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Abstract

Most knowledge graphs (KGs) are incomplete, which motivates one important1

research topic on automatically complementing knowledge graphs. However,2

evaluation of knowledge graph completion (KGC) models often ignores the3

incompleteness—facts in the test set are ranked against all unknown triplets which4

may contain a large number of missing facts not included in the KG yet. Treating all5

unknown triplets as false is called the closed-world assumption. This closed-world6

assumption might negatively affect the fairness and consistency of the evaluation7

metrics. In this paper, we study KGC evaluation under a more realistic setting,8

namely the open-world assumption, where unknown triplets are considered to9

include many missing facts not included in the training or test sets. For the cur-10

rently most used metrics such as mean reciprocal rank (MRR) and Hits@K, we11

point out that their behavior may be unexpected under the open-world assumption.12

Specifically, with not many missing facts, their numbers show a logarithmic trend13

with respect to the true strength of the model, and thus, the metric increase could be14

insignificant in terms of reflecting the true model improvement. Further, consider-15

ing the variance, we show that the degradation in the reported numbers may result16

in incorrect comparisons between different models, where stronger models may17

have lower metric numbers. We validate the phenomenon both theoretically and18

experimentally. Finally, we suggest possible causes and solutions for this problem.19

1 Introduction20

Knowledge graph (KG) is a structural method to store facts about some field or the world. Because21

most KGs are incomplete, the knowledge graph completion (KGC) task is proposed to automatically22

complement the existing KG with missing facts. However, when we do not know the missing facts23

in advance, we must manually evaluate whether each predicted completion is correct, which is an24

impossible task for modern KGs. This problem is called the open-world problem and the assumption25

that KGs are incomplete is called the open-world assumption. A general solution is to extract the26

training, validation and test sets from the existing incomplete KG and then evaluate the trained models27

on the test set. Then, a natural question is whether the conclusion drawn from the incomplete test set28

is consistent with the true strength of the model, which should be measured on the complete KG.29

To answer this question, we need to investigate the metrics used to evaluate KGC models. KGC30

models are often evaluated by ranking-based metrics, such as mean reciprocal rank (MRR) and31

Hits@K. Under the open-world assumption, when a missing fact that should have been included in32

the test answers is predicted by the model, its ranking could be higher than some test answers,33

which makes the rankings of these test answers drop. In this situation, despite actually recognizing34

more right answers, the metrics drop instead.35
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Table 1: The filtered ranking as well as the metric MRR. “w/o c”: without correction and “with c”:
with correction. Query: “What sports were included in the 1956 Summer Olympics?”

Test Answers Missing Answers
swimming sailing water polo boxing dressage show jumping canoe sprint cycling

ranking w/o c 5 5 1 2 3 4 7 9
ranking with c 1 1 1 1 1 1 3 4

To intuitively show the problem, we train BetaE [Ren and Leskovec, 2020], one state-of-the-art36

multi-hop KGC model, on the FB15k-237 dataset [Toutanova and Chen, 2015]. One of the test37

queries is “What sports were included in the 1956 Summer Olympics?”. The two test answers are38

swimming and sailing, both with the filtered rankings (refer to Section 2) of 5, so the MRR on this39

query is 20%. However, when we manually check the first 30 predictions , we found that many of40

them are in fact sports included in the 1956 Summer Olympics but not included in the answer set.141

We present these missing answers in Table 1. We can see that all the four sports previously ranking42

higher than the two test answers turn out to be missing true answers. Thus, if we correct the answer43

set by adding these missing answers to the test set, the actual filtered rankings of the two test answers44

are both 1, and the corrected MRR on the new test set becomes 82% which is much higher than the45

reported 20%, indicating that the model strength on this query is significantly underestimated.46

In this paper, we study the odd behavior of the ranking-based metrics under the open-world assump-47

tion, and summarize two problems affecting the KGC evaluation: 1) Metric Degradation. It means48

that with the increasing of the actual model strength, the increasing of the reported metric becomes49

slower and slower. Thus, the reported metric might not be able to reflect the true model improvement.50

2) Metric Inconsistency. It means that when comparing two models, the model with lower reported51

metric may actually have better performance if we evaluate them on the complete KG.52

Our main contributions include that: For the first time, we theoretically analyze the evaluation of53

KGC under the open-world assumption and point out the degradation and inconsistency problems.54

Furthermore, we suggest that the degradation and inconsistency may be related to the focus-on-top55

behavior of the metrics, and provide a solution to relieve the two problems. Finally, we verify the56

theoretical analysis through experiments on an artificial closed-world KG.57

2 Background and related work58

Knowledge graph completion Current KGC models can be mainly categorized into three classes:59

logic-based, embedding-based, and neural-based. Logic-based models [Joseph and Riley, 1998,60

Richardson and Domingos, 2006] use some explicit rules for KGC, which are manually provided or61

mined by some rule-mining methods, such as [Galárraga et al., 2013, Yang et al., 2017, Sadeghian62

et al., 2019]. These models search through the existing KG and deduce missing facts according to the63

given rules. However, this process can be time-consuming and noise-sensitive. At the same time, if64

the KGs are highly incomplete, the performance could be poor. Embedding-based models [Bordes65

et al., 2013, Yang et al., 2015, Trouillon et al., 2016, Sun et al., 2019] represent entities and relations66

by learned vectors or tensors, where the possibility of a fact is measured by a score function. These67

models have good scalability and can be applied to large and sparse KGs. Some works aim to68

generalize embedding-based models to more patterns [Trouillon et al., 2016, Abboud et al., 2020]69

and more assumptions (such as multiple answers) [Vilnis et al., 2018, Ren et al., 2020, Abboud et al.,70

2020]. One of the interesting directions is to consider multi-hop reasoning [Ren et al., 2020, Ren and71

