Neural Networks 153 (2022) 254-268

journal homepage: www.elsevier.com/locate/neunet

Contents lists available at ScienceDirect

Neural Networks

Training much deeper spiking neural networks with a small number of

time-steps

L))

Check for
updates

Qingyan Meng ", Shen Yan ¢, Mingqing Xiao ¢, Yisen Wang ¢, Zhouchen Lin %"

Zhi-Quan Luo *"

2 The Chinese University of Hong Kong, Shenzhen, China
b Shenzhen Research Institute of Big Data, Shenzhen 518115, China
¢ Center for Data Science, Peking University, China

dKey Laboratory of Machine Perception (MOE), School of Artificial Intelligence, Peking University, China

€ Institute for Artificial Intelligence, Peking University, China
fpeng Cheng Laboratory, China

ARTICLE INFO ABSTRACT

Article history:

Received 13 January 2022

Received in revised form 5 May 2022
Accepted 1 June 2022

Available online 15 June 2022

Keywords:

Spiking neural networks
ANN-to-SNN conversion
Conversion error analysis

Spiking Neural Network (SNN) is a promising energy-efficient neural architecture when implemented
on neuromorphic hardware. The Artificial Neural Network (ANN) to SNN conversion method, which is
the most effective SNN training method, has successfully converted moderately deep ANNs to SNNs
with satisfactory performance. However, this method requires a large number of time-steps, which
hurts the energy efficiency of SNNs. How to effectively covert a very deep ANN (e.g., more than 100
layers) to an SNN with a small number of time-steps remains a difficult task. To tackle this challenge,
this paper makes the first attempt to propose a novel error analysis framework that takes both the
“quantization error” and the “deviation error” into account, which comes from the discretization of
SNN dynamicsthe neuron’s coding scheme and the inconstant input currents at intermediate layers,
respectively. Particularly, our theories reveal that the “deviation error” depends on both the spike
threshold and the input variance. Based on our theoretical analysis, we further propose the Threshold
Tuning and Residual Block Restructuring (TTRBR) method that can convert very deep ANNs (>100
layers) to SNNs with negligible accuracy degradation while requiring only a small number of time-
steps. With very deep networks, our TTRBR method achieves state-of-the-art (SOTA) performance on
the CIFAR-10, CIFAR-100, and ImageNet classification tasks.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Deep Artificial Neural Networks (ANNs) have made great suc-
cess in diverse artificial intelligence tasks, including computer
vision (He, Zhang, Ren, & Sun, 2016; Redmon, Divvala, Girshick,
& Farhadi, 2016) and natural language processing (Devlin, Chang,
Lee, & Toutanova, 2019). However, their exceptional performan-
ces were achieved at the expense of substantial power consump-
tion. For the sake of computational energy-saving, inspired by
power-efficient biological neurons that compute and commu-
nicate using spikes, Spiking Neural Networks (SNNs) (Gerstner
& Kistler, 2002) have recently received a surging interest and
even been considered the third generation of neural network

* Corresponding author at: Key Laboratory of Machine Perception (MOE),
School of Artificial Intelligence, Peking University, China.

E-mail addresses: qingyanmeng@link.cuhk.edu.cn (Q. Meng),
yanshen@pku.edu.cn (S. Yan), mingqing_xiao@pku.edu.cn (M. Xiao),
yisen.wang@pku.edu.cn (Y. Wang), zlin@pku.edu.cn (Z. Lin), luozq@cuhk.edu.cn
(Z.-Q. Luo).

https://doi.org/10.1016/j.neunet.2022.06.001
0893-6080/© 2022 Elsevier Ltd. All rights reserved.

models (Maass, 1997). This promise relies on their potential in
data processing on neuromorphic hardware (Davies et al., 2018;
Merolla et al., 2014), which demands less energy consumption.

In SNNs, signals are transmitted through neurons in the form
of spike trains, each of which is a series of spikes. Due to the non-
differentiability of these spikes, the training of SNNs has become a
hard nut to crack (Tavanaei, Ghodrati, Kheradpisheh, Masquelier,
& Maida, 2019). In particular, either the inaccurate approxima-
tions for computing the gradients of spike trains (Neftci, Mostafa,
& Zenke, 2019; Shrestha & Orchard, 2018), or the assumption that
the spikes exist in the spike timing-based approach (Kim, Kim
and Kim, 2020; Wunderlich & Pehle, 2021; Zhang & Li, 2020),
prohibits effective training using the widely-adopted gradient-
based methods. The difficulties make SNNs less competent than
their ANN counterparts, especially when dealing with large and
complicated datasets.

In addition to the gradient-based training approach, there is
another line of work where the network weights of the target
SNN are converted from a source ANN (Deng & Gu, 2021; Diehl

https://doi.org/10.1016/j.neunet.2022.06.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.06.001&domain=pdf
mailto:qingyanmeng@link.cuhk.edu.cn
mailto:yanshen@pku.edu.cn
mailto:mingqing_xiao@pku.edu.cn
mailto:yisen.wang@pku.edu.cn
mailto:zlin@pku.edu.cn
mailto:luozq@cuhk.edu.cn
https://doi.org/10.1016/j.neunet.2022.06.001

Q. Meng, S. Yan, M. Xiao et al.

ANN SNN

Encoding

Conv/Linear/
Conv+BN ...

Conv/Linear/ __Parameters
Conv+BN ... transmission

RelLU

Fig. 1. The ANN-to-SNN conversion pipeline. Light blue boxes represent static
data while dark blue ones represent operations. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

et al., 2015; Rueckauer, Lungu, Hu, Pfeiffer, & Liu, 2017; Sengupta,
Ye, Wang, Liu, & Roy, 2019; Yan, Zhou, & Wong, 2021). Such an
approach has yielded better results. The better performance of
this “ANN-to-SNN conversion” method relies on the high perfor-
mance of advanced ANNs, as well as a close connection between
ANNs and SNNs. Notably, this connection is mainly based on
the fact that the firing rates of the Integrate-and-Fire (IF) neu-
rons in SNNs can approximate outputs of Rectified Linear Unit
(ReLU) functions in ANNSs, as illustrated in Fig. 1 and elaborated
in Section 2. However, there are still two main problems with
this conversion method. The first one is that the converted SNNs
generally require a sizeable number of time-steps (the duration
of spike trains) to achieve the same level of performance as their
ANN counterparts, which hurts the energy efficiency of SNNs a
lot. The second one is that this method still cannot deal with
very deep network structures yet, since the intractable ANN-
to-SNN conversion error will accumulate through layers, as de-
scribed in Section 2. This fact limits the use of good-performance
lightweight deep network structures. These two problems pre-
vent SNNs from achieving more advanced performance with low
energy consumption.

In this work, we investigate how to solve the two main prob-
lems stated above; that is, we focus on converting very deep
ANNs to SNNs with a small number of time-steps. Theoretically,
we explore the reason for accuracy degradation after conversion.
In detail, we show that the conversion error comes from IF
neurons’ coding scheme and inconstant input current at different
time-step. And we call the error caused by the above two factors
the “quantization error” and the “deviation error”, respectively.
While the quantization error is analyzed in other literature (Deng
& Gu, 2021; Yan et al., 2021), we are the first to analyze the de-
viation error and then indicate how to reduce such error in most
cases, as shown in Theorems 1 and 2. Based on our analysis, we
propose the Threshold Tuning and Residual Block Restructuring
(TTRBR) method to reduce the total conversion error. In detail, we
first tune the spike threshold to achieve a good tradeoff between
the quantization error and the deviation error. We then restruc-
ture the residual blocks of the ResNet architecture to reduce
each neuron’s input variance, for the sake of reducing “deviation
error”. It should be noted that we even get performance gain from
the ANN-to-SNN conversion in some cases. Formally, our main
contributions are summarized as follows:

1. We propose a novel error analysis framework that decom-
poses the conversion error of each spiking neuron into the

255

Neural Networks 153 (2022) 254-268

“quantization error” and the “deviation error”. Particularly,
we are the first to analyze the deviation error and theoret-
ically show that it is controlled by both the spike threshold
and the input variance. Our analysis reveals the essential
problem of the ANN-to-SNN conversion process and can
inspire new algorithms.

. We propose the TTRBR method that can convert very deep
ResNets (>100 layers) to SNNs with negligible performance
degradation. It is the first time that such very deep ANNs can
be well converted, as other state-of-the-art (SOTA) meth-
ods have only converted ANNs with about 20 layers to
SNNs, while demanding a large number of time-steps for
satisfactory performances.

. Our models achieve SOTA SNN performance on the CIFAR-
10, CIFAR-100, and ImageNet classification tasks with very
deep network structures that have few parameters. With
the experiments, we show that the representation ability of
very deep SNNs is powerful and not weaker than their ANN
counterparts, implying their great potential.

2. Background and related works
2.1. The Integrate-and-Fire (IF) model

Different from ANN neurons, SNN neurons communicate with
each other by spikes, and the spike transmission is controlled by
some spiking neural models. Similar to some previous works on
ANN-to-SNN conversion (Diehl et al., 2015; Han, Srinivasan, &
Roy, 2020; Rueckauer et al., 2017), we consider the Integrate-and-
Fire (IF) model. In the brain-inspired IF model, at each time-step
t, neuron i of the Ith layer receives spike trains, and ‘integrates’
the weighted sum of all received spike trains as the membrane
potential V). Whenever V/ exceeds a predefined threshold ', the
neuron i fires a spike, and then Vi’ is reset. If the resting potential
is 0, this model can be formally depicted as

t
) g > wps 6+ b, Vi) <6,
j (1)
hnE_V(tU)4—t) 0, e {t)vi(e) = o',
t'—0
where V,.l(O) = 0 and sJ'-‘l(t) is the spike train of neuron j

from the (I — 1)th layer. The output spike train is expressed
as si(t) = Y .p 8 (t —t!), where §(-) denotes the Dirac delta
function. After discretization, this model is described as

Vi) = t—U+¢§:w’l)+ bi, (2)
si(6) = H(VJ(t) — 6", (3)
vi(e) = vi(e) — 0'si(t), (4)
where H(x) is the Heaviside step function, and s]’ 1t), sﬂ(t) IS

{0, 1}. Note that in Eq. (4), V; is reset in the ‘soft reset’ way, which
helps to reduce the conversion loss by propagating the surplus
information in the subsequent layers (Datta, Kundu and Beerel,
2021).

