈ω}
i (1− pi)1{`/∈ω} = p′i

i−1∏
`=1

p′i
1{`∈g(ω)}

(1− p′i)1{`/∈g(ω)}.

Taking the sum over all possible elements in Ω(j, i), we obtain

fGP(i; j, p) =
∑

ω∈Ω(j,i)

pi

i−1∏
`=1

p
1{`∈ω}
i (1− pi)1{`/∈ω} =

∑
ω∈Ω(j,i)

p′i

i−1∏
`=1

p′i
1{`∈g(ω)}

(1− p′i)1{`/∈g(ω)}.
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It can be verified that g : Ω(j, i)→ Ω(j, i) is a one-to-one map. Therefore, we have

fGP(i; j, p) =
∑

ω∈Ω(j,i)

p′i

i−1∏
`=1

p′i
1{`∈ω}

(1− p′i)1{`/∈ω} = fGP(i; j, p′).

(ii) If i = q, then by (74), we have p′q = pq+1 ≤ pq and p′i = pi for ` < q. Consequently
we obtain

fGP(q; j, p) =
∑

ω∈Ω(j,q)

pq

q−1∏
`=1

p
1{`∈ω}
i (1− pi)1{`/∈ω}

≥
∑

ω∈Ω(j,q)

p′q

q−1∏
`=1

p′i
1{`∈ω}

(1− p′i)1{`/∈ω} = fGP(q; j, p′).

(iii) If i = q + 1, we consider two specific cases: i = j and i > j. Suppose that
i = q + 1 = j. Obviously, there holds

1 =
∞∑
i=j

fGP(i; j, p) =
∞∑
i=j

fGP(i; j, p′). (78)

Then (78) together with (75) yields fGP(q+ 1; j, p) = fGP(q+ 1; j, p′). If i = q+ 1 > j, then
we have q ≥ j. Combining (75), (76), and (78), we obtain fGP(q+ 1; j, p) ≥ fGP(q+ 1; j, p′),
which completes the proof.

Lemma 29 Given 1 ≤ q ≤ n− 1, let p ∈ Sν such that pq ≥ pq+1. Moreover, let p′ = hq(p)
be as in (74). Then we have

n∑
i=j

ifGP(i; j, p) ≤
n∑
i=j

ifGP(i; j, p′).

Proof [of Lemma 29] The proof can be divided into the following three cases.
If j ≤ q, then Lemma 28 together with (78) yields

fGP(q; j, p) + fGP(q + 1; j, p) = fGP(q; j, p′) + fGP(q + 1; j, p′). (79)

By (75), we have

n∑
i=j

ifGP(i; j, p)−
n∑
i=j

ifGP(i; j, p′)

= (q + 1)(fGP(q + 1; j, p)− fGP(q + 1; j, p′)) + q(fGP(q; j, p)− fGP(q; j, p′))).

This together with (79) implies

n∑
i=j

ifGP(i; j, p)−
n∑
i=j

ifGP(i; j, p′) = fGP(q; j, p′)− fGP(q; j, p) ≤ 0,
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where the last inequality follows from (76).
If j = q + 1, (75) together with (77) yields
n∑
i=j

ifGP(i; j, p)−
n∑
i=j

ifGP(i; j, p′) = (q + 1)(fGP(q + 1; j, p)− fGP(q + 1; j, p′)) ≤ 0.

Otherwise if j > q + 1, then (75) yields
∑n

i=j ifGP(i; j, p) =
∑n

i=j ifGP(i; j, p′), which
completes the proof.

The next theorem provides the upper bound of the expectation of the truncated Gener-
alized Pascal distribution, which is needed to prove Lemma 31.

Theorem 30 Let p ∈ Sν . Then for any j ≤ u ≤ n satisfying
∑u

`=1 ν` > j, there holds
n∑
i=j

ifGP(i; j, p) ≤ j

ν1

Å
νu
ν1

ãj
+ n exp

Å
− 1

2u

Å u∑
`=1

ν` − j
ã2ã

.

