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Abstract

Spiking neural networks (SNNs) are promising brain-inspired energy-efficient
models. Recent progress in training methods has enabled successful deep SNNs
on large-scale tasks with low latency. Particularly, backpropagation through time
(BPTT) with surrogate gradients (SG) is popularly used to enable models to achieve
high performance in a very small number of time steps. However, it is at the cost of
large memory consumption for training, lack of theoretical clarity for optimization,
and inconsistency with the online property of biological learning rules and rules on
neuromorphic hardware. Other works connect the spike representations of SNNs
with equivalent artificial neural network formulation and train SNNs by gradients
from equivalent mappings to ensure descent directions. But they fail to achieve low
latency and are also not online. In this work, we propose online training through
time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time
learning by tracking presynaptic activities and leveraging instantaneous loss and
gradients. Meanwhile, we theoretically analyze and prove that the gradients of
OTTT can provide a similar descent direction for optimization as gradients from
equivalent mapping between spike representations under both feedforward and
recurrent conditions. OTTT only requires constant training memory costs agnostic
to time steps, avoiding the significant memory costs of BPTT for GPU training.
Furthermore, the update rule of OTTT is in the form of three-factor Hebbian
learning, which could pave a path for online on-chip learning. With OTTT, it is the
first time that the two mainstream supervised SNN training methods, BPTT with
SG and spike representation-based training, are connected, and meanwhile it is in a
biologically plausible form. Experiments on CIFAR-10, CIFAR-100, ImageNet,
and CIFAR10-DVS demonstrate the superior performance of our method on large-
scale static and neuromorphic datasets in a small number of time steps. Our code
is available at https://github.com/pkuxmq/OTTT-SNN.

1 Introduction
Spiking neural networks (SNNs) are regarded as the third generation of neural network models [1]
and have gained increasing attention in recent years [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. SNNs
are composed of brain-inspired spiking neurons that imitate biological neurons to transmit spikes
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between each other. This allows event-based computation and enables efficient computation on
neuromorphic hardware with low energy consumption [14, 15, 16].

However, the supervised training of SNNs is challenging due to the non-differentiable neuron model
with discrete spike-generation procedures. Several kinds of methods are proposed to tackle the
problem, and recent progress has empirically obtained successful results. Backpropagation through
time (BPTT) with surrogate gradients (SG) is one of the mainstream methods which enables the
training of deep SNNs with high performance on large-scale datasets (e.g., ImageNet) with extremely
low latency (e.g., 4-6 time steps) [6, 10, 11, 13]. These approaches unfold the iterative expression
of spiking neurons, backpropagate the errors through time [17], and use surrogate derivatives to
approximate the gradient of the spiking function [3, 4, 18, 19, 20, 21, 22, 23]. As a result, during
training, they suffer from significant memory costs proportional to the number of time steps, and the
optimization with approximated surrogate gradients is not well guaranteed theoretically. Another
branch of works builds the closed-form formulation for the spike representation of neurons, e.g. the
(weighted) firing rate or spiking time, which is similar to conventional artificial neural networks
(ANNs). Then SNNs can be either optimized by calculating the gradients from the equivalent
mappings between spike representations [2, 24, 25, 26, 9, 27], or converted from a trained equivalent
ANN counterpart [28, 29, 30, 31, 32, 7, 33, 8, 34]. The optimization of these methods is clearer
than surrogate gradients. However, they require a larger number of time steps compared to BPTT
with SG. Therefore, they suffer from high latency, and more energy consumption is required if the
representation is rate-based. Another critical point for both methods is that they are indeed inconsistent
with biological online learning, which is also the learning rule on neuromorphic hardware [15].

In this work, we develop a novel approach for training SNNs to achieve high performance with
low latency, and maintain the online learning property to pave a path for learning on neuromorphic
chips. We call our method online training through time (OTTT). We first derive OTTT from the
commonly used BPTT with SG method by analyzing the temporal dependency and proposing to
track the presynaptic activities in order to decouple this dependency. With the instantaneous loss
calculation, OTTT can perform forward-in-time learning, i.e. calculations are done online in time
without computing backward through the time. Then we theoretically analyze the gradients of OTTT
and gradients of spike representation-based methods. We show that they have similar expressions and
prove that they can provide the similar descent direction for the optimization problem formulated
by spike representation. For the feedforward network condition, gradients are easily calculated and
analyzed. For the recurrent network condition, we follow the framework in [12] that weighted firing
rates will converge to an equilibrium state and gradients can be calculated by implicit differentiation.
With this formulation, the gradients correspond to an approximation of gradients calculated by
implicit differentiation, which can be proved to be a descent direction for the optimization problem
as well [35, 36]. In this way, a connection between OTTT and spike representation-based methods is
bridged. Finally, we show that OTTT is in the form of three-factor Hebbian learning rule [37], which
could pave a path for online learning on neuromorphic chips. Our contributions include:

1. We propose online training through time (OTTT) for SNNs, which enables forward-in-time
learning and only requires constant training memory agnostic to time steps, avoiding the
large training memory costs of backpropagation through time (BPTT).

2. We theoretically analyze and connect the gradients of OTTT and gradients based on spike
representations, and prove the descent guarantee for optimization under both feedforward
and recurrent conditions.

3. We show that OTTT is in the form of three-factor Hebbian learning rule, which could pave a
path for on-chip online learning. With OTTT, it is the first time that a connection between
BPTT with SG, spike representation-based methods, and biological three-factor Hebbian
learning is bridged.

4. We conduct extensive experiments on CIFAR-10, CIFAR-100, ImageNet, and CIFAR10-
DVS, which demonstrate the superior results of our methods on large-scale static and
neuromorphic datasets in a small number of time steps.

2 Related Work
SNN Training Methods. As for supervised training of SNNs, there are two main research directions.
One direction is to build a connection between spike representations (e.g. firing rates) of SNNs with
equivalent ANN-like closed-form mappings. With the connection, SNNs can be converted from
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ANNs [28, 29, 30, 31, 32, 7, 33, 8, 34, 38], or SNNs can be optimized by gradients calculated from
equivalent mappings [2, 24, 25, 26, 9, 27]. Variants following this direction also include [12] which
connects feedback SNNs with equilibrium states following fixed-point equations instead of closed-
form mappings. These methods have a clearer descent direction for the optimization problem, but
require a relatively large number of time steps, suffering from high latency and usually more energy
consumption with rate based representation. Another direction is to directly calculate gradients based
on the SNN computation. They follow the BPTT framework, and deal with the non-differentiable
problem of spiking functions by applying surrogate gradients [3, 4, 18, 19, 20, 21, 6, 23, 10, 11, 13],
or computing gradients with respect to spiking times based on the linear assumption [39, 40], or
combining both [22]. BPTT with SG can achieve extremely low latency. However, it requires
large training memory to maintain the computational graph unfolded along time, and it remains
unknown why surrogate gradients work well. [10] empirically observed that surrogate gradients
have a high similarity with numerical gradients, but it remains unclear theoretically. And gradients
based on spiking times suffer from the “dead neuron” problem [3], so they should be combined with
SG in practice [40, 22]. Meanwhile, methods in both directions are inconsistent with biological
online learning, i.e. forward-in-time learning, to pave a path for learning on neuromorphic hardware.
Differently, our proposed method avoids the above problems and maintain the online property.

Online Training of Neural Networks. In the research of recurrent neural networks (RNNs), there
are several alternatives for BPTT to enable online learning. Particularly, real time recurrent learning
(RTRL) [41] proposes to propagate partial derivatives of hidden states over parameters through
time to enable forward-in-time calculation of gradients. Several recent works improve the memory
costs of RTRL with approximation for more practical usage [42, 43, 44]. Another work proposes to
online update parameters based on decoupled gradients with regularization at each time step [45].
However, these are all for RNNs and not tailored to SNNs. Several online training methods are
proposed for SNNs [46, 47, 48], which are derived in the spirit of RTRL and simplified for SNNs.
[49] leverages local losses and ignores temporal dependencies for online local training of SNNs,
and [50] directly apply the method in [45] to train SNNs. However, these methods also leverage
surrogate gradients without providing theoretical explanation for optimization. Meanwhile, [46, 49]
use feedback alignment [51], [47] is limited to single-layer recurrent SNNs, and [48] requires much
larger memory costs for eligibility traces, so they cannot scale to large-scale tasks. [50] requires a
specially designed neuron model and more computation for parameter regularization, and also does
not consider large tasks. Differently, our work explain the descent direction under both feedforward
and recurrent conditions with convergent inputs, and is efficient and scalable to large-scale tasks
including ImageNet classification.