2.2. Converting ANNs with ReLU activations to SNNs with IF neurons

There is a strong connection between the outputs of ReLU
activations in ANNs and the firing rates of IF neurons in SNNs
when the weights in the two types of networks match. We can
use this feature to convert well-trained ANNs into SNNs since
SNNs are not easy to be trained. For simplicity, we denote by

20y wl 1t) + b; “mput current” to neuron i at time-
step t, then com ining Egs. (2) and (4), and summing over the

Q. Meng, S. Yan, M. Xiao et al.

simulation time t until the end time T (also known as “latency”),
we get

T T

D Wit =)= Vi) + X)) = 0" sie).

t=1 t=1

(5)

Denote by y £ 97{ 2321 sﬁ(t) the scaled firing rate of neuron i, and

X £ % ZL1 xl(t) as the mean of input currents to neuron i, then
from Eq. (5), we have

1
=x+?WU)
Taking 0 < y < 6' into consideration, when T is large, We can
approximate y given x as

y (6)

y ~ clamp(x, 0, 6"), (7)

where the clamp operation clamps x into range [0, 6']. Therefore,
scaled firing rates of IF neurons can approximate ReLU func-
tions when the predefined threshold ' is set greater than the
maximum activation value of the Ith layer in the source ANN.
This approximation is achieved when the input currents to an
IF neuron are {xﬁ(t)} and the input to the corresponding ReLU
activation is the mean of {xﬁ(t)}.

With the IF-ReLU approximation, we can map all the weights
and biases of a convolution/linear layer connected to ReLU ac-
tivations in an ANN, to the corresponding layer connected to IF
neurons in the SNN counterpart which has the same structure.
Then the two networks will have similar outputs, as shown in
Fig. 1. In the conversion, batch normalization (BN) cannot be
directly applied. However, since BN layers are always followed
by convolution or fully connected layers in some network archi-
tectures, we can combine the two layers as a new convolution
layer. Weights and biases in the new layer are expressed as

~ W . b—
TARAL S Al Y
o o

(8)
where 8 and y are the learnable parameters in the original BN
layer, and x and o are the mean and the variance in the same
BN layer, respectively.

Note that the approximation can be relatively inaccurate when
T is not large enough. As a result, the conversion error would
accumulate through layers (Rueckauer et al.,, 2017), and then
the final conversion error may be significant for a very deep
network (Hu, Tang, Wang, & Pan, 2018). The goal of this paper is
to reduce the conversion error of each layer so that to reduce the
final conversion error (Deng & Gu, 2021): we rigorously analyze
the sources of error in Section 3, and propose our approach in
Section 4.

2.3. Input encoding

For the input data, the static input 1° (e.g., images, assume
0 < r® < 1) must be encoded into time sequences {s°(t)}_,
before being applied to SNNs, where r° and s°(t) have the same
dimension for each t. There is a branch of encoding methods
such as direct encoding (Rathi & Roy, 2021), rate encoding (Diehl,
Zarrella, Cassidy, Pedroni, & Neftci, 2016; Sengupta et al., 2019),
temporal encoding (Zhou, Li, Chen, Chandrasekaran, & Sanyal,
2021), and hybrid encoding (Datta, Kundu, Beerel, 2021). How-
ever, The encoding method should be adapted to the ANN-to-SNN
conversion pipeline. Specifically, the time average of {so(t)}tT=1
should be closed to r° to achieve a good ANN-to-SNN conversion
for the first layer, as introduced in Section 2.2. According to the
above requirements, direct encoding and rate encoding can be
used. With direct encoding, s°(t) = r° for each t. With rate

encoding, {s°(t)}{_, are spike trains and E(s%(t)) = r° for each

256

Neural Networks 153 (2022) 254-268

t (e.g., {so(t)}[T:1 can be Poisson spike trains (Heeger et al., 2000)
with firing rates r°).

In this work, we apply the direct encoding method, which
does not lose any information from the static input. Furthermore,
compared to rate encoding, direct encoding can lead to reduction
of latency and fewer spikes (Datta & Beerel, 2021; Rathi & Roy,
2021). A small disadvantage for direct encoding is that real values
of {s°(t) L] will introduce additional multiply-accumulate oper-
ations (MAC), which hurt energy efficiency a little bit; however,
the computational overhead is negligible for deep SNNs, and the
total energy consumption can still be lower than that of the
rate encoding method due to the reduction of latency and fewer
spikes.

2.4. Related works

SNN learning methods can be mainly categorized into three di-
rections: brain-inspired localized learning (Caporale & Dan, 2008;
Kheradpisheh, Ganjtabesh, Thorpe, & Masquelier, 2018), direct
training with surrogate gradient based methods (Bohte, Kok, &
La Poutré, 2000; Huh & Sejnowski, 2018; Meng et al., 2022;
Xiao, Meng, Zhang, Wang, & Lin, 2021; Zhang & Li, 2020; Zheng,
Wu, Deng, Hu, & Li, 2021), and ANN-to-SNN conversion (Diehl
et al, 2015; Han & Roy, 2020; Han et al., 2020; Kim, Park, Na
and Yoon, 2020; Pérez-Carrasco et al., 2013; Rueckauer et al.,
2017). In this paper, we focus on the ANN-to-SNN conversion
direction, as it achieves the best accuracy. However, its main
problem is that it is hard to convert very deep ANNs to SNNs
with a small number of time-steps. Stockl and Maass (2021)
propose a variation of the standard spiking neuron model, called
FS-Neuron, that can be optimized to approximate any activation
functions well; however, the implementability of the FS-neuron
on neuromorphic chips still needs to be verified. For converting
ANNSs to IF neuron-based SNNs, Deng and Gu (2021) use modified
ReLU to approximate IF neurons where the modification consists
of thresholding the maximum activation and shifting the turning
point of ReLU functions. Yan et al. (2021) propose the clamped
and quantized training that achieves near-zero conversion loss.
The methods in these two works are limited to reduce the “quan-
tization error”, as described in Section 3.1, so that they can only
convert simple network structures. Hu et al. (2018) propose a
shortcut conversion model and a compensation mechanism for
the SNN version of ResNet. The IF neuron-based converting meth-
ods mentioned above only deal with moderately deep networks,
like VGG, resulting in limited performances of SNNs. At the same
time, most of the methods require hundreds or even thousands
of time-steps to obtain satisfactory performances, compromis-
ing the low power consumption of SNNs. Different from them,
our proposed TTRBR method can convert much deeper ANNs
(>100 layers) to SNNs with fewer time-steps, indicating the huge
potential of very deep SNNs.

3. Conversion error from ANNs to SNNs

In this section, we rigorously analyze the ANN-to-SNN con-
version error. As in Section 2, we define {xﬁ(t)}tT:1 as the input
currents to neuron-i, and still denote x £ % ZZ:] xﬁ(t) as the input

mean and y £ %’ ZL] sf(t) as the scaled firing rate. According to
Eq. (7), the conversion error e, of neuron-i can be defined as

(9)

And we want small |e.| to get satisfactory ANN-to-SNN conver-
sion.

ec = clamp(x, 0, ') — y.

Q. Meng, S. Yan, M. Xiao et al.

121

1T

— IF neuron
Modified IF neuron
08+ Clamped-ReLU activation
I
=06 '
04 T
Approximation Error

0.2

0 . I | I | |

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

xT

Fig. 2. IF-neuron and Clamped-ReLU activation comparison for the constant-
inputs case. Spike generating of IF neuron and modified IF neuron is controlled
by Egs. (3) and (12), respectively. Here we set the threshold Vi, = 1 and the
time-steps N = 5. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

We decompose e, based on whether {xf.(t)}rT=1 are constant.

Specifically, Let ¥’ be the new scaled firing rate when assuming
xﬁ(t) x for all t. Then e. can be decomposed as

ec = [clamp(x, 0, D) -y]+[y -yl

where eq £ clamp(x, 0, 6"y —y' is the “quantization error” caused
by the discretization of SNN dynamics , and eq £ y — y is
the “deviation error” caused by inconstant input currents to
the neuron. We first demonstrate that many current works are
reducing |eq|. Then we show that e; has a great influence on the
conversion. Next, we show how the threshold 6! of IF neurons,
and the sample variance of input currents {xf(t) Ll, influence the
newly proposed “deviation error”.

(10)

3.1. Quantization error: The error from the discretization of SNN
dynamics

We first assume that all the input currents {xﬁ(t)}tT:1 to neuron-
i equal a constant value. Then plugging xﬁ(t) = x in Egs. (2), (3),

and (4), we have
= o clam Ix 0, T
y - T p 9’)) ’

where [-| is the floor rounding operator, and this relationship
between y and x is shown as the red curve in Fig. 2. From Eq. (11)
and the figure, we can see that the difference between the scaled
firing rate of an IF neuron and a ReLU function upper-clamped at
0! is in the range [-6!/T, 0]. We call the conversion error from
this intrinsic difference as “quantization error”.

To reduce the quantization error, there are mainly three meth-
ods, based on Eq. (11). The first one is to increase the number of
time-steps T; however, it hurts the energy efficiency of SNNs. The
second method is to reduce 6'. It can be achieved by substituting
ReLU functions with clamp functions in the source ANN (Deng &
Gu, 2021; Yan et al,, 2021) to make the maximum of the ANN’s
activation values smaller after training. The third method is to
modify how IF neurons fire, to make the intrinsic difference be-
tween the scaled firing rate of an IF neuron and the corresponding
upper-clamped ReLU function small. Formally, we change Eq. (3)
to

(11

(12)

257

Neural Networks 153 (2022) 254-268

then the relationship between y and x gotten from Egs. (2), (12),

and (4) is
Tx
:| ,0, T))
01

01
= — . 1
y T camp<|:

and is shown as the green curve in Fig. 2, where [-] is the
rounding operator. Now the difference of outputs between the
IF neuron and the upper-clamped ReLU activation is in the range
[—6'/2T, 0'/2T], so the maximum absolute error is halved. We
want to mention that the third method is used in O’Connor,
Gavves, and Welling (2019) and has the same effect as shifting
ReLU activation in Deng and Gu (2021).

For constant input currents, comparing Eqgs. (13) and (11), we
see that the modified spike generation step (Eq. (12)) always
has a higher firing rate than the standard spike generation step
(Eq. (3)), as shown in Fig. 2. Therefore, the modified IF neuron
will fire more spikes. According to Fig. 2, if the constant current
x is uniformly distributed on the interval [0, 6'], the modified IF
neuron will fire the same number of spikes or one more spike
with equal probability (ie., 50%). If x < 0 or x > 6 the
standard and modified IF neurons will fire the same number of
spikes. Although more spikes lead to more energy consumption,
the modified IF neuron achieves much better accuracy when
the number of time-steps is small, and the energy overhead is
insignificant in practice, as shown in Section 5.6.

