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Abstract Neural architecture has been a research focus in recent years due to its importance in deciding

the performance of deep networks. Representative ones include a residual network (ResNet) with skip connec-

tions and a dense network (DenseNet) with dense connections. However, a theoretical guidance for manual

architecture design and neural architecture search (NAS) is still lacking. In this paper, we propose a manual

architecture design framework, which is inspired by optimization algorithms. It is based on the conjecture

that an optimization algorithm with a good convergence rate may imply a neural architecture with good per-

formance. Concretely, we prove under certain conditions that forward propagation in a deep neural network

is equivalent to the iterative optimization procedure of the gradient descent algorithm minimizing a cost

function. Inspired by this correspondence, we derive neural architectures from fast optimization algorithms,

including the heavy ball algorithm and Nesterov’s accelerated gradient descent algorithm. Surprisingly, we

find that we can deem the ResNet and DenseNet as special cases of the optimization-inspired architectures.

These architectures offer not only theoretical guidance, but also good performances in image recognition on

multiple datasets, including CIFAR-10, CIFAR-100, and ImageNet. Moreover, we show that our method is

also useful for NAS by offering a good initial search point or guiding the search space.
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1 Introduction

Deep neural networks (DNNs) have been successfully applied in many areas, including image recogni-
tion [1], object detection [2, 3], and visual segmentation [4]. With the ImageNet [1] performance break-
through, several deep network architectures have been designed. The classification results are gradually
improved by increasing the network depth and capacity [5–7]. Highway networks [8] and residual net-
works (ResNets) [9] introduce the skip connections and successfully train very deep networks. Later,
manual architecture design adopted more complex topologies and connections [10–12]. All these neural
architectures were designed mainly based on empirical analyses and experimental observations. However,
they may not be the optimal choice of architecture and have the best performance overhead trade-off,
inspiring a series of explorations on neural architecture search (NAS) in the recent literature. Popu-
lar methods include reinforcement learning that assigns a good architecture on a validation set with
a high reward [13–20], evolution algorithms [21–27], and gradient-based methods [28–34]. Despite the
success of these architectures, neither manual architecture design nor NAS has a clear understanding of
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deep network behaviors. How to develop theoretical guidance for neural architectures to benefit manual
architecture design and NAS is the core challenge that we target in this study.

To improve the interpretability of neural architectures, some studies have attempted to build connec-
tions on areas with rich theories and analytical tools, such as numerical methods of ordinary differential
equations (ODEs) [35–38] and optimization algorithms [39–44]. Specifically, the forward propagation of
a neural network can be deemed as the iterative procedure of an optimization algorithm. The final layer
of the network outputs an optimal solution x∗ that minimizes a cost function, known as learning-based
optimization. The architecture of learning-based optimization is transparent and explainable because it
is translated from a well-developed algorithm in optimization theory. However, the current optimization-
inspired architecture is only limited to solving optimization problems, such as compressed sensing. We
cannot use these methods with known objective functions to construct architectures for general purposes,
such as image recognition. If we can move a step forward to build the connection between optimization
and the neural architecture used for general feature learning, then a broader range of neural architectures
can be explainable. Moreover, the connection may inspire us to improve the manual architecture design
and NAS following the guidance from optimization theory.

Motivated by the above analysis, in this study, we generalize the idea of learning-based optimization.
We prove that the forward propagation in a network for image recognition also corresponds to a gradient-
based optimization algorithm. Bridging the connection between the general neural architecture and
optimization algorithm, we hypothesize that an optimization algorithm with a good convergence rate
may imply a neural architecture with good performance. Accordingly, we develop new architectures
inspired by traditional optimization algorithms. Our optimization-inspired manual architecture design
not only has theoretical guidance but also performs better than traditional architectures. Moreover, our
method is useful for NAS by offering a good initial search point or guiding the search space.

Our methodology is inspired by optimization algorithms and is applied to the manual architecture
design and NAS, both of which lacked theoretical guidance before our study. Specifically, our contributions
include the following.

(1) In the general case, we prove that the propagation in a DNN under certain conditions is equivalent
to the iterative procedure of an optimization algorithm minimizing a cost function F (x). As a comparison,
the learning-based optimization architectures only adopt the soft thresholding operator as the nonlinear
activation and can be used only for the compressed sensing problem.

