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Abstract— In this article, a curious phenomenon in the tensor
recovery algorithm is considered: can the same recovered results
be obtained when the observation tensors in the algorithm are
transposed in different ways? If not, it is reasonable to imagine
that some information within the data will be lost for the case of
observation tensors under certain transpose operators. To solve
this problem, a new tensor rank called weighted tensor average
rank (WTAR) is proposed to learn the relationship between
different resulting tensors by performing a series of transpose
operators on an observation tensor. WTAR is applied to three-
order tensor robust principal component analysis (TRPCA) to
investigate its effectiveness. Meanwhile, to balance the effective-
ness and solvability of the resulting model, a generalized model
that involves the convex surrogate and a series of nonconvex
surrogates are studied, and the corresponding worst case error
bounds of the recovered tensor is given. Besides, a generalized
tensor singular value thresholding (GTSVT) method and a gener-
alized optimization algorithm based on GTSVT are proposed to
solve the generalized model effectively. The experimental results
indicate that the proposed method is effective.

Index Terms— Low-rank recovery, tensor average rank, tensor
robust principal component analysis (TRPCA).

I. INTRODUCTION

W ITH the rapid advances of data-intensive applications
in various engineering and scientific fields, there is a

growing explosion of high-dimensional data, including images
and videos, which are difficult to store, transmit, and process.
Therefore, exploiting low-dimensional structures in such high-
dimensional data are increasingly important for understanding
such complicated data, and many methods have been pro-
posed [1]–[9].

Among them, principal component analysis (PCA) [7],
[8] was first proposed, and it is widely used for dimension
reduction and data analysis. In PCA, the Frobenius norm is
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imposed on the matrix denoting the noise within the data to
characterize the magnitude of small noise perturbation. By
using the Frobenius norm, the principal components are robust
to small noise perturbation, but they are sensitive to gross
sparse errors. Thus, PCA fails to work when the data are
corrupted by gross sparse errors [3], [4]. To solve this issue,
robust PCA (RPCA) [3], [4] is proposed, in which �0 norm
(i.e., the number of nonzero entries in a matrix) is imposed
on a sparse matrix denoting the gross sparse errors within the
data to characterize the quantity of gross sparse errors.

Currently, most visual data, such as color images and
videos, are in the form of tensors. To use the above low-rank
matrix recovery methods, these data need to be transformed
into 2-D matrices first. However, as [10] points out, the
important structures will be lost when a higher-order tensor
is transformed into a 2-D matrix. Therefore, many low-rank
tensor recovery methods have been proposed in recent years
[10]–[18]. A key challenge in low-rank tensor recovery is to
define tensor rank appropriately. Traditionally, there are three
types of defining methods for tensor rank, including the meth-
ods based on CP (CANDECOMP/PARAFAC) decomposition
[19], the methods based on Tucker decomposition [10], [11],
[19]–[22], and the methods based on some new tensor products
[12], [23], [24]. Similar to the definition of matrix rank, the
type of defining methods based on CP decomposition defines
the rank of a tensor as the minimum number of rank-one
decompositions of the given tensor. However, the minimization
problem is NP-hard, which restricts the application of this
type of method. The second type of defining method is based
on the unfolding matrices of the tensor, and they apply the
existing matrix recovery theory to the corresponding tensor
recovery problem. Thus, this type of method is more popular
than the first one. For example, Gandy et al. [11] take the
sum of the ranks of different unfolding matrices as the rank
of the tensor data, and apply the defined tensor rank into tensor
completion (TC) problem, the goal of which is to recover
an underlying tensor data from its incomplete observations
effectively. Since introducing the sum of the ranks of different
unfolding matrices will lead to an NP-hard optimization prob-
lem, to improve solution efficiency, this sum is approximated
by the sum of nuclear norms (SNNs) in [11]. However, SNN
is not the convex envelope of the sum of the ranks as stated
in [12]. Based on a more balanced matricization, a weighted
sum of the ranks of the unfolding matrices is introduced by
Liu et al. [10]. Similar to [11], the weighted SNNs is adopted
in [10] for an efficient solution of the resulting optimization
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model. Furthermore, Zhang et al. [13] proposed a general
low-rank discovery framework to deal with some unknown
transformation and gross sparse errors in the tensor data, in
which the weighted sum of Schatten p-norms of the unfolding
matrices is used instead of the weighted SNNs. In addition,
Zhang et al. [13] also provide a proximal gradient-based
algorithm with global optimality convergence guarantees to
solve the proposed framework for p = 1, effectively. Note
that, for the weighted sum of ranks-based methods, the weights
play an important role, and it is unknown what is the best
choice if without any prior. To solve this problem, a new TC
method based on the maximum rank of a set of unfolding
matrics is proposed to promote the low-rankness of unfolding
matrics of the recovered tensor [25]. In addition, since the
tensor recovery methods based on the weighted sum of ranks
suffer from the high computation cost of the computing of
singular value decompositions (SVDs) for the large unfolding
matrices, an efficient matrix factorization method for tensor
recovery is developed in [26]. Recently, some new tensor ranks
based on the tensor product (t-product) have received more
and more attention. A tensor tubal rank based on t-product
is proposed in [23] and applied to tensor recovery. Besides,
Lu et al. [12] defined a new tensor rank based on the product
(tensor average rank), and proposed a tensor robust princi-
pal component analysis (TRPCA) model. The corresponding
recovery guarantee for TRPCA is also presented. Considering
the effectiveness and wide application of the product-based
tensor rank in computer vision, this article focuses on studying
the defining method based on t-product.