3 Preliminaries
3.1 Spiking Neural Networks
Spiking neurons are brain-inspired models that transmit information by spike trains. Each neuron
maintains a membrane potential u and integrates input spike trains, which will generate a spike once
u exceeds a threshold. We consider the commonly used leaky integrate and fire (LIF) model, which
describes the dynamics of the membrane potential as:

τm
du

dt
= −(u− urest) +R · I(t), u < Vth, (1)

where I is the input current, Vth is the threshold, and R and τm are resistance and time constant,
respectively. A spike is generated when u reaches Vth at time tf , and u is reset to the resting potential
u = urest, which is usually set to be zero. The output spike train is defined using the Dirac delta
function: s(t) =

∑
tf δ(t− tf ).

A spiking neural network is composed of connected spiking neurons with connection coefficients.
We consider a simple current model Ii(t) =

∑
j wijsj(t) + bi, where the subscript i represents the

i-th neuron, wij is the weight from neuron j to neuron i, and bi is a bias. The discrete computational
form is: ui [t+ 1] = λ(ui[t]− Vthsi[t]) +

∑
j

wijsj [t] + bi,

si[t+ 1] = H(ui [t+ 1]− Vth),

(2)

where H(x) is the Heaviside step function, si[t] is the spike train of neuron i at discrete time step t,
and λ < 1 is a leaky term (typically taken as 1− 1

τm
). The constant R, τm, and time step size are

absorbed into the weights and bias. The reset operation is implemented by subtraction.
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3.2 Previous SNN Training Methods
Spike Representation. The (weighted) firing rate or first spiking time of spiking neurons can be
proved to follow ANN-like closed-form transformations [7, 26, 9, 12, 27]. We focus on the weighted
firing rate [12, 27] which has connection with OTTT in this work. Define weighted firing rates and
weighted average inputs a[t] =

∑t
τ=1 λt−τ s[τ ]∑t

τ=1 λt−τ , x[t] =
∑t

τ=0 λt−τx[τ ]∑t
τ=0 λt−τ in the discrete condition. Given

convergent weighted average inputs x[t] → x∗, it can be proved that a[t] → a∗ = σ
(

1
Vth

x∗
)

with
bounded random error, where σ is a clamp function (σ(x) = min(max(0, x), 1)) in the discrete
condition while a ReLU function in the continuous condition. For feedforward networks, the closed-
form mapping between successive layers is established based on weighted firing rate after time T :
al+1[T ] ≈ σ

(
1

Vth

(
Wlal[T ] + bl+1

))
, and gradients are calculated with such spike representation:

∂L
∂Wl = ∂L

∂aN [T ]

∏l+1
i=N−1

∂ai+1[T ]
∂ai[T ]

∂al+1[T ]
∂Wl . For the recurrent condition, a[t] will converge to an

equilibrium state following an implicit fixed-point equation, e.g. a∗ = σ
(

1
Vth

(Wa∗ + Fx∗ + b)
)

for a single-layer network with input connections F and contractive recurrent connections W ,
and gradients can be calculated based on implicit differentiation [12]. Let a = fθ(a) denote the
fixed-point equation (θ are parameters). We have ∂L

∂θ = ∂L
∂a[T ]

(
I − Jfθ |a[T ]

)−1 ∂fθ(a[T ])
∂θ , where

Jfθ |a[T ] =
∂fθ(a[T ])

∂a[T ] is the Jacobian of fθ at a[T ].

BPTT with SG. BPTT unfolds the iterative update equation in Eq.(2) and backpropagates along the
computational graph as shown in Fig. 1(a), 1(c). The gradients with T time steps are calculated by 2:

∂L

∂Wl
=

T∑
t=1

∂L

∂sl+1[t]

∂sl+1[t]

∂ul+1[t]

(
∂ul+1[t]

∂Wl
+
∑
τ<t

τ∏
i=t−1

(
∂ul+1[i+ 1]

∂ul+1[i]
+

∂ul+1[i+ 1]

∂sl+1[i]

∂sl+1[i]

∂ul+1[i]

)
∂ul+1[τ ]

∂Wl

)
,

(3)

where Wl is the weight from layer l to l + 1 and L is the loss. The non-differentiable terms ∂sl[t]
∂ul[t]

will be replaced by surrogate derivatives, e.g. derivatives of rectangular or sigmoid functions [4]:
∂s
∂u = 1

a1
sign

(
|u− Vth| < a1

2

)
or ∂s

∂u = 1
a2

e(Vth−u)/a2

(1+e(Vth−u)/a2 )2
, where a1 and a2 are hyperparameters.

4 Online Training Through Time for SNNs

This section contains four sub-sections. In Section 4.1, we introduce our proposed OTTT by
decoupling the temporal dependency of BPTT. Then in Section 4.2, we further connect the gradients
of OTTT and spike representation-based methods, and prove that OTTT can provide a descent
direction for optimization, which is not guaranteed by BPTT with SG. In Section 4.3, we discuss the
relationship between OTTT and the three-factor Hebbian learning rule. Implementation details are
presented in Section 4.4.

4.1 Derivation of Online Training Through Time
Decouple temporal dependency. As shown in Fig. 1(c), BPTT has to maintain the computational
graph of previous time to backpropagate through time. We will decouple such temporal dependency
to enable online gradient calculation, as illustrated in Fig. 1(d).

We first focus on the feedforward network condition. In this setting, all temporal dependencies lie in
the dynamics of each spiking neuron, i.e. ∂ul+1[i+1]

∂ul+1[i]
and ∂ul+1[i+1]

∂sl+1[i]
∂sl+1[i]
∂ul+1[i]

in Eq.(3). We consider

the case that we do not apply surrogate derivatives to ∂sl+1[i]
∂ul+1[i]

in such temporal dependency. Since the

derivative of the Heaviside step function is 0 almost everywhere, we have ∂ul+1[i+1]
∂sl+1[i]

∂sl+1[i]
∂ul+1[i]

≈ 03.

2Note that we follow the numerator layout convention for derivatives, i.e. ∇θL =
(
∂L
∂θ

)⊤ is the gradient
with the same dimension of θ.

3Note that this is consistent with some released implementations of BPTT with SG methods which detach the
neuron reset operation from the computational graph and do not backpropagate gradients in this path [23, 11].
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Figure 1: Illustration of the forward and backward procedures of BPTT and OTTT.

Then the dependency only includes ∂ul+1[i+1]
∂ul+1[i]

, which equals λI. Therefore, we have2:

∂L

∂Wl
=

T∑
t=1

∂L

∂sl+1[t]

∂sl+1[t]

∂ul+1[t]

∑
τ≤t

λt−τ ∂u
l+1[τ ]

∂Wl

 ,∇WlL =

T∑
t=1

gul+1 [t]

∑
τ≤t

λt−τsl[τ ]

⊤

,

(4)

where gul+1 [t] =
(

∂L
∂sl+1[t]

∂sl+1[t]
∂ul+1[t]

)⊤
is the gradient for ul+1[t]. Based on Eq.(4), we can track

presynaptic activities âl[t] =
∑

τ≤t λ
t−τsl[τ ] for each neuron during the forward procedure by

âl[t + 1] = λâl[t] + sl[t + 1], so that when given gul+1 [t], gradients at each time step can be
calculated independently by ∇WlL[t] = gul+1 [t]âl[t]

⊤ without backpropagation through ∂ul+1[i+1]
∂ul+1[i]

.

As for the recurrent network condition, there are additional temporal dependencies due to the feedback
connections between neurons. If there is feedback connection from layer l2 to l1 (l2 ≥ l1), there
would be terms such as ∂ul1 [i+1]

∂sl2 [i]
∂sl2 [i]
∂ul2 [i]

∂ul2 [i]
∂ul1 [i]

in the calculation of gradients (note that Eq. (3) omit

feedback connections for simplicity). We also consider not applying surrogate derivatives to ∂sl2 [i]
∂ul2 [i]

in
the temporal dependency so that gradients are not calculated in this path. Similar to the feedforward
condition, we can derive that the gradients of the general weight Wli→lj from any layer li to any layer
lj can be calculated by ∇Wli→ljL[t] = gulj [t]â

li [t]
⊤ at each time step. A theoretical explanation

for optimization will be presented in Section 4.2.

