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a b s t r a c t

Spiking Neural Network (SNN) is a promising energy-efficient neural architecture when implemented
on neuromorphic hardware. The Artificial Neural Network (ANN) to SNN conversion method, which is
the most effective SNN training method, has successfully converted moderately deep ANNs to SNNs
with satisfactory performance. However, this method requires a large number of time-steps, which
hurts the energy efficiency of SNNs. How to effectively covert a very deep ANN (e.g., more than 100
layers) to an SNN with a small number of time-steps remains a difficult task. To tackle this challenge,
this paper makes the first attempt to propose a novel error analysis framework that takes both the
‘‘quantization error’’ and the ‘‘deviation error’’ into account, which comes from the discretization of
SNN dynamicsthe neuron’s coding scheme and the inconstant input currents at intermediate layers,
respectively. Particularly, our theories reveal that the ‘‘deviation error’’ depends on both the spike
threshold and the input variance. Based on our theoretical analysis, we further propose the Threshold
Tuning and Residual Block Restructuring (TTRBR) method that can convert very deep ANNs (>100
layers) to SNNs with negligible accuracy degradation while requiring only a small number of time-
steps. With very deep networks, our TTRBR method achieves state-of-the-art (SOTA) performance on
the CIFAR-10, CIFAR-100, and ImageNet classification tasks.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Deep Artificial Neural Networks (ANNs) have made great suc-
ess in diverse artificial intelligence tasks, including computer
ision (He, Zhang, Ren, & Sun, 2016; Redmon, Divvala, Girshick,
Farhadi, 2016) and natural language processing (Devlin, Chang,
ee, & Toutanova, 2019). However, their exceptional performan-
es were achieved at the expense of substantial power consump-
ion. For the sake of computational energy-saving, inspired by
ower-efficient biological neurons that compute and commu-
icate using spikes, Spiking Neural Networks (SNNs) (Gerstner
Kistler, 2002) have recently received a surging interest and

ven been considered the third generation of neural network
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models (Maass, 1997). This promise relies on their potential in
data processing on neuromorphic hardware (Davies et al., 2018;
Merolla et al., 2014), which demands less energy consumption.

In SNNs, signals are transmitted through neurons in the form
of spike trains, each of which is a series of spikes. Due to the non-
differentiability of these spikes, the training of SNNs has become a
hard nut to crack (Tavanaei, Ghodrati, Kheradpisheh, Masquelier,
& Maida, 2019). In particular, either the inaccurate approxima-
tions for computing the gradients of spike trains (Neftci, Mostafa,
& Zenke, 2019; Shrestha & Orchard, 2018), or the assumption that
the spikes exist in the spike timing-based approach (Kim, Kim
and Kim, 2020; Wunderlich & Pehle, 2021; Zhang & Li, 2020),
prohibits effective training using the widely-adopted gradient-
based methods. The difficulties make SNNs less competent than
their ANN counterparts, especially when dealing with large and
complicated datasets.

In addition to the gradient-based training approach, there is
another line of work where the network weights of the target

SNN are converted from a source ANN (Deng & Gu, 2021; Diehl
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Fig. 1. The ANN-to-SNN conversion pipeline. Light blue boxes represent static
data while dark blue ones represent operations. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

et al., 2015; Rueckauer, Lungu, Hu, Pfeiffer, & Liu, 2017; Sengupta,
Ye, Wang, Liu, & Roy, 2019; Yan, Zhou, & Wong, 2021). Such an
approach has yielded better results. The better performance of
this ‘‘ANN-to-SNN conversion’’ method relies on the high perfor-
mance of advanced ANNs, as well as a close connection between
ANNs and SNNs. Notably, this connection is mainly based on
the fact that the firing rates of the Integrate-and-Fire (IF) neu-
rons in SNNs can approximate outputs of Rectified Linear Unit
(ReLU) functions in ANNs, as illustrated in Fig. 1 and elaborated
in Section 2. However, there are still two main problems with
this conversion method. The first one is that the converted SNNs
generally require a sizeable number of time-steps (the duration
of spike trains) to achieve the same level of performance as their
ANN counterparts, which hurts the energy efficiency of SNNs a
lot. The second one is that this method still cannot deal with
very deep network structures yet, since the intractable ANN-
to-SNN conversion error will accumulate through layers, as de-
scribed in Section 2. This fact limits the use of good-performance
lightweight deep network structures. These two problems pre-
vent SNNs from achieving more advanced performance with low
energy consumption.

In this work, we investigate how to solve the two main prob-
lems stated above; that is, we focus on converting very deep
ANNs to SNNs with a small number of time-steps. Theoretically,
we explore the reason for accuracy degradation after conversion.
In detail, we show that the conversion error comes from IF
neurons’ coding scheme and inconstant input current at different
time-step. And we call the error caused by the above two factors
the ‘‘quantization error’’ and the ‘‘deviation error’’, respectively.
While the quantization error is analyzed in other literature (Deng
& Gu, 2021; Yan et al., 2021), we are the first to analyze the de-
viation error and then indicate how to reduce such error in most
cases, as shown in Theorems 1 and 2. Based on our analysis, we
propose the Threshold Tuning and Residual Block Restructuring
(TTRBR) method to reduce the total conversion error. In detail, we
first tune the spike threshold to achieve a good tradeoff between
the quantization error and the deviation error. We then restruc-
ture the residual blocks of the ResNet architecture to reduce
each neuron’s input variance, for the sake of reducing ‘‘deviation
error’’. It should be noted that we even get performance gain from
the ANN-to-SNN conversion in some cases. Formally, our main
contributions are summarized as follows:

1. We propose a novel error analysis framework that decom-
poses the conversion error of each spiking neuron into the
255
‘‘quantization error’’ and the ‘‘deviation error’’. Particularly,
we are the first to analyze the deviation error and theoret-
ically show that it is controlled by both the spike threshold
and the input variance. Our analysis reveals the essential
problem of the ANN-to-SNN conversion process and can
inspire new algorithms.

2. We propose the TTRBR method that can convert very deep
ResNets (>100 layers) to SNNs with negligible performance
degradation. It is the first time that such very deep ANNs can
be well converted, as other state-of-the-art (SOTA) meth-
ods have only converted ANNs with about 20 layers to
SNNs, while demanding a large number of time-steps for
satisfactory performances.

3. Our models achieve SOTA SNN performance on the CIFAR-
10, CIFAR-100, and ImageNet classification tasks with very
deep network structures that have few parameters. With
the experiments, we show that the representation ability of
very deep SNNs is powerful and not weaker than their ANN
counterparts, implying their great potential.

2. Background and related works

2.1. The Integrate-and-Fire (IF) model

Different from ANN neurons, SNN neurons communicate with
each other by spikes, and the spike transmission is controlled by
some spiking neural models. Similar to some previous works on
ANN-to-SNN conversion (Diehl et al., 2015; Han, Srinivasan, &
Roy, 2020; Rueckauer et al., 2017), we consider the Integrate-and-
Fire (IF) model. In the brain-inspired IF model, at each time-step
t , neuron i of the lth layer receives spike trains, and ‘integrates’
the weighted sum of all received spike trains as the membrane
potential V l

i . Whenever V l
i exceeds a predefined threshold θ l, the

neuron i fires a spike, and then V l
i is reset. If the resting potential

is 0, this model can be formally depicted as⎧⎪⎪⎨⎪⎪⎩
dV l

i (t)
dt

= θ l
∑

j

wl
ijs

l−1
j (t) + bi, V l

i (t) < θ l,

lim
t ′→0+

V l
i (t

(f )
+ t ′) = 0, t (f ) ∈ {t|V l

i (t) ≥ θ l
},

(1)

where V l
i (0) = 0 and sl−1

j (t) is the spike train of neuron j
from the (l − 1)th layer. The output spike train is expressed
as sli(t) =

∑
t(f ) δ

(
t − t (f )

)
, where δ(·) denotes the Dirac delta

function. After discretization, this model is described as

V l
i (t) = V l

i (t − 1) + θ l
∑

j

wl
ijs

l−1
j (t) + bi, (2)

sli(t) = H(V l
i (t) − θ l), (3)

l
i (t) = V l

i (t) − θ lsli(t), (4)

where H(x) is the Heaviside step function, and sl−1
j (t), sli(t) ∈

{0, 1}. Note that in Eq. (4), Vi is reset in the ‘soft reset’ way, which
helps to reduce the conversion loss by propagating the surplus
information in the subsequent layers (Datta, Kundu and Beerel,
2021).