Although the tensor ranks based on t-product are effective
and widely used, there are still a few limitations.

1) The tensor tubal rank is based on the discrete Fourier
transformation (DFT) in the 3rd dimension of the tensor.
As a result, the tensor tubal ranks of the resulting tensors
obtained by performing different transpose operators on
the tensor may be different, which may lead to the tensor
recovery results relying on the transpose operators. In
this article, this issue is referred to as transpose vari-
ability of tensor recovery (TVTR). A tensor recovery
algorithm has TVTR property if the results of the
algorithm are relying on the transpose operators. It can
be reasonably imagined that some information within
tensor data (the relationship of various views and low-
rank prior information from different directions of tensor
data) will be lost if only one dimension is considered in
a tensor recovery algorithm with TVTR property.

2) Although it is proven that the true value of the models
can be exactly recovered under certain conditions for
TRPCA based on �1 norm (i.e., relax �0 norm and rank
function to �1 norm and nuclear norm, respectively.)
These strong conditions often cannot be guaranteed in
the real world.

A. Our Contributions

To overcome the aforementioned limitations, this article
focuses on the recovery of a low-rank tensor from a three-order
data tensor contaminated by both gross sparse errors and small
entry-wise dense noise. The contributions of this work are
threefold. First, to our best knowledge, TVTR is first discussed

TABLE I

SOME SURROGATE FUNCTIONS OF �0

in this article. Second, to deal with TVTR, a new tensor
rank called weighted tensor average rank (WTAR) is given.
Meanwhile, WTAR is applied to the tensor-robust principal
component analysis, and a new low-rank tensor recovery
model called tensor recovery based on WTAR (TRWTAR)
is obtained. In addition, we prove that the worst case error
bounds of the recovered tensor are established by TRWTAR
(in Theorem 4). Third, inspired by the literature on nonconvex
optimization [27]–[32] (see Table I), this article provides a
general algorithm that solves both the convex surrogate and
a series of nonconvex surrogates of the proposed framework
(not limited to the surrogate functions in Table I). The study
results contribute to the broad landscape of tensor recovery by
delineating an effective measure of tensor rank and providing
theoretical and algorithmic advances in robust tensor recovery
problems.

II. NOTATIONS AND PRELIMINARIES

A. Notations

In this article, the fields of real and complex numbers are
denoted as R and C, respectively. Tensors are denoted by Euler
script letters, e.g., A; matrices are denoted by capital letters,
e.g., A; sets are denoted by boldface capital letters, e.g., A;
vectors are denoted by boldface lowercase letters, e.g., a, and
scalars are denoted by lowercase letters, e.g., a.

More definitions and symbols are given as follows.
1) For A ∈ Rn1×n2 , AT is the transpose of A. rank(A)

and �A�∗ denote the rank function of matrix A (the
number of nonzero singular values) and the nuclear norm
of matrix A (the sum of singular values), respectively.
σi (A) denotes the i th largest singular value of matrix
A, and σ(A) = (σ1(A), σ2(A), . . . , σr (A))T . · and
⊗ denote the matrix product and Kronecker product,
respectively. In and Fn denote the n × n identity matrix
and DFT matrix, respectively. A −→ B indicates that B
can be obtained by elementary row or column transfor-
mation of A.