Instantaneous Loss and Gradient. Calculating online gradients, e.g. the above gul+1 [t] for
∇WlL[t], requires instantaneous computation of the loss at each time step. Previous typical loss for
SNNs is based on the firing rate, e.g. Lfr = L

(
1
T

∑T
t=1 s

N [t],y
)

, where y is the label, sN [t] is the
spike at the last layer, and L can take cross-entropy loss. This loss depends on all time steps and does
not support online gradients. We leverage the instantaneous loss and calculate the above gul+1 [t] as:

L[t] =
1

T
L
(
sN [t],y

)
, gul+1 [t] =

(
∂L[t]

∂sN [t]

l+1∏
i=N−1

∂si+1[t]

∂si[t]

∂sl+1[t]

∂ul+1[t]

)⊤

. (5)

The total loss L :=
∑T

t=1 L[t] is the upper bound of Lfr when L is a convex function such as
cross-entropy. Then gradients can be calculated independently at each time step, as shown in Fig. 1(d).
We apply surrogate derivatives for ∂sl[t]

∂ul[t]
in this calculation, which will be explained in Section 4.2.

Since gradients are calculated instantaneously at each time step, OTTT does not require maintaining
the unfolded computational graph and only requires constant training memory costs agnostic to time
steps. Note that instantaneous gradients of OTTT will be different from BPTT with the instantaneous
loss for multi-layer or recurrent networks, as we do not consider future influence in the instantaneous
calculation: BPTT considers terms such as ∂L[t′]

∂uN [t′]
∂uN [t′]
∂uN [t]

∏l
i=N−1

∂ui+1[t]
∂ui[t] (t′ > t) for ul[t] while

we do not. The equivalence of OTTT and BPTT only holds for the last layer, and we do not seek
the exact equivalence to BPTT with SG which is theoretically unclear, but will build the connection
with spike representations and prove the descent guarantee. Also, note that the tracked presynaptic
activities are similar to the biologically plausible “eligibility traces” in the literature [46, 47, 52], and
we will provide a more solid theoretical grounding for optimization in Section 4.2.

5



4.2 Connection with Spike Representation-Based Methods for Descent Directions
In this section, we connect gradients of OTTT and spike representation-based methods, and prove that
OTTT can provide a descent direction for optimization under feedforward and recurrent conditions
with convergent inputs.

Feedforward Networks. As introduced in Section 3.2, with convergent inputs, methods based
on spike representations establish closed-form mappings between successive layers with weighted
firing rate a[t] =

∑t
τ=1 λt−τ s[τ ]∑t

τ=1 λt−τ as al+1[T ] ≈ σ
(

1
Vth

(
Wlal[T ] + bl+1

))
, and calculate gradients

by ∂L
∂Wl = ∂L

∂aN [T ]

∏l+1
i=N−1

∂ai+1[T ]
∂ai[T ]

∂al+1[T ]
∂Wl . Note that a[t] is similar to the tracked presynaptic

activities â[t] =
∑t

τ=1 λ
t−τs[τ ] in OTTT. We can obtain:

(∇WlLsr)sr =

T∑
t=1

( 1

T

1

λT−t

∂Lsr

∂sN [t]

l+1∏
i=N−1

∂ai+1[T ]

∂ai[T ]

)⊤

⊙ dl+1[T ]

 âl[T ]
⊤
, (6)

where Lsr is the loss based on spike representation, dl+1[T ] = σ′
(

1
Vth

(
Wlal[T ] + bl+1

))
, and

‘⊙’ is element-wise product. The detailed derivation can be found in Appendix A.

It can be easily seen that Eq. (6) has a similar form as gradients in Eq. (4), (5), and we build the
connection between them in three steps. For sake of clarify, in the following, we denote gradients of
OTTT and spike representation by ∇WlL and (∇WlLsr)sr, respectively.

In the first step, we can use appropriate surrogate derivatives of ∂sl+1
i [t]

∂ul+1
i [t]

(t = 1, · · · , T ) to approximate

dl+1
i [T ]. As introduced in Section 3.2, σ is a clamp function (σ(x) = min(max(0, x), 1)) in

the discrete condition while a ReLU function in the continuous condition. Then dl+1[T ] almost
equals sign

(
|Wlal[T ] + bl+1 − Vth| < Vth

)
if we slightly relax the clamp bound caused by the

discretization, and this can be approximated by diag
(

∂sl+1[t]
∂ul+1[t]

)
= sign

(
|ul+1[t]− Vth| < Vth

)
at

each time step. Note that surrogate derivatives here approximate the well-defined derivative of the
mapping function between a[T ], rather than the pseudo derivative of the non-differentiable Heaviside
step function as in BPTT with SG. The approximation is exact except the rare case that averagely a
neuron generate spikes (i.e. the average input is positive) while sometimes the membrane potential is
less than urest (or the reverse). For simplicity in the following theoritical analysis, we assume the
equivalence between surrogate derivatives and d[T ].

Assumption 1. ∀l = 1, · · · , N, t = 1, · · · , T,diag
(

∂sl+1[t]
∂ul+1[t]

)
= dl+1[T].

In the second step, we take Lsr in Eq. (6) as Lsrup = 1∑T−1
τ=0 λτ

∑T
t=1 λ

T−tL(sN [t],y) so that
1
T

1
λT−t

∂Lsr

∂sN [t]
in Eq. (6) aligns with ∂L[t]

∂sN [t]
in Eq. (5) except a constant term. Note that Lsrup is

an upper bound of the common loss L′
sr = L(aN [T ],y) = L(

∑T
t=1 λT−tsN [t]∑t

t=1 λT−t ,y) if L is a convex

function. Then let ĝul+1 [t] =
(

∂L(sN [t],y)
∂sN [t]

∏l+1
i=N−1

∂si+1[t]
∂si[t]

∂sl+1[t]
∂ul+1[t]

)⊤
, with Assumption 1 we have:

∇WlL = 1
T

∑T
t=1 ĝul+1 [t]âl[t]

⊤ and (∇WlLsr)sr = 1
T

1∑T−1
τ=0 λτ

∑T
t=1 ĝul+1 [t]âl[T ]

⊤. Please
refer to Appendix A for details.

In the third step, we handle the remaining difference that ∇WlL leverages instantaneous presynaptic
activities â[t] during calculation while (∇WlLsr)sr uses the final âl[T ] after time T . Note that the
weighted firing rate gradually converges a[t] → a∗ with bounded random error. Suppose the errors
ϵl[t] = al[t]− al[T ] are small (l = 0 represents inputs, i.e. a0[t] = x[t]), then we have that −∇WlL
can provide a descent direction, as shown in Theorem 1.
Theorem 1. If Assumption 1 holds, Vth = 1, and the errors ϵl[t] = al[t] − al[T ] are small such

that
∥∥∥∑T

t=1 ĝul+1 [t]ϵl[t]
⊤
∥∥∥ <

∥∥∥∑T
t=1 ĝul+1 [t]al[T ]

⊤
∥∥∥− ∥∥∥∑T

t=1
λt(1−λT−t)

1−λT ĝul+1 [t]al[t]
⊤
∥∥∥ when

(∇WlLsr)sr ̸= 0, then we have ⟨∇WlL, (∇WlLsr)sr⟩ > 0.

For the proof and discussion of the assumption please refer to Appendix A. With this conclusion,
we can explain the descent direction of gradient descent by OTTT for the optimization problem
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formulated by spike representation. Some random error can be viewed as randomness for stochastic
optimization.

Recurrent Networks. For networks with feedback connections, we first consider the single-layer
condition for simplicity (see Appendix A for general conditions). We consider feedforward con-
nections F from inputs to neurons and contractive recurrent connections W between neurons. As
introduced in Section 3.2, given convergent inputs x[t] → x∗, a[t] of neurons will converge to
an equilibrium state a∗ = fθ(a

∗) = σ
(

1
Vth

(Wa∗ + Fx∗ + b)
)

with bounded random error,

and gradients are calculated as (∇θLsr)sr =
(
∂Lsr

∂θ

)⊤
=
(

∂Lsr

∂a[T ]

(
I − Jfθ |a[T ]

)−1 ∂fθ(a[T ])
∂θ

)⊤
,

where θ ∈ {W,F,b}. We consider replacing the inverse Jacobian by an identity matrix:
˜(∇θLsr)sr =

(
∂Lsr

∂a[T ]
∂fθ(a[T ])

∂θ

)⊤
. Previous works have proved that this gradient can provide

a descent direction for the optimization problem [35, 36], i.e.
〈

˜(∇θLsr)sr, (∇θLsr)sr

〉
> 0.

It has a similar form as the OTTT gradient: ∇WL =
∑T

t=1 gu[t]â[t]
⊤ and ˜(∇WLsr)sr =∑T

t=1

(
1
T

1
λT−t

∂Lsr

∂s[t]

⊤ ⊙ d[T ]
)
â[T ]

⊤. Similarly, we can prove the descent guarantee for OTTT
as shown in Theorem 2 . For details refer to Appendix A.