2.2. Converting ANNs with ReLU activations to SNNs with IF neurons

There is a strong connection between the outputs of ReLU
activations in ANNs and the firing rates of IF neurons in SNNs
when the weights in the two types of networks match. We can
use this feature to convert well-trained ANNs into SNNs since
SNNs are not easy to be trained. For simplicity, we denote by
xli(t) ≜ θ l∑

j w
l
ijs

l−1
j (t) + bi ‘‘input current’’ to neuron i at time-

step t , then combining Eqs. (2) and (4), and summing over the
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imulation time t until the end time T (also known as ‘‘latency’’),
e get
T∑

t=1

(V l
i (t − 1) − V l

i (t) + xli(t)) = θ l
T∑

t=1

sli(t). (5)

Denote by y ≜ θ l

T

∑T
t=1 s

l
i(t) the scaled firing rate of neuron i, and

x ≜ 1
T

∑T
t=1 x

l
i(t) as the mean of input currents to neuron i, then

rom Eq. (5), we have

= x +
1
T
V l
i (T ). (6)

Taking 0 ≤ y ≤ θ l into consideration, when T is large, We can
approximate y given x as

y ≈ clamp(x, 0, θ l), (7)

where the clamp operation clamps x into range [0, θ l
]. Therefore,

caled firing rates of IF neurons can approximate ReLU func-
ions when the predefined threshold θ l is set greater than the
aximum activation value of the lth layer in the source ANN.
his approximation is achieved when the input currents to an
F neuron are {xli(t)} and the input to the corresponding ReLU
ctivation is the mean of {xli(t)}.
With the IF-ReLU approximation, we can map all the weights

nd biases of a convolution/linear layer connected to ReLU ac-
ivations in an ANN, to the corresponding layer connected to IF
eurons in the SNN counterpart which has the same structure.
hen the two networks will have similar outputs, as shown in
ig. 1. In the conversion, batch normalization (BN) cannot be
irectly applied. However, since BN layers are always followed
y convolution or fully connected layers in some network archi-
ectures, we can combine the two layers as a new convolution
ayer. Weights and biases in the new layer are expressed as

˜ =
γW
σ

, b̃ =
γ (b − µ)

σ
+ β, (8)

where β and γ are the learnable parameters in the original BN
layer, and µ and σ are the mean and the variance in the same
BN layer, respectively.

Note that the approximation can be relatively inaccurate when
T is not large enough. As a result, the conversion error would
accumulate through layers (Rueckauer et al., 2017), and then
the final conversion error may be significant for a very deep
network (Hu, Tang, Wang, & Pan, 2018). The goal of this paper is
to reduce the conversion error of each layer so that to reduce the
final conversion error (Deng & Gu, 2021): we rigorously analyze
the sources of error in Section 3, and propose our approach in
Section 4.

2.3. Input encoding

For the input data, the static input r0 (e.g., images, assume
0 ≤ r0 ≤ 1) must be encoded into time sequences {s0(t)}Tt=1
efore being applied to SNNs, where r0 and s0(t) have the same

dimension for each t . There is a branch of encoding methods
such as direct encoding (Rathi & Roy, 2021), rate encoding (Diehl,
Zarrella, Cassidy, Pedroni, & Neftci, 2016; Sengupta et al., 2019),
temporal encoding (Zhou, Li, Chen, Chandrasekaran, & Sanyal,
2021), and hybrid encoding (Datta, Kundu, Beerel, 2021). How-
ever, The encoding method should be adapted to the ANN-to-SNN
conversion pipeline. Specifically, the time average of {s0(t)}Tt=1
hould be closed to r0 to achieve a good ANN-to-SNN conversion
or the first layer, as introduced in Section 2.2. According to the
bove requirements, direct encoding and rate encoding can be
sed. With direct encoding, s0(t) = r0 for each t . With rate
ncoding, {s0(t)}T are spike trains and E(s0(t)) = r0 for each
t=1

256
t (e.g., {s0(t)}Tt=1 can be Poisson spike trains (Heeger et al., 2000)
with firing rates r0).

In this work, we apply the direct encoding method, which
does not lose any information from the static input. Furthermore,
compared to rate encoding, direct encoding can lead to reduction
of latency and fewer spikes (Datta & Beerel, 2021; Rathi & Roy,
2021). A small disadvantage for direct encoding is that real values
of {s0(t)}Tt=1 will introduce additional multiply-accumulate oper-
tions (MAC), which hurt energy efficiency a little bit; however,
he computational overhead is negligible for deep SNNs, and the
otal energy consumption can still be lower than that of the
ate encoding method due to the reduction of latency and fewer
pikes.

.4. Related works

SNN learning methods can be mainly categorized into three di-
ections: brain-inspired localized learning (Caporale & Dan, 2008;
heradpisheh, Ganjtabesh, Thorpe, & Masquelier, 2018), direct
raining with surrogate gradient based methods (Bohte, Kok, &
a Poutré, 2000; Huh & Sejnowski, 2018; Meng et al., 2022;
iao, Meng, Zhang, Wang, & Lin, 2021; Zhang & Li, 2020; Zheng,
u, Deng, Hu, & Li, 2021), and ANN-to-SNN conversion (Diehl

t al., 2015; Han & Roy, 2020; Han et al., 2020; Kim, Park, Na
nd Yoon, 2020; Pérez-Carrasco et al., 2013; Rueckauer et al.,
017). In this paper, we focus on the ANN-to-SNN conversion
irection, as it achieves the best accuracy. However, its main
roblem is that it is hard to convert very deep ANNs to SNNs
ith a small number of time-steps. Stöckl and Maass (2021)
ropose a variation of the standard spiking neuron model, called
S-Neuron, that can be optimized to approximate any activation
unctions well; however, the implementability of the FS-neuron
n neuromorphic chips still needs to be verified. For converting
NNs to IF neuron-based SNNs, Deng and Gu (2021) use modified
eLU to approximate IF neurons where the modification consists
f thresholding the maximum activation and shifting the turning
oint of ReLU functions. Yan et al. (2021) propose the clamped
nd quantized training that achieves near-zero conversion loss.
he methods in these two works are limited to reduce the ‘‘quan-
ization error’’, as described in Section 3.1, so that they can only
onvert simple network structures. Hu et al. (2018) propose a
hortcut conversion model and a compensation mechanism for
he SNN version of ResNet. The IF neuron-based converting meth-
ds mentioned above only deal with moderately deep networks,
ike VGG, resulting in limited performances of SNNs. At the same
ime, most of the methods require hundreds or even thousands
f time-steps to obtain satisfactory performances, compromis-
ng the low power consumption of SNNs. Different from them,
ur proposed TTRBR method can convert much deeper ANNs
>100 layers) to SNNs with fewer time-steps, indicating the huge
otential of very deep SNNs.

. Conversion error from ANNs to SNNs

In this section, we rigorously analyze the ANN-to-SNN con-
ersion error. As in Section 2, we define {xli(t)}

T
t=1 as the input

urrents to neuron-i, and still denote x ≜ 1
T

∑T
t=1 x

l
i(t) as the input

mean and y ≜ θ l

T

∑T
t=1 s

l
i(t) as the scaled firing rate. According to

q. (7), the conversion error ec of neuron-i can be defined as

c = clamp(x, 0, θ l) − y. (9)

And we want small |ec | to get satisfactory ANN-to-SNN conver-
sion.
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Fig. 2. IF-neuron and Clamped-ReLU activation comparison for the constant-
nputs case. Spike generating of IF neuron and modified IF neuron is controlled
y Eqs. (3) and (12), respectively. Here we set the threshold Vth = 1 and the
ime-steps N = 5. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

We decompose ec based on whether {xli(t)}
T
t=1 are constant.

pecifically, Let y′ be the new scaled firing rate when assuming
l
i(t) = x for all t . Then ec can be decomposed as

ec =
[
clamp(x, 0, θ l) − y′

]
+
[
y′

− y
]
, (10)

here eq ≜ clamp(x, 0, θ l)− y′ is the ‘‘quantization error’’ caused
y the discretization of SNN dynamics , and ed ≜ y′

− y is
he ‘‘deviation error’’ caused by inconstant input currents to
he neuron. We first demonstrate that many current works are
educing

⏐⏐eq⏐⏐. Then we show that ed has a great influence on the
onversion. Next, we show how the threshold θ l of IF neurons,
nd the sample variance of input currents {xli(t)}

T
t=1, influence the

ewly proposed ‘‘deviation error’’.