2) A three-order tensor is denoted as A ∈ C
n1×n2×n3 ,

where nk (k = 1, 2, 3) is a positive inte-
ger. Each element in this tensor is represented
as Ai1 i2i3 . The Frobenius norm, l1 norm, infinity
norm, and l0 norm are, respectively, denoted as
�A�F = (

�
i1,i2,i3

A2
i1i2i3

)1/2, �A�1 = �
i1,i2,i3

|Ai1i2i3 |,
�A�∞ = maxi1,i2,i3 |Ai1i2i3 |, and �A�0 (i.e., the number
of nonzero entries of A), respectively. For A, B ∈
Cn1×n2×n3 , the inner product of A and B is denoted
as �A,B	 = �n1

i1=1

�n2
i2=1

�n3
i3=1 Ai1i2i3 Conj(Bi1i2i3). 0

denotes all-zero tensor.
3) #A denotes the number of elements of set A.
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4) Im(a), Re(a), and Conj(a) denote the imaginary part of
a, real part of a, and conjugate of a, respectively.

Besides, following the definitions in [13] and [34], this
article uses the MATLAB notation A(i, :, :), A(:, i, :), and
A(:, :, i) to denote the i th horizontal, lateral, and frontal
slice, respectively, and the frontal slice A(:, :, i) is denoted
compactly as A(i). We use the MATLAB command fft to
denote the result of DFT on A along the 3rd dimention,
i.e., Ā = fft(A, [], 3). And we can get A from Ā by A =
ifft(Ā, [], 3), where the MATLAB command ifft is the inverse
FFT. In addition, unfold(·), fold(·), bcirc(·), and bdiag(·) are
defined as

unfold(A) =

⎛
⎜⎜⎜⎝

A(1)

A(2)

...
A(n3)

⎞
⎟⎟⎟⎠ ∈ R

n1n3×n2

fold(unfold(A)) = A

bcirc(A) =

⎛
⎜⎜⎜⎝

A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

⎞
⎟⎟⎟⎠

bdiag(A) =

⎛
⎜⎜⎜⎝

A(1) 0 · · · 0
0 A(2) · · · 0
...

...
. . .

...
0 0 · · · A(n3)

⎞
⎟⎟⎟⎠.

Note that bdiag(Ā) = (Fn3 ⊗ In1)·bcirc(A)·(F−1
n3

⊗ In2), where
F−1

n3
is the inverse of Fn3 .

B. Preliminary Definitions and Results

Definition 1 (t-Product [23]): Let A ∈ Rn1×n2×n3 and B ∈
Rn2×l×n3 . Then, the t-product A ∗t B is defined as a tensor of
size n1 × l × n3

A ∗t B = fold(bcirc(A) · unfold(B)). (1)

Definition 2 (F-Diagonal Tensor [23]): Tensor A is called
f-diagonal if each of its frontal slice is a diagonal matrix.

Definition 3 (Identity Tensor [23]): Tensor I ∈ Rn×n×n3 is
a tensor in which the first frontal slice is an identity matrix,
and other frontal slices are all zeros.

Definition 4 (Mode-1 Conjugate Transpose): The conjugate
transpose of a tensor A ∈ Cn1×n2×n3 is denoted as AT1 ∈
Cn1×n3×n2 , which is obtained by conjugate transposing each of
the horizontal slice.

Definition 5 (Mode-2 Conjugate Transpose): The conjugate
transpose of a tensor A ∈ Cn1×n2×n3 is denoted as AT2 ∈
Cn3×n2×n1 , which is obtained by conjugate transposing each of
the lateral slice.

Definition 6 (Mode-3 Conjugate Transpose): The conjugate
transpose of a tensor A ∈ Cn1×n2×n3 is denoted as AT3 ∈
Cn2×n1×n3 , which is obtained by conjugate transposing each of
the frontal slice.

Definition 7 (Conjugate Transpose [12]): The conjugate
transpose of a tensor A ∈ Cn1×n2×n3 is denoted as A∗ ∈
Cn2×n1×n3 , which is obtained by conjugate transposing each of

the frontal slice and then reversing the order of the transposed
frontal slice from position 2 to n3.