Proof [of Theorem 30] For any p ∈ Sν , we can exchange the positions of two adjacent entries
of (p1, . . . , pn) successively to arrange the entry with larger value behind. It is easy to see
that a finite number of such operations can change p to ν, that is, (p1, . . . , pn) is rearranged
in ascending order. Therefore, there exists a series of probability sequences {pt, 1 ≤ t ≤ T}
such that p(1) = p, p(T ) = ν, and p(t+1) = hqt(p

(t)) for 2 ≤ t ≤ T − 1, that is, we exchange
p

(t)
qt and p(t)

qt+1 in the t-th operation. By Lemma 29, we have

n∑
i=j

ifGP(i; j, p) ≤
n∑
i=j

ifGP(i; j, ν).

(67) implies that for j ≤ i ≤ u, there holds

n∑
i=j

ifGP(i; j, ν) ≤
∑

ω∈Ω(j,i)

νi

i−1∏
`=1

ν
1{`∈ω}
i (1− νi)1{`/∈ω} ≤

∑
ω∈Ω(j,i)

νu

i−1∏
`=1

ν1{`∈ω}u (1− ν1)1{`/∈ω}

≤
Å
νu
ν1

ãj ∑
ω∈Ω(j,i)

ν1

i−1∏
`=1

ν
1{`∈ω}
1 (1− ν1)1{`/∈ω} =

Ç
i− 1

j − 1

åÅ
νu
ν1

ãj
νj1(1− ν1)i−j

and consequently we have
u∑
i=j

ifGP(i; j, ν) ≤
Å
νu
ν1

ãj u∑
i=j

i

Ç
i− 1

j − 1

å
νj1(1− ν1)i−j

≤
Å
νu
ν1

ãj ∞∑
i=j

i

Ç
i− 1

j − 1

å
νj1(1− ν1)i−j =

j

ν1

Å
νu
ν1

ãj
. (80)

Under the assumption
∑u

`=1 ν` > j, Theorem 27 yields
∞∑

i=u+1

fGP(i; j, ν) < exp

Å
− 1

2u

Å u∑
`=1

ν` − j
ã2ã

.
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Consequently we have

n∑
i=u+1

ifGP(i; j, ν) ≤ n
n∑

i=u+1

fGP(i; j, ν) ≤ n
∞∑

i=u+1

fGP(i; j, ν) ≤ n exp

Å
− 1

2u

Å u∑
`=1

ν` − j
ã2ã

.

(81)

Combining (80) and (81), we obtain

n∑
i=j

ifGP(i; j, p) ≤ j

ν1

Å
νu
ν1

ãj
+ n exp

Å
− 1

2u

Å u∑
`=1

ν` − j
ã2ã

,

which finishes the proof.

To prove Proposition 12, we need the following two lemmas. Lemma 31 provides the
uniform upper bound of the weighted sum of the i-th nearest neighbor distance R(i)(x),
which supplies the key to the proof of the bagged approximation error term. Lemma 32
bounds the sum of the bagged weights V u

i (x) uniformly.

Lemma 31 Let V u
i (x) be defined as in (37) and R(i)(x) := ‖X(i)(x) − x‖. Suppose that

s exp(−(s/M −k)2/(2n)) ≤Mπ/2. Then there exists a constant c3 > 0 and an n3 ∈ N such
that for all n ≥ n3, with probability Pn at least 1− (2M + 1)/n3, for all x ∈ X , there holds

n∑
i=1

V
u
i (x)Rα(i)(x) ≤ c3(k/s)α/d.