Leskovec, 2020, Zhang et al., 2021], where a query can be composed by several conditions, such72

as “Who is the Canadian and won the Turing Award ?” Note that the open-world problem could be73

more severe in the multi-hop setting, because missing in any condition leads to missing in the final74

results. Neural-based models combine neural networks with embeddings. Dettmers et al. [2018]75

and Nguyen et al. [2018] use a convolution networks as the score function to enlarge the capacity of76

the models. Nathani et al. [2019], Vashishth et al. [2020] and Wang et al. [2021] use graph neural77

networks on the KGs to learn the embeddings or directly predict the links.78

KG evaluation Current KGC evaluation resorts to manually split training, validation and test sets79

from the incomplete KG. Given a test query r(eh, ?) (which entities have the relation r with the80

1All sports held at this Olympics are in: https://en.wikipedia.org/wiki/1956_Summer_Olympics.
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head entity eh?), a typical method is to predict a score for all entities as the tail entity, rank all the81

entities, and then measure the average of a ranking-based function h(r) on the test answers. Here, the82

most-used metrics are MRR h(r) = 1/r and the Hits@K h(r) = I(r ≤ K). Because there could be83

multiple answers for a query, the metrics should be filtered, which means the answers in the training84

and test sets do not occupy a position so that the number of training and test answers does not affect85

the metrics. The details of the filtering can be found in [Bordes et al., 2013]. Due to the nonlinearity86

of most ranking-based metrics, some works have theoretically investigated their behavior. Wang87

et al. [2013] point out some ranking-based metrics always converge to 1 on different models as the88

number of objects to rank goes to infinity, so that the performance of models is indistinguishable.89

Krichene and Rendle [2020] analyze the behavior of ranking-based metrics under negative sampling.90

They point out the sampled metrics can be inconsistent with exact metrics and all metrics lose their91

focus-on-top feature and collapse to a linear one, AUC-ROC, in the small sample limit. Sun et al.92

[2020] focus on the unfair tie-breaking methods. Akrami et al. [2020] find some data argumentation93

such as adding inverse relations could be a kind of excessive data leakage during evaluation.94

3 Open-world problem95

In this section, we formally define the open-world problem that will be analyzed in our paper.96

Definition 3.1 (Knowledge Graph). A knowledge graph is a relational graph G = (E,F,R) where97

E is the vertex set containing entities, F is the edge set containing facts, and R is the relation set.98

Each edge f ∈ F is labeled by a relation. If an edge f between entities eh and et is labeled by99

relation r ∈ R, we denote the edge f as r(eh, et) where eh is the head entity and et is the tail entity.100

In this paper, we assume E and R are fixed. Therefore, we sometimes directly use G to denote the101

fact set F , and r(eh, et) ∈ G means there is relation r between eh and et in the KG G.102

A set of KGs with the same entities E and relations R but different facts F is called a world and103

denoted by W (E,R). An (open-world) KG can be considered as an observation or understanding of104

the world where there could be unobserved or unknown facts, while the closed-world KG contains all105

the true facts of the world. Formally, the closed-world and open-world KGs are defined as follows:106

Definition 3.2 (Closed-World KG and Open-World KG). For a world W (E,R), the closed-world107

KG G is the closure of the world.108

G =
⋃

G′∈W

G′,

where the union is defined on the fact set. And for a KG G′ ∈ W , if G′ 6= G, G′ is open-world.2109

Some property of closed-world KGs: 1) There is a one-to-one correspondence between closed-world110

KGs and worlds W (E,R). 2) All the KGs in a world are subgraphs of the closed-world one. 3) If G111

is the closed-world KG of the world W , we have f 6∈ G ⇒ ∀G′ ∈ W, f 6∈ G′.112

The third property is critical. It means with the closed-world G, we know there is no such a relation113

r between eh and et in the world when r(eh, et) 6∈ G. Given the closed-world KG, we have all114

knowledge of the world, including both the positive and negative one. Conversely, if a KG is open-115

world, we do not know whether the triplet is false or unknown when r(eh, et) 6∈ G. In other words,116

an open-world KG only contains positive knowledge.117

In the rest of the paper, we denote the closed-world KG as Gfull. Because we want to study the118

evaluation, we denote the existing open-world dataset as Gtest, and extract the training set Gtrain119

from Gtest. Here, Gtrain ⊆ Gtest ⊆ Gfull and the facts in Gtrain, Gtest \ Gtrain, Gfull \ Gtest120

are training facts, test facts and missing facts respectively. In addition, we also call the facts in121

Gfull \Gtrain full test facts and Gtest \Gtrain sparse test facts.122

Now, we can formally define the open-world problem. We believe the actual strength of a model123

should be evaluated on the full test facts Gfull \ Gtrain. However, because the closed-world KG124

Gfull is unavailable, the evaluation is often performed over Gtest \Gtrain. The question is:125

Whether the conclusions from evaluation on the sparse test facts Gtest \Gtrain126

lead to consistent conclusions from evaluation on the full test facts Gfull \Gtrain.127

2Some works use open-world to refer to not only facts but also entities may be incomplete.
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4 Theoretical analysis on metric degradation and inconsistency128

To study the open-world problem, we theoretically analyze the behavior of ranking-based metrics129

with missing facts. All the proofs are in Appendix A.1. The randomness comes from two sources:130

the missing of facts and the predictions of the model. We model them as two random events.131

• Missing Fact Model: For a full test fact r(eh, et) ∈ Gfull \ Gtrain, X means it is a missing132

fact with P (X) = β while X means it is included in the sparse test set Gtest \ Gtrain with133

P (X) = 1− β = α. β is called the sparsity of the KG.134

• Prediction Model: For simplicity of analysis, we model KGC as a classification task. In fact,135

an ideal (oracle) KGC model is exactly a classification model, which identifies all the correct136

facts. Here, for a full test fact r(eh, et) ∈ Gfull \Gtrain, Y means the answer et is correctly137

classified as positive with P (Y ) = l. l is called the strength of a model. We break ties uniformly138

at random for entities classified into the same class.139

4.1 Expectation degradation140

We first assume the independence of the random events X and Y . We show that the expectation141

of the metrics will degrade with missing facts. Specifically, the increasing of the metrics shows a142

logarithmic trend, so that it could be too flat to reflect the true increasing of the model strength.143