Definition 8 (Orthogonal Tensor [23]): A tensor Q ∈
Cn×n×n3 is orthogonal if it satisfies Q∗ ∗t Q = Q ∗t Q∗ = I.

Theorem 1 (t-SVD [12]): Let A ∈ Rn1×n2×n3 . Then it can
be factorized as A = U ∗t S ∗t V∗, where U ∈ Rn1×n1×n3 ,
V ∈ Rn2×n2×n3 are orthogonal, and S ∈ Rn1×n2×n3 is an f-
diagonal tensor.

As stated in [12], we can get t-SVD of a tensor by
Algorithm 1.

Algorithm 1 t-SVD [12]

Input: Y ∈ Rn1×n2×n3 , λ > 0.
Output: U , S and V .
1. Compute Ȳ = fft(Y, [], 3).
2. Compute each frontal slice of Ū , S̄ and V̄ from Ȳ by
for i = 1, . . . , 
 n3+1

2 � do
[Ū (i), S̄(i), V̄ (i)] = SVD(Ȳ (i));
end for
for i = 
 n3+1

2 � + 1, . . . , n3 do
Ū (i) = Conj (Ū (n3−i+2));
S̄(i) = S̄(n3−i+2);
V̄ (i) = Conj (V̄ (n3−i+2));
end for
3. U = ifft(Ū , [], 3), S = ifft(S̄, [], 3) and
V = ifft(V̄ , [], 3).

Definition 9 (Tensor Tubal Rank [12]): For A ∈ Rn1×n2×n3 ,
the tensor tubal rank, denoted as rankt(A), is defined as
the number of nonzero singular tubes of S, where S is
obtained from the t-SVD of A = U ∗t S ∗t V∗. We can write
rankt (A) = #{i |S(i, i, :) �= 0} = #{i |S(i, i, 1) �= 0}. Denote
σ(S) = (S(1, 1, 1),S(2, 2, 1), . . . ,S(r, r, 1))T , in which
r = rankt (A).

Definition 10 (Tensor Nuclear Norm [12]): Let A = U ∗t

S ∗t V∗ be the t-SVD of A ∈ Rn1×n2×n3 . The tensor nuclear
norm of A is defined as �A�∗ = �S,I	 = �r

i=1 S(i, i, 1),
where r = rankt(A).

Definition 11 (Tensor Average Rank [12]): For A ∈
Rn1×n2×n3 , the tensor average rank, denoted as ranka(A), is
defined as ranka(A) = (1/n3)rank(bcirc(A)).

Definition 12 (Tensor Average Nuclear Norm [12]): For
A ∈ Rn1×n2×n3 , the tensor average nuclear norm of A is
defined as �A�∗,a = (1/n3)�bcirc(A)�∗.

III. NEW TENSOR RANK

In this section, the TVTR is discussed in detail, and a new
tensor rank is given to better explore the low-rank structure
within a data tensor.

A. Motivation: Transpose Variability of Tensor Recovery

It can be seen from Definitions 9 and 10 that the tensor
tubal rank and tensor nuclear norm are base on t-SVD,
in which discrete Fourier transform is applied on the 3rd
dimension of the tensor. Therefore, the transpose operations
of the tensor directly affects the tensor recovery methods
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TABLE II

TOP ROW: THE SINGULAR VALUES VECTORS OF THE SIX TENSORS. BOTTOM ROW: THE SINGULAR VALUES VECTORS OF THE BLOCK CIRCULANT

MATRICES INCLUDING bcirc(A), bcirc(AT2 ), bcirc((AT2 )T3 ), bcirc(AT1 ), bcirc((AT1 )T3 ) AND bcirc(AT3 ).

based on the two norms (including the tensor tubal rank and
tensor nuclear norm). An example is given in the following
to illustrate this point: Let A ∈ R

2×2×2, in which A(1) =	 −0.1241 1.4090
1.4897 1.4172



, A(2) =

	
0.6715 0.7172

−1.2075 1.6302



. For a

three-order tensor A ∈ Rn1×n2×n3 , six tensors are obtained
by all possible transpose operations for A: A = (AT1)T1 ∈
Rn1×n2×n3 , B1 = AT2 ∈ Rn3×n2×n1 , B2 = (AT2)T3 ∈ Rn2×n3×n1 ,
B3 = AT1 ∈ Rn1×n3×n2 , B4 = (AT1)T3 ∈ Rn3×n1×n2 , and
B5 = AT3 ∈ Rn2×n1×n3 . From the top row of Table II, it can
be seen that the tensor singular values of A, AT2 , and AT1 are
different. Considering the following key optimal problem in
low-rank tensor recovery:

D(Y, λ) = arg min
X∈Rn1×n2×n3

λ�X�∗ + 1

2
�Y − X�2

F (2)

this is the proximal operator of the tensor nuclear norm. To
solve the problem shown in (2), Liu et al. [13] proposed
an optimal algorithm. The whole algorithm is similar to
Algorithm 2 given in Section V in this article. The only
difference between the two algorithms is that, in Lu’s work, a
soft threshold with parameter λ is used instead of Tg(S̄(i), λ).1

Therefore, the Lu’s work is not considered in this article
because of space limits. Algorithm 2 reveals that D(Bi , λ)
is not equivalent to the transpose of D(A, λ) for some λ,
when σ(A) �= σ(Bi ). Therefore, it can be concluded that
the tensor nuclear norm based-tensor recovery methods have
TVTR property. Note that, as stated in [12], (2) is equivalent
to

D(Y, λ) = arg min
X∈Rn1×n2×n3

λ�X�∗,a + 1

2
�Y − X�2

F . (3)

Therefore, for the tensor average nuclear norm-based-tensor
recovery methods, a similar conclusion can be obtained.

As discussed above, the effectiveness of the tensor recovery
methods based on the two norms (including tensor nuclear
norm and tensor average nuclear norm) is affected by the
transpose operations on the data tensor, but this is ignored
by traditional tensor recovery methods. An intuitive approach
to solve this problem is to consider all possible transpose
operations in the definition of tensor rank.

B. Weighted Tensor Average Rank

Definition 13 (Weighted Tensor Tubal Rank): Define
weighted tensor tubal rank rankwt(·) as

rankwt(A) =
3�

k=1

αkrankt(ATk ) (4)

1Tg(Y, λ) = arg minX∈Rm×n (1/2)�Y − X�2
F + λ

�m
i=1

�n
j=1 g(|Xij |).

where αk(k = 1, 2, 3) indicates the weights which sum to 1.
Definition 14 (WTAR): Define weighted average tensor rank

rankwa(·) as

rankwa(A) =
3�

k=1

αkranka(ATk ) (5)

where αk(k = 1, 2, 3) indicates the weights which sum to 1.
Definition 15 (Weighted Tensor Nuclear Norm): Define

weighted tensor nuclear norm �·�∗,wt as

�A�∗,wt =
3�

k=1

αk�ATk �∗ (6)

where αk(k = 1, 2, 3) indicates the weights which sum to 1.
Definition 16 (Weighted Tensor Average Nuclear Norm):

Define weighted tensor average nuclear norm �·�∗,wa as

�A�∗,wa =
3�

k=1

αk�ATk �∗,a (7)

where αk(k = 1, 2, 3) indicates the weights which sum to 1.
Property 1: For A ∈ Rn1×n2×n3 , σ(bcirc(A)) =

σ(bcirc(AT3)).
Proof:

bcirc(AT3) =

⎛
⎜⎜⎜⎝

A(1)T A(n3)T · · · A(2)T

A(2)T A(1)T · · · A(3)T

...
...

. . .
...

A(n3)T A(n3−1)T · · · A(1)T

⎞
⎟⎟⎟⎠

−→

⎛
⎜⎜⎜⎝

A(1)T A(2)T · · · A(n3)T

A(2)T A(3)T · · · A(1)T

...
...

. . .
...

A(n3)T A(1)T · · · A(n3−1)T

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

A(1) A(2) · · · A(n3)

A(2) A(3) · · · A(1)

...
...

. . .
...

A(n3) A(1) · · · A(n3−1)

⎞
⎟⎟⎟⎠

T

−→

⎛
⎜⎜⎜⎝

A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

⎞
⎟⎟⎟⎠

T

= bcirc(A)T . (8)
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Therefore, Property 1 holds.
Theorem 2: For A ∈ Rn1×n2×n3 , if α1 = α2 = α3 = (1/3),

�A�∗,wa = �ATs �∗,wa for s = 1, 2, 3.
Proof: For s = 1, since (AT1)T1 = A and (AT1)T2 =

(AT2)T3 , �(AT1)T1�∗,a = �A�∗,a = �AT3�∗,a , �(AT1 )T2�∗,a =
�(AT2)T3�∗,a = �AT2 �∗,a , and �(AT1)T3�∗,a = �AT1�∗,a by
Property 1.