Proof [of Lemma 31] Let an := d48(2d+ 9) log ne. Lemma 26 implies that if n > n2, then
for all x ∈ X , there holds supi≥an R(i)(x) ≤ (2i/n)1/d with probability Pn at least 1− 1/n3.
Then we have

n∑
i=1

V
u
i (x)Rα(i)(x) =

an∑
i=1

V
u
i (x)Rα(i)(x) +

n∑
i=an

V
u
i (x)Rα(i)(x)

≤ Rα(an)(x) +

n∑
i=an

V
u
i (x)Rα(i)(x) ≤ (2an/n)α/d +

n∑
i=an

V
u
i (x)Rα(i)(x)

≤ (2k/n)α/d +
n∑

i=an

V
u
i (x)Rα(i)(x) ≤ (2k/s)α/d +

n∑
i=an

V
u
i (x)Rα(i)(x). (82)

For the second term in (82), there holds

n∑
i=an

V
u
i (x)Rα(i)(x) =

n∑
i=an

k−1
k∑
j=1

pui,j(x)Rα(i)(x)

≤
n∑
i=1

k−1
k∑
j=1

pui,j(x)(2i/n)α/d = k−1(2/n)α/d
k∑
j=1

n∑
i=1

iα/dpui,j(x). (83)
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By Jensen’s inequality, we have

n∑
i=1

iα/dpui,j(x) ≤
Å n∑
i=1

pui,j(x)

ã1−α/dÅ n∑
i=1

ipui,j(x)

ãα/d
≤
Å n∑
i=1

ipui,j(x)

ãα/d
. (84)

Since for all x ∈ X , we have pui,j(x) = fGP(i, j, p(x)) by (68), where p(x) ∈ Sν with Sν
defined by (70). Applying Theorem 30 with u = n(M), we have

n∑
i=1

ipui,j(x) =

n∑
i=1

ifGP(i; j, p(x)) ≤Mjn(M)/s+ n exp
(
−(s/M − j)2/(2n(M))

)
for all x ∈ X . According to (46) in Lemma 21 for all n > n1, with probability Pn at least
1 − 2M/n3, there holds n(M) ≥ nπm/2. This together with the condition s exp(−(s/M −
k)2/(2n)) ≤ Mπ/2 and n(M) ≥ nπM/2 yields that for all n ≥ n3 := max{n1, n2}, there
holds

∑n
i=1 ip

u
i,j(x) ≤ 2Mjn(M)/s with probability Pn at least 1− (2M + 1)/n3. Combining

this with (84), we obtain
∑n

i=1 i
α/dpui,j(x) ≤ (2Mjn(M)/s)

α/d, which together with (83)
implies

n∑
i=n1

V
u
i (x)Rα(i)(x) ≤ k−1(4M/n)α/d

k∑
j=1

(jn(M)/s)
α/d.

Since g(t) = tα/d is increasing in [0, 1], we have k−1
∑k

j=1(j/k)α/d ≤ 2
∫ 1

0 x
α/d dx = 2(1 +

α/d). Consequently we obtain

n∑
i=n1

V
u
i (x)Rα(i)(x) = k−1

(
4Mn(M)k/(ns)

)α/d k∑
j=1

(j/k)α/d ≤ 2(1 + α/d)(4Mk/s)α/d.

Combining this with (82), we find that for all x ∈ Rd, there holds

n∑
i=1

V
u
i (x)Rα(i)(x) ≤ (2k/s)α/d + 2(1 + α/d)(4Mk/s)α/d ≤ c3(k/s)α/d,

where the constant c3 := 2α/d + 2(1 + α/d)(4M)α/d. Thus, we finish the proof.

The following lemma is needed in the proof of Proposition 12.

Lemma 32 Let V u
i (x) be defined by (37) and suppose k ≤ s. Then for all x ∈ X , we have

1−
n∑
i=1

V
u
i (x) ≤ exp

(
−(s− k)2/(2n)

)
.