Assume the number of entities is Nentity in the KG. For a given query r(eh, ?), let N be the number144

of full test answers. The random variant m is the number of missing answers Gfull \Gtest, and it145

follows the binomial distribution B(N, β). The other N −m answers are test answers. We denote146

the filtered ranking of the entity e as r(e). Then we have the lemma.147

Lemma 4.1 (Expectation of ranking-based metrics). With the modeling of missing fact and prediction148

as above, the expectation of ranking-based metric M = 1
N−m

∑N−m
i=1

1
f(r(ei))

can be expressed as149

E(M) =
1

β(N + 1)

N∑
k=0

1

f(k + 1)

(
1− Φ̂(k)

)
+ δ, (1)

where Φ̂ is the cumulative distribution function (cdf) of binomial distribution B(N + 1, lβ) and150

0 < δ ≤ (1− l)
ln(Nentity−N)
Nentity−N .151

Generally, the Nentity is a large number and the answer rate N/Nentity < 10% in almost all queries,152

so the item δ is negligible. In the rest of the paper, we denote Ê = 1
β(N+1)

∑N
k=0(1−Φ̂(k))/f(k+1)153

which is a good approximation of E.154

With this lemma, we get a closed-form expression of the expectation of the ranking-based metric M.155

However, this expression cannot explain why the metrics will degrade. Next, we derive the form of156

derivative of the expectation Ê w.r.t the model strength l to account for its degradation.157

Corollary 4.1 (Derivative of Expectation w.r.t Model Strength). Let g(r) = r/f(r), r ∈ N+ and158

g(0) = 0. Under the condition of 4.1, the derivative of the expectation w.r.t the model strength l is159

dÊ(M)

dl
=

1

lβ(N + 1)
Ek∼B(N+1,lβ) g(k). (2)

And for the most-used metrics MRR and Hits@K, their derivative are expressed as follows.160

Corollary 4.2 (Derivative of MRR w.r.t strength l). For MRR where f(r) = r,∀r ∈ N+, its161

derivative w.r.t. l is162

dÊ(MRR)

dl
=

1− ε

lβ(N + 1)
. (3)

where ε = (1− lβ)N+1.163

When lβ and N are not too small, the term ε is negligible. In this situation, the derivative of the164

metric MRR w.r.t the model strength is approximately of O(1/Nl), which will result in insignificant165

changes in the metric with the increasing of the model strength.166
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Corollary 4.3 (Derivative of Hits@K w.r.t strength l). For Hits@K where f = 1 for r ≤ k and167

f = +∞ otherwise, the derivative is168

dÊ(Hits@K)

dl
= Φ(K − 1), (4)

where Φ is the cdf of the binomial distribution B(N, lβ).169

The behavior of Hits@K is similar to MRR when K � N . When lβ is not too small and K is not170

too large, the derivative Φ(K − 1) is so small that the increase could be insignificant.171

Finally, we further approximate Equation (1) by a more intuitive expression with a tolerable error.172

Theorem 4.1 (Expectation of MRR). For MRR, we can further approximate its expectation by173

Ê(MRR) ≈ ln(l) + ln(β) + ln(N + 2) + γ

β(N + 1)
:= Ẽ,

where γ ≈ 0.577 is the Euler’s constant and the error3 e = |Ẽ−Ê| ≤ max{ 1
2β(N+1)2 ,

(1−lβ)N+1

1−(1−lβ)N+1 ·174

ln(1/(lβ))
β(N+1) }.175

Firstly, we explain the rationales of the approximation Ẽ as follows.176

• N is large enough. For many KGs, especially those commonsense KGs which are not limited to177

a certain field, the number of answers is often quite large. In the experiment conducted by Ren178

and Leskovec [2020], there are many tests queries with dozens or hundreds of answers.179

• Sparsity β is not too small. For most real-world KGs, although we do not exactly know their180

sparsity, we expect many of them could have a rather high sparsity β due to the incompleteness181

of knowledge extraction and the long-tail distribution of commonsense knowledge.182

• Model strength l is not too small. Here we are more concerned with how to select and evaluate183

those models that perform well.184
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Figure 1: Theoretical log approxima-
tion (a) and numerical simulation (s).
The shadow shows the [−2σ, 2σ] inter-
val, where σ is the numerical std.

Under the above conditions, the relative error e is negli-185

gible. To further show that our approximation is reliable,186

we do numerical simulations as shown in Figure 1. For187

1 − α ≥ 0.2 and l > 0.3, the analytical and numerical188

curves almost overlap, which means the log approximation189

is accurate. At the same time, we point out the log trend190

is just the reason why the curve becomes flatter and flatter.191

The details of the simulation is in Appendix A.2.192

Theorem 4.1 illustrates the metric degradation intuitively.193

There are some conclusions about the MRR under the194

open-world assumption: 1) Although the theoretical maxi-195

mum of MRR is 1, the expectation of the MRR of a perfect196

model l = 1 is still much lower than 1 and depends on the197

sparsity of the KG. 2) With the sparsity β not very small,198

the MRR will be a log function of the strength l times the199

answer number N which means that as the model gets stronger, the increase of the metric MRR will200

be less and less significant. The sparser the KG is, the more severe the degradation problem is. Note201

that in the closed-world KG, the curve should be very closed to y = x.202

4.2 Inconsistency due to high variance203

In Figure 1, another notable phenomenon is the vibrated curves, which suggests instability of the204

metric and relatively high variance. This phenomenon combined with the flattening of the expectation205

can lead to inconsistency, which means higher MRR might not mean stronger models unless the206

difference of the metric is large enough, because the increasing of expectation could be easily207

overwhelmed by the variance.208

One trivial method to solve the problem is to use more test queries. Here we show the number of209

queries required to ensure the reliability of conclusions can be very large.210

3The error bound has changes compared to the submitted version.