(2) Inspired by the correspondence, we hypothesize that the optimization algorithm with a good con-
vergence rate may imply a neural architecture with good performance. We derive neural architectures,
HBNet and AGDNet, from the heavy ball (HB) and Nesterov’s accelerated gradient algorithms, respec-
tively. Two existing popular architectures are the special cases of our optimization-inspired architectures.

(3) Experimental results on multiple datasets, including CIFAR-10, CIFAR-100, and ImageNet, demon-
strate that our optimization-inspired architectures are competitive with or even outperform their coun-
terparts, i.e., ResNet and DenseNet. Furthermore, in the experiments of NAS, we adopt the HBNet
architecture as the initial search point and use the connection pattern of HBNet and AGDNet to modify
the search space. Both show improvements over the original settings at low costs. These results show
that our optimization-inspired methodology is promising for manual architecture design and NAS.

2 Related work

Manual architecture design. Manual architecture design denotes neural architectures designed by
humans based on their empirical understanding of tasks to which DNNs are applied. In the early stage
of the manual architecture design, genetic algorithm [45, 46]-based approaches were popular. However,
networks designed by genetic algorithms perform worse than only the designing architecture [47]. Ref. [48]
proposed to spare the effort of architecture selection. Bayesian optimization [49] and meta-modeling [50]
are used to determine the operations and hyperparameters. Some adaptive strategies were adopted to
design the whole architecture layer by layer [51–53]. In recent years, manual architecture design has been
popular and revolutionized a wide range of computer vision tasks [1,5–10,12], but designing architectures
suffer from relying on empirical knowledge and exhaustive engineering trials.

NAS. Because manual architecture design cannot ensure an optimal architecture, recent studies have
used the automated machine learning technique to automatically produce satisfactory architectures, also
known as NAS. The key difference between the manual architecture design and NAS is that the design
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needs all detailed human specifications on the architecture, and the search only requires humans to
provide an overall search space and then computer searches for more details. The current studies can
be categorized into three frameworks. The reinforcement learning search method introduces an agent
to generate architectures and assign a good one with a high reward [13, 14]. Follow-up studies focus on
proposing a good search space or algorithm to reduce the search cost [18–20]. Evolution-based searching
uses evolutionary algorithms for optimizing neural architectures [21–27]. However, the computation
and time required by these methods are still not acceptable. Another line of search is one-shot-based
methods that significantly reduce the search cost by treating all potential architectures as subgraphs of
a supernetwork (supernet) and sparing the efforts of evaluating each candidate [16, 29–34, 54–60]. In
differentiable architecture search (DARTS) [29], the search space is relaxed to be differentiable, so the
supernet is jointly trained with architecture variables. Despite its simplicity, DARTS-based methods
suffer from instability and an architectural gap between the search and evaluation. Some later studies
adopted the Gumbel-softmax strategy to reduce the architectural gap [30, 34]. In [31], a progressive
shrinking method is proposed to bridge the depth gap between the search and evaluation. DenseNAS [33]
and partially connected DARTS [32] introduce more trainable parameters to take path probabilities
into account. A recent study formulated NAS as a sparse coding problem [61]. However, these search
methods lack theoretical guidance. Similar to manually designed ones, the searched architectures are not
interpretable either. In this study, we show that our optimization-inspired methodology is beneficial to
NAS with clear guidance.

Optimization-inspired networks. To make a theoretical guidance for neural architecture and im-
prove the interpretability, researchers have built connections between neural networks and some well-
developed areas, such as numerical methods of ODEs and optimization methods, to analyze and specify
neural architectures using their rich analytical tools. In particular, optimization-inspired networks refer
to architectures designed from the optimization perspective. The early optimization-inspired network [39]
was derived by unrolling the traditional iterative optimization method, iterative shrinkage-thresholding
algorithm (ISTA) [62], which iterates as xk+1 = prox λ

L
‖·‖1

(xk − 1
L
AT(Axk − y)), where proxλ‖·‖1

(x) =

argminz
1
2‖z−x‖2+λ‖z‖1, to solve the compressed sensing problem defined as minx ‖Ax−y‖2+λ‖x‖11).