Theorem 2. If Assumption 1 holds, Vth = 1,
∥∥Jfθ |a[T ]

∥∥ ≤ η <
σ2

min
σ2

max
, where σmax and σmin are the

maximal and minimal singular value of ∂fθ
∂θ |a[T ], and the errors ϵ1[t] = a[t]− a[T ], ϵ0[t] = x[t]−

x[T ] are small such that
∥∥∥∑T

t=1 ĝu[t]ϵ
l[t]

⊤
∥∥∥ <

σ2
min−ησ2

max
σmax

∥∥∥∑T
t=1

∂L(s[t],y)
∂s[t]

(
I − Jfθ |a[T ]

)−1
∥∥∥ −∥∥∥∑T

t=1
λt(1−λT−t)

1−λT ĝu[t]a
l[t]

⊤
∥∥∥ (where l = 0, 1, a1[t] and a0[t] represent a[t] and x[t], respectively)

when (∇θLsr)sr ̸= 0, then we have ⟨∇θL, (∇θLsr)sr⟩ > 0, where θ are parameters in the network.

4.3 Connection with Three-factor Hebbian Learning Rule
By explicitly writing the instantaneous gradients of OTTT for the general weight from layer li to lj ,
∇Wli→ljL[t] = gulj [t]â

li [t]
⊤, and dive into connections between any two neurons i and j, we have:

∇Wi,j
L[t] = âi[t]f(uj [t])δj [t], (7)

where âi[t] is the tracked presynaptic activity, f(uj [t]) is the surrogate derivative function which can
represent the change rate of the postsynaptic activity as analyzed in Section 4.2, and δj [t] = guj

[t] is
the gradient for uj [t] which represents a global modulator. This is a kind of three-factor Hebbian
learning rule [37] and the weight can be updated locally with a global signal. The error signal δj [t]
can be propagated in an error feedback path simultaneously with feedforward propagation, which is
shown biologically plausible with high-frequency bursts [53]. Note that the analysis in Section 4.2
still holds if we consider the delay of the propagation of the error signal, i.e. the update is based on
âi[t+∆t]f(uj [t+∆t])δj [t].

4.4 Implementation Details

As introduced in Section 4.1, we will calculate instantaneous gradients ∇Wli→ljL[t] = gulj [t]â
li [t]

⊤

at each time step. We can choose to immediately update parameters before the calculation of the next
time step, which we denote as OTTTO, or we can accumulate the gradients by T time steps and then
update parameters, which we denote as OTTTA. For OTTTO, we assume that the online update is
small and has negligible affects for the following calculation. Pseudo-codes are in Appendix B.

An important issue in practice is that previous BPTT with SG works leverage batch normalization
(BN) along the temporal dimension to achieve high performance with extremely low latency on
large-scale datasets [6, 10, 11, 13], which requires calculating the mean and variance statistics for all
time steps during the forward procedure. This technique intrinsically prevents online gradients and
has to suffer from large memory costs. To overcome this shortcoming, we do not use BN, but borrow
the idea from normalization-free ResNets (NF-ResNets) [54, 55] to replace batch normalization by
scaled weight standardization (sWS) [56]. sWS standardizes weights by Ŵi,j = γ · Wi,j−µWi,·

σWi,·

√
N

, and

the scale γ is determined by analyzing the signal propagation with different activation functions. We
apply sWS for VGG [57] and NF-ResNet architectures in our experiments. For details please refer to
Appendix C.

7



5 Experiments

In this section, we conduct extensive experiments on CIFAR-10 [58], CIFAR100 [58], ImageNet [59],
CIFAR10-DVS [60], and DVS128-Gesture [61] to demonstrate the superior performance of our
proposed method on large-scale static and neuromorphic datasets. We leverage the VGG network
architecture (64C3-128C3-AP2-256C3-256C3-AP2-512C3-512C3-AP2-512C3-512C3-GAP-FC) for
experiments on CIFAR-10, CIFAR-100, CIFAR10-DVS, and DVS128-Gesture, and the NF-ResNet-
34 [54] network architecture for experiments on ImageNet. For all our SNN models, we set Vth = 1
and λ = 0.5. Please refer to Appendix C for training details.

5.1 Comparison of Training Memory Costs
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Figure 2: Comparison of training memory costs between OTTT and BPTT under different time steps.

A major advantage of OTTT over BPTT is that OTTT does not require backpropagation along the
temporal dimension and therefore only requires constant training memory costs agnostic to time
steps, which avoids the large memory costs of BPTT. We verify this by training the VGG network
on CIFAR-10 with batch size 128 under different time steps and calculating the memory costs on
the GPU. As shown in Fig. 2, the training memory of BPTT grows linearly with time steps, while
OTTT maintains the constant memory (both OTTTA and OTTTO). Even with a small number of
time steps, e.g. 6, OTTT can reduce the memory costs by 2 ∼ 3×. This advantage may also allow
training acceleration of SNNs by larger batch sizes with the same computational resources.

5.2 Comparison of Performance
We conduct experiments on both large-scale static and neuromorphic datasets. We first verify the
effectiveness of the surrogate derivative ∂sl+1[t]

∂ul+1[t]
= sign

(
|ul+1[t]− Vth| < Vth

)
in Section 4.2. For

the VGG (sWS) network on CIFAR-10, OTTTA and OTTTO achieves 91.46% and 92.47% test
accuracy respectively. We empirically observe that applying the sigmoid-like surrogate derivative
achieves a higher generalization performance, e.g. OTTTA and OTTTO achieves 93.58% and
93.73% test accuracy respectively under the same random seed, and a possible reason may be
that this introduces some noise for the approximation to regularize the training and improve the
generalization. Therefore, in the following performance evaluation, we take sigmoid-like surrogate
derivative for OTTT. As shown in Table 1, both OTTTA and OTTTO achieve satisfactory performance
on all datasets, and compared with BPTT under the same training settings, OTTT achieves higher
performance. The proposed OTTT also achieves promising performance on all datasets compared with
other representative conversion and direct training methods. Besides, it shows that the performance
gap between our SNN model and ANN is around 0.7% and 2.08% on CIFAR-10 and CIFAR-100,
respectively. Usually, SNNs with a very small number of time steps do not reach the performance of
equivalent ANNs due to the information propagation with discrete spikes rather than floating-point
numbers. The results of our model with 6 time steps are competitive.

We also evaluate our method on the DVS128-Gesture dataset, which is more time-varying with
different hand gestures recorded by a DVS camera. As shown in Table 2, our method can achieve the
same high performance as BPTT. While our theoretical analysis mainly focus on convergent inputs
(e.g. static images or neuromorphic inputs converted from images like CIFAR10-DVS), the results
show that our method can also work well for time-varying inputs.
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Table 1: Performance on CIFAR-10, CIFAR-100, ImageNet, and CIFAR10-DVS. Results are based
on 3 runs of experiments (except ImageNet). Our OTTT is mainly compared with BPTT under the
same settings, and is also compared with other representative conversion and direct training methods.

Dataset Method Network structure Params Time steps Mean±Std (Best)

CIFAR-10

ANN-SNN [7] VGG-16 40M 16 (92.29%)
BPTT [6] ResNet-19 (tdBN) 14.5M 6 (93.16%)
BPTT [23] 9-layer CNN (PLIF, BN) 36M 8 (93.50%)

BPTT VGG (sWS) 9.2M 6 92.78±0.34% (93.23%)
OTTTA (ours) VGG (sWS) 9.2M 6 93.52±0.06% (93.58%)
OTTTO (ours) VGG (sWS) 9.2M 6 93.49±0.17% (93.73%)

ANN VGG (sWS) 9.2M N.A. (94.43%)

CIFAR-100

ANN-SNN [7] VGG-16 40M 400-600 (70.55%)
Hybrid Training [31] VGG-11 36M 125 (67.87%)

DIET-SNN [62] VGG-16 40M 5 (69.67%)
BPTT VGG (sWS) 9.3M 6 69.06±0.07% (69.15%)

OTTTA (ours) VGG (sWS) 9.3M 6 71.05±0.04% (71.11%)
OTTTO (ours) VGG (sWS) 9.3M 6 71.05±0.06% (71.11%)

ANN VGG (sWS) 9.3M N.A. (73.19%)

ImageNet

ANN-SNN [8] ResNet-34 22M 32 (64.54%)
Hybrid Training [31] ResNet-34 22M 250 (61.48%)

BPTT [6] ResNet-34 (tdBN) 22M 6 (63.72%)
OTTTA (ours) NF-ResNet-34 22M 6 (65.15%)
OTTTO (ours) NF-ResNet-34 22M 6 (64.16%)

DVS-CIFAR10

Tandem Learning [9] CifarNet 45M 20 (65.59%)
BPTT [6] ResNet-19 (tdBN) 14.5M 10 (67.80%)
BPTT [23] 7-layer CNN (PLIF, BN) 1.1M 20 (74.80%)