5



Theorem 4.2 (Consistence with High Probability). Assuming the number of test queries Nq is large211

enough (Nq > 50), we can approximate the average MRR M = 1
Nq

∑Nq

i=1 MRR(qi) to follow a212

normal distribution. Given two independent models M1 and M2 whose strength is l and l + ∆l213

respectively. The probability of inconsistency between two models can be approximated as follows.214

P [M(M1) ≥ M(M2)] = Ψ

(
−

√
Nq ln(1 +

∆l
l )

β(N + 1)
√
V (β, l) + V (β, l +∆l)

)
, (5)

where Ψ is the cdf of the standard normal distribution.215

Note for a given KG, the sparsity β and the answer number N are fixed. Assuming ∆l
l � 1, we have216

V (β, l) ≈ V (β, l +∆l) := V and ln(1 + ∆l
l ) ≈

∆l
l . Then we have the following corollary.217

Corollary 4.4 (Lower Bound of the Number of Queries). Under the above assumption of ∆l
l � 1,218

with the upper bound of inconsistency probability p, the number of test queries required Nq has a219

lower-bound as follows.220

Nq ≥ c(β, l,N, p)

(∆l)2
, (6)

where c(β, l,N, p) = 2(βl(N + 1)Ψ−1(p))2V .221

Note that the required number is of the second order O((1/∆l)2), which means one should be222

particularly careful when comparing two models with close strength. For example, when we set223

β = 0.35, l = 0.7, N = 43 and p = 5% we have c ≈ 2.85 where we use the numerical variance224

V = 7.4 × 10−3. In this situation, when ∆l = 0.05, Nq ≥ 1140, while when ∆l = 0.01,225

Nq ≥ 28500 which cannot be easily satisfied.226

4.3 Correlation between missing and misclassification227

In the previous two subsections, we analyze the degradation and inconsistency with independence228

assumption between missing facts and model predictions. In some conditions, there could be229

correlation between the missing data and the trained models. Let us give some examples:230

• The missing facts in closed-world KG Gfull follow some non-uniform distribution. For example,231

in some KGs, the missing facts are more frequently related to some certain entities. The model232

could be under-trained on these entities because there are more missing facts related to them233

when training. And when the model is tested, the queries with more missing test answers234

correspond to the lower predicting capacity.235

• The target KG has been preliminarily complemented by some models. In this situation, the236

missing facts show a negative correlation with the predictive power of this type of models.237

Next, we will extend the previous analysis to the situation without the independence assumption. For238

this goal, we use the correlation efficient to model the correlation between random event X: a fact is239

missing and Y : this fact is predicted by the model.240

Definition 4.1 (Correlation between fact missing and model prediction). The correlation coefficient241

r between two random events X and Y can be defined as follows.242

ρ =
P (XY )− P (X)P (Y )√
P (X)P (X)P (Y )P (Y )

. (7)

With the correlation coefficient ρ, the prediction accuracy on missing answers e ∈ Gfull \Gtest and243

on test answers e ∈ Gtest \Gtrain can be calculated as the conditional probability as P (Y |X) =244

l+
√
l(1− l)α/β ·ρ and P (Y |X) = l−

√
l(1− l)β/α ·ρ. We denote them as l1 and l2 respectively.245

Theorem 4.1 can then be generalized as follows:246

Theorem 4.3. We have the approximation for MRR247

E(MRR) ≈ l2
l1

· ln(l1) + ln(β) + ln(N + 2) + γ

β(N + 1)
:= Ẽ. (8)
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Figure 2: Theoretical approximation (a) and numerical simulation (s) of the expectation with
correlation coefficient ρ. Details of the figures are the same as in Figure 1.

The theoretical error analysis is in Appendix A.1. We also evaluate the approximation by numerical248

simulation and the results are shown in Figure 2. The approximation fits the numerical simulation249

well. Comparing different models with the same model strength l but different correlation coefficient250

ρ, the models with smaller ρ have the higher MRR. The phenomenon is consistent with Corollary 4.5.251

252

Corollary 4.5 (The derivative w.r.t ρ with correlation). If we have the inequality l1β(N + 2) ≥253

exp(α+
√

αβ(1−l)
l − γ), then the derivative ∂ E(MRR)

∂ρ < 0.254

The condition in Corollary 4.5 has requirements for lower bound l1 and ρ. If l1 is close to 0, the255

condition can be violated. This corollary suggests more severe inconsistency. In a reasonable range,256

the expectation of MRR is monotonically decreasing w.r.t ρ. This conclusion suggests that the metric257

MRR may favor the models with smaller ρ instead of larger l. Note that the inconsistency is of258

expectation, which cannot be solved by more test queries.259

5 Relationship between focus-on-top and degradation260

We have pointed out the degradation and inconsistency under the open-world assumption for some261

most-used ranking-based metrics. Specifically, the derivative of the metrics w.r.t l can be too small262

to reflect the increasing of the true improvement of the model strength (degradation). According263

to Corollary 4.1, the derivative is related to the expectation of g(r) = r/f((r)) where r follows a264

binomial distribution. We point out the degradation is due to the too small expectation of g relative to265

the denominator N , which is inherently caused by a property of the metrics called focus-on-top.266

The focus-on-top property means that the metrics are more sensitive to ranking change in top places.267

For example, MRR changes from 1 to 0.5 when the ranking changes from 1 to 2, but only changes268

from 1e-2 to 0.99e-2 when the ranking changes from 100 to 101. This property can simulate the269

human behavior that people pay more attention to the top answers. However, under the open-world270

assumption, the focus-on-top property causes negative impacts by making the function 1/f(r)271

decrease too fast so that the expectation of g is too small relative to N . For example, according to272

Corollary 4.3, a smaller K means more focus-on-top and smaller derivative.273

We can also understand the relationship intuitively. Focusing-on-top means that a few missing274

answers can have a large impact on the metric, especially when the model performance is already275

good and the rankings of the rest answers fall into the sensitive range. It is also consistent with our276

observation that the flatting problem is more severe when the strength l increases.277

There is a trade-off between focus-on-top and consistency. Therefore, one solution to the degradation278

and inconsistency is to add in some less focus-on-top metrics as a verification when evaluating, which279

have a relatively slower descending rate. For example, the log-MRR where f(r) = log2(r + 1) and280

p-MRR where f(r) = rp , 0 < p < 1 are less focus-on-top than the standard MRR. If the conclusions281

of these less focus-on-top metrics are consistent with the MRR or Hits@K, the credibility of the282

conclusions will be greatly enhanced.283

6 Experiments on an artificial KG284

In this section, we aim to conduct experiments with practical KGC models on a meaningful closed-285

world KG to further verify our conclusions. The reason we want a closed-world KG is for comparing286
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Figure 3: Full test and sparse test MRR on the artificial family
tree KG. Note the ranges of y-axis are different.