It aims to train a deep network where learnable weights Wk replace the fixed transformation matrix A in
the iterative optimization method, the nonlinear activation is achieved by the proximal operator, and the
connection pattern corresponds to the calculation of each iteration. Hence, the architecture is decided
by the optimization method. Compared with the traditional iteration-based ISTA, the learning-based
ISTA (LISTA) enjoys a better convergence speed and inspires a series of later studies [40–43, 63, 64].
In [65], a theoretical understanding was offered, and the linear convergence of LISTA was proven. Apart
from the unrolling ISTA, many studies have also unrolled other optimization algorithms, such as iterative
hard thresholding [40], approximate message passing [66], and alternating direction method of multipliers
(ADMMs) [43, 44].

Although these optimization-inspired networks have theoretical guidance and achieved great success,
they can only be used to solve given optimization problems, such as sparse coding and compressed
sensing for image reconstruction, instead of general feature learning tasks, such as image recognition. Our
preliminary study [67]2) aimed at generalizing the optimization-inspired network for image reconstruction
into the general feature learning purpose. It established the connection between a fast optimization
algorithm and its corresponding good neural architecture and proposed to design architectures based on
this connection. However, it only focused on the manual architecture design. In this study, we move
a step forward to generalize this idea. We show that our methodology can also benefit NAS in two
ways, i.e., using the optimization-inspired networks as the initial search point or using the optimization-
inspired connection pattern as a better search space. It brings theoretical interpretability to the searched
architecture and improves the search results.

Concretely, the improvements and differences of this study over our conference version can be listed as
follows.

(1) We rewrite and polish the contents that have been in the conference version. We add more
experiments on the optimization-inspired networks on the ImageNet dataset in Section 6 of this journal
version.

(2) We extend our optimization-inspired methodology from the manual architecture design to NAS.

1) We denote ‖x‖ =
√

∑

i
x2

i
and ‖x‖1 =

∑

i
|xi|.

2) The preliminary version of this paper has appeared on the ACML 2018 conference, and a patent has been filed.
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Our method is also useful for NAS in two ways, i.e., offering a good initial search point and guiding the
search space.

(3) We conduct experiments of NAS on the CIFAR and ImageNet datasets to demonstrate our method
in Section 7. We show that the optimization-inspired networks, HBNet and AGDNet, correspond to
better search spaces, where better architectures can be searched from. The HBNet itself can also be
used as a good initial search point to make the search process more efficient. By contrast, our conference
version only focused on the optimization-inspired manual architecture design and did not contribute to
NAS.

(4) Our experiments, including the original results in the conference version and the newly added results
of the manual architecture design and NAS indicate that the optimization-inspired methodology can serve
as a good way to design or search for high-performance neural architectures, which is much easier and
more interpretable than manually designing from scratch or searching without any guidance. Based on
our all contributions, we further conclude that the connection between the optimization algorithm and
DNN architecture has been empirically validated, and the proposed methodology can offer good guidance
for manual architecture design and NAS, which is beyond our conference version that only validates the
benefit on manual architecture design with limited experimental results on ImageNet.

3 Preliminaries on optimization algorithms

We briefly review some optimization algorithms, including the gradient descent (GD) algorithm [68], the
HB algorithm [69], the Nesterov’s accelerated gradient descent (AGD) algorithm [70], and the ADMM
algorithm [71,72].

The GD algorithm with a fixed stepsize3) of 1 iterates as

xk+1 = xk −∇f(xk). (1)

The HB algorithm adds a momentum after GD and iterates as

xk+1 = xk −∇f(xk) + β(xk − xk−1). (2)

The AGD algorithm introduces the momentum mechanism as follows:

yk = xk +
θk(1 − θk−1)

θk−1
(xk − xk−1),

xk+1 = yk −∇f(yk),

(3)

where θk satisfies that 1−θk
θ2
k

= 1
θ2
k−1

and θ0 = 1. When f(·) is µ-strongly convex i.e., f(x2) > f(x1) +

〈∇f(x1),x2 − x1〉+ µ
2 ‖x2−x1‖2, and its gradient is L-Lipschitz continuous, i.e., ‖∇f(x2)−∇f(x1)‖ 6

L‖x2−x1‖, θk(1−θk−1)
θk−1

is fixed at
√
L−√

µ√
L+

√
µ
, and the HB and AGD algorithms are able to find an ǫ-accuracy

solution in O
(

√

L
µ
log 1

ǫ

)

iterations. As a comparison, the GD algorithm takes O
(

L
µ
log 1

ǫ

)

iterations.