Therefore, �AT1�∗,wa = �3
k=1(1/3)�(AT1)Tk �∗,a =

((�(AT1)T1�∗,a + �(AT1)T2�∗,a + �(AT1)T3�∗,a)/3) =�3
k=1(1/3)�ATk �∗,a = �A�∗,wa.
For s = 2, since (AT2)T1 = (AT1)T3 and (AT2)T2 = A,

�(AT2)T1�∗,a = �(AT1)T3�∗,a = �AT1�∗,a , �(AT2)T2�∗,a =
�A�∗,a = �AT3�∗,a , and �(AT2 )T3�∗,a = �AT2�∗,a by Property
1.

Therefore, �AT2�∗,wa = �3
k=1(1/3)�(AT2)Tk �∗,a =

((�(AT2)T1�∗,a + �(AT2)T2�∗,a + �(AT2)T3�∗,a)/3) =�3
k=1(1/3)�ATk �∗,a .
For s = 3, since (AT3)T1 = (AT2)T3 and

(AT3)T2 = (AT1)T3 , �AT3�∗,wa = �3
k=1(1/3)�(AT3)Tk �∗,a =

((�(AT3)T1�∗,a + �(AT3)T2�∗,a + �(AT3)T3�∗,a)/3) =
((�(AT2)T3�∗,a + �(AT1)T3�∗,a + �(AT3)T3�∗,a)/3) =�3

k=1(1/3)�ATk �∗,a .
Since �A�∗ = �A�∗,a as stated in [12], we have �A�∗,wa =

�A�∗,wt . Therefore, the following theorem is derived.
Theorem 3: For A ∈ Rn1×n2×n3 , if α1 = α2 = α3 = (1/3),

�A�∗,wt = �ATs �∗,wt for s = 1, 2, 3.

IV. TRPCA WITH WEIGHTED TENSOR AVERAGE RANK

Based on the definition of rankwt(·), TPRCA with WTAR
is defined as follows:

min
L,S

rankwa(L) + λ�S�0 s.t. �P − L − S�F ≤ δ (9)

where P = L+S +Z; L is low-rank; S is sparse, and Z is a
small noisy perturbation and �Z�F ≤ δ. Since rankwt(·) and �0

norm is discrete, the continuous version of (9) is considered,
which is defined as follows:

min
L,S

�L�g
∗,wa + λ�S�g s.t. �P − L − S�F ≤ δ (10)

where �L�g
∗,wa = �3

k=1(αk/nk)
�rk

i=1 g(σi (bcirc(LTk ))),
�S�g = �

i1,i2,i3
g(|Si1i2i3 |), and g : R+ −→ R+ is an

increasing function. Note that all the surrogate functions of
�0 listed in Table I satisfy this condition.

Remark 1: From Property 1, we can get the same conclu-
sion with Theorem 2 easily for �·�g

∗,wa, i.e., if α1 = α2 =
α3 = (1/3), �A�g

∗,wa = �ATs �g
∗,wa for A ∈ Rn1×n2×n3 and

s = 1, 2, 3.

A. �p Minimization Formulation

Taking g(·) in (10) as �p norm, then (10) is turned to

min
L,S

�L�p
p,wa + λ�S�p

p,p s.t. �P − L − S�F ≤ δ (11)

where �L�p
p,wa = �3

k=1(αk/nk)(
�rk

i=1 σi (bcirc(LTk ))(1/p))p,
rk = rank(bcirc(LTk )), and �S�p

p,p = (
�

i1,i2,i3
|Si1i2i3 |(1/p))p.

For convenience, (11) is referred to as TRWTAR-�p (where
TRWTAR and �p stand for Tensor Recovery with WTAR and

�p norm, respectively). It is easy to see that, for p = 1, (11)
reduces to

min
L,S

�L�∗,wa + λ�S�1 s.t. �P − L − S�F ≤ δ (12)

which is referred to as tensor recovery with weighted tensor
average nuclear norm (TRWTANN).