Proof [of Lemma 32] By (37), we have

n∑
i=1

V
u
i (x) =

n∑
i=1

1

k

k∑
j=1

pui,j(x) =
1

k

k∑
j=1

n∑
i=1

pui,j(x). (85)
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By (68), we have
∑n

i=1 p
u
i,j(x) =

∑n
i=1 fGP(i; j, p(x)) where p(x) ∈ Sν with Sν defined as in

(70). Since
∑n

i=1 pi(x) =
∑M

m=1 n(m) · s
Mn(M)

= s, Theorem 27 implies

n∑
i=1

pui,j(x) =
n∑
i=1

fGP(i; j, p(x)) ≥ 1− exp
(
−(s− j)2/(2n)

)
≥ 1− exp

(
−(s− k)2/(2n)

)
.

Combining this with (85), we obtain
∑n

i=1 V
u
i (x) ≥ 1− exp

(
−(s− k)2/(2n)

)
, which yields

the assertion.

Proof [of Proposition 12] By the definition of ηB,u and ηu, we have

‖ηB,u(x)− ηu(x)‖∞ =

∥∥∥∥ n∑
i=1

V
u
i (x)ηum(X(i)(x))− ηu(x)

∥∥∥∥
∞

≤
∥∥∥∥ n∑
i=1

V
u
i (x)

(
ηum(X(i)(x))− ηu(x)

)∥∥∥∥
∞

+

∥∥∥∥ n∑
i=1

V
u
i (x)− 1

∥∥∥∥
∞
.

Lemma 21 implies that for all n ≥ n1, with probability at least 1− 2M/n3, there holds

‖ηB,u(x)− ηu(x)‖∞ ≤ 4cL sup
x∈X

Å n∑
i=1

V
u
i (x)‖X(i)(x)− x‖α

ã
+

∥∥∥∥ n∑
i=1

V
u
i (x)− 1

∥∥∥∥
∞
.

Applying Lemma 31, we obtain

‖ηB,u(x)− ηu(x)‖∞ ≤ c3(k/s)α/d + exp
(
−(s− k)2/(2n)

)
(86)

for all n > n3 with probability Pn at least 1 − (4M + 1)/n3. Consequently, if n ≥ N5 :=
max{4M + 1, n3}, then (86) holds with probability Pn at least 1−1/n2. This completes the
proof.

7.2.3 Proofs Related to Section 5.2.3

To prove Proposition 13, we need the following lemma, which bounds the maximum value
of the bagged weights V u

i (x) defined by (37).

Lemma 33 Let V u
i (x) be defined by (37). Then for any x ∈ Rd, there holds

max
1≤i≤n

V
u
i (x) ≤ s/(kMn(1)).

Proof [of Lemma 33] By (63) and (64), we have

V
u
i (x) =

1

k

k∑
j=1

pui,j(x)
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=
1

k

k∑
j=1

PZ

Å i∑
`=1

Zb(X(`)(x), Y(`)(x)) = j, Zb(X(i)(x), Y(i)(x)) = 1

∣∣∣∣{(Xi, Yi)}ni=1

ã
≤ k−1PZ

(
Zb(X(i)(x), Y(i)(x)) = 1

∣∣{(Xi, Yi)}ni=1

)
= k−1a(X(i)(x), Y(i)(x)) ≤ s/(Mkn(1)),

which finishes the proof.

Proof [of Proposition 13] By the definition of η̃B,u and ηB,u, we have

∣∣η̃B,um − ηB,um

∣∣ =
n∑
i=1

V
u
i (x)

(
1{Y(i)(x) = m} − ηum(X(i)(x))

)
.

For any fixed x ∈ X , Lemmas 22 and 33 yield

(Pu)nY |X
(∣∣η̃B,um (x)− ηB,um (x)

∣∣ ≥ ε∣∣Dn

)
≤ 2 exp

(
−ε2kMn(1)/(2s)

)
.