Iteration (3) can be reformulated as follows:

yk+1 = yk −
k
∑

j=0

hk+1,j∇f(yj), (4)

where

hk+1,j =































θk+1(1− θk)

θk
hk,j , j = [0, 1, . . . , k − 2] ,

θk+1(1− θk)

θk
(hk,k−1 − 1), j = k − 1,

1 +
θk+1(1− θk)

θk
, j = k.

(5)

3) This can be easily achieved by scaling f(z) such that the Lipschitz constant of ∇f(z) is 1.
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The ADMM algorithm and its linearized version can also solve the problem: miny,x f(x)+ f(y), s.t. y−
x = 0. With the penalty parameter fixed as 1, the Linearized ADMM algorithm is composed of the
following steps:

xk+1 = argminx 〈∇f(xk),x〉+
1

2
‖x− xk‖2 + 〈λk,x〉+

1

2
‖x− yk‖2,

yk+1 = argminy 〈∇f(yk),y〉+
1

2
‖y − yk‖2 − 〈λk,y〉+

1

2
‖xk+1 − y‖2,

λk+1 = λk + (xk+1 − yk+1),

(6)

where λ is the Lagrange multiplier.

4 Modeling the propagation in feedforward neural network

A DNN propagates as

zk+1 = Φ(Wkzk), (7)

where Wk denotes the linear transformation, zk represents the k-th layer feature, and Φ is the non-linear
activation, e.g., the ReLU or sigmoid functions. We fix the matrices Wk as W to simplify the analysis.

Lemma 1. Assuming that W is symmetric and positive definite4), we have that there exists a function
f(z) such that Eq. (7) is equivalent to minimizing F (z) = f(Uz), where U =

√
W , with the following

steps:
(1) Define a new variable x = Uz;
(2) Use (1) to minimize f(x);
(3) Recover z0, z1, . . . , zk from x0,x1, . . . ,xk via z = U−1x.

Proof. Please refer to [67] for the proof.
The objective functions f(z) for most widely adopted non-linear activations are listed in Appendix A.

5 Extension to other optimization algorithms

In Section 4, we have shown that the propagation in a DNN can be viewed as the optimization procedure of
minimizing a cost function F (z) using the GD algorithm. We consider the case where other optimization
algorithms are used to minimize F (z) in this section.

The HB algorithm. First, we consider the HB algorithm, i.e., iteration (2). Similarly, we can
minimize F (z) = f(Uz) with the following three steps:

(1) Variable substitution x = Uz.
(2) Use (2) to minimize f(x), which is defined as

f(x) =
‖x‖2
2

−
∑

i

Ψ(UT
i x), (8)

where Ui denotes the i-th column of U . So we have

∇f(xk) = xk −UΦ(Uxk). (9)

And then Eq. (2) becomes

xk+1 = xk −∇f(xk) + β(xk − xk−1) = UΦ(Uxk) + β(xk − xk−1),

where we use (9) in the second equation.
(3) Recovering z from x via z = U−1x:

zk+1 = U−1xk+1

= Φ(Uxk) + β(U−1xk −U−1xk−1)

= Φ(U2zk) + β(zk − zk−1)

= Φ(Wzk) + β(zk − zk−1). (10)

4) W will be relaxed to be learnable in practical implementations.
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Table 1 Error rates (%) of classification on CIFAR-10 and CIFAR-100 with and without data augmentationa)

Model Params CIFAR-10 CIFAR-100 CIFAR-10(+) CIFAR-100(+)

Network in network [75] – 10.41 35.68 8.81 –

All-CNN [76] – 9.08 – 7.25 33.71

Deeply supervised net [77] – 9.69 – 7.97 34.57

Highway network [8] – – – 7.72 32.39

ResNet (n = 9) 0.85M 10.05 39.65 5.32 26.03

HBNet (n = 9) 0.85M 10.17 38.52 5.46 26

ResNet (n = 18)∗ 1.7M 9.17 38.13 5.06 24.71

HBNet (n = 18) 1.7M 8.66 36.4 5.04 23.93

DenseNet (k = 12, L = 40) 1.0M 7 27.55 5.24 24.42

AGDNet (k = 12, L = 40) 1.0M 6.44 26.33 5.2 24.87

DenseNet (k = 12, L = 52) 1.4M 6.05 26.3 5.09 24.33

AGDNet (k = 12, L = 52) 1.4M 5.75 24.92 4.94 23.84

a) “+” means that the standard data augmentation is enabled. “*” denotes that deep ResNet is not stable on CIFAR, so we

implement multiple times and report the converged result, while our HBNet needs training only once.