(13)

3.2. Deviation error: The error from diversity of input currents

The quantization error is not the only source of the final
conversion error, since it is deduced under the assumption that
the input currents to IF neurons are constrained to be constant,
which is not the case for communication between multiple layers.
Fig. 3 shows the relationship between the sample mean x of input
currents and the scaled firing rate y, when input currents are
constant or not. As shown, another type of error occurs when
input currents are not constant, and we call the error caused
by inconstant input currents the “deviation error”. The deviation
error can be quite large under some circumstances (Fig. 3(c)).
Furthermore, the magnitudes of the deviation error can always be
(much) larger than the magnitudes of the quantization error un-
der a different number of time-steps, from ultra-low to relatively
high, as shown in Fig. 4. Therefore, the deviation error requires
serious analysis.

To simplify our analysis, we consider the continuous-time
version of the IF model described in Eq. (1). In this case, we define
the sample mean of input currents x £ % OT xg(t) and the scaled
firing rate y 2 & (7 si(t). When x(t) is constant, we let x\(t) = u
for t € (0, T], and then have

Tx

T JO
0[
2 wa2)

which is a similar result to that of the discrete-time case. Eq. (14)

tells that an IF neuron will fire n spikes when T € [”79', W),
neNandu > 0.

When xﬁ(t) is not constant, we consider a simple case that
xf(t) u+ o&(t), t € (0,T], where £(t) is a continuous-time
standard Gaussian white noise process, and u and o are fixed. This
Gaussian setting is reasonable since it accords with our experi-
mental observations, as described in Appendix C.1. Furthermore,
let N(t) be the counting process that determines how many spikes
occur in the time interval [0, t], given x!(t) = u+o&(t). With the
above setting, for the case u > 0, let T € ["79’, (”+J)9’), neN,
if the probability of event {N(T) = n} is large, we can claim that
the inconstant-inputs case has a behavior similar to the constant-
inputs case; thus the “deviation error” is small. Note that it is not

(14)

Q. Meng, S. Yan, M. Xiao et al.

Neural Networks 153 (2022) 254-268

ir 1 1
® |F neuron ® |IF neuron e |F neuron
— Clamped-ReLU activation| — Clamped-ReLU activation| — Clamped-ReLU activation|
0.8 0.8 0.8
5 o6 Sos S06
T T T
= = =
Koat Koa4 204
0.2 0.2 0.2
0 0 = 0
2 15 -1 -0.5 0 0.5 1 15 2 25 -2 1.5 1 -0.5 0 0.5 1 15 2 25 -2 1.5 1 -0.5 0 0.5 1 1.5 2 25
Pre-activation Pre-activation Pre-activation
(a) (b) (c)

Fig. 3. IF-neuron and Clamped-ReLU activation comparison for the constant-inputs case (a) and inconstant-inputs case (b,c). Data of the three figures come from the
first IF layer, a middle IF layer, and the final IF layer of an SNN with ResNet structure, tested on the CIFAR-10 dataset. The threshold is # = 1 and the number of

time-steps is T = 32.

0.06 100%

—e—|quantization error| 90%

0.05 809
—eo—|deviation error| °

0,
0.04 70%
60%
0.03 50%
40%
0.02 0%
0.01 20%
10%

0.00 0%

2 4 8 16 32 64 128
Time Steps

Fig. 4. Comparison between the average magnitude of the quantization error
and the deviation error under the different number of time-steps. The curves
show the error magnitude, and the percent stacked column charts show the
proportion of two errors. The experimental setup is the same as in Fig. 3(c).
Data come from the final IF layer of an SNN with ResNet structure tested on
the CIFAR-10 dataset, and the threshold 6 = 1.

. 1 !
easy to consider all T € [%, @), so we only study the case

!
of T = (n+ $)%. Next, Theorem 1 suggests how to reduce the
“deviation error”.

Theorem 1. Suppose that the input to an IF neuron is xﬁ(t) =u+
o&(t), t € (0,T], u > 0, where &(t) is a continuous-time standard
Gaussian white noise process. Let N(t) be the counting process that
determines how many spikes occur in the time interval [0, t], where
the neuronal dynamics of IF neurons is defined in Eq. (1), then for
VneNand T = (n+ 1),

(1) 36*(n) > 0, such that when 0 > 6*(n), P(N(T) = n) increases
as 9 increases;

(2) Jo*(n) > 0, such that when o < o*(n), P(IN(T) = n)
increases as o decreases.

The proof is provided in Appendix A. Thus, the “deviation
error” can be reduced by increasing the threshold 6!, or decreas-
ing the sample variance of input currents. One may argue that
P(N(T) = n) is not monotonic with 6 or ¢ in their entire domain.
However, our simulation indicates that the refractory intervals
that P(N(T) = n) is not monotonic are small, particularly for
a large n, as described in Appendix C.2. So when designing our
method, we may regard P(N(T) = n) as monotonic with 6' or o.

258

Theorem 1 only discusses the case for u > 0. When u < 0,
there will be no spike firing for the constant-inputs case, accord-
ing to Eq. (14). Therefore, if the probability P(max; N(t) > 0) is
small, the “deviation error” is small. The following Theorem 2
suggests how to reduce the probability.

Theorem 2. Suppose that the input to an IF neuron is xﬁ(t)
u+ oé(t), t € (0,T], u < 0, where &(t) is a continuous-time
standard Gaussian white noise process. Let N(t) be the counting
process the same as that in Theorem 1, then P(max, N(t) > 0)

decreases when 6! increases or o decreases.

The proof is provided in Appendix B. Combining Theorems 1
and 2, we can increase the threshold #' or reduce IF neurons’
input variance, to reduce “deviation error”.

4. Methodology

In this subsection, we introduce the Threshold Tuning and
Residual Block Restructuring (TTRBR) method to reduce the ANN-
to-SNN conversion error for the ResNet structure, as shown in
Fig. 5. We focus on the ResNet structure, rather than the widely
used VGG structure and other simple structures, to make the
source ANN perform better and demonstrate our method’s appli-
cability to very deep SNNs. The approaches to reducing “deviation
error” are more concerned, since many other works have pro-
posed methods to reduce “quantization error” (Deng & Gu, 2021;
Yan et al., 2021).

To reduce the “quantization error”, we first adopt the modified
IF neurons which can be depicted as Eqgs. (2), (12), and (4). This
ensures a smaller intrinsic difference between the scaled firing
rate of IF neurons and the outputs of ReLU activations (Deng & Gu,
2021). Then we use clamp functions, which are lower-clamped
at 0, to substitute ReLU functions in the source ANN, to enforce
smaller thresholds. Slightly different from other works like Deng
and Gu (2021) and Yan et al. (2021), we make the upper level « of
the clamp functions trainable (Choi et al., 2018), and include an
L2-regularizer for « in the loss function. Note that it is difficult
to directly train a ResNet with clamp activations, so we first pre-
train a ResNet with ReLU activations and then fine-tune the one
with clamp activations based on the pre-trained model.

To reduce the “deviation error”, we firstly follow our theoreti-
cal analysis in Section 3.2 to consider the influence of the thresh-
old. Theorems 1 and 2 express that a large threshold narrows the
gap between the constant-inputs case and the inconstant-inputs
case for IF-ReLU conversion. As a result, increasing the threshold
seems a choice for reducing the total conversion error. However,

Q. Meng, S. Yan, M. Xiao et al.

Table 1

Neural Networks 153 (2022) 254-268

Network architectures for CIFAR-10 and CIFAR-100. Batch normalization, activation function, and skip connection
are not shown. “(a x b, ¢c)” means a convolution operation with kernel size a x b and ¢ output channels.

ResNet-20 ResNet-32 ResNet-56 ResNet-110 ResNet-18
(3 x 3,16) (3 x 3,16) (3 x 3,16) (3 x 3,16) (3 x 3,64)
3x3,16 3x3,16 3x3,16 3x3,16 3x 3,64
(3><3,]6 3 3x3,16) *° 3x3,16) *° 3><3,]6)><]8 3><3,64)><2
3x3,32 3x3,32 3x3,32 3x3,32 3 x 3,128
(3><3,32 x3 3x3,32) %3 3x3,32)%° 3x3,32)><]8 3><3,]28)X2
3x 3,64 3x 3,64 3x3,64 3x3,64 3 x 3,256
(3><3,64 x3 (3><3,64)X5 (3><3,64)><9 <3><3,64)><]8 3x3,256)X2
3x 3,512
/ / / / 3x3, 512) x2
Average pool, fc Average pool, fc Average pool, fc Average pool, fc Average pool, fc

|Decomposition

y !

l I XRed uce
Input variance
reduction

_________________ t

Balance

The TTRBR method

Fig. 5. Main ideas of the proposed TTRBR method. This method focuses more
on the “deviation error”.

a larger threshold also leads to a larger “quantization error” as
shown in Section 3.1. So &' controls the tradeoff between “quan-
tization error” and “deviation error”. In our method, we initialize
the threshold of each IF layer in the target SNN according to the
maximum “pre-activation” of clamp activation functions in the
corresponding layer in the source ANN, where a “pre-activation”
means the value right before an activation function. Then we
scale each threshold 6' by a hyperparameter A. Our experiments
indicate that A in the range [0.5, 1.5] works well, and a larger
A is more suitable for SNNs with a larger number of time-steps,
implying that “deviation error” has a greater impact on the final
performance for the case that the number of time-steps is large,
since the maximum “quantization error” is controlled by 6'/T.
Our experiments also demonstrate that a suitable X is somewhat
related to the datasets, as shown in Section 5. This simple and
efficient threshold determination method significantly improves
the performance of SNNs when the number of time-steps is very
small (16 in our experiments).

The second proposed approach to reduce the “deviation error”
is to decrease the sample variance of input currents to IF neurons.
To achieve this, the network structure of the source ANN needs
to be modified to make the input currents to IF neurons in target
SNN as close to constant as possible. In particular, we find that
the original ResNet structure (Fig. 6), which is widely used (Deng
& Gu, 2021; Han & Roy, 2020; Han et al., 2020), suffers from large
“deviation error”. It is because the last ReLU layer in each residual
block follows by skip connection, and the summation operator
in the skip connection could give rise to large input variance to
IF neurons that are converted from such ReLU layers. This fact
makes ResNet structure more difficult to convert than networks
without skip connection. And it may be one reason why the VGG
structure, rather than the ResNet structure, achieves superior

259

performance in prior works (see Section 5). In our approach, we
avoid the situation where ReLU activations are right after the
summation operator by introducing the “pre-activation” version
of residual block, as shown in Fig. 6. We calculate the input vari-
ance for both the original and modified ResNet-20 architectures
on CIFAR-10, finding that the modified one is effective in reducing
the input variance to IF neurons, as shown in Fig. 7.