.1. Quantization error: The error from the discretization of SNN
ynamics

We first assume that all the input currents {xli(t)}
T
t=1 to neuron-

i equal a constant value. Then plugging xli(t) = x in Eqs. (2), (3),
and (4), we have

y =
θ l

T
· clamp

(⌊
Tx
θ l

⌋
, 0, T

)
, (11)

here ⌊·⌋ is the floor rounding operator, and this relationship
etween y and x is shown as the red curve in Fig. 2. From Eq. (11)

and the figure, we can see that the difference between the scaled
firing rate of an IF neuron and a ReLU function upper-clamped at
θ l is in the range [−θ l/T , 0]. We call the conversion error from
his intrinsic difference as ‘‘quantization error’’.

To reduce the quantization error, there are mainly three meth-
ds, based on Eq. (11). The first one is to increase the number of
ime-steps T ; however, it hurts the energy efficiency of SNNs. The
econd method is to reduce θ l. It can be achieved by substituting
eLU functions with clamp functions in the source ANN (Deng &
u, 2021; Yan et al., 2021) to make the maximum of the ANN’s
ctivation values smaller after training. The third method is to
odify how IF neurons fire, to make the intrinsic difference be-

ween the scaled firing rate of an IF neuron and the corresponding
pper-clamped ReLU function small. Formally, we change Eq. (3)
o

l
i(t) = H

(
V l
i (t) −

θ l)
, (12)
2
257
then the relationship between y and x gotten from Eqs. (2), (12),
nd (4) is

=
θ l

T
· clamp

([
Tx
θ l

]
, 0, T

)
, (13)

and is shown as the green curve in Fig. 2, where [·] is the
rounding operator. Now the difference of outputs between the
IF neuron and the upper-clamped ReLU activation is in the range
[−θ l/2T , θ l/2T ], so the maximum absolute error is halved. We
want to mention that the third method is used in O’Connor,
Gavves, and Welling (2019) and has the same effect as shifting
ReLU activation in Deng and Gu (2021).

For constant input currents, comparing Eqs. (13) and (11), we
see that the modified spike generation step (Eq. (12)) always
has a higher firing rate than the standard spike generation step
(Eq. (3)), as shown in Fig. 2. Therefore, the modified IF neuron
will fire more spikes. According to Fig. 2, if the constant current
x is uniformly distributed on the interval [0, θ l

], the modified IF
neuron will fire the same number of spikes or one more spike
with equal probability (i.e., 50%). If x < 0 or x > θ l, the
standard and modified IF neurons will fire the same number of
spikes. Although more spikes lead to more energy consumption,
the modified IF neuron achieves much better accuracy when
the number of time-steps is small, and the energy overhead is
insignificant in practice, as shown in Section 5.6.

3.2. Deviation error: The error from diversity of input currents

The quantization error is not the only source of the final
conversion error, since it is deduced under the assumption that
the input currents to IF neurons are constrained to be constant,
which is not the case for communication between multiple layers.
Fig. 3 shows the relationship between the sample mean x of input
currents and the scaled firing rate y, when input currents are
constant or not. As shown, another type of error occurs when
input currents are not constant, and we call the error caused
by inconstant input currents the ‘‘deviation error’’. The deviation
error can be quite large under some circumstances (Fig. 3(c)).
Furthermore, the magnitudes of the deviation error can always be
(much) larger than the magnitudes of the quantization error un-
der a different number of time-steps, from ultra-low to relatively
high, as shown in Fig. 4. Therefore, the deviation error requires
serious analysis.

To simplify our analysis, we consider the continuous-time
version of the IF model described in Eq. (1). In this case, we define
the sample mean of input currents x ≜ 1

T

∫ T
0 xli(t) and the scaled

iring rate y ≜ θ l

T

∫ T
0 sli(t). When xli(t) is constant, we let xli(t) = u

for t ∈ (0, T ], and then have

y =
θ l

T
· ReLU

(⌊
Tx
θ l

⌋)
, (14)

which is a similar result to that of the discrete-time case. Eq. (14)
tells that an IF neuron will fire n spikes when T ∈ [

nθ l
u ,

(n+1)θ l
u ),

n ∈ N and u > 0.
When xli(t) is not constant, we consider a simple case that

xli(t) = u + σξ (t), t ∈ (0, T ], where ξ (t) is a continuous-time
standard Gaussian white noise process, and u and σ are fixed. This
Gaussian setting is reasonable since it accords with our experi-
mental observations, as described in Appendix C.1. Furthermore,
let N(t) be the counting process that determines howmany spikes
occur in the time interval [0, t], given xli(t) = u+σξ (t). With the
above setting, for the case u > 0, let T ∈ [

nθ l
u ,

(n+1)θ l
u ), n ∈ N,

if the probability of event {N(T ) = n} is large, we can claim that
the inconstant-inputs case has a behavior similar to the constant-
inputs case; thus the ‘‘deviation error’’ is small. Note that it is not
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Fig. 3. IF-neuron and Clamped-ReLU activation comparison for the constant-inputs case (a) and inconstant-inputs case (b,c). Data of the three figures come from the
first IF layer, a middle IF layer, and the final IF layer of an SNN with ResNet structure, tested on the CIFAR-10 dataset. The threshold is θ = 1 and the number of
ime-steps is T = 32.
Fig. 4. Comparison between the average magnitude of the quantization error
nd the deviation error under the different number of time-steps. The curves
how the error magnitude, and the percent stacked column charts show the
roportion of two errors. The experimental setup is the same as in Fig. 3(c).
ata come from the final IF layer of an SNN with ResNet structure tested on
he CIFAR-10 dataset, and the threshold θ = 1.

asy to consider all T ∈ [
nθ l
u ,

(n+1)θ l
u ), so we only study the case

f T = (n +
1
2 )

θ l

u . Next, Theorem 1 suggests how to reduce the
‘deviation error’’.

heorem 1. Suppose that the input to an IF neuron is xli(t) = u +

ξ (t), t ∈ (0, T ], u > 0, where ξ (t) is a continuous-time standard
Gaussian white noise process. Let N(t) be the counting process that
determines how many spikes occur in the time interval [0, t], where
the neuronal dynamics of IF neurons is defined in Eq. (1), then for
∀n ∈ N, and T = (n +

1
2 )

θ
u ,

(1) ∃θ∗(n) > 0, such that when θ > θ∗(n), P(N(T ) = n) increases
as θ increases;

(2) ∃σ ∗(n) > 0, such that when σ < σ ∗(n), P(N(T ) = n)
increases as σ decreases.

The proof is provided in Appendix A. Thus, the ‘‘deviation
error’’ can be reduced by increasing the threshold θ l, or decreas-
ing the sample variance of input currents. One may argue that
P(N(T ) = n) is not monotonic with θ l or σ in their entire domain.
However, our simulation indicates that the refractory intervals
that P(N(T ) = n) is not monotonic are small, particularly for
a large n, as described in Appendix C.2. So when designing our
method, we may regard P(N(T ) = n) as monotonic with θ l or σ .
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Theorem 1 only discusses the case for u > 0. When u < 0,
there will be no spike firing for the constant-inputs case, accord-
ing to Eq. (14). Therefore, if the probability P(maxt N(t) > 0) is
small, the ‘‘deviation error’’ is small. The following Theorem 2
suggests how to reduce the probability.

Theorem 2. Suppose that the input to an IF neuron is xli(t) =

u + σξ (t), t ∈ (0, T ], u < 0, where ξ (t) is a continuous-time
standard Gaussian white noise process. Let N(t) be the counting
process the same as that in Theorem 1, then P(maxt N(t) > 0)
decreases when θ l increases or σ decreases.

The proof is provided in Appendix B. Combining Theorems 1
and 2, we can increase the threshold θ l or reduce IF neurons’
input variance, to reduce ‘‘deviation error’’.