0.40 0.45 0.50 0.55 0.60 0.65 0.70
MRR (full test set)

0.22

0.24

0.26

0.28

0.30

M
RR

 (s
pa

rs
e 

te
st

 se
t) M

(0.54, 0.25)

(0.63, 0.28)

density 75
4
7

Figure 4: A zoom-in of two
curves 4 and 7 under density d =
0.75. The checkpoints of model
4 lying on the red segment all
have better full test MRR than the
checkpoint M of model 7, while
reporting worse sparse test MRR
under the open-world setting.

the reported MRR with the true model strength which should be measured on the full test set. To find287

a closed-world KG, however, it is impractical to resort to existing real-world ones since we have no288

guarantee that the KG has no missing facts. Therefore, we must resort to some artificial KGs.289

For this purpose, we generate an artificial family tree KG, which contains 6,004 entities, 23 relations,290

and 192,532 facts. The relation set contains all common family relations such as parent, child,291

husband, wife, sister, and brother. The details are included in Appendix A.3. The generated KG is292

closed-world since all the facts can be deduced by a symbolic reasoning tool called DLV system293

[Leone et al., 2006] (free for academic use). With the closed-world KG, we can simulate the practical294

open-world setting by artificially controlling the degree of random fact missing, which is measured295

by density d = |Gtest|/|Gfull|. The relation between d and α is explained in Appendix A.3.296

With the closed-world KG, we aim to verify our previous conclusions restated below:297

1. There is metric degradation which means the curves of metric increasing become flatter298

and flatter with the increasing of model strength l. Further, the degradation may result in299

inconsistency, where stronger models report lower metric numbers.300

2. Considering the correlation between fact missing and model prediction, if the correlation301

degrees vary among different models, the inconsistency problem may become more severe.302

3. The degrees of degradation and inconsistency are related to the focus-on-top property of the303

metrics. With less focus-on-top metrics, these problems could be relieved.304

All codes are provided in the supplement and will be released after publication. The experiments305

were run on two clusters with four NVIDIA A40 and six NVIDIA GeForce 3090 GPUs respectively.306

6.1 Degradation and inconsistency under independence assumption307

We train four KGC models with different hyperparameter settings (which results in 18 different models308

in total) and test them on full test set Gfull \Gtrain and sparse test set Gtest \Gtrain respectively.309

The full test metric can be considered as a measurement of model strength l which is what we310

really want to measure, while the sparse test metric is what we can observe in practice. We plot311

the sparse-full test curve under different densities in Figure 3, where each curve represents a model312

whose label is shown in the right legend, and the details of the models are given in Appendix A.4.313

From the figure, we first observe that these curves are indeed shaped like log curves. The increasing314

of the sparse test MRR is slower and slower with the increasing of the full test MRR. Due to the315

flatting of the curves, the same sparse MRR has a rather broad interval of the corresponding full316

metric. This phenomenon indicates the degradation of the metric MRR. And as the sparsity increases,317

the range of the y-axis shrinks (i.e., the curves become flatter), which means the degradation is more318

severe. Further, these results demonstrate the inconsistency problem of MRR. To illustrate this point319

more clearly, we zoom in a part of the full figure with two curves as shown in Figure 4. For the model320

checkpoint corresponding to point M on curve 7, any model checkpoint corresponding to a point on321

the red segment of curve 4 is actually stronger than that model, but reports a lower sparse MRR.322
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Figure 5: (a) Full test and sparse test MRR on independent (above) and correlated (bottom) family
tree KG. (b) MRR, and less focus-on-top metrics. Both are under density d = 75%

6.2 Correlation between fact missing and model prediction323

In this part, we will simulate the third example we provided in Section 4.3 to check our theory324

considering the correlation between fact missing and model prediction. Here we use one of the trained325

ComplEx model (labeled as 16) [Trouillon et al., 2016] to predict on the full test set Gfull \Gtrain326

and use its predictions to choose the test set Gtest \ Gtrain and missing facts Gfull \ Gtest. The327

missing facts are highly correlated with this ComplEx model and therefore could be correlated with328

other models according to the correlation between different frameworks and model settings. Then we329

test the other models except for this ComplEx model on the correlated test set. The results of density330

d = 75% are shown in Figure 5a and others are shown in Appendix A.5. Though the correlation331

coefficient is not available for these different models, we indeed observe the gaps between different332

models become larger than the independent setting, which suggests the inconsistency is more severe.333

6.3 Less focus-on-top metrics334

The next conclusion is that with less focus-on-top metrics, the degradation and inconsistency can be335

relieved. In Figure 5b, we show the sparse-full curves with some less focus-on-top metrics (log-MRR336

and p-MRR) for the experiments from Section 6.1. Their curves are more close to y = x instead of337

the log function. The flatting is less significant due to the wider range of y-axis. We also observe that338

the gaps between different models become smaller, which indicates inconsistency is also relieved.339

Additional results with more metrics, density d and correlation are shown in Appendix A.6.340

7 Conclusion and future work341

In this paper, we study KGC evaluation under the open-world assumption. Theoretically, we model342

KGC as a positive-negative classification and then deduce an approximation of the expectation of the343

ranking-based metrics with or without the independence assumption. According to the approximation,344

we illustrate the degradation and inconsistency of these metrics under the open-world assumption.345

Furthermore, we point out the focus-on-top property of ranking-based metrics worsen the degradation346

and inconsistency. Finally, we generate a closed-world family tree KG and do experiments to verify347

our theoretical conclusions. There is still some future work. First, our analysis is based on the348

positive-negative classification model, which may be too idealistic. In practice, the ranking in positive349

and negative parts may not be uniformly at random. A more realistic modeling of the KGC task is a350

direction for our future research. In addition, the correlation between missing facts and prediction351

could be more complex than our analysis. Finally, we are curious about the possibility to find a more352

fundamental solution to the open-world problem, which we leave for future work.353
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A Appendix467