In total, the working flow of the proposed TTRBR method is
summarized as follows:

e Stage-I ANN: train a ResNet with ReLU activations whose
residual block structure is modified as shown in Fig. 6.
Stage-Il ANN: using the pre-trained Stage-I ANN, further
fine-tune a ResNet with clamp activations and the modified
residual block structure.

e Thresholds Initialization: calculate each layer’s 99.9th per-
centile pre-activations of clamp functions across five batches
of the training dataset. Use them as initialization of different
layer’s thresholds.

e Thresholds Determination: scale each threshold by a factor
A, which is related to the number T of time-steps, and is
around 1.

5. Experiments

We first conduct a series of experiments for a comprehensive
understanding of our proposed TTRBR method. Then we evaluate
the proposed method on three visual object recognition bench-
marks, CIFAR-10, CIFAR-100, and ImageNet. The implementation
details are described in Appendix D.

5.1. Network architectures

We use ResNet architectures to conduct experiments on
CIFAR-10, CIFAR-100, and ImageNet, while the residual blocks are
restructured as shown in Fig. 5. On CIFAR-10 and CIFAR-100, we
adopt ResNet-20, ResNet-32, ResNet-50, ResNet-110, and ResNet-
18, as shown in Table 1. Note that ResNet-18 is wider than other
architectures. And we adopt ResNet-34, ResNet-50 and ResNet-
101 on ImageNet, as shown in Table 2. To make the architectures
implementable on neuromorphic hardware, we replace all max
pooling layers with average pooling layers. Furthermore, we
add IF layers after the average pooling layers and the last fully
connected layer. To stabilize the final outputs, we also introduce
an additional BN layer between the last fully connected layer and
the last IF layer.

5.2. Performance on CIFAR-10 and CIFAR-100

We apply the proposed TTRBR method with five ResNet archi-
tectures. All the results are illustrated in Fig. 8, and the details

Q. Meng, S. Yan, M. Xiao et al.

Conv

o (*)
= | <

(a) Basic block structure.

Neural Networks 153 (2022) 254-268

Convl X1

Conv3 X3
Conv3 X3

Convl X1
Convl X1

Convl X1

3 3
°<— — B — e—
’ c c
] B 7 z
4—°4—§\4—,_ |2 —X l—
’ c c c

(b) Bottleneck structure.

Fig. 6. Residual block structure in a ResNet network. The sub-figures to the left of the arrow are the original structures (He et al,, 2016), while the ones to the right
of the arrow are what we use to reduce the “deviation error” of the ANN-to-SNN conversion.

Meadian Values of Input Variance to IF Neurons in Different Depth

0.25 4 —— Original ResNet
—— Modified ResNet
0.20 1
()
o
& 0.151
s
>
=
3 0.10 A
£
0.05 4
0.00
2 4 6 8 10 12 14 16 18
Depth

Maximum Values of Input Variance to IF Neurons in Different Depth

—— Original ResNet
4l —— Modified ResNet
MR
f=
o
s
>
52
Q
<
1 B
0 -
2 4 6 8 10 12 14 16 18
Depth

Fig. 7. The median and maximum values of input variance to IF neurons in different depth of two ResNet structures. In the experiments, we feed 200 randomly
picked images from CIFAR-10 into the two SNNs, and calculate the input variance to each IF neuron in different layers. The number of time-steps is set to be 32.

Networks Inference on CIFAR-10 Dataset

o5.4d% 95.27% 95.27%

95.04%

94.77%

93.99%

©
W
X

93.18%

) :92% ’9,3.0'0%

92%

Small accuracy loss,
or accuracy gain!

91%

Classification Accuracy

90%

20 ResNet-32

=8—ResNet-56
89%

110 ResNet-18

89.17%
88%
SNN-16steps SNN-32steps SNN-64steps SNN-128steps ANN-Clamped ANN-Original

Different Configuration for SNNs and ANNs

Networks Inference on CIFAR-100 Dataset

78.45% X 78.88%

77.63%

78%

~
@
X

69.99% . ___ 6967% 70.15%

Small accuracy loss,
or accuracy gain!

o
®
xR

Classification Accuracy

63%

32 =& ResNet-56

18

58% 59.61%
SNN-16steps SNN-32steps SNN-64steps SNN-128steps ANN-Clamped ANN-Original

Different Configuration for SNNs and ANNs

Fig. 8. Accuracies for different networks gotten by our TTRBR method on the CIFAR-10 dataset and the CIFAR-100 dataset. We claim accuracy gain when the SNN
with 128 time-steps outperforms the corresponding ANN with clamp activations.

of the results are described in Table 3. As shown, our TTRBR
method achieves small accuracy loss from the ANN-to-SNN con-
version, especially when the number of time-steps is no less than
64. Furthermore, with 128 time-steps, most obtained SNNs can
outperform their ANN counterparts!

We compare our best results with some SOTA ones in Ta-
ble 4. The proposed TTRBR method can be much better than
other methods, since ResNet-110 and ResNet-18 are well con-
verted. Furthermore, we only need to use 64 or 128 time-steps
to achieve satisfactory performances, making our method more
energy-efficient if implemented on neuromorphic chips.

260

We also use the same ResNet architectures to compare our
method with SOTA methods in Table 5. With the same shallow
ResNet-18 network, our method can achieve competitive results,
compared to the SOTA. More impressively, for the ResNet-110
network, our method performs much better, especially when
the number of time-steps is small. Note that the parameters
of ResNet-18 are 10 times more than that of ResNet-110 (with
narrow layers), yet the two network structures share similar
ANN performance. Therefore, our method has great potential for
training lightweight deep SNNs for the sake of energy efficiency,

Q. Meng, S. Yan, M. Xiao et al.

Table 2
Network architectures for ImageNet.
ResNet-34 ResNet-50 ResNet-101
(7 x 7,64) (7 x 7,64) (7 x 7,64)
average pool average pool average pool
(1 x 1,64) (1 x 1,64) (1 x 1,64)
3x3,64 3 x 3,64
(ii?gi)” 1x1,256 | x 3 1x1,256 | x 3
’ 1x 1,64 1x1,64
3x 3,128 3x 3,128
@X;’gg)x4 1x1,512 | x 4 1x1,512| x4
X2 1x 1,128 1x 1,128
3 x 3,256 3 x 3,256
(iii’ﬁﬁg)xs 1x1,1024 | x6 1x1,1024 | x 23
’ 1x 1,256 1x 1,256
3x 3,512 3x 3,512
(;iggg>x3 1x1,2048 | x 3 1x1,2048 | x 3
’ 1x 1,512 1x 1,512

Average pool, fc Average pool, fc Average pool, fc

while other SOTA methods may not be able to achieve satisfactory
results using such deep SNNs.

5.3. Performance on ImageNet

We also apply the proposed TTRBR method on the ImageNet
classification task, using the ResNet-50 and ResNet-101 archi-
tectures. For this complicated task, we adopt ResNet-50 and
ResNet-101 with modified bottleneck components, as shown in
Fig. 6(b). We skip the stage-Il ANN tuning part, since the training
process of ANNs on ImageNet is time-consuming. We compare
our results with some SOTA ones in Table 6. As shown, the
proposed TTRBR method achieves competitive or better results
with a small number of time-steps. For the shallower ResNet-
34 structure, our method only has 0.06% conversion error with
512 time-steps. Furthermore, the conversion error for ResNet-101
is only a bit higher than ResNet-50, showing the effectiveness
of the proposed method for deep networks. Note that our used
architectures have similar or much less number of parameters.

Since the ImageNet dataset spans 1000 classes, a small number
of time-steps lead to insufficient accuracy of the firing rates of
neurons in the output layer, due to the relatively large “quantiza-
tion error”. As a result, the TTRBR method needs more time-steps
to achieve a small conversion error for the ImageNet classification
task, compared with the CIFAR-10 and CIFAR-100 tasks. How-
ever, our TTRBR method still requires comparable or much fewer
time-steps to obtain better results, even if we use much deeper
network models.

5.4. Analysis on deviation error

We test whether the “deviation error” can be reduced by
increasing the threshold ', or decreasing the input variance. In
detail, we first treat the IF-ReLU approximation shown in Fig. 3(c)
as a baseline. Then we modify the baseline setting, to obtain
the other two groups of IF-ReLU approximation results, where
these two modifications are to increase the threshold #' and to
decrease the input variance. The two new results, together with
the baseline result, are illustrated in Fig. 9. From this figure, we
can conclude that our methods can indeed reduce the “deviation
error”.

5.5. Analysis on A and modified architecture
Our proposed method includes two approaches to reduce the

ANN-to-SNN conversion error: using a hyperparameter A to con-
trol thresholds and using the modified residual block structure

261

Neural Networks 153 (2022) 254-268

in a ResNet network. Here we conduct an ablation study to
test whether the two approaches improve the conversion perfor-
mances. From Table 7, we conclude that both approaches have
positive impacts on the final performances. Thresholds redeter-
mination using A has a (huge) positive effect for a small number
of time-steps. The modified network structure can significantly
improve performance when the networks are very deep or the
number of time-steps is very small. For the ResNet-110 archi-
tecture, the modified structure can improve accuracy by 77.07%,
63.87%, and 4.30% for the 16, 32, and 128 time-steps cases,
respectively!

We also show the rigorous analysis on choosing A. For prop-
erly setting this parameter, we test different A selected from
{0.60, 0.65, ..., 1.55, 1.60} on several batches of the datasets,
and choose the X that results in the best classification accuracy.
The chosen A for different network architectures on CIFAR-10,
CIFAR-100, and ImageNet is shown in Tables 8 and 9. Those
experiments indicate that the choice of A is mainly affected by
the number of time-steps. Furthermore, we observe that the
chosen A for the CIFAR-100 dataset are slightly larger than those
for the CIFAR-10 dataset, implying that for more complicated
datasets, “deviation error” becomes larger, and that “deviation
error” becomes the main issue.

As for whether A has great impact, we conduct experiments
for different A, as shown in Fig. 10. The experiments demonstrate
that appropriate A will greatly improve classification accuracy for
SNNs using a small number of time-steps. On the other hand, the
impact is not significant when using a large number of time-steps,
since the “quantization error” is already small for A 1 and
“deviation error” is also already small using the modified network
structures.