4. Methodology

In this subsection, we introduce the Threshold Tuning and
Residual Block Restructuring (TTRBR) method to reduce the ANN-
to-SNN conversion error for the ResNet structure, as shown in
Fig. 5. We focus on the ResNet structure, rather than the widely
used VGG structure and other simple structures, to make the
source ANN perform better and demonstrate our method’s appli-
cability to very deep SNNs. The approaches to reducing ‘‘deviation
error’’ are more concerned, since many other works have pro-
posed methods to reduce ‘‘quantization error’’ (Deng & Gu, 2021;
Yan et al., 2021).

To reduce the ‘‘quantization error’’, we first adopt the modified
IF neurons which can be depicted as Eqs. (2), (12), and (4). This
ensures a smaller intrinsic difference between the scaled firing
rate of IF neurons and the outputs of ReLU activations (Deng & Gu,
2021). Then we use clamp functions, which are lower-clamped
at 0, to substitute ReLU functions in the source ANN, to enforce
smaller thresholds. Slightly different from other works like Deng
and Gu (2021) and Yan et al. (2021), we make the upper level α of
the clamp functions trainable (Choi et al., 2018), and include an
L2-regularizer for α in the loss function. Note that it is difficult
to directly train a ResNet with clamp activations, so we first pre-
train a ResNet with ReLU activations and then fine-tune the one
with clamp activations based on the pre-trained model.

To reduce the ‘‘deviation error’’, we firstly follow our theoreti-
cal analysis in Section 3.2 to consider the influence of the thresh-
old. Theorems 1 and 2 express that a large threshold narrows the
gap between the constant-inputs case and the inconstant-inputs
case for IF-ReLU conversion. As a result, increasing the threshold
seems a choice for reducing the total conversion error. However,
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Table 1
Network architectures for CIFAR-10 and CIFAR-100. Batch normalization, activation function, and skip connection
are not shown. ‘‘(a × b, c)’’ means a convolution operation with kernel size a × b and c output channels.
ResNet-20 ResNet-32 ResNet-56 ResNet-110 ResNet-18

(3 × 3,16) (3 × 3,16) (3 × 3,16) (3 × 3,16) (3 × 3,64)(
3 × 3, 16
3 × 3, 16

)
× 3

(
3 × 3, 16
3 × 3, 16

)
× 5

(
3 × 3, 16
3 × 3, 16

)
× 9

(
3 × 3, 16
3 × 3, 16

)
× 18

(
3 × 3, 64
3 × 3, 64

)
× 2(

3 × 3, 32
3 × 3, 32

)
× 3

(
3 × 3, 32
3 × 3, 32

)
× 5

(
3 × 3, 32
3 × 3, 32

)
× 9

(
3 × 3, 32
3 × 3, 32

)
× 18

(
3 × 3, 128
3 × 3, 128

)
× 2(

3 × 3, 64
3 × 3, 64

)
× 3

(
3 × 3, 64
3 × 3, 64

)
× 5

(
3 × 3, 64
3 × 3, 64

)
× 9

(
3 × 3, 64
3 × 3, 64

)
× 18

(
3 × 3, 256
3 × 3, 256

)
× 2

/ / / /
(
3 × 3, 512
3 × 3, 512

)
× 2

Average pool, fc Average pool, fc Average pool, fc Average pool, fc Average pool, fc
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Fig. 5. Main ideas of the proposed TTRBR method. This method focuses more
n the ‘‘deviation error’’.

larger threshold also leads to a larger ‘‘quantization error’’ as
hown in Section 3.1. So θ l controls the tradeoff between ‘‘quan-
ization error’’ and ‘‘deviation error’’. In our method, we initialize
he threshold of each IF layer in the target SNN according to the
aximum ‘‘pre-activation’’ of clamp activation functions in the
orresponding layer in the source ANN, where a ‘‘pre-activation’’
eans the value right before an activation function. Then we
cale each threshold θ l by a hyperparameter λ. Our experiments
ndicate that λ in the range [0.5, 1.5] works well, and a larger
is more suitable for SNNs with a larger number of time-steps,

mplying that ‘‘deviation error’’ has a greater impact on the final
erformance for the case that the number of time-steps is large,
ince the maximum ‘‘quantization error’’ is controlled by θ l/T .
ur experiments also demonstrate that a suitable λ is somewhat
elated to the datasets, as shown in Section 5. This simple and
fficient threshold determination method significantly improves
he performance of SNNs when the number of time-steps is very
mall (16 in our experiments).
The second proposed approach to reduce the ‘‘deviation error’’

s to decrease the sample variance of input currents to IF neurons.
o achieve this, the network structure of the source ANN needs
o be modified to make the input currents to IF neurons in target
NN as close to constant as possible. In particular, we find that
he original ResNet structure (Fig. 6), which is widely used (Deng
Gu, 2021; Han & Roy, 2020; Han et al., 2020), suffers from large

‘deviation error’’. It is because the last ReLU layer in each residual
lock follows by skip connection, and the summation operator
n the skip connection could give rise to large input variance to
F neurons that are converted from such ReLU layers. This fact
akes ResNet structure more difficult to convert than networks
ithout skip connection. And it may be one reason why the VGG
tructure, rather than the ResNet structure, achieves superior
259
performance in prior works (see Section 5). In our approach, we
avoid the situation where ReLU activations are right after the
summation operator by introducing the ‘‘pre-activation’’ version
of residual block, as shown in Fig. 6. We calculate the input vari-
ance for both the original and modified ResNet-20 architectures
on CIFAR-10, finding that the modified one is effective in reducing
the input variance to IF neurons, as shown in Fig. 7.

In total, the working flow of the proposed TTRBR method is
summarized as follows:

• Stage-I ANN: train a ResNet with ReLU activations whose
residual block structure is modified as shown in Fig. 6.

• Stage-II ANN: using the pre-trained Stage-I ANN, further
fine-tune a ResNet with clamp activations and the modified
residual block structure.

• Thresholds Initialization: calculate each layer’s 99.9th per-
centile pre-activations of clamp functions across five batches
of the training dataset. Use them as initialization of different
layer’s thresholds.

• Thresholds Determination: scale each threshold by a factor
λ, which is related to the number T of time-steps, and is
around 1.

. Experiments

We first conduct a series of experiments for a comprehensive
nderstanding of our proposed TTRBR method. Then we evaluate
he proposed method on three visual object recognition bench-
arks, CIFAR-10, CIFAR-100, and ImageNet. The implementation
etails are described in Appendix D.

.1. Network architectures

We use ResNet architectures to conduct experiments on
IFAR-10, CIFAR-100, and ImageNet, while the residual blocks are
estructured as shown in Fig. 5. On CIFAR-10 and CIFAR-100, we
dopt ResNet-20, ResNet-32, ResNet-50, ResNet-110, and ResNet-
8, as shown in Table 1. Note that ResNet-18 is wider than other
rchitectures. And we adopt ResNet-34, ResNet-50 and ResNet-
01 on ImageNet, as shown in Table 2. To make the architectures
mplementable on neuromorphic hardware, we replace all max
ooling layers with average pooling layers. Furthermore, we
dd IF layers after the average pooling layers and the last fully
onnected layer. To stabilize the final outputs, we also introduce
n additional BN layer between the last fully connected layer and
he last IF layer.

.2. Performance on CIFAR-10 and CIFAR-100

We apply the proposed TTRBR method with five ResNet archi-
ectures. All the results are illustrated in Fig. 8, and the details
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Fig. 6. Residual block structure in a ResNet network. The sub-figures to the left of the arrow are the original structures (He et al., 2016), while the ones to the right
of the arrow are what we use to reduce the ‘‘deviation error’’ of the ANN-to-SNN conversion.
Fig. 7. The median and maximum values of input variance to IF neurons in different depth of two ResNet structures. In the experiments, we feed 200 randomly
picked images from CIFAR-10 into the two SNNs, and calculate the input variance to each IF neuron in different layers. The number of time-steps is set to be 32.
Fig. 8. Accuracies for different networks gotten by our TTRBR method on the CIFAR-10 dataset and the CIFAR-100 dataset. We claim accuracy gain when the SNN
with 128 time-steps outperforms the corresponding ANN with clamp activations.
of the results are described in Table 3. As shown, our TTRBR
method achieves small accuracy loss from the ANN-to-SNN con-
version, especially when the number of time-steps is no less than
64. Furthermore, with 128 time-steps, most obtained SNNs can
outperform their ANN counterparts!