B. Worst Case Error Bound

Here, an error bound is established under the transformed
�p minimization problem (11).

Theorem 4: Let (L0,S0) be the pair of true low-
rank and sparse tensors, and L∗ be the solution to
the optimization problem (11). If the average of the
entries of the sparse component S0 is bounded by
T , and the carnality of the support S0 is bounded
by m, then Err(L∗) = ((�L0 − L∗�F )/M) ≤

p
�

((2mT p + ((2δ)p/M (p/2)−1))/(M p(1 − (1/λ)))), where
λ > 1, M = 
3

k=1 nk . Remark n(1) = n2, n(2) = n1 and
n(3) = n3.

The proof of Theorem 4 is given in the appendix.
To give an intuitive understanding of Theorem 4, consider

the two most simple cases.
1) For p = 1, δ = 0, we have

Err(L∗) = 2mT

M
�
1 − 1

λ

�
where (m/M) � 1 is the sparsity coefficient, and
T is bounded. Usually, the entries in visual data are
typically bounded by a constant that is not too large,
i.e., the biggest value of entry is 255 for images. Thus,
the error bound is rather small, indicating rather good
recovery.

2) For p = 1, T = 0, we have

Err(L∗) = 2δ

M
1
2
�
1 − 1

λ

�
where (1/(M (1/2)(1 − (1/λ)))) � 1 for λ = ∞. As
suggested in the above, λ in (12) should be set to a
large enough value for S0 = 0.

V. GENERAL ALGORITHM

This section introduces a general optimization algorithm for
solving (10).

A. Key Problem

To solve problem (10), the following subproblem is consid-
ered:

arg min
X∈Rn1×n2×n3

λ�X�g
∗,a + 1

2
�Y − X�2

F (13)

where �X�g
∗,a = (1/n3)

�r
i=1 g(σi(bcirc(X ))), and r =

rank(bcirc(X )). In the following, we will prove that (13) can
be solved by GTSVT (Algorithm 2), where

Tg(Y, λ) = arg min
X∈Rm×n

1

2
�Y − X�2

F + λ

m�
i=1

n�
j=1

g(|Xi j |).
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Algorithm 2 Generalized Tensor Singular Value Thresh-
olding (GTSVT)

Input: Y ∈ Rn1×n2×n3 , λ > 0.
Output: Dg(Y, λ).
1. Compute Ȳ = fft(Y, [], 3).
2. Perform the generalized SVT [41] on each frontal
slice of Ȳ by
for i = 1, . . . , 
 n3+1

2 � do
[Ū (i), S̄(i), V̄ (i)] = SVD(Ȳ (i));
W̄ (i) = Ū (i)Tg(S̄(i), λ)V̄ (i)∗;
end for
for i = 
 n3+1

2 � + 1, . . . , n3 do
W̄ (i) = Conj (W̄ (n3−i+2));
end for
3. Dg(Y, λ) = ifft(W̄, [], 3).

Theorem 5: For any λ > 0 and Y ∈ Rn1×n2×n3 , if g
is increasing on [0,+∞), then the tensor singular value
thresholding operator obeys

Dg(Y, λ) ∈ arg min
X∈Rn1×n2×n3

λ�X�g
∗,a + 1

2
�Y − X�2

F . (14)

The proof of Theorem 5 is given in the appendix.

B. General Algorithm Based on Alternating Direction
Method

Equation (10) can be reduced to

min
L,S

α

3�
k=1

αk�LTk �g
∗,a + β�S�g + 1

2
�P − L − S�2

F (15)

where �LTk �g
∗,a = (1/nk)

�rk
i=1 g(σi(bcirc(LTk ))). To simplify

(15), a series of auxiliary tensors Mk(k = 1, 2, 3) are
introduced to replace LTk and to remove the correlation of
LTk . Then, (15) can be rewritten to

min
Mk ,L,S

1

2
�P − L − S�2

F + α

3�
k=1

αk�Mk�g
∗,a + β�S�g

s.t. LTk = Mk, k = 1, 2, 3. (16)

To relax the above equality constraints, this article applies
the alternating direction method (ADMM) [34] to the above
problem, and the following augmented Lagrangian function is
obtained:

fμ(Mk,L,S,Qk)

= 1

2
�P − L − S�2

F + α

3�
k=1

αk�Mk�g
∗,a + β�S�g

+ �3
k=1

�
�Qk,LTk − Mk	 + μk

2
�LTk − Mk�2

F

�
(17)

where μi is a positive scalar, and Qk is Lagrange multiplier
tensor. According to the framework of ADMM, the above
optimization problem can be iteratively solved as follows.