The AGD algorithm. Then we consider the AGD algorithm, i.e., iteration (3). Similarly, we have

zk+1 = Φ(W (zk + βk(zk − zk−1))) , (11)

where βk = θk(1−θk−1)
θk−1

. We can also use the iteration (4) for F (x)

zk+1 =

k
∑

j=0

hk+1,jΦ(Wzj) + zk −
k
∑

j=0

hk+1,jzj . (12)

The ADMM algorithm. Finally, we use the ADMM algorithm, i.e., iteration (6), for F (x), which
leads to the following steps:

z′
k+1 =

1

2

(

Φ(Wz′
k) + zk −

k
∑

t=1

(z′
t − zt)

)

,

zk+1 =
1

2

(

Φ(Wzk) + z′
k+1 +

k
∑

t=1

(z′
t − zt)

)

.

(13)

We compare (10)–(13) with (7), and observe that the basic operation, Φ(Wz), is kept for all algorithms,
but some additional side paths are introduced for the more advanced optimization algorithms, HB, AGD,
and ADMM. It inspires our manual architecture design in Appendix C. The architecture derived by
optimization algorithm X is referred to X-inspired architecture in our paper.

Based on the correspondence established above, we propose a conjecture that a faster optimization
algorithm may imply a better neural network in Appendix B. Furthermore, we develop some optimization-
inspired networks, HBNet and AGDNet, as detailed in Appendix C.

6 Experiments on manual architecture design

For fair comparison, we train all of our models using the training strategies adopted in DenseNet [10]. The
Xavier initialization [73] for fully connected layers and the initialization method [74] for other layers are
adopted. Table 1 [8,75–77] shows the experimental results of manual architecture design on CIFAR. We
conduct experiments for ResNet based models when the parameter n equals 9 and 18, in which cases the
depth is 56 and 110, respectively. We conduct experiments for DenseNet based models when the growth
rate k is 12 and the depth L is 40 and 52. As shown in Table 1, both HBNet and AGDNet achieve better
performances than their corresponding baselines, i.e., ResNet and DenseNet, respectively. For AGDNet
with k of 12 and L of 40, we achieve consistent improvements except for CIFAR-100 with augmentation.
For AGDNet (k = 12 and L = 52), the improvements of our method are obvious on all datasets. Similarly,
the improvements of HBNet over ResNet also grow larger as the depth increases. More importantly, as
reported in ResNet [9], for very deep architecture, such as n = 18, a warm-up strategy is necessary for
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Table 2 Error rates (%) of classification on ImageNet. We compare our optimization-inspired architectures with baselines of the

same depth

Model Top-1 (%) Top-5 (%) Params (M) FLOPs (G)

ResNet-34 26.73 8.74 21.80 3.66

HBNet-34 26.33 8.56 21.80 3.66

ResNet-50 24.24 7.29 25.56 3.86

HBNet-50 23.93 7.06 25.56 3.87

ResNet-101 22.42 6.46 44.55 7.58

HBNet-101 21.91 6.07 44.55 7.59

DenseNet-121 25.02 7.71 7.98 2.88

AGDNet-121 24.62 7.39 7.98 2.92

a converged training. Indeed, our experiment using ResNet (n = 18) requires multiple trials to achieve
a converged result. As a comparison, the training of our HBNet is more stable and is able to produce
a converged result with training only once. Therefore, the optimization algorithm-inspired architecture,
HBNet, is more stable to train when the depth is large.

The results of our proposed HBNet and AGDNet on ImageNet are shown in Table 2. Both HBNet and
AGDNet achieve better classification performances than their baseline methods with similar parameter
and computational cost. All these experimental results indicate that our optimization-inspired manual
architecture design is very promising.