We compare our best results with some SOTA ones in Ta-
le 4. The proposed TTRBR method can be much better than
ther methods, since ResNet-110 and ResNet-18 are well con-
erted. Furthermore, we only need to use 64 or 128 time-steps
o achieve satisfactory performances, making our method more
nergy-efficient if implemented on neuromorphic chips.
260
We also use the same ResNet architectures to compare our
method with SOTA methods in Table 5. With the same shallow
ResNet-18 network, our method can achieve competitive results,
compared to the SOTA. More impressively, for the ResNet-110
network, our method performs much better, especially when
the number of time-steps is small. Note that the parameters
of ResNet-18 are 10 times more than that of ResNet-110 (with
narrow layers), yet the two network structures share similar
ANN performance. Therefore, our method has great potential for
training lightweight deep SNNs for the sake of energy efficiency,
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Table 2
Network architectures for ImageNet.
ResNet-34 ResNet-50 ResNet-101

(7 × 7,64) (7 × 7,64) (7 × 7,64)
average pool average pool average pool
(1 × 1,64) (1 × 1,64) (1 × 1,64)(
3 × 3, 64
3 × 3, 64

)
× 3

⎛⎝ 3 × 3, 64
1 × 1, 256
1 × 1, 64

⎞⎠× 3

⎛⎝ 3 × 3, 64
1 × 1, 256
1 × 1, 64

⎞⎠× 3

(
3 × 3, 128
3 × 3, 128

)
× 4

⎛⎝3 × 3, 128
1 × 1, 512
1 × 1, 128

⎞⎠× 4

⎛⎝3 × 3, 128
1 × 1, 512
1 × 1, 128

⎞⎠× 4

(
3 × 3, 256
3 × 3, 256

)
× 6

⎛⎝ 3 × 3, 256
1 × 1, 1024
1 × 1, 256

⎞⎠× 6

⎛⎝ 3 × 3, 256
1 × 1, 1024
1 × 1, 256

⎞⎠× 23

(
3 × 3, 512
3 × 3, 512

)
× 3

⎛⎝ 3 × 3, 512
1 × 1, 2048
1 × 1, 512

⎞⎠× 3

⎛⎝ 3 × 3, 512
1 × 1, 2048
1 × 1, 512

⎞⎠× 3

Average pool, fc Average pool, fc Average pool, fc

while other SOTA methods may not be able to achieve satisfactory
results using such deep SNNs.

5.3. Performance on ImageNet

We also apply the proposed TTRBR method on the ImageNet
lassification task, using the ResNet-50 and ResNet-101 archi-
ectures. For this complicated task, we adopt ResNet-50 and
esNet-101 with modified bottleneck components, as shown in
ig. 6(b). We skip the stage-II ANN tuning part, since the training
rocess of ANNs on ImageNet is time-consuming. We compare
ur results with some SOTA ones in Table 6. As shown, the
roposed TTRBR method achieves competitive or better results
ith a small number of time-steps. For the shallower ResNet-
4 structure, our method only has 0.06% conversion error with
12 time-steps. Furthermore, the conversion error for ResNet-101
s only a bit higher than ResNet-50, showing the effectiveness
f the proposed method for deep networks. Note that our used
rchitectures have similar or much less number of parameters.
Since the ImageNet dataset spans 1000 classes, a small number

f time-steps lead to insufficient accuracy of the firing rates of
eurons in the output layer, due to the relatively large ‘‘quantiza-
ion error’’. As a result, the TTRBR method needs more time-steps
o achieve a small conversion error for the ImageNet classification
ask, compared with the CIFAR-10 and CIFAR-100 tasks. How-
ver, our TTRBR method still requires comparable or much fewer
ime-steps to obtain better results, even if we use much deeper
etwork models.

.4. Analysis on deviation error

We test whether the ‘‘deviation error’’ can be reduced by
ncreasing the threshold θ l, or decreasing the input variance. In
etail, we first treat the IF-ReLU approximation shown in Fig. 3(c)
s a baseline. Then we modify the baseline setting, to obtain
he other two groups of IF-ReLU approximation results, where
hese two modifications are to increase the threshold θ l and to
decrease the input variance. The two new results, together with
the baseline result, are illustrated in Fig. 9. From this figure, we
can conclude that our methods can indeed reduce the ‘‘deviation
error’’.

5.5. Analysis on λ and modified architecture

Our proposed method includes two approaches to reduce the
ANN-to-SNN conversion error: using a hyperparameter λ to con-
trol thresholds and using the modified residual block structure
261
in a ResNet network. Here we conduct an ablation study to
test whether the two approaches improve the conversion perfor-
mances. From Table 7, we conclude that both approaches have
positive impacts on the final performances. Thresholds redeter-
mination using λ has a (huge) positive effect for a small number
of time-steps. The modified network structure can significantly
improve performance when the networks are very deep or the
number of time-steps is very small. For the ResNet-110 archi-
tecture, the modified structure can improve accuracy by 77.07%,
63.87%, and 4.30% for the 16, 32, and 128 time-steps cases,
respectively!

We also show the rigorous analysis on choosing λ. For prop-
erly setting this parameter, we test different λ selected from
{0.60, 0.65, . . . , 1.55, 1.60} on several batches of the datasets,
and choose the λ that results in the best classification accuracy.
The chosen λ for different network architectures on CIFAR-10,
CIFAR-100, and ImageNet is shown in Tables 8 and 9. Those
experiments indicate that the choice of λ is mainly affected by
the number of time-steps. Furthermore, we observe that the
chosen λ for the CIFAR-100 dataset are slightly larger than those
for the CIFAR-10 dataset, implying that for more complicated
datasets, ‘‘deviation error’’ becomes larger, and that ‘‘deviation
error’’ becomes the main issue.

As for whether λ has great impact, we conduct experiments
for different λ, as shown in Fig. 10. The experiments demonstrate
hat appropriate λ will greatly improve classification accuracy for
NNs using a small number of time-steps. On the other hand, the
mpact is not significant when using a large number of time-steps,
ince the ‘‘quantization error’’ is already small for λ = 1 and
‘deviation error’’ is also already small using the modified network
tructures.

.6. Energy efficiency

In this subsection, we discuss the inference efficiency for the
btained SNNs. In SNNs, each operation computes one floating-
oint addition, which consumes much less energy than the
ultiply-accumulate operation (MAC) used in ANNs. Further-
ore, on neuromorphic chips, the calculation of SNN is event-
riven so that there is no energy consumption when neurons are
ilent. The energy consumption for inference of one SNN layer
an be calculated as (Chowdhury, Rathi, & Roy, 2021; Rathi & Roy,
021):

nergyCost = #OPANN × #Spike × CostOP, (15)

where #OPANN is the number of operations in the iso-architecture
ANN layer, #Spike is the average number of generated spikes
per neuron for that layer, and CostOP is the energy consumption
for one addition operation, which is 0.9 pJ for 45 nm CMOS
technology (Horowitz, 2014).

First, we show that the reduction of latency in our method
indeed improves energy efficiency. The latency reduction can
change the energy consumption only by changing the number of
generated spikes. Therefore, we calculate the average number of
generated spikes per neuron for different networks and the dif-
ferent number of time-steps on CIFAR-10, as shown in Table 10.
We can see that the energy consumption is linearly reduced with
the decrease of latency with our method.

Next, we show that the modification on the IF neuron (Eq. (12))
only slightly increases energy consumption by increasing the
number of generated spikes. We test both the standard and
modified IF models on the CIFAR-10 classification task, and then
calculate the average number of spikes per neuron for each
model. The result is shown in Table 11. From the table, we can
see that the modified IF neuron fires only 0.1 to 0.25 more spikes
than the standard IF neuron, for the benefit of even 5% higher
accuracy.
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Table 3
Inference accuracies achieved by the proposed TTRBR method on CIFAR10 and CIFAR100. ‘‘T’’ means the number of time-steps.