Setting ε :=
»

2(2d+ 3)s log n/(kMn(1)), we get

(Pu)nY |X
(∣∣η̃B,um (x)− ηB,um (x)

∣∣ ≥ ε∣∣Dn

)
≤ 2n−(2d+3). (87)

Note that this inequality holds only for fixed x. In order to derive the uniform upper bound
over X , let S :=

{
(σ1, . . . , σn) : all permutations of (1, . . . , n) obtainable by moving x ∈

Rd
}
. Then we have

(Pu)nY |X

Å
sup
x∈Rd

(
|η̃B,um (x)− ηB,um (x)| − ε

)
> 0

∣∣∣∣Dn

ã
≤ (Pu)nY |X

Å ⋃
(σ1,...,σn)∈S

∣∣∣∣ n∑
i=1

V
u
i,σ(1{Yσi = m} − ηum(Xσi))

∣∣∣∣ > ε

∣∣∣∣Dn

ã
≤

∑
(σ1,...,σn)∈S

(Pu)nY |X

Å∣∣∣∣ n∑
i=1

V
u
i,σ(1{Yσi = m} − ηum(Xσi))

∣∣∣∣ > ε

∣∣∣∣Dn

ã
,

where V u
i,σ(x) = k−1PZ(

∑i
j=1 Z

b(Xσj (x), Yσj (x)) ≤ k|{Xi, Yi}ni=1). For any (σ1, . . . , σn) ∈
S, (87) implies

(Pu)nY |X

Å∣∣∣∣ n∑
i=1

V
u
i,σ(1{Yσi = m} − ηum(Xσi))

∣∣∣∣ > ε

∣∣∣∣Dn

ã
≤ 2/n2d+3.

Combining this with Lemma 20, we obtain

(Pu)nY |X

(
sup
x∈Rd

(|η̃B,um (x)− ηB,um (x)| − ε) > 0
∣∣∣Dn

)
≤ 2(25/d)d/n3

for n ≥ 2d. Then a union bound argument yields

(Pu)nY |X
(
‖η̃B,u(x)− ηB,u(x)‖∞ ≤

»
2(2d+ 3)s log n/(kMn(1))

∣∣Dn

)
≥ 1− 2M(25/d)d/n3.
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Consequently, by the law of total probability, we have

PBZ ⊗ Pn
(
‖η̃B,u(x)− ηB,u(x)‖∞ ≤

»
2(2d+ 3)s log n/(kMn(1))

)
≥ 1− 2M(25/d)d/n3.

Therefore, if n ≥ N6 := max{d2M(25/d)de}, there holds

PBZ ⊗ Pn
(
‖η̃B,u(x)− ηB,u(x)‖∞ ≤

»
2(2d+ 3)s log n/(kMn(1))

)
≥ 1− 1/n2.

Thus we complete the proof of Proposition 13.

7.2.4 Proofs Related to Section 4.2

Proof [of Theorem 3] Choosing s, B, and k according to (17), (19), and (18), respectively,
Propositions 11 , 12, 13 yield that if n ≥ max{N4, N5, N6} = max{N5, N6}, there holds

‖η̂B,u(x)− ηu(x)‖∞ .
»

log n/B + (k/s)α/d + exp
(
−(s− k)2/(2n)

)
+
»
s log n/(kMn(1))

.
(
log(Mn(1))/(Mn(1))

)α/(2α+d)

with probability PBZ ⊗ Pn at least 1 − 3/n2. According to (46) in Lemma 21, we have
Mn(1) ≥ Mnπ1/2. Note that g(x) := log(x)/x is decreasing on [e,∞). Consequently, if
n ≥ max{N5, N6, 2M, d2e/(Mπ)e}, there holds

‖η̂B,u(x)− ηu(x)‖∞ .
(
log(Mnπ1/2)/(Mnπ1/2)

)α/(2α+d)
. (log n/n)α/(2α+d).

with probability PBZ ⊗ Pn at least 1 − 4/n2. This together with Proposition 10 yields that
for all n ≥ N∗2 := max{N3, N5, N6, 2M, d2e/(Mπ)e}, there holds