7 Experiments on NAS

Recently, DARTS has been widely used for NAS. But still, DARTS-based methods suffer from instability
and the gap between the performance of the architecture in search and that in evaluation. In our
work, we show that our optimization-inspired architectures can also be utilized to improve the search
results of DARTS. Concretely, we will show that HBNet can inspire a search space that reduces the
time consumption and can be a good initial search point to help search for a better architecture, while
AGDNet inspires us to exploit a general and better search space.

In DARTS, a standard convolution cell is composed of N = 7 nodes. The output node ck is defined as
the depthwise concatenation of all the intermediate nodes (except for the input nodes), i.e.,

ck = [x0, x1, x2, x3], (14)

where [·] denotes the concatenation. The whole architecture is constructed by stacking the multiple cells.
The first and second nodes of cell k are set equal to the outputs of cell k− 2 and cell k− 1, i.e., ck−2 and
ck−1, respectively. 1× 1 convolutions are inserted when necessary.

7.1 Search space and initialization inspired by HBNet

We examine a simple search space that is consistent with HBNet, where the intermediate node xt is
computed based on its two predecessors, and the specific expression is

xt = o
(t−1,t)
1 (xt−1) + o

(t−1,t)
2 (xt−1) + o(t−2,t)(xt−2), (15)

where o
(t−1,t)
1 and o

(t−1,t)
2 denote the two operations applied to xt−1, and o(t−2,t) denotes the operation

applied to xt−2. For ease of presentation, we denote ck−2 and ck−1 as x−2 and x−1 as well, respectively.
The diagram for the HB-inspired search space is shown in Figure 1.

We use O to denote a set of 9 candidate operations, each of which is an operation o(·) to be applied to
x, and the candidate operations are listed in Table 3. To make the search space differentiable, the choice
of a particular operation o(·) from node i to j is relaxed to a softmax over all possible operations:

o(i,j)(x) =
∑

o∈O
w(i,j)

o o(x), (16)

where

w(i,j)
o =

exp(α
(i,j)
o )

∑

o′∈O exp(α
(i,j)
o′ )

, (17)
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Input nodes: Intermediate nodes:

Output nodes:

Depth-wise concatenation

−2 −1 0 1 2 3

Input nodes: Intermediate nodes:

Output nodes:

Depth -wise concatenation

Figure 1 The diagram for the HB-inspired search space. Figure 2 The diagram for the AGD-inspired search space.

Table 3 Candidate operations

Number Candidate operations

1 3 × 3 separable conv

2 5 × 5 separable conv

3 3 × 3 dilated conv

4 5 × 5 dilated conv

5 3 × 3 max pooling

6 3 × 3 average pooling

7 Identity

8 Negative identity

9 Zero

and the weights to mix operations for a pair of nodes (i, j) are parameterized by a vector α(i,j) of
dimension |O|. The task of architecture search then reduces to learning a set of continuous variables

αHB = {α(t−1,t)
1 ,α

(t−1,t)
2 ,α(t−2,t)}, and we name this HB-inspired search space as search space-HB in

experiments.
Our optimization-inspired initialization particularly encodes the HBNet into the architecture param-

eters α at the beginning of the architecture search. To be specific, we initialize the coefficient vectors

w
(t−1,t)
2 for o

(t−1,t)
2 and w(t−2,t) for o(t−2,t) by constructing one-hot vectors. For o

(t−1,t)
2 , the coefficient

for identity operation is 1; for o(t−2,t), the coefficient for negative operation is 1. We initialize w
(t−1,t)
1

for o
(t−1,t)
1 using the softmax of a randomly initialized set of variables αHBinit = {α(t−1,t)

HBinit }. In this way,
our optimization-inspired initialization leads to the following propagation:

xt = F (xt−1) + xt−1 − xt−2, (18)

where F (·) is a linear combination of 9 candidate operations listed in Table 3, and this is consistent with
the HBNet architecture. Noting that in Appendix C.1, we specifically take F (·) as a composite function
including two convolution layers, which restricts the HBNet architecture. By contrast, the architecture
given in (18) is more flexible and general.

As a comparable baseline, all the parameters are randomly initialized by αinit = {α(t−1,t)
1,init ,α

(t−1,t)
2,init ,

α
(t−2,t)
init }.