Network T=16 T=32 T=64 T=128 ANN-IIa ANN-Ia Params

CIFAR-10

ResNet-20 89.17% 91.91% 92.68% 92.92% 93.00% 93.18% 0.273M
ResNet-32 90.18% 92.49% 93.56% 93.63% 93.68% 94.03% 0.468M
ResNet-56 90.22% 92.89% 93.82% 94.30% 94.52% 93.81% 0.858M
ResNet-110 91.41% 93.67% 94.48% 94.77% 94.67% 94.94% 1.734M
ResNet-18 93.99% 94.77% 95.04% 95.18% – 95.27% 11.177M

CIFAR-100

ResNet-20 59.61% 66.24% 69.14% 69.99% 69.67% 70.15% 0.279M
ResNet-32 61.35% 68.57% 71.05% 71.90% 71.65% 71.56% 0.474M
ResNet-56 66.42% 71.53% 73.23% 73.76% 73.93% 73.44% 0.864M
ResNet-110 68.35% 73.73% 74.72% 75.31% 75.09% 75.30% 1.741M
ResNet-18 75.22% 77.63% 78.45% 78.50% – 78.88% 11.223M

aANN-I: the original ANNs with ReLU activations. ANN-II: ANNs with clamp activations.
Table 4
Comparison between our work and other methods on CIFAR-10 and CIFAR-100.

Method Network Time-steps Accuracy Accuracy lossa Params

CIFAR-10

Datta and Beerel (2021) VGG-16 2 (hybrid training) 91.79% – 35.211M
Rathi and Roy (2021) VGG-16 5 (hybrid training) 92.70% – 35.211M
Zheng et al. (2021) ResNet-18 6 (direct training) 93.16% – 12.631M
Deng and Gu (2021) ResNet-18 128 93.56% −1.25% (0.05%)b 11.253M
Han and Roy (2020) VGG-16 2048 93.63% <0.01% 35.211M
Han et al. (2020) VGG-16 1536 93.63% <0.01% 35.211M
Yan et al. (2021) VGG-like 600 94.20% 0.04% 42.900M

TTRBR (ours)

ResNet-110 64 94.48% 0.19% (0.46%) 1.734M
ResNet-110 128 94.77% −0.10% (0.17%) 1.734M
ResNet-18 64 95.04% 0.13% 11.177M
ResNet-18 128 95.18% 0.09% 11.177M

CIFAR-100

Datta and Beerel (2021) VGG-16 2 (hybrid training) 64.19% – 35.580M
Rathi and Roy (2021) VGG-16 5 (hybrid training) 69.67% – 35.580M
Deng and Gu (2021) VGG-16 128 70.47% 0.15% (0.02%) 35.580M
Sengupta et al. (2019) VGG-16 2500 70.77% 0.45% 35.580M
Han and Roy (2020) VGG-16 >2048 71.22% 0.25% 35.580M
Han et al. (2020) VGG-16 >2048 71.22% 0.29% 35.580M
Yan et al. (2021) VGG-like 300 71.84% <0.01% 43.268M

TTRBR (ours)

ResNet-110 64 74.72% 0.37% (0.58%) 1.741M
ResNet-110 128 75.31% −0.22% (−0.01%) 1.741M
ResNet-18 64 78.45% 0.43% 11.223M
ResNet-18 128 78.50% 0.38% 11.223M

aNegative accuracy loss means that the converted SNN is more accurate than the ANN.
bWhen there are two accuracy losses, the values outside brackets represent the accuracy differences between the ANN with clamp activations and the target SNN,
while those in brackets are the differences between the initial source ANN and SNN.
Table 5
Comparison between our work and other methods on CIFAR-10 and CIFAR-100 under ResNet-18 and ResNet-110. ‘‘T’’ means the number of time-steps.

Network Method ANN T = 32 T = 64 T = 128

CIFAR-10

ResNet-18

RTS (Deng & Gu, 2021) 95.46% 84.06% 92.48% 94.42% (T ≥ 512)
SNNC (Li, Deng, Dong, Gong, & Gu, 2021) 95.46% 94.78% 95.30% 95.45% (T ≥ 512)
QCFS (Bu et al., 2021) 96.04% 96.08% 96.06% 96.06% (T ≥ 512)
TTRBR (ours) 95.27% 94.77% 95.04% 95.18%

ResNet-110
SNNC (Li et al., 2021) 95.60% 14.77% 19.73% 19.55%
QCFS (Bu et al., 2021) 94.41% 76.05% 90.63% 93.63%
TTRBR (ours) 94.94% 93.67% 94.48% 94.77%

CIFAR-100

ResNet-18

RTS (Deng & Gu, 2021) 77.16% 51.27% 70.12% 77.19% (T ≥ 512)
SNNC (Li et al., 2021) 77.16% 76.32% 77.29% 77.25% (T ≥ 512)
QCFS (Bu et al., 2021) 78.80% 79.62% 79.54% 79.61% (T ≥ 512)
TTRBR (ours) 78.88% 77.63% 78.45% 78.50%

ResNet-110
SNNC (Li et al., 2021) 77.29% 4.04% 5.95% 7.91%
QCFS (Bu et al., 2021) 72.47% 47.38% 65.19% 71.26%
TTRBR (ours) 75.30% 73.73% 74.72% 75.31%
6. Conclusion and future work

Conclusion. We have proposed a novel error analysis framework
on ANN-to-SNN conversion that decomposes the conversion error
into ‘‘quantization error’’ and ‘‘deviation error’’. We are the first
to find that the ‘‘deviation error’’ affects the conversion a lot.
Furthermore, we theoretically reveal that the ‘‘deviation error’’ is
262
controlled by the spike threshold and the input variance. Based on
the rigorous analysis, we have presented a method called TTRBR
to convert very deep ResNets to the corresponding SNNs based
on the relationship between outputs of ReLU activations and the
firing rates of IF neurons. In the TTRBR method, two approaches
are introduced to reduce the conversion error: (1) adjust the
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Table 6
Comparison between our work and other methods on ImageNet.
Method Network Time-steps Accuracy Accuracy loss Params

Sengupta et al. (2019) VGG-16 2500 69.96% 0.56% 138.366M
Deng and Gu (2021) VGG-16 512 72.34% 0.06% 138.366M
Han et al. (2020) VGG-16 4096 73.09% 0.40% 138.366M
Han and Roy (2020) VGG-16 2560 73.46% 0.03% 138.366M
Rueckauer et al. (2017) Inception-V3 550 74.60% 1.52% 27.161M
Han and Roy (2020) ResNet-34 ≥2048 69.93% 0.71% ≈21.8M
Han and Roy (2020) ResNet-34 256 55.65% 5.54% ≈21.8M
Han et al. (2020) ResNet-34 ≥2048 69.89% 0.75% ≈21.8M
Han et al. (2020) ResNet-34 256 65.47% 5.17% ≈21.8M
Deng and Gu (2021) ResNet-34 ≥2048 75.08% 0.44% ≈21.8M
Deng and Gu (2021) ResNet-34 256 47.11% 28.55% ≈21.8M
Li et al. (2021) ResNet-34 256 74.61% 1.05% 21.817M
Bu et al. (2021) ResNet-34 256 73.37% 0.95% 21.790M

TTRBR (ours)

ResNet-34 256 73.16% 1.08% 21.796M
ResNet-34 512 74.18% 0.06% 21.796M
ResNet-50 256 73.56% 2.46% 20.600M
ResNet-50 384 74.60% 1.42% 20.600M
ResNet-50 512 75.04% 0.98% 20.600M
ResNet-101 256 73.50% 3.32% 39.619M
ResNet-101 384 75.03% 1.79% 39.619M
ResNet-101 512 75.72% 1.10% 39.619M
Fig. 9. IF-neuron and Clamped-ReLU activation comparison for different sample variance and threshold for the inconstant-inputs case. (a) The sample variance is σ 2

and the threshold is 1. (b) The sample variance is σ 2 and the threshold is 2. (c) The sample variance is 1
4σ 2 and the threshold is 1. In the experiments, we set the

ime-steps T = 32.
Fig. 10. The impact of λ on inference accuracies for 16 and 128 time-steps on CIFAR10. The impact is more significant for 16 time-steps.
threshold for IF neurons to balance the tradeoff between ‘‘quanti-
zation error’’ and ‘‘deviation error’’ during conversion; (2) modify
the structure of residual blocks in ResNet to reduce ‘‘deviation
error’’. We implement large-scale deep network architectures
such as ResNet-110 using the proposed TTRBR method and eval-
uate performances on the CIFAR-10, CIFAR-100, and ImageNet
datasets. Our TTRBR method achieves better accuracies than the
state-of-the-art conversion methods, using fewer time-steps. The
best performances of our method indicate the huge potential of
very deep SNNs.
263
Future work. To better improve the energy efficiency of SNNs
while maintaining the performance is of great importance. For
our work, there are still ways to make the obtained SNN models
more energy efficient. First, although the required latency for our
method is already small, it can be further reduced by adopting hy-
brid training framework (Rathi, Srinivasan, Panda, & Roy, 2020).
In detail, after applying our ANN-to-SNN conversion pipeline
with ultra-low latency, we can then finetune the weights and
thresholds by training them in the SNN domain. After training, the
obtained SNNs with ultra-low latency can perform as well as pre-
training ones with much higher latency (Chowdhury et al., 2021;
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Table 7
Ablation-study of proposed two approaches on CIFAR10 using ResNet-20 and
ResNet-110 architectures. ‘‘Net-1’’ and ‘‘Net-2’’ mean ResNet-20 and ResNet-
110 architectures, respectively. ‘‘A’’ means using a hyperparameter λ to control
hresholds; ‘‘B’’ means using modified residual block structure in a ResNet
etwork.
Time-steps 16 32 128 ANN