BPTT VGG (sWS) 9.2M 10 72.60±1.26% (73.90%)
OTTTA (ours) VGG (sWS) 9.2M 10 76.27±0.05% (76.30%)
OTTTO (ours) VGG (sWS) 9.2M 10 76.63±0.34% (77.10%)

Table 2: Performance on DVS128-Gesture.
Method Network structure Time steps Accuracy

SLAYER [3] 8-layer CNN 300 93.64±0.49%
DECOLLE [49] 3-layer CNN 1800 95.54±0.16%

BPTT [23] 8-layer CNN (PLIF, BN) 20 97.57%
BPTT [23] 8-layer CNN (LIF, BN) 20 96.88%

BPTT VGG (sWS) 20 96.88%
OTTTA (ours) VGG (sWS) 20 96.88%

5.3 Effectiveness for Recurrence
As introduced in Section 4, the proposed OTTT is also valid for networks with feedback connections.
Previous works have shown that adding feedback connections can improve the performance of SNNs
without much additional costs, especially on the CIFAR-100 datasets [12, 63]. Therefore, we conduct
experiments on CIFAR-100 with the VGG-F network architecture which simply adds a feedback
connection from the last feature layer to the first feature layer following [12], and this weight is
zero-intialized. As shown in Table 3, the training of VGG-F is valid and VGG-F achieves a higher
performance than VGG due to the introduction of feedback connections. Results in Appendix D show
that the improvement of OTTT from feedback connections is more significant than that of BPTT. The
architectures with feedback connections can be further improved with neural architecture search [63].

5.4 Effectiveness for Training with Batch Size 1
To further study the online training, i.e. not only online in time but also one sample per training,
which is consistent with biological learning and learning on neuromorphic hardware, we verify the
effectiveness for training with batch size 1. The VGG network on CIFAR-10 is studied, and batch
size 1 is compared with the default batch size 128 under the same random seed. Models are only
trained for 20 epochs due to the relatively long training time with batch size 1. As shown in Table 4,
training with one sample per iteration is still valid, indicating the potential to conduct full online
training with the proposed OTTT.
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Table 3: Performance on CIFAR-100 for VGG
and VGG-F trained by OTTTO. Results are
based on 3 runs of experiments.

Network structure Params Mean±Std (Best)

VGG 9.3M 71.05±0.06% (71.11%)
VGG-F 9.6M 72.63±0.23% (72.94%)

Table 4: Performance of VGG on CIFAR-10
with different batch sizes for 20 epochs under
the same random seed.

Method Batch Size Accuracy

OTTTA / OTTTO 128 88.20% / 88.62%
OTTTA / OTTTO 1 88.07% / 88.50%

5.5 Influence of Inference Time Steps
We study the influence of inference time steps on ImageNet as shown in Fig. 3. It illustrates that the
model trained with time step 6 can achieve higher performance with more inference time steps.

5.6 Firing Rate Statistics
We study the firing rate statistics of the models trained by OTTT and BPTT, as shown in Fig. 4. It
demonstrates that models trained by OTTT have higher firing rates in first layers while lower firing
rates in later layers compared with BPTT. Overall the firing rate is around 0.19 and with 6 time steps
each neuron averagely generate 1.1 spikes, indicating the low energy consumption. Considering that
each neuron has more synaptic operations in later layers than first layers (because the channel size is
increasing with layers), the synaptic operations of models trained by OTTT and BPTT are about the
same (1.98× 108 vs 1.93× 108). More results please refer to Appendix D.

Figure 3: Influence of inference time steps for
the model trained with 6 time steps on ImageNet.
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6 Conclusion
In this work, we propose a new training method, online training through time (OTTT), for spiking
neural networks. We first derive OTTT from BPTT with SG by decoupling the temporal dependency
with the tracked pre-synaptic activities, which only requires constant training memory agnostic to
time steps and avoids the large training memory costs of BPTT. Then we theoretically analyze and
connect the gradients of OTTT and gradients of methods based on spike representations, and prove
the descent guarantee of OTTT for the optimization problem under both feedforward and recurrent
network conditions. Additionally, we show that OTTT is in the form of three-factor Hebbian learning
rule, which is the first to connect BPTT with SG, spike representation-based methods, and biological
learning rules. Extensive experiments demonstrate the superior performance of our methods on
large-scale static and neuromorphic datasets in a small number of time steps.
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A Detailed Derivation and Proofs

A.1 Derivation of Eq. (6)

Since a[t] =
∑t

τ=1 λt−τ s[τ ]∑t
τ=1 λt−τ , â[t] =

∑t
τ=1 λ

t−τs[τ ],al+1[T ] ≈ σ
(

1
Vth

(
Wlal[T ] + bl+1

))
, dl+1[T ] =

σ′
(

1
Vth

(
Wlal[T ] + bl+1

))
,
(
∂Lsr

∂Wl

)
sr

= ∂Lsr

∂aN [T ]

∏l+1
i=N−1

∂ai+1[T ]

∂ai[T ]

∂al+1[T ]

∂Wl , and we have ∂Lsr

∂âN [T ]
=

1
λT−t

∂Lsr

∂sN [t]
(∀1 ≤ t ≤ T )4, ∂Lsr

∂âN [T ]
= 1

T

∑T
t=1

1
λT−t

∂Lsr

∂sN [t]
, we can obtain:

(∇WlLsr)sr =

(
∂Lsr

∂Wl

)⊤

sr

=

(
∂Lsr

∂aN [T ]

l+1∏
i=N−1

∂ai+1[T ]

∂ai[T ]

∂al+1[T ]

∂Wl

)⊤

=

( ∂Lsr

∂aN [T ]

l+1∏
i=N−1

∂ai+1[T ]

∂ai[T ]

)⊤

⊙ dl+1[T ]

al[T ]
⊤

=

( ∂Lsr

∂âN [T ]

l+1∏
i=N−1

∂ai+1[T ]

∂ai[T ]

)⊤

⊙ dl+1[T ]

 âl[T ]
⊤

=

T∑
t=1

( 1

T

1

λT−t

∂Lsr

∂sN [t]

l+1∏
i=N−1

∂ai+1[T ]

∂ai[T ]

)⊤

⊙ dl+1[T ]

 âl[T ]
⊤
.

(8)

A.2 Proof of Theorem 1

In this subsection, we prove Theorem 1 with Assumption 1.

Assumption 1. ∀l = 1, · · · , N, t = 1, · · · , T,diag
(

∂sl+1[t]

∂ul+1[t]

)
= dl+1[T].

Theorem 1. If Assumption 1 holds, Vth = 1, and the errors ϵl[t] = al[t] − al[T ] are small

such that
∥∥∥∑T

t=1 ĝul+1 [t]ϵl[t]
⊤
∥∥∥ <

∥∥∥∑T
t=1 ĝul+1 [t]al[T ]

⊤
∥∥∥ −

∥∥∥∑T
t=1

λt(1−λT−t)

1−λT ĝul+1 [t]al[t]
⊤
∥∥∥ when

(∇WlLsr)sr ̸= 0, then we have
〈
∇WlL, (∇WlLsr)sr

〉
> 0.

Proof. As described in Sections 4.1 and 4.2, for gradients of OTTT, we have
∇WlL =

∑T
t=1 gul+1 [t]âl[t]

⊤
, L :=

∑T
t=1 L[t] =

∑T
t=1

1
T
L
(
sN [t],y

)
, gul+1 [t] =(

∂L[t]

∂sN [t]

∏l+1
i=N−1

∂si+1[t]

∂si[t]

∂sl+1[t]

∂ul+1[t]

)⊤
; for gradients based on spike representation, we have

(∇WlLsr)sr =
∑T

t=1

((
1
T

1
λT−t

∂Lsr

∂sN [t]

∏l+1
i=N−1

∂ai+1[T ]

∂ai[T ]

)⊤
⊙ dl+1[T ]

)
âl[T ]

⊤
and consider

Lsr = 1∑T−1
τ=0 λτ

∑T
t=1 λ

T−tL(sN [t],y). Let ĝul+1 [t] =
(

∂L(sN [t],y)

∂sN [t]

∏l+1
i=N−1

∂si+1[t]

∂si[t]

∂sl+1[t]

∂ul+1[t]

)⊤
,

we have ∇WlL = 1
T

∑T
t=1 ĝul+1 [t]âl[t]

⊤
. With Assumption 1, we have ∂sl+1

i [t]

∂ul+1
i [t]

= dl+1
i [T ] and thus

∂sl+1[t]

∂sl[t]
= ∂al+1[t]

∂al[t]
(because

∂sl+1
j [t]

∂sli[t]
=

∂sl+1
j [t]

∂ul+1
j [t]

·Wi,j = dl+1
j [T ] ·Wi,j =

∂al+1
j [t]

∂al
i[t]

). So we can derive that

(∇WlLsr)sr = 1
T

1∑T−1
τ=0 λτ

∑T
t=1 ĝul+1 [t]âl[T ]

⊤
= 1

T

∑T
t=1 ĝul+1 [t]al[T ]

⊤
.