7.2 Search space inspired by AGDNet

As for AGDNet, each intermediate node is computed based on its all predecessors. Using DARTS, this
kind of propagation is always simply described as

xt =
∑

i<t

o(i,t)(xi). (19)

Similarly, we use o(·) defined in (16) to make the search space differentiable, and the search space becomes
αDARTS = {α(i,j), i < j}.
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However, different from the conventional DARTS, the intermediate node in (C6) is actually calculated
based on its predecessors with the linear weighted sum method, i.e.,

xt =
∑

i<t

pito
(i,t)(xi), (20)

where pit are the weight coefficients. Particularly, some operations like identity and negative identity
that are explicitly expressed in (C6) are omitted because they are involved in the relaxed operation o(·).

Considering that the number of the predecessors changes across iterations, which could cause undesired
fluctuation in the resultant neural architecture, we introduce edge normalization to mitigate this problem.
Then, the coefficients pit become path probabilities, and they are computed using a softmax function
over paths to node t:

pit =
exp (βit)

∑

j<t exp (βjt)
, (21)

and we denote the introduced parameters as βAGD = {βij , i < j}. As a result, the task of architecture
search is modified to learning a larger set of variables ΘAGD = {αDARTS,βAGD}, which is inspired
by AGDNet. We name this AGD-inspired search space as search space-AGD in experiments, and the
diagram for the AGD-inspired search space is shown in Figure 2.

7.3 Search algorithm and architecture evaluation

We evaluate our methods on CIFAR-10. To carry out architecture search, we randomly set 25000 training
samples as the training set and the other 25000 training samples as the validation set. We denote
the training and the validation loss as Ltrain and Lval, respectively. We optimize the model weights
by descending ∇wLtrain(w,α) or ∇wLtrain(w,α,β) on the training set, and optimize the architecture
parameters by descending ∇αLval(w,α) or ∇α,βLval(w,α,β) on the validation set. We train a small
network with 8 cells for 50 epochs, with batch size 64 (for both the training and validation sets) and the
initial number of channels is 16. We use momentum SGD to optimize the weights w, with initial learning
rate ηw = 0.025 (annealed down to zero following a cosine schedule without restart [78]), momentum
0.9, and weight decay 3 × 10−4. We use zero initialization for architecture variables α and β, and use
Adam [79] as the optimizer with initial learning rate ηα = ηβ = 3 × 10−4, momentum (0.5, 0.999) and
weight decay 10−3.

When the searching is finished, for search space-HB, we retain the top-3 strongest non-zero operations
from xk−1 and xk−2 to xk to derive the final architecture. For search space-AGD, we retain the top-2
strongest non-zero operations from all previous nodes to xk.

To evaluate the selected architecture, we randomly initialize its weights (weights learned during the
search process are discarded), train it from scratch, and report its performance on the test set. Specifically,
we train a large network of 20 cells for 600 epochs with batch size 96. The initial number of channels is
increased from 16 to 36. Other hyperparameters remain the same as the ones used for architecture search.
Additional enhancements include cutout [80], path dropout of probability 0.2, and auxiliary heads with
weight 0.4. Note that the test set is never used for architecture search or architecture selection. The
search cost and the test error are listed in Table 4 [10, 16, 19, 22, 23, 29–32,59].

Compared with DARTS, our method with HB-inspired search space takes less search cost (0.3 GPU
days vs. 0.4 GPU days), because HB-inspired search space contains fewer edges (see Figure 1). But
still, our method results in a lower test error (2.82% vs. 3.00%). Furthermore, we use HB-inspired
initialization and get a lower test error, 2.68%, which indicates that HBNet can be a good initial point to
help search for a better architecture. We use the search space-AGD and get the cells shown in Figure 3.
Compared with its counterpart DARTS, our searched architecture performs better (2.56% vs. 3.00%)
using nearly the same search cost. We transfer the architecture searched in the search space-AGD from
CIFAR-10 to ImageNet. As shown in Table 5 [5, 19, 23, 29, 30, 81–84], our method performs significantly
better than DARTS (25.2% vs. 26.7% for top-1 error and 7.6% vs. 8.7% for top-5 error), which indicates
the superiority of the search space-AGD.