‖η̂B,u(x)− ηw(x)‖∞ = ‖η̂B,u(x)− ηu(x)‖∞ + ‖ηu(x)− ηw(x)‖∞

. (log n/n)α/(2α+d) +
»

log n/n . (log n/n)α/(2α+d)

with probability PBZ ⊗ Pn at least 1− 5/n2. Lemma 15 yields that

‖ηw,∗Lcl,Pw
(x)− ηw

ψ̂B,u(x)
(x)‖∞ . (log n/n)α/(2α+d)

holds with probability PBZ ⊗ Pn at least 1− 5/n2, where ηw,∗Lcl,Pw
(x) = ηψ∗Lcl,P

w (x)(x), i.e, the
Bayes classifier w.r.t. the classification loss Lcl and the balanced distribution Pw. Conse-
quently, Lemma 16 implies that

RLcl,Pw(ψ̂B,u)−R∗Lcl,Pw
. (log n/n)α(β+1)/(2α+d)

holds with probability PBZ ⊗ Pn at least 1 − 5/n2. By (24) and Theorem 6, we have
RAM(ψ̂B,u) . (log n/n)α(β+1)/(2α+d), which finishes the proof.
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Proof [of Corollary 4] Taking k = 1 in Proposition 12, we get

‖ηb,u(x)− ηu(x)‖∞ ≤
n∑
i=1

V
u
i (x)Rα(i)(x) + exp

(
−(s− 1)2/(2n)

)
≤ (2n1/n)α/d + c3s

−α/d + exp
(
−(s− 1)2/(2n)

)
≤ c′3(log s/s)α/d + exp

(
−(s− 1)2/(2n)

)
,

where the constant c′3 := (12d + 32)α/d + c3. This together with Propositions 11 and 13
yields that if n ≥ max{N4, N5, N6} = max{N5, N6}, there holds

‖η̂B,u(x)− ηu(x)‖∞ .
»

log n/B + (log s/s)α/d + exp
(
−(s− 1)2/(2n)

)
+
»
s log n/(Mn(1))

with probability PBZ ⊗ Pn at least 1− 3/n2.
If d > 2α, with s = (Mn(1))

d
2α+d (log(Mn(1)))

2α−d
2α+d , B = (Mn(1))

2α
2α+d (log(Mn(1)))

d−2α
2α+d

we get

‖η̂B,u(x)− ηu(x)‖∞ . (log2(Mn(1))/Mn(1))
α/(2α+d).

According to (46) in Lemma 21, we have Mn(1) ≥Mnπ1/2. Note that g(x) := log2(x)/x is
decreasing on [e2,∞). Consequently, if n ≥ max{N5, N6, 2M, d2e2/(Mπ)e}, there holds

‖η̂B,u(x)− ηu(x)‖∞ .
(
log2(Mnπ1/2)/(Mnπ1/2)

)α/(2α+d)
. (log n/n)α/(2α+d)

with probability PBZ ⊗ Pn at least 1 − 4/n2. This together with Proposition 10 yields that
for all n ≥ N∗3 := max{N3, N5, N6, 2M, d2e3/(Mπ)e}, there holds

‖η̂B,u(x)− ηw(x)‖∞ = ‖η̂B,u(x)− ηu(x)‖∞ + ‖ηu(x)− ηw(x)‖∞

. (log n/n)α/(2α+d) +
»

log n/n . (log n/n)α/(2α+d)

with probability PBZ ⊗ Pn at least 1− 5/n2.
Otherwise if d ≤ 2α, with s = (Mn(1) log(Mn(1)))

1/2 and B = (Mn(1)/ log(Mn(1)))
1/2,

by similar arguments as above, for all n ≥ N∗3 , there holds

‖η̂B,u(x)− ηw(x)‖∞ = ‖η̂B,u(x)− ηu(x)‖∞ + ‖ηu(x)− ηw(x)‖∞
. max

{
(log n/n)α/(2d), (log3 n/n)1/4

}
with probability PBZ ⊗ Pn at least 1− 5/n2. By exploiting similar arguments as that in the
proof of Theorem 3, we obtain the assertion.
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