We consider ∇̂WlL = 1∑T−1
τ=0 λτ

∇WlL = 1
T

1∑T−1
τ=0 λτ

∑T
t=1 ĝul+1 [t]âl[t]

⊤
=

1
T

∑T
t=1 ĝul+1 [t]

∑t−1
τ=0 λτ∑T−1
τ=0 λτ

al[t]
⊤

. Since the errors ϵl[t] = al[t] − al[T ] are small such that∥∥∥∑T
t=1 ĝul+1 [t]ϵl[t]

⊤
∥∥∥ <

∥∥∥∑T
t=1 ĝul+1 [t]al[T ]

⊤
∥∥∥ −

∥∥∥∑T
t=1

λt(1−λT−t)

1−λT ĝul+1 [t]al[t]
⊤
∥∥∥ when

4Note that we can treat sN [t] independent with each other, if we consider taking the derivative of the
Heaviside step function as 0 in this calculation and therefore ∂sN [t+1]

∂sN [t]
= ∂sN [t+1]

∂uN [t+1]

∂uN [t+1]

∂sN [t]
= 0.
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(∇WlLsr)sr ̸= 0, we have:∥∥∥∇̂WlL− (∇WlLsr)sr

∥∥∥ =

∥∥∥∥∥ 1T
T∑

t=1

ĝul+1 [t]

(∑t−1
τ=0 λ

τ∑T−1
τ=0 λτ

al[t]
⊤ − al[T ]

⊤
)∥∥∥∥∥

=

∥∥∥∥∥ 1T
T∑

t=1

ĝul+1 [t]

(
ϵl[t]− λt(1− λT−t)

1− λT
al[t]

⊤
)∥∥∥∥∥

≤

∥∥∥∥∥ 1T
T∑

t=1

ĝul+1 [t]ϵ
l[t]

∥∥∥∥∥+
∥∥∥∥∥ 1T

T∑
t=1

ĝul+1 [t]
λt(1− λT−t)

1− λT
al[t]

⊤
∥∥∥∥∥

<

∥∥∥∥∥ 1T
T∑

t=1

ĝul+1 [t]a
l[T ]

⊤
∥∥∥∥∥ =

∥∥(∇WlLsr)sr
∥∥ .

(9)

Then, we can obtain:〈
∇̂WlL, (∇WlLsr)sr

〉
=
〈
∇̂WlL− (∇WlLsr)sr , (∇WlLsr)sr

〉
+
∥∥(∇WlLsr)sr

∥∥2
≥
∥∥(∇WlLsr)sr

∥∥2 − ∥∥∥∇̂WlL− (∇WlLsr)sr

∥∥∥∥∥(∇WlLsr)sr
∥∥ > 0.

(10)

Therefore,
〈
∇WlL, (∇WlLsr)sr

〉
=
(∑T−1

τ=0 λτ
)〈

∇̂WlL, (∇WlLsr)sr

〉
> 0.

Remark 1. As for the assumption of the errors in the theorem, since the weighted firing rate gradually converges
a[t] → a∗ with bounded random error caused by the remaining membrane potential at the last time step, the

order of errors ϵl[t] would be smaller than al[T ] especially when t is large. And λt(1−λT−t)

1−λT → 0 with t → T

is also a small number on the right side of the inequality. So this is a reasonable assumption.
Remark 2. The above conclusion mainly focuses on the gradients for connection weights Wl. As for other
parameters such as biases bl, the gradients of OTTT do not involve pre-synaptic activities, so under Assumption 1
they are exactly the same as gradients based on spike representation except a constant scaling factor 1∑T−1

τ=0 λτ
.

Remark 3. Note that the gradients based on spike representation may also include small errors since the
calculation of SNN is not exactly the same as the equivalent ANN-like mappings. And a larger time step may
lead to more accurate gradients. We connect the gradients of OTTT and gradients based on spike representation
to demonstrate the overall descent direction, and it is tolerant to small errors, which can also be viewed as
randomness for stochastic optimization.

A.3 Proof of Theorem 2

In this subsection, we prove Theorem 2.

Theorem 2. If Assumption 1 holds, Vth = 1,
∥∥Jfθ |a[T ]

∥∥ ≤ η <
σ2

min
σ2

max
, where σmax and σmin are the maximal and

minimal singular value of ∂fθ
∂θ

|a[T ], and the errors ϵ1[t] = a[t]− a[T ], ϵ0[t] = x[t]− x[T ] are small such that∥∥∥∑T
t=1 ĝu[t]ϵ

l[t]
⊤
∥∥∥ <

σ2
min−ησ2

max
σmax

∥∥∥∑T
t=1

∂L(s[t],y)
∂s[t]

(
I − Jfθ |a[T ]

)−1
∥∥∥ −

∥∥∥∑T
t=1

λt(1−λT−t)

1−λT ĝu[t]a
l[t]

⊤
∥∥∥

(where l = 0, 1, a1[t] and a0[t] represent a[t] and x[t], respectively) when (∇θLsr)sr ̸= 0, then we have〈
∇θL, (∇θLsr)sr

〉
> 0, where θ are parameters in the network.

Proof. As described in Sections 4.1 and 4.2 and similar to the proof of Theorem 1, let ĝu[t] =(
∂L(s[t],y)

∂s[t]
∂s[t]
∂u[t]

)⊤
, we have ∇WL = 1

T

∑T
t=1 ĝu[t]â[t]

⊤, ∇FL = 1
T

∑T
t=1 ĝu[t]x̂[t]

⊤ (where x̂[t] =∑t
τ=1 λ

t−τx[τ ]), and ∇bL = 1
T

∑T
t=1 ĝu[t]. For gradients based on spike representation, (∇θLsr)sr =(

∂Lsr
∂a[T ]

(
I − Jfθ |a[T ]

)−1 ∂fθ(a[T ])
∂θ

)⊤
, and we will also consider ˜(∇θLsr)sr =

(
∂Lsr
∂a[T ]

∂fθ(a[T ])
∂θ

)⊤
. Consid-

ering Lsr = 1∑T−1
τ=0 λτ

∑T
t=1 λ

T−tL(s[t],y), and with Assumption 1 which indicates ∂sl+1
i [t]

∂ul+1
i [t]

= dl+1
i [T ], we

can derive that ˜(∇WLsr)sr = 1
T

∑T
t=1 ĝu[t]a[T ]

⊤, ˜(∇FLsr)sr = 1
T

∑T
t=1 ĝu[t]x[T ]

⊤, and ˜(∇bLsr)sr =
1
T

1∑T−1
τ=0 λτ

∑T
t=1 ĝu[t].

We consider ∇̂WL = 1∑T−1
τ=0 λτ

∇WL = 1
T

∑T
t=1 ĝul+1 [t]

∑t−1
τ=0 λτ∑T−1
τ=0 λτ

al[t]
⊤

and ∇̂FL = 1∑T−1
τ=0 λτ

∇FL.

Since
∥∥Jfθ |a[T ]

∥∥ ≤ η <
σ2

min
σ2

max
, where σmax and σmin are the maximal and minimal singular value of
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∂fθ
∂θ

|a[T ] (θ ∈ {W,F,b}), and the errors ϵ[t] = a[t] − a[T ] are small such that
∥∥∥∑T

t=1 ĝu[t]ϵ
l[t]

⊤
∥∥∥ <

σ2
min−ησ2

max
σmax

∥∥∥∑T
t=1

∂L(s[t],y)
∂s[t]

(
I − Jfθ |a[T ]

)−1
∥∥∥ −

∥∥∥∑T
t=1

λt(1−λT−t)

1−λT ĝu[t]a[t]
⊤
∥∥∥ when (∇θL)sr ̸= 0, we

can obtain: ∥∥∥∇̂WL− ˜(∇WLsr)sr

∥∥∥ =

∥∥∥∥∥ 1T
T∑

t=1

ĝu[t]

(∑t−1
τ=0 λ

τ∑T−1
τ=0 λτ

a[t]⊤ − a[T ]⊤
)∥∥∥∥∥

=

∥∥∥∥∥ 1T
T∑

t=1

ĝu[t]

(
ϵ[t]− λt(1− λT−t)

1− λT
a[t]⊤

)∥∥∥∥∥
≤

∥∥∥∥∥ 1T
T∑

t=1

ĝu[t]ϵ[t]

∥∥∥∥∥+
∥∥∥∥∥ 1T

T∑
t=1

ĝu[t]
λt(1− λT−t)

1− λT
a[t]⊤

∥∥∥∥∥
<

σ2
min − ησ2

max

σmax

∥∥∥∥∥ 1T
T∑

t=1

∂L(s[t],y)
∂s[t]

(
I − Jfθ |a[T ]

)−1

∥∥∥∥∥ .