5.6. Energy efficiency

In this subsection, we discuss the inference efficiency for the
obtained SNNs. In SNNs, each operation computes one floating-
point addition, which consumes much less energy than the
multiply-accumulate operation (MAC) used in ANNs. Further-
more, on neuromorphic chips, the calculation of SNN is event-
driven so that there is no energy consumption when neurons are
silent. The energy consumption for inference of one SNN layer
can be calculated as (Chowdhury, Rathi, & Roy, 2021; Rathi & Roy,
2021):

EnergyCost = #0Psny x #Spike x CostOP, (15)

where #0P,yy is the number of operations in the iso-architecture
ANN layer, #Spike is the average number of generated spikes
per neuron for that layer, and CostOP is the energy consumption
for one addition operation, which is 0.9 pJ for 45 nm CMOS
technology (Horowitz, 2014).

First, we show that the reduction of latency in our method
indeed improves energy efficiency. The latency reduction can
change the energy consumption only by changing the number of
generated spikes. Therefore, we calculate the average number of
generated spikes per neuron for different networks and the dif-
ferent number of time-steps on CIFAR-10, as shown in Table 10.
We can see that the energy consumption is linearly reduced with
the decrease of latency with our method.

Next, we show that the modification on the IF neuron (Eq. (12))
only slightly increases energy consumption by increasing the
number of generated spikes. We test both the standard and
modified IF models on the CIFAR-10 classification task, and then
calculate the average number of spikes per neuron for each
model. The result is shown in Table 11. From the table, we can
see that the modified IF neuron fires only 0.1 to 0.25 more spikes
than the standard IF neuron, for the benefit of even 5% higher
accuracy.

Q. Meng, S. Yan, M. Xiao et al.

Neural Networks 153 (2022) 254-268

Table 3
Inference accuracies achieved by the proposed TTRBR method on CIFAR10 and CIFAR100. “T” means the number of time-steps.
Network T=16 T=32 T=64 T=128 ANN-II* ANN-I? Params
ResNet-20 89.17% 91.91% 92.68% 92.92% 93.00% 93.18% 0.273M
ResNet-32 90.18% 92.49% 93.56% 93.63% 93.68% 94.03% 0.468M
CIFAR-10 ResNet-56 90.22% 92.89% 93.82% 94.30% 94.52% 93.81% 0.858M
ResNet-110 91.41% 93.67% 94.48% 94.77% 94.67% 94.94% 1.734M
ResNet-18 93.99% 94.77% 95.04% 95.18% - 95.27% 11.177M
ResNet-20 59.61% 66.24% 69.14% 69.99% 69.67% 70.15% 0.279M
ResNet-32 61.35% 68.57% 71.05% 71.90% 71.65% 71.56% 0.474M
CIFAR-100 ResNet-56 66.42% 71.53% 73.23% 73.76% 73.93% 73.44% 0.864M
ResNet-110 68.35% 73.73% 74.72% 75.31% 75.09% 75.30% 1.741M
ResNet-18 75.22% 77.63% 78.45% 78.50% - 78.88% 11.223M
4ANN-I: the original ANNs with ReLU activations. ANN-II: ANNs with clamp activations.
Table 4
Comparison between our work and other methods on CIFAR-10 and CIFAR-100.
Method Network Time-steps Accuracy Accuracy loss? Params
Datta and Beerel (2021) VGG-16 2 (hybrid training) 91.79% - 35.211M
Rathi and Roy (2021) VGG-16 5 (hybrid training) 92.70% - 35.211M
Zheng et al. (2021) ResNet-18 6 (direct training) 93.16% - 12.631M
Deng and Gu (2021) ResNet-18 128 93.56% —1.25% (0.05%)° 11.253M
Han and Roy (2020) VGG-16 2048 93.63% <0.01% 35.211M
CIFAR-10 Han et al. (2020) VGG-16 1536 93.63% <0.01% 35.211M
Yan et al. (2021) VGG-like 600 94.20% 0.04% 42.900M
ResNet-110 64 94.48% 0.19% (0.46%) 1.734M
ResNet-110 128 94.77% —0.10% (0.17%) 1.734M
TTRBR (ours) ResNet-18 64 95.04% 0.13% 11.177M
ResNet-18 128 95.18% 0.09% 11.177M
Datta and Beerel (2021) VGG-16 2 (hybrid training) 64.19% - 35.580M
Rathi and Roy (2021) VGG-16 5 (hybrid training) 69.67% - 35.580M
Deng and Gu (2021) VGG-16 128 70.47% 0.15% (0.02%) 35.580M
Sengupta et al. (2019) VGG-16 2500 70.77% 0.45% 35.580M
Han and Roy (2020) VGG-16 >2048 71.22% 0.25% 35.580M
CIFAR-100 Han et al. (2020) VGG-16 >2048 71.22% 0.29% 35.580M
Yan et al. (2021) VGG-like 300 71.84% <0.01% 43.268M
ResNet-110 64 74.72% 0.37% (0.58%) 1.741M
ResNet-110 128 75.31% —0.22% (—0.01%) 1.741M
TTRBR (ours) ResNet-18 64 78.45% 0.43% 11.223M
ResNet-18 128 78.50% 0.38% 11.223M

?Negative accuracy loss means that the converted SNN is more accurate than the ANN.
bWhen there are two accuracy losses, the values outside brackets represent the accuracy differences between the ANN with clamp activations and the target SNN,
while those in brackets are the differences between the initial source ANN and SNN.

Table 5
Comparison between our work and other methods on CIFAR-10 and CIFAR-100 under ResNet-18 and ResNet-110. “T” means the number of time-steps.
Network Method ANN T=32 T =64 T =128
RTS (Deng & Gu, 2021) 95.46% 84.06% 92.48% 94.42% (T > 512)
ResNet-18 SNNC (Li, Deng, Dong, Gong, & Gu, 2021) 95.46% 94.78% 95.30% 95.45% (T > 512)
QCFS (Bu et al., 2021) 96.04% 96.08% 96.06% 96.06% (T > 512)
CIFAR-10 TTRBR (ours) 95.27% 94.77% 95.04% 95.18%
SNNC (Li et al., 2021) 95.60% 14.77% 19.73% 19.55%
ResNet-110 QCFS (Bu et al., 2021) 94.41% 76.05% 90.63% 93.63%
TTRBR (ours) 94.94% 93.67% 94.48% 94.77%
RTS (Deng & Gu, 2021) 77.16% 51.27% 70.12% 77.19% (T = 512)
ResNet-18 SNNC (Li et al., 2021) 77.16% 76.32% 77.29% 77.25% (T > 512)
QCFS (Bu et al, 2021) 78.80% 79.62% 79.54% 79.61% (T > 512)
CIFAR-100 TTRBR (ours) 78.88% 77.63% 78.45% 78.50%
SNNC (Li et al.,, 2021) 77.29% 4.04% 5.95% 7.91%
ResNet-110 QCFS (Bu et al, 2021) 72.47% 47.38% 65.19% 71.26%
TTRBR (ours) 75.30% 73.73% 74.72% 75.31%

6. Conclusion and future work

Conclusion. We have proposed a novel error analysis framework
on ANN-to-SNN conversion that decomposes the conversion error
into “quantization error” and “deviation error”. We are the first
to find that the “deviation error” affects the conversion a lot.
Furthermore, we theoretically reveal that the “deviation error” is

262

controlled by the spike threshold and the input variance. Based on
the rigorous analysis, we have presented a method called TTRBR
to convert very deep ResNets to the corresponding SNNs based
on the relationship between outputs of ReLU activations and the
firing rates of IF neurons. In the TTRBR method, two approaches
are introduced to reduce the conversion error: (1) adjust the

Q. Meng, S. Yan, M. Xiao et al.

Neural Networks 153 (2022) 254-268

Table 6
Comparison between our work and other methods on ImageNet.
Method Network Time-steps Accuracy Accuracy loss Params
Sengupta et al. (2019) VGG-16 2500 69.96% 0.56% 138.366M
Deng and Gu (2021) VGG-16 512 72.34% 0.06% 138.366M
Han et al. (2020) VGG-16 4096 73.09% 0.40% 138.366M
Han and Roy (2020) VGG-16 2560 73.46% 0.03% 138.366M
Rueckauer et al. (2017) Inception-V3 550 74.60% 1.52% 27.161M
Han and Roy (2020) ResNet-34 >2048 69.93% 0.71% ~21.8M
Han and Roy (2020) ResNet-34 256 55.65% 5.54% ~21.8M
Han et al. (2020) ResNet-34 >2048 69.89% 0.75% ~21.8M
Han et al. (2020) ResNet-34 256 65.47% 5.17% ~21.8M
Deng and Gu (2021) ResNet-34 >2048 75.08% 0.44% ~21.8M
Deng and Gu (2021) ResNet-34 256 47.11% 28.55% ~21.8M
Li et al. (2021) ResNet-34 256 74.61% 1.05% 21.817M
Bu et al. (2021) ResNet-34 256 73.37% 0.95% 21.790M
ResNet-34 256 73.16% 1.08% 21.796M
ResNet-34 512 74.18% 0.06% 21.796M
ResNet-50 256 73.56% 2.46% 20.600M
TTRBR (ours) ResNet-50 384 74.60% 1.42% 20.600M
ResNet-50 512 75.04% 0.98% 20.600M
ResNet-101 256 73.50% 3.32% 39.619M
ResNet-101 384 75.03% 1.79% 39.619M
ResNet-101 512 75.72% 1.10% 39.619M

1 2 1
® |F neuron ® IF neuron ® |F neuron
—— Clamped-ReLU activation| — Clamped-ReLU activation| 08 — Clamped-ReLU activation|
0.8 .
15
506 5 506
S S g
B B 5
< 0.4 < < 04
05
02 0.2
0 = 0 ! L L L L . 0
2 15 -1 05 0 05 1 15 2 25 2 15 -1 05 0 05 1 15 2 25 E 15 1 05 0 05 1 15 2 25
Pre-activation Pre-activation Pre-activation
(a) (b) (c)

Fig. 9. IF-neuron and Clamped-ReLU activation comparison for different sample variance and threshold for the inconstant-inputs case. (a) The sample variance is o2
and the threshold is 1. (b) The sample variance is o and the threshold is 2. (c) The sample variance is

time-steps T = 32.