Our results do not surpass P-DARTS [31], CNAS [59], and PC-DARTS [32] on ImageNet. Note that
we just perform our method upon DARTS to test the effectiveness. Our method brings interpretability by
offering optimization-inspired initial search point and search space, but does not change the search method,
while P-DARTS, CNAS, and PC-DARTS propose better search methods to reduce the architectural gap,
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Table 4 Experimental results on CIFAR-10 with our optimization-inspired initialization or search space and some competitive

baselines in NAS, including DARTSa)

Methods
Test error Params Search cost

Search method
(%) (M) (GPU days)

DenseNet-BC [10] 3.46 25.6 – Manual

AmoebaNet-B +cutout [23] 2.55 2.8 3150 Evolution

ENAS + cutout [16] 2.89 4.6 0.5 RL

NASNet-A + cutout [19] 2.65 3.3 1800 RL

Hierarchical evolution [22] 3.75 15.7 300 Evolution

NASONet-WS [28] 3.53 3.1 0.4 NAO

DARTS (1st order) + cutout [29] 3.00 3.3 0.4 Gradient-based

DARTS (2nd order) + cutout [29] 2.76 3.3 1 Gradient-based

SNAS (moderate) + cutout [30] 2.85 2.8 1.5 Gradient-based

PC-DARTS + cutout [32] 2.57 3.6 0.1 Gradient-based

P-DARTS + cutout [31] 2.50 3.4 0.3 Gradient-based

CNAS + cutout [59] 2.60 3.7 0.3 Gradient-based

Search space-HB + cutout 2.82 2.92 0.3 Gradient-based

Search space-HB† + cutout 2.68 3.35 0.3 Gradient-based

Search space-AGD + cutout 2.56 3.3 0.4 Gradient-based

a) The mark † denotes using HBNet as initialization.
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Figure 3 Our searched cells by search space-AGD on CIFAR 10. (a) Normal cell; (b) reduction cell.

Table 5 Comparison between our performance on ImageNet using the architecture searched by search space-AGD on CIFAR-10,

and some competitive results in NAS, including DARTS, SNAS, and BayesNAS

Methods
Top-1 error Top-5 error Params

Search method
(%) (%) (M)

MobileNet [81] 29.4 10.5 4.2 Manual

Inception-v1 [5] 30.2 10.1 6.6 Manual

ShuffleNet 2× [82] 25.1 – ∼5 Manual

AmoebaNet-C [23] 24.3 7.6 6.4 Evolution

MnasNet-92 [83] 25.2 8.0 5.5 RL

NASNet-A [19] 26.0 8.4 5.3 RL

DARTS (2nd order) [29] 26.7 8.7 4.7 Gradient-based

SNAS [30] 27.3 9.2 4.3 Gradient-based

BayesNAS [84] 26.5 8.9 3.9 Gradient-based

Ours (search space-AGD on CIFAR-10) 25.2 7.6 4.83 Gradient-based

alleviate the space explosion problem, and improve the search efficiency, respectively. So it is easy to
integrate our proposed interpretable initial search point and search space onto these improved search
methods. They are compatible and are expected to further improve the search results.
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8 Conclusion and future work

In this study, we propose to leverage optimization algorithms to inspire manual architecture design and
NAS. The conjecture that the optimization algorithm with a good convergence rate may imply a neural
architecture with good performance is proposed and empirically validated. We prove that under certain
conditions, the forward propagation in a vanilla DNN is equivalent to the iterative procedure of the GD
algorithm to minimize a cost function. We derive good neural architectures, HBNet and AGDNet, by
replacing the GD algorithm with more advanced optimization algorithms, the heavy ball algorithm and
Nesterov’s accelerated gradient algorithm. Surprisingly, the popular architectures, ResNet and DenseNet,
can be regarded as the special cases of our HBNet and AGDNet, respectively.

As a limitation of our study, we have not proved the correspondence between optimization algorithm
and neural architectures in a rigorous way. However, our optimization-inspired methodology can serve
as a starting point to explain neural architectures. Our work allows practitioners to easily make changes,
such as integrating engineering tricks, based on the optimization-inspired architectures for better results
on manual architecture design and NAS. Such a practice should be much easier and more explainable,
than designing manually from scratch or searching without any guidance.
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