A.1 Proof468

A.1.1 Lemma 4.1469

Proof. First, according to the linearity of expectation, we have470

E(M) = Em E

(
1

N −m

N−m∑
i=1

1

f(r(ei))

∣∣∣∣∣m
)

= Em E
(

1

f(r(e))

∣∣∣∣m) ,

where E( 1
f(r(e)) ) = E( 1

f(r(e1))
) = · · · = E( 1

f(r(eN−m)) ), and here {e1, e2, . . . , eN−m} is the test471

answer set. We denote the final item as E( 1
f(r(e)) |m). Then, using the conditional expectation, we472

have473

E
(

1

f(r(e))

)
= P (Y )E

(
1

f(r(e))

∣∣∣∣Y )+ (1− P (Y ))E
(

1

f(r(e))

∣∣∣∣Y )
= lE

(
1

f(r(e))

∣∣∣∣Y )+ (1− l)E
(

1

f(r(e))

∣∣∣∣Y ) .

For the first item, because the ranking of each positive entity is uniformly at random and note the474

ranking is filtered, we have P (r = k|Y ) = 1/(m+1), ∀k = 1, 2, . . . ,m+1. Note m is a random475

variant following the binomial distribution B(N, βl), we have476

E
(

1

f(r(e))

∣∣∣∣Y ) = Em

(
1

m+ 1

m+1∑
k=1

1

f(k)

)

=

N∑
m=0

(
N

m

)
(lβ)m(1− lβ)N−m 1

m+ 1
(

m+1∑
k=1

1

f(k)
)

=

N+1∑
k=1

1

f(k)

N∑
m=k−1

(
N

m

)
(lβ)m(1− lβ)N−m 1

m+ 1

=
1

lβ(N + 1)

N+1∑
k=1

1

f(k)

N∑
m=k−1

(
N + 1

m+ 1

)
(lβ)m+1(1− lβ)N−m

=
1

lβ(N + 1)

N+1∑
k=1

1

f(k)
P (m ≥ k)

=
1

lβ(N + 1)

N∑
k=0

1

f(k + 1)
(1− Φ̂(k)),

where Φ̂ is the cdf of binomial distribution B(N +1, lβ). To prove this lemma, we only need to prove477

0 < (1− l)E( 1
f(r(e)) |Y )) ≤ (1− l)

ln(Nentity−N)
Nentity−N . The left side is obvious, and the right side can be478

proved as follow. Here we use Ne to denote the number of entity instead of Nentity. Condition on479

m, note that the minimal ranking of negative entities is m+ 1 because there have been m missing480

answers with higher rankings, and the maximal ranking of them is Ne − (N − m) which is the481

number of entities except for the filtered ones. So we have482

E
(

1

f(r(e))

∣∣∣∣Y ) =
1

Ne −N
Em

Ne−N+m∑
k=m+1

1

k
≤ Em

ln(Ne −N +m)− ln(m)

Ne −N
≤ ln(Ne −N)

Ne −N
.

The first inequality is because 1/k ≤ ln(k)− ln(k − 1). This proves the lemma.483
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A.1.2 Corollary 4.1484

Proof. We need the derivative of the cdf of binomial distribution. Assuming Φ is the cdf of B(N, p),485

we have486

dΦ(K)

dp
=

K∑
k=0

d

dp

(
N

k

)
pk(1− p)N−k

=

K∑
k=0

(
N

k

)
kpk−1(1− p)N−k −

K∑
k=0

(
N

k

)
(N − k)pk(1− p)N−k−1

=

K∑
k=0

(
N

k

)
kpk−1(1− p)N−k −

K∑
k=0

(
N

k + 1

)
(k + 1)pk(1− p)N−k−1

=

K∑
k=0

(
N

k

)
kpk−1(1− p)N−k −

K+1∑
k=1

(
N

k

)
kpk−1(1− p)N−k

= −
(

N

K + 1

)
(K + 1)pK(1− p)N−K−1

So for Φ̂(k) is the cdf of B(N + 1, lβ), we have487

∂Φ̂(k)

∂l
= −β

(
N + 1

k + 1

)
(k + 1)(lβ)k(1− lβ)N−k

and488

dÊ
dl

=
1

lβ(N + 1)

N∑
k=0

k + 1

f(k + 1)

(
N + 1

k + 1

)
(lβ)k+1(1− lβ)N−k

=
1

lβ(N + 1)

N+1∑
k=1

k

f(k)

(
N + 1

k

)
(lβ)k(1− lβ)N+1−k

=
1

lβ(N + 1)
Ek∼B(N+1,lβ) g(k).

The final equation is because g(0) = 0.489

A.1.3 Corollary 4.2490

Proof. For MRR, g(r) = 1, ∀r ∈ N+ and g(0) = 0. Just replace g into Corollary 4.1, we can get491

this corollary.492

A.1.4 Corollary 4.3493

Proof. According to the Corollary 4.1, we have494

dÊ(Hits@K)

dl
=

1

N + 1

K∑
k=1

k

(
N + 1

k

)
(lβ)k−1(1− lβ)N+1−k

=

K∑
k=1

(
N

k − 1

)
(lβ)k−1(1− lβ)N−(k−1)

= Φ(K − 1),

where Φ is the cdf of the binomial distribution B(N, lβ).495

A.1.5 Theorem 4.1496

Proof. Let E′ = βÊ = 1
N+1

∑N
k=0

1
k+1 (1 − Φ̂(k)) and t = lβ. In the same way in Corollary 4.1,497

we have498

dE′

dt
=

1

t(N + 1)

N∑
k=0

(
N + 1

k + 1

)
tk+1(1− t)N−k =

1− (1− t)N+1

t(N + 1)
.
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For 0 < t0 < t < 1, we have499

1− (1− t0)
N+1

t(N + 1)
≤ dE′

dt

∣∣∣∣
t

≤ 1

t(N + 1)
.

Then we integrate them from t0 to 1.500

−1− (1− t0)
N+1

N + 1
· ln(t0) ≤ E′ |t=1 − E′ |t=t0 ≤ − 1

N + 1
· ln(t0).