1
4

T=16 T=128
91.50% 95.00%
90.50% 94.50% —_—
89.50% 94.00%
88.50% 93.50%
87.50% ~— 93.00%
86.50% . 92.50%
0.65 0.75 0.85 1.00 1.00 1.10 1.20 1.30
A
ResNet-20 ResNet-32 ResNet-56 ResNet-110 ——ResNet20 ——ResNet-32 ResNet56 ——ResNet-110

o2 and the threshold is 1. In the experiments, we set the

Fig. 10. The impact of A on inference accuracies for 16 and 128 time-steps on CIFAR10. The impact is more significant for 16 time-steps.

threshold for IF neurons to balance the tradeoff between “quanti-
zation error” and “deviation error” during conversion; (2) modify
the structure of residual blocks in ResNet to reduce “deviation
error”. We implement large-scale deep network architectures
such as ResNet-110 using the proposed TTRBR method and eval-
uate performances on the CIFAR-10, CIFAR-100, and ImageNet
datasets. Our TTRBR method achieves better accuracies than the
state-of-the-art conversion methods, using fewer time-steps. The
best performances of our method indicate the huge potential of
very deep SNNs.

263

Future work. To better improve the energy efficiency of SNNs
while maintaining the performance is of great importance. For
our work, there are still ways to make the obtained SNN models
more energy efficient. First, although the required latency for our
method is already small, it can be further reduced by adopting hy-
brid training framework (Rathi, Srinivasan, Panda, & Roy, 2020).
In detail, after applying our ANN-to-SNN conversion pipeline
with ultra-low latency, we can then finetune the weights and
thresholds by training them in the SNN domain. After training, the
obtained SNNs with ultra-low latency can perform as well as pre-
training ones with much higher latency (Chowdhury et al., 2021;

Q. Meng, S. Yan, M. Xiao et al.

Table 7

Ablation-study of proposed two approaches on CIFAR10 using ResNet-20 and
ResNet-110 architectures. “Net-1" and “Net-2” mean ResNet-20 and ResNet-
110 architectures, respectively. “A” means using a hyperparameter A to control

thresholds; “B” means using modified residual block structure in a ResNet

network.
Time-steps 16 32 128 ANN
Net-1 70.39% 89.17% 92.82% 93.08%
Net-1 + A 81.31% 90.10% 93.01% 93.08%
Net-1 + B 87.24% 91.77% 92.79% 93.18%
Net-1 + A+B 89.17% 91.91% 92.92% 93.18%
Net-2 11.05% 29.33% 90.22% 94.57%
Net-2 + A 11.19% 30.17% 90.31% 94.57%
Net-2 + B 88.12% 93.20% 94.52% 94.94%
Net-2 + A+B 91.41% 93.67% 94.77% 94.94%

Datta & Beerel, 2021; Datta, Kundu, Jaiswal and Beerel, 2021;
Rathi & Roy, 2021). Next, model compression is another way that
can improve the energy efficiency of SNNs, and can be applied
in our method. Inspired by some SOTA work on SNN compres-
sion (Deng et al,, 2021; Kundu, Datta, Pedram, & Beerel, 2021a,
2021b), we can apply connection pruning, weight quantization,
and activation regularization to the source ANNs before conver-
sion. Then, the converted target SNNs have a smaller model size
and can be more easily implemented for energy energy-efficient
edge computing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The work of Z.-Q. Luo was supported by the National Nat-
ural Science Foundation of China under Grant 61731018, and
the Guangdong Provincial Key Laboratory of Big Data Computa-
tion Theories and Methods, China. Z. Lin was supported by the
NSF China (No. 61731018), the Major Key Project of PCL, China
(grant No. PCL2021A12) and Project 2020BD006 supported by
PKU-Baidu Fund, China. Yisen Wang is partially supported by
the National Natural Science Foundation of China under Grant
62006153, and Project 2020BD006 supported by PKU-Baidu Fund,
China.

Appendix A. Proof of Theorem 1

Proof. Assume that an IF neuron is not allowed to spike or reset,
then from Eq. (1), we know that

t t t
/xﬁ(s)ds:/ uds—i—/ odB(s) =ut + oB(t), (A1)
0 0 0

where B(t) is a standard Brownian motion. Then Vi’(t) is a Brow-
nian motion with drift in this case. Now define

75 £ inf{t|V/(t) = 6},

which is the hitting time of level 8! for the stochastic process
V!(t). Considering the assumption u > 0, we have that 7} is with
probability density function (Ross, 2014)

(A2)

f(t) (A.3)

¢ ex (91) t>0
= — -], t>0.
o2mt3 P 202t

Using the fact that x!(t;) and x!(t;) are independent for Vt; # t,
we conclude that N(t) is a renewal process with i.i.d. interarrival

264

Neural Networks 153 (2022) 254-268

times {Xi, Xy, ..
define

n
Sp = ZX,—, neNT,
i=1

which is the arrival time of N(t). Then the probability density
function of S, g,(t), is

.} following the same distribution as r(g. Now

(A4)

gn(t)=fxfx---xf(t), (A5)
~— ———

n such f

where ' is the convolution operator. Since the Laplace transform
of f(t) is known to us:

— J1? 2552 2
L(s) = exp (uuz—kmel) , fors > —u—z, (A.6)
g
we can calculate g,(t) by inverse Laplace transform:
I] 2
iy en L _(n9 — ut)
B0 = L7160 = —— mexp(0 M s,
(A7)
Then
P(N(T)=n) =P(Spy1 > T)—P(S;, > T)
© (n4+ 1) [(n+ 1)0' — ut]?
= ——=exp|———— 5, |dt
12 o/2mt3 20°t
®© no' (n0' — ut)?
— ———exp|———5— |dt
m+He o273 20t
1 1\ 6!
= —5 D 41(00) — Py n+5 ;
+ ! Dy(00) — @ n-+ YA
_ 00) — I I
2\ . 2] u
(A.8)
where
no' — ut 2n0'u no' 4 ut) >
Pp(t) 2 1+ erf +exp| —— | (erf 1).
() (@a) p(ﬂ)((fa

(A.9)

Then

P(N(T)=n) = |:2erf(/ n+05)

2u(n + 1)6! ot
+ ex (un+)erf(2n+15 2 U

())
) (2

2

9’u
(N +0.5)02

)]-

(2n+0.5)

2uné!

(A.10)

Q. Meng, S. Yan, M. Xiao et al.

Neural Networks 153 (2022) 254-268

Table 8
Chosen A for different network architectures and different time-steps on CIFAR10 and CIFAR-100. “T” means the number of time-steps.
Network T=128 T=64 T=32 T=16
ResNet-20 1.10 1.10 0.95 0.75
ResNet-32 1.05 1.05 0.80 0.65
CIFAR-10 ResNet-56 1.20 1.20 0.80 0.70
ResNet-110 1.10 0.95 0.80 0.70
ResNet-18 1.50 1.20 1.05 0.90
ResNet-20 1.15 1.10 0.85 0.75
ResNet-32 1.20 1.05 0.85 0.75
CIFAR-10 ResNet-56 1.50 1.00 0.95 0.85
ResNet-110 1.25 1.05 0.90 0.80
ResNet-18 1.10 1.10 1.00 0.90

Table 9
Chosen A for different network architectures and different time-steps on
ImageNet. “T” means the number of time-steps.

Network T=256 T=384 T=512
ResNet-34 1.30 - 1.50
ResNet-50 1.45 1.55 1.55
ResNet-101 1.25 1.40 1.55
Define z & 9‘—3 then
o
dP(N(T) = n) _1[1 ex (7 z)
iz 2 Jimm+osz P\ snt4
+ (2n+2)exp 2(n + 1)z) erf ((2n + 1.5) m
2n+ 1.5 (2n+1.5)%z
27(n+0.5)z exp ((Zn +2)z - 2n+1)
z
— 2nexp (2nz) erf ((211 +0.5) m
o405 (an _(@n+ 0.5)22>
V2n(n+0.5)z P 2n+1
—(2n+ 2)exp (2(n + 1)z) + 2nexp (2nz)]
-3 | s e
) 2n(n+ 0.5)z R
@
J(2n+ 2)exp 2(n + 1)2) <erf ((Zn +15) /m) - 1)
@
nexp (2 f(n+05)/—2)1
—2nexp (2nz) (er (n+0. 2(n+0.5)) — >
©)
(A11)
Using the fact that
erf(/z) — 1)z 1
im VD -Dvz 1 (A12)
z>00 exp(—z) Nad
we can get
_ yé(4n+1)2 2 f _ 1
lim =2 "B fim (n? + 0.5n), | 2% (erlvwz) = Dywz
Z—00 Z—00 n+0.5 exp(—wz)ﬁ
_ —4(n+0.5)n
T 4n+1
(A13)

265

Similarly, we have

wa 3?2 _

im D " FE i (04 1)+ 0.5), | 2% Erlvwa) — Dz
200 (1) 200 n+0.5 exp(—wz)y/w

_ —A(n+05)n+1)

N 4n+3

(A14)
So
8n* + 8n +2

lim®+©:— ntent € (—1,0), for Vn e N*,
z—o0 (D (4n+3)4n+1)

(A.15)

That is, 3z*, when z > z* |@ + ®| < (@, which means that
% > 0 when z > z*. Then we finish the proof. O

Appendix B. Proof of Theorem 2

Proof. Assume that firing spikes is not allowed for an IF neuron,
then V/(t) is a Brownian motion with drift:

Vi (t) = ut + oB(t), (B.1)

as shown in the proof of Theorem 1. Now define

M = max vi(e), (B.2)
t>

then M has the exponential distribution with rate % (Ross,
2014), then we have

~2Jule!

PM>0)=¢e o2 . (B.3)

That is, when u < 0, there is a certain probability that 3t, the
voltage Vi'(t) will reach the threshold 6! and then the IF neuron
will fire a spike. With

P(maxN(t) > 0) = P(M > o, (B.4)
we claim that increasing @' or decreasing o will make P(max;
N(t) > 0) smaller. O

Appendix C. Additional information for Theorem 1

C.1. Gaussian setting for input currents to IF neurons

When the input currents to IF neurons are not constant, we
assume the input series to be xﬁ(t) = u+ oé&(t), t € (0,T],
for the continuous-time case. Then in the corresponding discrete-
time case, the input currents to IF neurons will be independent
and identically distributed random variables that follow Gaus-
sian distribution. To see whether it is the case, we perform
the Shapiro-Wilk test, a test of normality, based on the data

Q. Meng, S. Yan, M. Xiao et al.

Table 10

Neural Networks 153 (2022) 254-268

Spiking activity of ResNet-20 and ResNet-110 on CIFAR-10 for the different number of time-steps. “No. of spikes”
means the average number of generated spikes per neuron for a single input sample.