(11)

Then, we have (let v =
(

∂Lsr
∂a[T ]

(
I − Jfθ |a[T ]

)−1
)⊤

= 1
T

∑T
t=1

(
∂L(s[t],y)

∂s[t]

(
I − Jfθ |a[T ]

)−1
)⊤

):〈
∇̂WL, (∇WLsr)sr

〉
=
〈

˜(∇WLsr)sr, (∇WLsr)sr

〉
+
〈
∇̂WL− ˜(∇WLsr)sr, (∇WLsr)sr

〉
= v⊤ ∂fθ(a[T ])

∂W

(
∂Lsr

∂a[T ]

∂fθ(a[T ])

∂W

)⊤

+
〈
∇̂WL− ˜(∇WLsr)sr, (∇WLsr)sr

〉
= v⊤ ∂fθ(a[T ])

∂W

∂fθ(a[T ])

∂W

⊤ (
I − Jfθ |a[T ]

)⊤
v +

〈
∇̂WL− ˜(∇WLsr)sr, (∇WLsr)sr

〉
=

∥∥∥∥v⊤ ∂fθ(a[T ])

∂W

∥∥∥∥2 − v⊤ ∂fθ(a[T ])

∂W

∂fθ(a[T ])

∂W

⊤
Jfθ |a[T ]

⊤v

+
〈
∇̂WL− ˜(∇WLsr)sr, (∇WLsr)sr

〉
≥ σ2

min∥v∥2 − ησ2
max∥v∥2 −

∥∥∥∇̂WL− ˜(∇WLsr)sr

∥∥∥∥∥∥∥v⊤ ∂fθ(a[T ])

∂W

∥∥∥∥
> σ2

min∥v∥2 − ησ2
max∥v∥2 −

σ2
min − ησ2

max

σmax
∥v∥ · σmax ∥v∥ = 0. (12)

Therefore,
〈
∇WL, (∇WLsr)sr

〉
=
(∑T−1

τ=0 λτ
)〈

∇̂WL, (∇WLsr)sr

〉
> 0. Similarly, we can de-

rive that
〈
∇FL, (∇FLsr)sr

〉
> 0. And for ∇bL, we have ∇bL =

(∑T−1
τ=0 λτ

)
(∇bLsr)sr , so〈

∇bL, (∇bLsr)sr
〉
> 0. Therefore, for all parameters θ in the network, we have

〈
∇θL, (∇θLsr)sr

〉
> 0

when (∇θLsr)sr ̸= 0.

Remark 4. The above conclusion considers the single-layer condition. It can be generalized to the multi-layer
condition. For example, if we consider multiple feedforward hidden layers (denote the weight as F l) with a
feedback connection from the last hidden layer to the first hidden layer (denote the weight as W 1), and assume
the function is contractive, the equilibrium states for each layer are a1∗ = f1

(
fN ◦ · · · ◦ f2(a1∗),x∗) and

al+1∗ = fl+1(a
l∗), where f1(a,x) = σ

(
1

Vth
(W1a+ F1x+ b1)

)
and fl(a) = σ

(
1

Vth
(Fla+ bl)

)
[12].

Then with a similar condition for the Jacobian of fθ = fN ◦ · · · ◦ f2 ◦ f1 and errors ϵl[t] of each layer as in
Theorem 2, we can prove

〈
∇θL, (∇θL)sr

〉
> 0 when (∇θL)sr ̸= 0 for all parameters θ in the network as

well. More generally, multi-layer networks with arbitrary feedback connections can be written in a single-layer
formulation, i.e. we consider all neurons in different layers as a whole single layer, and feedforward or feedback
connections can be viewed as connections between these neurons, which is written as a much larger weight
matrix with some imposed structures representing the connection restrictions. Therefore, the conclusion can be
directly generalized to these conditions as well.

Remark 5. The assumption
∥∥Jfθ |a[T ]

∥∥ ≤ η <
σ2

min
σ2

max
is also made in previous works [35, 36] and we consider it

as a reasonable assumption in the theoretical analysis. It is a sufficient condition to bound the worst case, and in
practice it is unnecessary to always enforce the restriction, as indicated in [35].
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B Pseudocode of the OTTT algorithm

We present the pseudocode of one iteration of OTTT training for a feedforward network in Algorithm 1 to better
illustrate our training method.

Algorithm 1 One iteration of OTTT training for a feedforward network.
Input: Network parameters {Wl}, {bl}; Input data x; Label y; Time steps T ; Other hyperparame-

ters;
Output: Trained network parameters {Wl}, {bl}.

1: for t = 1, 2, · · · , T do
2: for l = 1, 2, · · · , N do // Forward
3: Update membrane potentials ul[t] and generate spikes sl[t] at layer l;
4: Update the tracked presynaptic activities âl[t] = λâl[t− 1] + ŝl[t] at layer l.
5: for l = N,N − 1, · · · , 1 do // Backward
6: Calculate the instantaneous backpropagated errors gul [t];
7: Calculate the instantaneous gradient ∇Wl−1L[t] = gul [t](âl−1[t])⊤.
8: if online update then // OTTTO

9: Update Wl−1 with ∇Wl−1L[t] based on the gradient-based optimizer;
10: Update bl with gul [t] based on the gradient-based optimizer.
11: else // OTTTA

12: Accumulate gradients ∇Wl−1L = ∇Wl−1L+∇Wl−1L[t], ∇blL = ∇blL+ gul [t].
13: if not online update then // OTTTA

14: Update parameters {Wl} with accumulated {∇WlL} based on the gradient-based optimizer;
15: Update parameters {bl} with accumulated {∇blL} based on the gradient-based optimizer.

C Implementation Details

C.1 Scaled Weight Standardization and NF-ResNets

The scaled weight standardization (sWS) is proposed in [54, 55] to replace the commonly used batch normal-
ization (BN) and realize normalization-free ResNets (NF-ResNets). Different from BN which standardizes the
activation with different samples, sWS standardizes weights by:

Ŵi,j = γ ·
Wi,j − µWi,·

σWi,·

√
N

, (13)

where µWi,· and σWi,· are the mean and variance calculated along the input dimension, and the scale γ
is determined by analyzing the signal propagation with different activation functions. The original weight
standardization is proposed in [56], which is shown to share the similar benefit as BN to smooth the loss
landscape, if combined with other normalization techniques, e.g. group normalization. sWS further takes the
signal propagation into account so that the variance of the signal is preserved during the forward propagation
of neural networks and the mean of the output is 0, which is another property of BN. Particularly, for the
input x that is sampled i.i.d from N (0, 1), considering the ReLU activation g, [54] derive that we should
take γ =

√
2√

1− 1
π

to preserve the variance of signals, i.e. Var(Ŵg(x)) = 1. This is because the outputs

g(x) = max(x, 0) with Gaussian inputs will be sampled from the rectified Gaussian distribution with variance
σ2
g = (1/2)(1 − (1/π)) [54]. In this work, to ensure the variance preserving at each time step of the

SNN computation, we derive γ based on the consideration of the signals after the Heaviside step function
H . Particularly, consider the Gaussian input x, when Vth = 1, the variance of the outputs H(x − Vth) is

σ2
H = 1

2
erfc( 1√

2
)
(
1− 1

2
erfc( 1√

2
)
)

. So we will take γ = 1
σH

≈ 2.74 to preserve the variance of signals.
Additionally, [54] demonstrates that sWS can incorporate another learnable scaling factor for the weights, which
is also taken in common BN implementations. Therefore, we also adopt this sWS technique, which is the same
as the pseudocode in [54]. For VGG network structures, we directly impose sWS on all weights. For NF-ResNet
structures, we use the same structure as in [54], which is briefly introduced below.

NF-ResNets [54] consider the residual networks xl+1 = xl + αfl(xl/βl), which differs from ResNets [64]
in three aspects: 1. NF-ResNets remove the BN components in ResNets and impose sWS on all weights; 2.
a scaling factor α is added for each residual branch; 3. for the input of each residual branch, it will first be
divided by the term βl that represents the standard deviation of signals. Note that the third point is because the
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residual computation xl+1 = xl + αfl(xl/βl) will gradually accumulate the variance of the residual branch,
i.e. Var(xl+1) = Var(xl) + Var(αfl(xl/βl)), so dividing βl ensures that the residual branch keeps the identity
variance 1 (combined with sWS), and this also indicates to calculate βl by β2

l+1 = β2
l + α2 after each branch.