Net-1 70.39% 89.17% 92.82% 93.08%
Net-1 + A 81.31% 90.10% 93.01% 93.08%
Net-1 + B 87.24% 91.77% 92.79% 93.18%
Net-1 + A+B 89.17% 91.91% 92.92% 93.18%

Net-2 11.05% 29.33% 90.22% 94.57%
Net-2 + A 11.19% 30.17% 90.31% 94.57%
Net-2 + B 88.12% 93.20% 94.52% 94.94%
Net-2 + A+B 91.41% 93.67% 94.77% 94.94%

Datta & Beerel, 2021; Datta, Kundu, Jaiswal and Beerel, 2021;
Rathi & Roy, 2021). Next, model compression is another way that
can improve the energy efficiency of SNNs, and can be applied
in our method. Inspired by some SOTA work on SNN compres-
sion (Deng et al., 2021; Kundu, Datta, Pedram, & Beerel, 2021a,
2021b), we can apply connection pruning, weight quantization,
and activation regularization to the source ANNs before conver-
sion. Then, the converted target SNNs have a smaller model size
and can be more easily implemented for energy energy-efficient
edge computing.
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ppendix A. Proof of Theorem 1

roof. Assume that an IF neuron is not allowed to spike or reset,
hen from Eq. (1), we know that

l
i (t) =

∫ t

0
xli(s)ds =

∫ t

0
uds +

∫ t

0
σdB(s) = ut + σB(t), (A.1)

here B(t) is a standard Brownian motion. Then V l
i (t) is a Brow-

ian motion with drift in this case. Now define

θ ≜ inf{t|V l
i (t) = θ l

}, (A.2)

hich is the hitting time of level θ l for the stochastic process
l
i (t). Considering the assumption u > 0, we have that τ l

θ is with
probability density function (Ross, 2014)

f (t) =
θ l

σ
√
2π t3

exp
(

−
(θ l

− ut)2

2σ 2t

)
, t > 0. (A.3)

sing the fact that xli(t1) and xli(t2) are independent for ∀t1 ̸= t2,
e conclude that N(t) is a renewal process with i.i.d. interarrival
264
imes {X1, X2, . . .} following the same distribution as τ l
θ . Now

define

Sn =

n∑
i=1

Xi, n ∈ N+, (A.4)

which is the arrival time of N(t). Then the probability density
function of Sn, gn(t), is

gn(t) = f ∗ f ∗ · · · ∗ f  
n such f

(t), (A.5)

where ‘*’ is the convolution operator. Since the Laplace transform
of f (t) is known to us:

Lf (s) = exp

(
u −

√
u2 + 2sσ 2

σ 2 θ l

)
, for s ≥ −

u2

2σ 2 , (A.6)

we can calculate gn(t) by inverse Laplace transform:

gn(t) = L−1
{Ln

f (s)} =
nθ l

σ
√
2π t3

exp
(

−
(nθ l

− ut)2

2σ 2t

)
, t > 0.

(A.7)

Then

P(N(T ) = n) = P(Sn+1 > T ) − P(Sn > T )

=

∫
∞

(n+ 1
2 )

θ l
u

(n + 1)θ l

σ
√
2π t3

exp
(

−
[(n + 1)θ l

− ut]2

2σ 2t

)
dt

−

∫
∞

(n+ 1
2 )

θ l
u

nθ l

σ
√
2π t3

exp
(

−
(nθ l

− ut)2

2σ 2t

)
dt

= −
1
2

(
Φn+1(∞) − Φn+1

((
n +

1
2

)
θ l

u

))
+

1
2

(
Φn(∞) − Φn

((
n +

1
2

)
θ l

u

))
,

(A.8)

where

Φn(t) ≜ 1 + erf
(
nθ l

− ut
√
2tσ

)
+ exp

(
2nθ lu
σ 2

)(
erf
(
nθ l

+ ut
√
2tσ

)
− 1

)
.

(A.9)

Then

P(N(T ) = n) =
1
2

⎡⎣2 erf

⎛⎝1
2

√
θ lu

2(n + 0.5)σ 2

⎞⎠
+ exp

(
2u(n + 1)θ l

σ 2

)
erf

⎛⎝(2n + 1.5)

√
θ lu

2(n + 0.5)σ 2

⎞⎠
− exp

(
2unθ l

σ 2

)
erf

⎛⎝(2n + 0.5)

√
θ lu

2(n + 0.5)σ 2

⎞⎠
− exp

(
2u(n + 1)θ l

σ 2

)
+ exp

(
2unθ l

σ 2

)]
.

(A.10)
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Table 8
Chosen λ for different network architectures and different time-steps on CIFAR10 and CIFAR-100. ‘‘T’’ means the number of time-steps.

Network T=128 T=64 T=32 T=16

CIFAR-10

ResNet-20 1.10 1.10 0.95 0.75
ResNet-32 1.05 1.05 0.80 0.65
ResNet-56 1.20 1.20 0.80 0.70
ResNet-110 1.10 0.95 0.80 0.70
ResNet-18 1.50 1.20 1.05 0.90

CIFAR-10

ResNet-20 1.15 1.10 0.85 0.75
ResNet-32 1.20 1.05 0.85 0.75
ResNet-56 1.50 1.00 0.95 0.85
ResNet-110 1.25 1.05 0.90 0.80
ResNet-18 1.10 1.10 1.00 0.90
S

z

Table 9
Chosen λ for different network architectures and different time-steps on
ImageNet. ‘‘T’’ means the number of time-steps.
Network T=256 T=384 T=512

ResNet-34 1.30 – 1.50
ResNet-50 1.45 1.55 1.55
ResNet-101 1.25 1.40 1.55

Define z ≜ θ lu
σ2 , then

dP(N(T ) = n)
dz

=
1
2

[
1

√
2π (n + 0.5)z

exp
(

−
z

8n + 4

)
+ (2n + 2) exp (2(n + 1)z) erf

(
(2n + 1.5)

√
z

2(n + 0.5)

)
+

2n + 1.5
√
2π (n + 0.5)z

exp
(
(2n + 2)z −

(2n + 1.5)2z
2n + 1

)
− 2n exp (2nz) erf

(
(2n + 0.5)

√
z

2(n + 0.5)

)
−

2n + 0.5
√
2π (n + 0.5)z

exp
(
2nz −

(2n + 0.5)2z
2n + 1

)
−(2n + 2) exp (2(n + 1)z) + 2n exp (2nz)]

=
1
2

⎡⎢⎢⎢⎢⎣ 2
√
2π (n + 0.5)z

exp
(

−
z

8n + 4

)
  

1⃝

+(2n + 2) exp (2(n + 1)z)
(
erf
(
(2n + 1.5)

√
z

2(n + 0.5)

)
− 1

)
  

2⃝

−2n exp (2nz)
(
erf
(
(2n + 0.5)

√
z

2(n + 0.5)

)
− 1

)
  

3⃝

⎤⎥⎥⎥⎥⎦ .