ResNet-20 ResNet-110
Time-steps Accuracy No. of spikes Time-steps Accuracy No. of spikes
16 89.27% 2.002 16 91.41% 1.602
32 91.96% 3.226 32 93.67% 3.010
64 92.71% 5.599 64 94.48% 5.116
128 92.92% 11.182 128 94.77% 8.860
Table 11

Comparison between standard and modified IF-neurons on CIFAR-10.

“No. of spikes” means the average

number of generated spikes per neuron for a single input sample.

Network Time-steps IF neuron Accuracy No. of spikes
16 Standard 87.66% 1.751
ResNet-20 Modified 89.27% 2.002
128 Standard 92.78% 10.954
Modified 92.92% 11.182
16 Standard 86.09% 1.510
ResNet-110 Modified 91.41% 1.602
128 Standard 94.51% 8.769
Modified 94.77% 8.860

Fig. C.11. Heat maps of Pearson correlation matrix for the input currents at different time-steps. Here we take absolute value for all negative coefficients for
visualization. The three figures are drawn according to data recorded from three specific layers of an SNN with ResNet-20 architecture. For each correlation matrix
C, Gy is the Pearson correlation coefficient between the input currents at the ith time-step and the input currents at the jth time-step.

generated by the CIFAR-10 classification task. First, we train a
ResNet-20 on CIFAR-10 and convert it to an SNN within 32 time-
steps. Then, we run the SNN on one batch of CIFAR-10 data, and
record the input series to all IF neurons. After that, we use input
series from several randomly selected IF layers to conduct the
Shapiro-Wilk test. Using 0.01, 0.02, and 0.05 as p values, we have
85.56%, 81.63%, 78.94% of the input series pass the test. Therefore,
the Gaussian setting is consistent with the observation in our
experiments to some extent.

We also calculate the Pearson correlation coefficients between
input currents at two different time-steps, and express the cor-
relation pairs in the matrix form, as shown in Fig. C.11. From
the figure, we can find that the correlations for input currents at
two different time-steps are small, showing the rationality of our
independent Gaussian setting for the input currents to IF neurons.

C.2. Explanation for Theorem 1

In our analysis, the input currents to an IF neuron followls
X(t)=u+o&(t),u>0,te(0,T].If we denote by T £ (n+ %)%
and z & %‘, then Theorem 1 shows that

e Jz*(n) > 0, such that when z > z*(n), P(N(T) = n) increases
as z increases.

From the claim, P(N(T) = n) is not monotonic with 8' or ¢ in their
entire domain R*; so it is not true that increasing 6' or decreasing
o would make the probability P(N(T) = n) larger. However, from
Fig. C.12, we can see that z*(n) is relatively small (smaller than
10 in our case), especially for a large n. Furthermore, even when
z is small and z < z*(n), there is a large range for z in which
P(N(T) = n) tends to increase with z. Thus, in our experiments,
we may regard P(N(T) = n) as monotonic with 6! or .

266

Appendix D. Implementation details

D.1. Datasets

We conduct experiments on the CIFAR-10 (Krizhevsky, Hin-
ton, et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and Ima-
geNet (Deng et al.,, 2009) datasets. For SNN inference, each image
of the datasets is converted into a time series as an SNN input,
such that the input at each time-step is exactly the pixel values
of the original image.

CIFAR-10 and CIFAR-100. The CIFAR-10 dataset contains 60,000
32 x 32 color images in 10 different classes, which can be sep-
arated into 50,000 training samples and 10,000 testing samples.
We apply random cropping and horizontal flipping for data aug-
mentation. The CIFAR-100 dataset is similar to CIFAR-10 except
that there are 100 classes of objects. We use the same data aug-
mentation process as CIFAR-10. These two datasets are licensed
under MIT.

ImageNet. The ImageNet-1K dataset spans 1000 object classes
and contains 1,281,167 training images, 50,000 validation images
and 100,000 test images. This dataset is licensed under Cus-
tom (non-commercial). We apply random resized cropping and
horizontal flipping for data augmentation.

D.2. Training hyperparameters
In the experiments, we first train ResNets as the stage-I ANNs.

We train all the Stage-I ANNs by SGD with momentum equals 0.9.
We set the weight decay as 5 x 1074, and set the learning rate

Q. Meng, S. Yan, M. Xiao et al.

Neural Networks 153 (2022) 254-268

= 04 = 03
0.4 < <
0s 03 02
02 02 0.1
0.1 i
04 0
5 4 10 15 0 5 10 15 0 5 10 15
ou ou ou
i = =
(a) n=1 (b) n=2 (C) n:3
06 05 045
045 04
05
04 035
0.4 035 03
Il I 03 Il 025
= Z 025 = 02
< T [
02 02 015
015 0.1
0.1
0.1 005
0 005 0
0 5 Y 10 15 4 10 15 0 5 10 15
o o2 =)
(d) Il—5 (e) n:8 (f) n:lO

. . . 1l
Fig. C.12. Relationship between ’{’I—z"

in the time interval [0, t].

using a cosine annealing schedule (Loshchilov & Hutter, 2016). For
the CIFAR-10 and CIFAR-100 datasets, we initialize the learning
rate as 0.1, and set the batch size and the number of epochs to
be 128 and 200, respectively. For the ImageNet dataset, the initial
learning rate, batch size, and the number of epochs are set to be
0.01, 256, and 90, respectively.

For each network structure and dataset, we train one stage-I
ANN. Using the stage-1 ANNs as pre-trained models, we fur-
ther fine-tune ResNets with clamp activations. Different from the
training of the stage-I ANNs, we set the number of epochs to be
20 for both the CIFAR-10 and CIFAR-100 datasets. To reduce the
“quantization error” in the corresponding SNNs, We separate the
parameters into three categories, and enlarge weight decay for
each category. These three categories include parameters for the
fully connected layers, the upper bound of the clamp activations,
and other parameters. Note that we skip this fine-tuning step for
ImageNet dataset to save time.

The code implementation is based on the PyTorch frame-
work (Paszke et al., 2019), and experiments are conducted on one
NVIDIA Tesla V100 GPU or four NVIDIA GeForce GTX 1080Ti GPU.

References

Bohte, S. M., Kok, J. N., & La Poutré,]. A. (2000). SpikeProp: backpropagation for
networks of spiking neurons. In ESANN (pp. 419-424).

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., & Huang, T. (2021). Optimal ANN-SNN
conversion for high-accuracy and ultra-low-latency spiking neural networks.
In International conference on learning representations.

Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: a hebbian
learning rule. Annual Review of Neuroscience, 31, 25-46. http://dx.doi.org/10.
1146/annurev.neuro.31.060407.125639.

Choi, J., Wang, Z., Venkataramani, S., Chuang, P. L.-]., Srinivasan, V., & Gopalakrish-
nan, K. (2018). Pact: Parameterized clipping activation for quantized neural
networks. arXiv preprint arXiv:1805.06085.

Chowdhury, S. S., Rathi, N,, & Roy, K. (2021). One timestep is all you need:
Training spiking neural networks with ultra low latency. arXiv preprint
arXiv:2110.05929.

Datta, G., & Beerel, P. A. (2021). Can deep neural networks be converted to ultra
low-latency spiking neural networks? arXiv preprint arXiv:2112.12133.

267

and P(N(T) = n) for different n, where T = (n+ %)% and N(t) is the counting process that determines how many spikes occur

Datta, G., Kundu, S., & Beerel, P. A. (2021). Training energy-efficient deep
spiking neural networks with single-spike hybrid input encoding. In 2021
international joint conference on neural networks (I[CNN) (pp. 1-8). IEEE.

Datta, G., Kunduy, S., Jaiswal, A. R,, & Beerel, P. A. (2021). HYPER-SNN: Towards
energy-efficient quantized deep spiking neural networks for hyperspectral
image classification. arXiv preprint arXiv:2107.11979.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro,
38(1), 82-99. http://dx.doi.org/10.1109/MM.2018.112130359.

Deng, J., Dong, W., Socher, R, Li, L], Li, K, & Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition (pp. 248-255). http://dx.doi.org/10.1109/CVPR.
2009.5206848.

Deng, S., & Gu, S. (2021). Optimal conversion of conventional artificial neural
networks to spiking neural networks. In International conference on learning
representations.

Deng, L, Wu, Y., Hy, Y, Liang, L, Li, G.,, Hu, X,, et al. (2021). Comprehensive
snn compression using admm optimization and activity regularization. IEEE
Transactions on Neural Networks and Learning Systems.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings
of the 2019 conference of the north American chapter of the association for
computational linguistics: Human language technologies, volume 1 (long and
short papers) (pp. 4171-4186). http://dx.doi.org/10.18653/v1/N19-1423.

Diehl, P. U, Neil, D., Binas,], Cook, M., Liu, S.-C, & Pfeiffer, M. (2015).
Fast-classifying, high-accuracy spiking deep networks through weight and
threshold balancing. In 2015 international joint conference on neural networks
(IICNN) (pp. 1-8). http://dx.doi.org/10.1109/[JCNN.2015.7280696.

Diehl, P. U, Zarrella, G., Cassidy, A., Pedroni, B. U., & Neftci, E. (2016). Conversion
of artificial recurrent neural networks to spiking neural networks for low-
power neuromorphic hardware. In 2016 IEEE international conference on
rebooting computing (ICRC) (pp. 1-8). IEEE.

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons,
populations, plasticity. Cambridge University Press, http://dx.doi.org/10.1017/
CB09780511815706.

Han, B., & Roy, K. (2020). Deep spiking neural network: Energy efficiency through
time based coding. In Proc. IEEE Eur. conf. comput. vis.(ECCV) (pp. 388-404).
http://dx.doi.org/10.1007/978-3-030-58607-2_23.