Also, note that for each transition block, the identity path with a strided conv will also be first divided by βl, so
the variance is reset after each transition block between two stages. For the implementation details, we mainly
follow the pseudocode in [54] and replace the activation functions by functions of spiking neurons, and we take
α = 0.2. For more illustrations and other details, please directly refer to [54].

C.2 Training Settings

C.2.1 Datasets

We conduct experiments on CIFAR-10 [58], CIFAR-100 [58], ImageNet [59], CIFAR10-DVS [60], and DVS128-
Gesture [61].

CIFAR-10 CIFAR-10 is a dataset of color images with 10 classes of objects, which contains 50,000 training
samples and 10,000 testing samples. Each sample is a 32× 32× 3 color image. We normalize the inputs based
on the global mean and standard deviation, and apply random cropping, horizontal flipping and cutout [65] for
data augmentation. The inputs to the first layer of SNNs at each time step are directly the pixel values, which
can be viewed as a real-valued input current.

CIFAR-100 CIFAR-100 is a dataset similar to CIFAR-10 except that there are 100 classes of objects. It also
consists of 50,000 training samples and 10,000 testing samples. We use the same pre-processing as CIFAR-10.

The license of CIFAR-10 and CIFAR-100 is the MIT License.

ImageNet ImageNet-1K is a dataset of color images with 1000 classes of objects, which contains 1,281,167
training samples and 50,000 validation images. We adopt the common pre-possessing strategies, i.e. the training
images are first randomly resized and cropped to 224× 224, and then normalized after the random horizontal
flipping data augmentation, while the testing images are first resized to 256 × 256 and center-cropped to
224× 224, and then normalized. The inputs are also converted to a real-valued input current at each time step.
The license of ImageNet is Custom (non-commercial).

DVS-CIFAR10 The DVS-CIFAR10 dataset is the neuromorphic version of the CIFAR-10 dataset converted
by a Dynamic Vision Sensor (DVS), which is composed of 10,000 samples, one-sixth of the original CIFAR-10.
It consists of spike trains with two channels corresponding to ON- and OFF-event spikes. The pixel dimension is
expanded to 128× 128. Following the common practice, we split the dataset into 9000 training samples and
1000 testing samples. As for the data pre-processing, we reduce the time resolution by accumulating the spike
events [23] into 10 time steps, and we reduce the spatial resolution into 48× 48 by interpolation. We apply the
random cropping augmentation as CIFAR-10 to the input data, and normalize the inputs based on the global
mean and standard deviation of all time steps (which can be integrated into the connection weights of the first
layer). The license of DVS-CIFAR10 is CC BY 4.0.

DVS128-Gesture The DVS128-Gesture dataset is a neuromorphic dataset that contains 11 kinds of hand
gestures from 29 subjects under 3 kinds of illumination conditions recorded by a DVS camera. It is composed of
1176 training samples and 288 testing samples. Following [23], we pre-possess the data to integrate event data
into 20 frames. The license of DVS128-Gesture is the Creative Commons Attribution 4.0 license.

C.2.2 Training Hyperparameters

For our SNN models, we assume the neurons of the last classification layer will not spike or reset, and do
classification based on the accumulated membrane potential, which is the same as [12]. That is, the final
output is uN [t] = WN−1sN−1[t] + bN at each time step. The classification is based on the accumulated
uN =

∑T
t=1 u

N [t], and the loss during training is also calculated based on uN [t], i.e. L(uN [t],y).

For CIFAR-10, CIFAR-100, and DVS-CIFAR10, models are trained by SGD with momentum 0.9 for 300
epochs with the default batch size 128, and the initial learning rate is set as 0.1 with a cosine annealing
learning rate scheduler to 0 (for the experiments of training with batch size 1, the initial learning rate is linearly
rescaled to 0.1

128
). For DVS-CIFAR10, we apply dropout on all layers with dropout rate as 0.1. As for the

loss function, inspired by [13], we combine cross-entropy (CE) loss and mean-square-error (MSE) loss, i.e.
L(uN [t],y) = (1−α)CE(uN [t],y)+αMSE(uN [t],y), where α is taken as 0.05 for CIFAR10 and CIFAR100
while 0.001 for DVS-CIFAR10.
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For ImageNet, models are trained by SGD with momentum 0.9 for 100 epochs with the default batch size 256,
and the initial learning rate is set as 0.1, which is decayed by 0.1 every 30 epochs. We set the weight decay as
2× 10−5, and no dropout is applied. The loss function takes the cross-entropy loss.

For DVS128-Gesture, models are trained by the Adam optimizer for 300 epochs with batch size 16, and the
initial learning rate is set as 0.001 with a cosine annealing learning rate scheduler to 0. No dropout is applied.
As for the loss function, we set α = 0.001 following DVS-CIFAR10.

The code implementation is based on the PyTorch framework [66], and experiments are carried out on one
NVIDIA GeForce RTX 3090 GPU.

D Additional Experiment Results

D.1 Firing Rate Statistics on ImageNet
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Figure 5: The average firing rates for the model trained by OTTTA on ImageNet.

In this section, we supplement the firing rate statistics of the NF-ResNet-34 model trained by OTTTA on
ImageNet, as shown in Fig. 5. Overall the firing rate is around 0.24 and with 6 time steps each neuron averagely
generate 1.46 spikes. Note that we can also reduce the time steps to realize a trade-off between accuracy and
energy, as shown in Fig. 3 in Section 5.5. For example, with 2 time steps each neuron only averagely generate
0.48 spikes, with around 2.5% accuracy drop.

D.2 Comparison between OTTT and BPTT with Feedback Connections

In this section, we supplement the results to compare the performance of OTTT and BPTT with feedback
connections. As shown in Table 5, feedback connections can improve the performance for both OTTT and BPTT,
and the improvement of OTTT from feedback connections is more significant than that of BPTT.

Table 5: Performance on CIFAR-100 for VGG and VGG-F trained by OTTTO and BPTT.
Method Network structure Params Mean±Std (Best)

OTTTO (ours) VGG 9.3M 71.05±0.06% (71.11%)
OTTTO (ours) VGG-F 9.6M 72.63±0.23% (72.94%)

BPTT VGG 9.3M 69.06±0.07% (69.15%)
BPTT VGG-F 9.6M (69.49%)

D.3 Experiments on Fully Recurrent Structures

In this section, we supplement an experiment to use a recurrent spiking neural network to classify the Fashion-
MNIST dataset [67]. The input is flattened as a vector with 784 dimensions, and is connected to 400 spiking
neurons with recurrent connections, which are then connected to a readout layer for classification. We apply
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weight standardization for connection weights from inputs to hidden neurons. Models are trained by 100 epochs
with batch size 128 and SGD with momentum 0.9. The initial learning rate is set as 0.1 with a cosine annealing
learning rate scheduler to 0. Dropout is set as 0.2, and weight decay is set as 5e-4 for BPTT and OTTTA while
1e-4 for OTTTO (since OTTTO update more times for each iteration). As for the loss function, we set α = 0.05
following CIFAR-10. As shown in Table 6, for this relatively simple model, the results of OTTT and BPTT are
similar and BPTT performs slightly better.

Table 6: Performance on Fashion-MNIST.
Method Network structure Time steps Accuracy

ST-RSBP [68] 400 (R400) 400 90.00±0.14% (90.13%)
IDE [12] 400 (R400) 5 90.07±0.10% (90.25%)

BPTT 400 (R400) 5 90.58%
OTTTA (ours) 400 (R400) 5 90.36%
OTTTO (ours) 400 (R400) 5 90.40%

E Discussion of Limitations and Social Impacts

This work focus on online training of spiking neural networks, and therefore limits the usage of some techniques
on network structures such as batch normalization along the temporal dimension. In this work, we adopt the
scaled weight standardization as an alternative, which may require additional regularization to fully catch up the
best performance of batch normalization as shown in the results of ANNs [54]. It may require exploration of
more techniques that is specific for SNNs to improve the performance and meanwhile compatible with more
natural properties of SNNs, e.g. the online property.

As for social impacts, since this work focuses only on training methods for spiking neural networks, there is no
direct negative social impact. And we believe that the development of successful energy-efficient SNN models
could broader its applications and alleviate the huge energy consumption by ANNs. Besides, understanding and
improving the training of biologically plausible SNNs may also contribute to the understanding of our brains
and bridge the gap between biological neurons and successful deep learning.
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