(A.11)

Using the fact that

lim
z→∞

(erf(
√
z) − 1)

√
z

exp(−z)
= −

1
√

π
, (A.12)

e can get

lim
→∞

− 3⃝

1⃝

w≜
(4n+1)2
8n+4
= lim

z→∞
(n2

+ 0.5n)

√
2π

n + 0.5
(erf(

√
wz) − 1)

√
wz

exp(−wz)
√

w

=
−4(n + 0.5)n

4n + 1
.

(A.13)
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Similarly, we have

lim
z→∞

2⃝

1⃝

w≜
(4n+3)2
8n+4
= lim

z→∞
(n + 1)(n + 0.5)

√
2π

n + 0.5
(erf(

√
wz) − 1)

√
wz

exp(−wz)
√

w

=
−4(n + 0.5)(n + 1)

4n + 3
.

(A.14)

o

lim
→∞

2⃝ + 3⃝

1⃝
= −

8n2
+ 8n + 2

(4n + 3)(4n + 1)
∈ (−1, 0), for ∀n ∈ N+.

(A.15)

That is, ∃z∗, when z > z∗, | 2⃝ + 3⃝| < 1⃝, which means that
dP(N(T )=n)

dz > 0 when z > z∗. Then we finish the proof. □

Appendix B. Proof of Theorem 2

Proof. Assume that firing spikes is not allowed for an IF neuron,
then V l

i (t) is a Brownian motion with drift:

V l
i (t) = ut + σB(t), (B.1)

as shown in the proof of Theorem 1. Now define

M = max
t≥0

V l
i (t), (B.2)

then M has the exponential distribution with rate 2|u|
σ2 (Ross,

2014), then we have

P(M ≥ θ l) = e−
2|µ|θ l

σ2 . (B.3)

That is, when u < 0, there is a certain probability that ∃t , the
voltage V l

i (t) will reach the threshold θ l and then the IF neuron
will fire a spike. With

P(max
t

N(t) > 0) = P(M ≥ θ l), (B.4)

we claim that increasing θ l or decreasing σ will make P(maxt
N(t) > 0) smaller. □

Appendix C. Additional information for Theorem 1

C.1. Gaussian setting for input currents to IF neurons

When the input currents to IF neurons are not constant, we
assume the input series to be xli(t) = u + σξ (t), t ∈ (0, T ],
for the continuous-time case. Then in the corresponding discrete-
time case, the input currents to IF neurons will be independent
and identically distributed random variables that follow Gaus-
sian distribution. To see whether it is the case, we perform
the Shapiro–Wilk test, a test of normality, based on the data
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Table 10
Spiking activity of ResNet-20 and ResNet-110 on CIFAR-10 for the different number of time-steps. ‘‘No. of spikes’’
means the average number of generated spikes per neuron for a single input sample.
ResNet-20 ResNet-110

Time-steps Accuracy No. of spikes Time-steps Accuracy No. of spikes

16 89.27% 2.002 16 91.41% 1.602
32 91.96% 3.226 32 93.67% 3.010
64 92.71% 5.599 64 94.48% 5.116
128 92.92% 11.182 128 94.77% 8.860
Table 11
Comparison between standard and modified IF-neurons on CIFAR-10. ‘‘No. of spikes’’ means the average
number of generated spikes per neuron for a single input sample.
Network Time-steps IF neuron Accuracy No. of spikes

ResNet-20
16 Standard 87.66% 1.751

Modified 89.27% 2.002

128 Standard 92.78% 10.954
Modified 92.92% 11.182

ResNet-110
16 Standard 86.09% 1.510

Modified 91.41% 1.602

128 Standard 94.51% 8.769
Modified 94.77% 8.860
Fig. C.11. Heat maps of Pearson correlation matrix for the input currents at different time-steps. Here we take absolute value for all negative coefficients for
visualization. The three figures are drawn according to data recorded from three specific layers of an SNN with ResNet-20 architecture. For each correlation matrix
C , Cij is the Pearson correlation coefficient between the input currents at the ith time-step and the input currents at the jth time-step.
enerated by the CIFAR-10 classification task. First, we train a
esNet-20 on CIFAR-10 and convert it to an SNN within 32 time-
teps. Then, we run the SNN on one batch of CIFAR-10 data, and
ecord the input series to all IF neurons. After that, we use input
eries from several randomly selected IF layers to conduct the
hapiro–Wilk test. Using 0.01, 0.02, and 0.05 as p values, we have
5.56%, 81.63%, 78.94% of the input series pass the test. Therefore,
he Gaussian setting is consistent with the observation in our
xperiments to some extent.
We also calculate the Pearson correlation coefficients between

nput currents at two different time-steps, and express the cor-
elation pairs in the matrix form, as shown in Fig. C.11. From
he figure, we can find that the correlations for input currents at
wo different time-steps are small, showing the rationality of our
ndependent Gaussian setting for the input currents to IF neurons.

.2. Explanation for Theorem 1

In our analysis, the input currents to an IF neuron follows
l
i(t) = u+ σξ (t), u > 0, t ∈ (0, T ]. If we denote by T ≜ (n+

1
2 )

θ l

u

nd z ≜ θ lu
σ2 , then Theorem 1 shows that

• ∃z∗(n) > 0, such that when z > z∗(n), P(N(T ) = n) increases
as z increases.

From the claim, P(N(T ) = n) is not monotonic with θ l or σ in their
entire domain R+; so it is not true that increasing θ l or decreasing
σ would make the probability P(N(T ) = n) larger. However, from
Fig. C.12, we can see that z∗(n) is relatively small (smaller than
10 in our case), especially for a large n. Furthermore, even when
z is small and z < z∗(n), there is a large range for z in which
P(N(T ) = n) tends to increase with z. Thus, in our experiments,
we may regard P(N(T ) = n) as monotonic with θ l or σ .
266
Appendix D. Implementation details

D.1. Datasets

We conduct experiments on the CIFAR-10 (Krizhevsky, Hin-
ton, et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and Ima-
geNet (Deng et al., 2009) datasets. For SNN inference, each image
of the datasets is converted into a time series as an SNN input,
such that the input at each time-step is exactly the pixel values
of the original image.

CIFAR-10 and CIFAR-100. The CIFAR-10 dataset contains 60,000
32 × 32 color images in 10 different classes, which can be sep-
arated into 50,000 training samples and 10,000 testing samples.
We apply random cropping and horizontal flipping for data aug-
mentation. The CIFAR-100 dataset is similar to CIFAR-10 except
that there are 100 classes of objects. We use the same data aug-
mentation process as CIFAR-10. These two datasets are licensed
under MIT.

ImageNet. The ImageNet-1K dataset spans 1000 object classes
and contains 1,281,167 training images, 50,000 validation images
and 100,000 test images. This dataset is licensed under Cus-
tom (non-commercial). We apply random resized cropping and
horizontal flipping for data augmentation.

D.2. Training hyperparameters

In the experiments, we first train ResNets as the stage-I ANNs.
We train all the Stage-I ANNs by SGD with momentum equals 0.9.

−4
We set the weight decay as 5 × 10 , and set the learning rate
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Fig. C.12. Relationship between θ lu
σ2 and P(N(T ) = n) for different n, where T = (n+
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u , and N(t) is the counting process that determines how many spikes occur
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sing a cosine annealing schedule (Loshchilov & Hutter, 2016). For
he CIFAR-10 and CIFAR-100 datasets, we initialize the learning
ate as 0.1, and set the batch size and the number of epochs to
e 128 and 200, respectively. For the ImageNet dataset, the initial
earning rate, batch size, and the number of epochs are set to be
.01, 256, and 90, respectively.
For each network structure and dataset, we train one stage-I

NN. Using the stage-I ANNs as pre-trained models, we fur-
her fine-tune ResNets with clamp activations. Different from the
raining of the stage-I ANNs, we set the number of epochs to be
0 for both the CIFAR-10 and CIFAR-100 datasets. To reduce the
‘quantization error’’ in the corresponding SNNs, We separate the
arameters into three categories, and enlarge weight decay for
ach category. These three categories include parameters for the
ully connected layers, the upper bound of the clamp activations,
nd other parameters. Note that we skip this fine-tuning step for
mageNet dataset to save time.

The code implementation is based on the PyTorch frame-
ork (Paszke et al., 2019), and experiments are conducted on one
VIDIA Tesla V100 GPU or four NVIDIA GeForce GTX 1080Ti GPU.
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