Because t0 is arbitrary, we replace t0 as general lβ.501

−1− (1− t0)
N+1

N + 1
· (ln(l) + ln(β)) ≤ Ê|l=β=1 − E′ ≤ − 1

N + 1
· ln(l) + ln(β).

Note that

Ẽ|l=β=1 = Ê|l=β=1 =
1

N + 1

N+1∑
k=1

1

k
=

ln(N + 2) + γ − εN+1

N + 1
.

We denote it as E1, where εN+1 = ln(N +2)+ γ −
∑N+1

k=1
1
k is the residual of the sum of harmonic502

series and 0 < εN+1 ≤ 1
2(N+1) . Then, we have503 (

1− (1− lβ)N+1
)
· (E1 +

εN+1

N + 1
− βẼ) ≤ E1 −E′ ≤ (E1 +

εN+1

N + 1
− βẼ).

For the second inequality, it is equivalent to

Ê− Ẽ ≥ − εN+1

β(N + 1)
≥ − 1

2β(N + 1)2
.

For the first inequality, we have504

Ê− Ẽ ≤
(
E1

β
− Ê

)(
1− 1

(1− (1− lβ)N+1)

)
− εN+1

β(N + 1)

≤
(
E1

β
+

εN+1

β(N + 1)
− Ẽ

)
(1− lβ)N+1

1− (1− lβ)N+1
− εN+1

β(N + 1)

=
(1− lβ)N+1

1− (1− lβ)N+1
· ln(1/(lβ))
β(N + 1)

− εN+1

β(N + 1)

≤ (1− lβ)N+1

1− (1− lβ)N+1
· ln(1/(lβ))
β(N + 1)

.

Therefore, we have the error bound:505

|Ê− Ẽ| ≤ max

{
1

2β(N + 1)2
,

(1− lβ)N+1

1− (1− lβ)N+1
· ln(1/(lβ))
β(N + 1)

}
506

A.1.6 Theorem 4.2507

Proof. Given all the independence assumption, M(M2) − M(M1) follows normal distribution

N (
ln(1+∆l

l )

β(N+1) ,
V (β,l)+V (β,∆l+l)

Nq
). So

Z =
M(M2)−M(M1)−

ln(1+∆l
l )

β(N+1)√
V (β,l)+V (β,∆l+l)

Nq

∼ N (0, 1).

Then M(M2) ≤ M(M1) is equivalent to508

Z ≤
− ln(1+∆l

l )

β(N+1)√
V (β,l)+V (β,∆l+l)

Nq

= −
√

Nq ln(1 +
∆l
l )

β(N + 1)
√
V (β, l) + V (β, l +∆l)

.

So the probability is as shown in the theorem.509
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A.1.7 Corollary 4.4510

Proof. Just solve Nq from the Theorem 4.2.511

A.1.8 Theorem 4.3512

Proof. We can generalize the Lemma 4.1 as follows.513

Lemma A.1 (Expectation with Correlation). Under the same assumptions as the lemma 4.1 and the514

correlation coefficient is ρ, the expectation of the metric M:515

E(M) =
l2
l1

· 1

β(N + 1)

N∑
k=0

1

f(k + 1)

(
1− Φ̃(k)

)
+ δ′, (9)

where Φ̃ is the cdf of binomial distribution B(N + 1, l1β) and 0 ≤ δ′ ≤ (1− l2)
ln(Nentity−N)
Nentity−N .516

The proof of the lemma is similar to what we have shown in A.1.1. Given the lemma, the Ê can be517

similarly expressed as l2
l1
· 1
β(N+1)

∑N
k=0

1
f(k+1) (1− Φ̃(k)).518

In the similar way in A.1.5, let E′ = l1βÊ and t = l1β we have519 (
1− (1− l1β)

N+1
)
· (E1 +

l2ε(N+1)

N + 1
− l1βẼ) ≤ E1 −E′ ≤ (E1 +

l2ε(N+1)

N + 1
− l1βẼ).

where E1 = l2(ln(N+2)+γ−εN+1)
N+1 = Ẽ|l1=β=1 = Ê|l1=β=1. Also using the same technique, the error520

bound is521

Ê− Ẽ ≥ l2
l1β(N + 1)2

and522

Ê− Ẽ ≤
(
E1

l1β
− Ê

)(
1− 1

(1− (1− l1β)N+1)

)
≤
(
E1 +l2εN+1

l1β
− Ẽ

)
(1− l1β)

N+1

1− (1− l1β)N+1

=
(1− l1β)

N+1

1− (1− l1β)N+1
· l2 ln(1/(l1β))

l1β(N + 1)
.

The error bound is that523

|Ê− Ẽ| ≤ max

{
l2

l1β(N + 1)2
,

(1− l1β)
N+1

1− (1− l1β)N+1
· l2 ln(1/(l1β))

l1β(N + 1)

}
524

A.1.9 Corollary 4.5525

Proof. Let β(N + 1) = c and lnβ + ln(N + 2) + γ = d, we have526

∂ E
∂l1

=
l2(1− ln l1 − d)

cl21
,

∂ E
∂l2

=
ln(l1) + d

cl1
,

and527

∂l1
∂ρ

=

√
αl(1− l)

β
,

∂l2
∂ρ

= −
√

βl(1− l)

α
.

So the derivative w.r.t ρ528

∂ E
∂ρ

=

√
l(1− l)

cl21

(
l2(1− ln l1 − d)

√
α

β
− l1(ln(l1) + d)

√
β

α

)

=

√
l(1− l)

cl21

√
α

β

(
l2 − (ln(l1) + d)

l

α

)
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Because of the conditions l1β(N + 2) ≥ exp(α+
√

αβ(1−l)
l − γ), we have529

ln(l1) + d ≥ α+

√
αβ(1− l)

l

and then530

l

α
(ln(l1) + d)) ≥ l +

√
β(1− l)l

α
> l −

√
β(1− l)l

α
ρ = l2.