Han, B., Srinivasan, G., & Roy, K. (2020). RMP-SNN: residual membrane po-
tential neuron for enabling deeper high-accuracy and low-latency spiking
neural network. In 2020 IEEE/CVF conference on computer vision and pattern
recognition (pp. 13555-13564). http://dx.doi.org/10.1109/CVPR42600.2020.
01357.

http://refhub.elsevier.com/S0893-6080(22)00206-4/sb1
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb1
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb1
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb2
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb2
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb2
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb2
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb2
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125639
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125639
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125639
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/2110.05929
http://arxiv.org/abs/2112.12133
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb7
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb7
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb7
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb7
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb7
http://arxiv.org/abs/2107.11979
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb11
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb11
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb11
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb11
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb11
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb12
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb12
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb12
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb12
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb12
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1109/IJCNN.2015.7280696
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb15
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb15
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb15
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb15
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb15
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb15
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb15
http://dx.doi.org/10.1017/CBO9780511815706
http://dx.doi.org/10.1017/CBO9780511815706
http://dx.doi.org/10.1017/CBO9780511815706
http://dx.doi.org/10.1007/978-3-030-58607-2_23
http://dx.doi.org/10.1109/CVPR42600.2020.01357
http://dx.doi.org/10.1109/CVPR42600.2020.01357
http://dx.doi.org/10.1109/CVPR42600.2020.01357

Q. Meng, S. Yan, M. Xiao et al.

He, K, Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In 2016 IEEE conference on computer vision and pattern recognition
(pp. 770-778). http://dx.doi.org/10.1109/CVPR.2016.90.

Heeger, D., et al. (2000). Poisson model of spike generation. In Handout, Vol. 5
(p. 76). University of Standford.

Horowitz, M. (2014). 1.1 Computing’s energy problem (and what we can do
about it). In 2014 IEEE international solid-state circuits conference digest of
technical papers (ISSCC) (pp. 10-14). IEEE.

Hu, Y., Tang, H., Wang, Y., & Pan, G. (2018). Spiking deep residual network. arXiv
preprint arXiv:1805.01352.

Huh, D., & Sejnowski, T. J. (2018). Gradient descent for spiking neural networks.
In Advances in neural information processing systems (pp. 1440-1450).

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S.]., & Masquelier, T. (2018). Stdp-
based spiking deep convolutional neural networks for object recognition.
Neural Networks, 99, 56-67. http://dx.doi.org/10.1016/j.neunet.2017.12.005.

Kim, J., Kim, K., & Kim, J. (2020). Unifying activation- and timing-based learning
rules for spiking neural networks. In Advances in neural information processing
systems.

Kim, S. J., Park, S, Na, B, & Yoon, S. (2020). Spiking-YOLO: Spiking neural
network for energy-efficient object detection. In The thirty-fourth AAAI
conference on artificial intelligence (pp. 11270-11277). http://dx.doi.org/10.
1609/aaai.v34i07.6787.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from
tiny images. Citeseer.

Kundu, S., Datta, G., Pedram, M., & Beerel, P. A. (2021a). Spike-thrift: Towards
energy-efficient deep spiking neural networks by limiting spiking activity
via attention-guided compression. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision (pp. 3953-3962).

Kundu, S., Datta, G., Pedram, M., & Beerel, P. A. (2021b). Towards low-latency

energy-efficient deep snns via attention-guided compression. arXiv preprint

arXiv:2107.12445.

Y., Deng, S., Dong, X, Gong, R, & Gu, S. (2021). A free lunch from

ANN: Towards efficient, accurate spiking neural networks calibration. In

International conference on machine learning (pp. 6316-6325). PMLR.

Loshchilov, I., & Hutter, F. (2016). SGDR: Stochastic gradient descent with warm
restarts. In International conference on learning representations.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural
network models. Neural Networks, 10(9), 1659-1671. http://dx.doi.org/10.
1016/S0893-6080(97)00011-7.

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z,, & Luo, Z.-Q. (2022). Training high-
performance low-latency spiking neural networks by differentiation on spike
representation. In CVPR.

Merolla, P. A, Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F.,
et al. (2014). A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science, 345(6197), 668-673. http:
//dx.doi.org/10.1126/science.1254642.

Neftci, E. O., Mostafa, H., & Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: Bringing the power of gradient-based optimization
to spiking neural networks. IEEE Signal Processing Magazine, 36(6), 51-63.
http://dx.doi.org/10.1109/MSP.2019.2931595.

O’Connor, P., Gavves, E., & Welling, M. (2019). Training a spiking neural network
with equilibrium propagation. 89, In The 22nd international conference on
artificial intelligence and statistics (pp. 1516-1523).

Li,

268

Neural Networks 153 (2022) 254-268

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
PyTorch - an imperative style, high-performance deep learning library. In
Advances in neural information processing systems (pp. 8024-8035).

Pérez-Carrasco, J. A, Zhao, B., Serrano, C., Acha, B. Serrano-Gotarredona, T.,
Chen, S., et al. (2013). Mapping from frame-driven to frame-free event-driven
vision systems by low-rate rate coding and coincidence processing—
application to feedforward ConvNets. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 35(11), 2706-2719. http://dx.doi.org/10.1109/
TPAMI.2013.71.

Rathi, N., & Roy, K. (2021). DIET-SNN: A low-latency spiking neural network
with direct input encoding and leakage and threshold optimization. IEEE
Transactions on Neural Networks and Learning Systems.

Rathi, N., Srinivasan, G., Panda, P.,, & Roy, K. (2020). Enabling deep spik-
ing neural networks with hybrid conversion and spike timing dependent
backpropagation. In ICLR.

Redmon,], Divvala, S. K, Girshick, R. B, & Farhadi, A. (2016). You only look once:
Unified, real-time object detection. In 2016 IEEE conference on computer vision
and pattern recognition (pp. 779-788). http://dx.doi.org/10.1109/CVPR.2016.
91.

Ross, S. M. (2014). Introduction to probability models. Academic Press, http:
//dx.doi.org/10.1016/B978-0- 12-386912-8.50007-5.

Rueckauer, B., Lungu, L.-A.,, Hu, Y., Pfeiffer, M., & Liu, S.-C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks for
image classification. Frontiers in Neuroscience, 11, 682. http://dx.doi.org/10.
3389/fnins.2017.00682.

Sengupta, A, Ye, Y., Wang, R, Liu, C., & Roy, K. (2019). Going deeper in spiking
neural networks: VGG and residual architectures. Frontiers in Neuroscience,
13, 95. http://dx.doi.org/10.3389/fnins.2019.00095.

Shrestha, S. B., & Orchard, G. (2018). SLAYER: spike layer error reassignment in
time. In Advances in neural information processing systems (pp. 1419-1428).

Stockl, C., & Maass, W. (2021). Optimized spiking neurons can classify images
with high accuracy through temporal coding with two spikes. Nature Machine
Intelligence, 1-9. http://dx.doi.org/10.1038/s42256-021-00311-4.

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2019).
Deep learning in spiking neural networks. Neural Networks, 111, 47-63.
http://dx.doi.org/10.1016/j.neunet.2018.12.002.

Wunderlich, T. C., & Pehle, C. (2021). Event-based backpropagation can compute
exact gradients for spiking neural networks. Scientific Reports, 11(1), 1-17.
http://dx.doi.org/10.1038/s41598-021-91786-z.

Xiao, M., Meng, Q., Zhang, Z., Wang, Y., & Lin, Z. (2021). Training feedback
spiking neural networks by implicit differentiation on the equilibrium state.
In Advances in neural information processing systems.

Yan, Z., Zhou, J., & Wong, W.-F. (2021). Near lossless transfer learning for spiking
neural networks. In The thirty-fifth AAAI conference on artificial intelligence.

Zhang, W., & Li, P. (2020). Temporal spike sequence learning via backpropagation
for deep spiking neural networks. In Advances in neural information processing
systems.

Zheng, H., Wu, Y., Deng, L., Hy, Y., & Li, G. (2021). Going deeper with directly-
trained larger spiking neural networks. In The thirty-fifth AAAI conference on
artificial intelligence.

Zhou, S., Li, X, Chen, Y., Chandrasekaran, S. T., & Sanyal, A. (2021).
Temporal-coded deep spiking neural network with easy training and robust
performance. In Proc. AAAI Conf. Artif. Intell, Vol. 35 (pp. 11143-11151).

http://dx.doi.org/10.1109/CVPR.2016.90
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb20
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb20
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb20
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb21
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb21
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb21
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb21
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb21
http://arxiv.org/abs/1805.01352
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb23
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb23
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb23
http://dx.doi.org/10.1016/j.neunet.2017.12.005
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb25
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb25
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb25
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb25
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb25
http://dx.doi.org/10.1609/aaai.v34i07.6787
http://dx.doi.org/10.1609/aaai.v34i07.6787
http://dx.doi.org/10.1609/aaai.v34i07.6787
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb27
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb27
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb27
http://arxiv.org/abs/2107.12445
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb30
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb30
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb30
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb30
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb30
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb31
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb31
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb31
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb33
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb33
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb33
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb33
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb33
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1109/MSP.2019.2931595
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb36
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb36
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb36
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb36
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb36
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb37
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb37
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb37
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb37
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb37
http://dx.doi.org/10.1109/TPAMI.2013.71
http://dx.doi.org/10.1109/TPAMI.2013.71
http://dx.doi.org/10.1109/TPAMI.2013.71
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb39
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb39
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb39
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb39
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb39
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb40
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb40
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb40
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb40
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb40
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1016/B978-0-12-386912-8.50007-5
http://dx.doi.org/10.1016/B978-0-12-386912-8.50007-5
http://dx.doi.org/10.1016/B978-0-12-386912-8.50007-5
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.3389/fnins.2019.00095
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb45
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb45
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb45
http://dx.doi.org/10.1038/s42256-021-00311-4
http://dx.doi.org/10.1016/j.neunet.2018.12.002
http://dx.doi.org/10.1038/s41598-021-91786-z
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb49
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb49
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb49
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb49
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb49
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb50
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb50
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb50
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb51
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb51
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb51
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb51
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb51
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb52
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb52
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb52
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb52
http://refhub.elsevier.com/S0893-6080(22)00206-4/sb52

	Training much deeper spiking neural networks with a small number of time-steps
	Introduction
	Background and related works
	The Integrate-and-Fire (IF) model
	Converting ANNs with ReLU activations to SNNs with IF neurons
	Input encoding
	Related works

	Conversion error from ANNs to SNNs
	Quantization error: The error from the discretization of SNN dynamics
	Deviation error: The error from diversity of input currents

	Methodology
	Experiments
	Network architectures
	Performance on CIFAR-10 and CIFAR-100
	Performance on ImageNet
	Analysis on deviation error
	Analysis on and modified architecture
	Energy Efficiency

	Conclusion and Future Work
	Declaration of competing interest
	Acknowledgments
	Appendix A. Proof of Theorem 1
	Appendix B. Proof of Theorem 2
	Appendix C. Additional Information for Theorem 1
	Gaussian setting for input currents to IF neurons
	Explanation for thm

	Appendix D. Implementation Details
	Datasets
	Training hyperparameters

	References