Combining this inequality with the derivative expression, we have ∂ E
∂ρ < 0.531

A.2 Details of the simulation532

In the Figures 1 and 2, we choose N as 43 = 14505×30%×1%, where we assume Nentity = 14505533

as the same as FB15k-237, the total answers accounts for one percent of all entities and the test set534

accounts for thirty percent of the total answers. For each l and α we repeat the simulation with 500535

times to calculate the average MRR and the standard derivation.536

A.3 Details of artificial family tree KG537

Our codes are modified from [Hohenecker and Lukasiewicz, 2020] (BSD license) to generate the538

KG. Firstly, it generates all the parent-child relations and then deduced other relations by a symbolic539

reasoning systems called DLV system [Leone et al., 2006]. We generate 20 family trees then merge540

them into a whole. Each family tree has three layer depth and 300 entities, with maximal branching541

width 20 at each internal node. The final artificial KG has 6,004 entities, 23 relations and 192,532542

facts. The relations are listed as follow:543

• parentOf544

• sisterOf545

• brotherOf546

• siblingOf547

• motherOf548

• fatherOf549

• wifeOf550

• husbandOf551

• grandmotherOf552

• grandfatherOf553

• auntOf554

• uncleOf555

• girlCousinOf556

• boyCousinOf557

• cousinOf558

• daughterOf559

• sonOf560

• childOf561

• granddaughterOf562

• grandsonOf563

• grandchildOf564

• nieceOf565

• nephewOf566

Note that Gfull ⊇ Gtest ⊇ Gtrain. We use density d to denote the ratio |Gtest|/|Gfull| and then567

in the open-world KG Gtest we split the training set and test set with ratio η = |Gtrain|/|Gtest|.568

For each facts, it is a missing fact with probability 1− d, a test fact with probability d(1− η) and a569

training fact with probability dη. We set η = 0.7 and d = 95%, 85%, 75%, 65% which corresponds570

to α = |Gtest\Gtrain|
|Gfull\Gtrain| =

d(1−η)
1−dη = 85%, 63%, 47%, 35%.571

As the same as [Ren et al., 2020, Ren and Leskovec, 2020], we organize the test by queries which572

means we firstly randomly sample the test queries r(eh, ?) and then search answers e ∈ Gfull \Gtest573

as missing answers and e ∈ Gtest \Gtrain as test answers. In order to simulate the real situation of574

common KGs, we filter out the queries with less than 10 answers in the closed-world graph Gfull.575

Finally, for each sparsity d we choose 500 test queries. For training, we use all facts in Gtrain.576

A.4 Details of models577

Different models are trained on artificial family tree KG. During training, we test them on full test578

set and sparse test set to plot the sparse-full curve to show the inconsistency. We choose different579

framework, including RotatE, pRotatE [Sun et al., 2019], ComplEx [Trouillon et al., 2016] and BetaE580

[Ren and Leskovec, 2020]. We also test Q2B [Ren et al., 2020] and TransE [Bordes et al., 2013]581

models, both of which cannot fit the KG well. For each framework, we use several setting, where582

their label in Figure 3 and the hyper-parameters of the models are shown in Table 2. Here, We have583

filtered some models which maximal strength l < 0.1.584
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Table 2: Detail of the models trained on family tree KG.

label model dimension gamma step batchsize negative sampling
0 RotatE 1004 24 100000 1024 128
1 RotatE 500 12 100000 256 128
2 RotatE 500 12 100000 1024 512
3 RotatE 500 24 100000 1024 128
4 RotatE 1000 24 100000 1024 128
5 pRotatE 1000 24 12000 1024 128
6 pRotatE 250 24 12000 1024 128
7 pRotatE 500 24 12000 1024 128
8 pRotatE 500 24 12000 128 512
9 pRotatE 500 6 12000 1024 128
10 BetaE 1000 60 400000 1024 128
11 BetaE 500 240 400000 1024 128
12 BetaE 500 60 400000 1024 128
13 BetaE 500 15 400000 1024 128
14 BetaE 100 60 400000 1024 128
15 ComplEx 1000 500 100000 1024 128
16 ComplEx 1000 200 100000 512 256
17 ComplEx 2000 500 100000 1024 128
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Figure 6: Full test and sparse test MRR on independent (above) and correlated (bottom) family tree
KG. Density d = 95%, 85%, 65% from left to right.

A.5 Experiments with correlation585

Here we show more results of the experiments on the correlated family tree KG in Figure 6.586

A.6 Family tree experiments with MRR, Hits@K and more less focus-on-top metrics587

The results for other density d and more metrics in the independent situation are shown in Figures 7-10.588

And the results in the correlated situation are shown in Figures 11-14.589
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Figure 7: d = 95% independent

0.0 0.2 0.4 0.6 0.8 1.0
full

0.0

0.1

0.2

0.3

0.4

sp
ar

se

MRR

0.2 0.4 0.6 0.8 1.0
full

0.0

0.1

0.2

0.3

0.4

0.5

0.6

sp
ar

se

log-MRR

0.0 0.2 0.4 0.6 0.8 1.0
full

0.0

0.1

0.2

0.3

0.4

0.5

sp
ar

se

0.67-MRR

0.0 0.2 0.4 0.6 0.8 1.0
full

0.0

0.1

0.2

0.3

0.4

0.5

0.6

sp
ar

se

0.5-MRR

0.2 0.4 0.6 0.8 1.0
full

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

sp
ar

se

0.33-MRR

0.2 0.4 0.6 0.8 1.0
full

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

sp
ar

se

0.25-MRR

0.0 0.2 0.4 0.6 0.8 1.0
full

0.00

0.05

0.10

0.15

0.20

sp
ar

se

HITS@1

0.0 0.2 0.4 0.6 0.8 1.0
full

0.0

0.1

0.2

0.3

0.4

0.5

0.6

sp
ar

se

HITS@3

0.0 0.2 0.4 0.6 0.8 1.0
full

0.0

0.2

0.4

0.6

0.8

1.0

sp
ar

se

HITS@10

Figure 8: d = 85% independent
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Figure 9: d = 75% independent
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Figure 10: d = 65% independent
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Figure 11: d = 95% correlated
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Figure 12: d = 85% correlated
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Figure 13: d = 75% correlated
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Figure 14: d = 65% correlated
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