Step 1: Given L(s) and Q(s)
k , update Mk, k = 1, 2, 3 by

M(s+1)
k = arg min

Mk

μk

2

����(L(s))Tk − Mk + 1

μk
Q(s)

k

����
2

F

+ ααk�Mk�g
∗,a

= Dg

	
(L(s))Tk + 1

μk
Q(s)

k ,
ααk

μk



. (18)

Step 2: Given M(s+1)
k , S(s) and Q(s)

k , k = 1, 2, 3, update L
by

L(s+1) = arg min
L

1

2
�P − L − S(s)�2

F

+
3�

k=1

μk

2

����LTk − M(s+1)
k + 1

μk
Q(s)

k

����
2

F

. (19)

Calculate the partial derivative of the above formulation with
respect to L, and set it to zero

−P + L + S(s) + �3
k=1μk

�
L−

	
M(s+1)

k − 1

μk
Q(s)

k


Tk
�

= 0.

By rearranging the term with L, we have

L(s+1) =
P − S(s) + �3

k=1μk

�
M(s+1)

k − 1
μk
Q(s)

k

�Tk

1 + �3
k=1μk

. (20)

Step 3: Given L(s+1), update S by

S(s+1) = arg min
S

1

2
�P − L(s+1) − S�2

F + β�S�g (21)

= Tg(P − L(s+1), β). (22)

Step 4: Given Q(s)
k , L(s+1) and M(s+1)

k , k = 1, 2, 3, update
L by

Q(s+1)
k = Q(s)

k + μk
�
(L(s+1))Tk − M(s+1)

k

� ∀k. (23)

VI. EXPERIMENTAL RESULTS

In this section, four sets of experiments are conducted to
illustrate the effectiveness of our proposed methods. The first
set of experiments are performed on the color image data
contaminated by zero-mean Gaussian noise, and the proposed
methods including TRWTANN and TRWTAR-�p are com-
pared with several state-of-the-art low-rank tensor recovery
methods, including SNN [11], Liu’s work (called Liu for short
in the following) [10], SRALT-�p [13], KBR [35], and TRPCA
[12]. The second and third sets of experiments are performed
on the color image data and video, respectively. All of them are
contaminated by the mixture of zero-mean Gaussian noise and
random valued impulse noise in different noise levels to test
the seven methods. To illustrate the robustness of the proposed
methods to outliers in the visual data and their effectiveness
in practical applications, in the fourth set of experiments,
all seven methods are tested on background subtraction. The
source code of SRALT-�p

2 and KBR3 are provided by their
authors, while the source code of the remaining methods

2https://github.com/18357710774/SRALT_code
3https://github.com/XieQi2015/KBR-TC-and-RPCA
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TABLE III

COLOR IMAGE DENOISING RESULTS (PSNR) BY DIFFERENT METHODS

including SNN, Liu’s work, and TRPCA are provided by the
LibADMM toolbox.4 The parameters of all methods are tuned
to the best for each case. In addition, αk(1 ≤ k ≤ 3) in our
methods are set to (1/3).

A. Zero-Mean Gaussian Noise: Color Image Denoising

The clean color image with a size of n1 × n2 × 3 can be
approximated by low-rank tensor L0 ∈ Rn1×n2×3, and the
zero-mean Gaussian noise can be regarded as small entry-
wise perturbations Z0 ∈ Rn1×n2×3, which is a tensor with the
entries independently sampled from a N (0, δ2) distribution
(the noised image can be obtained by P = L0 + Z0). In this
part, all the seven methods (including SNN, Liu, SRALT-�p,
KBR, TRPCA, TRWTANN, and TRWTAR-�p) are applied to
color image recovery in which the color image is contaminated
by zero-mean Gaussian noise. All methods are performed
on House, Lena, Peppers, F16, Baboon, and the 1–3th and
12th images from the Kadak PhotoCD.5 Meanwhile, the
standard deviations of zero-mean Gaussian noise δ are set to
δ = {5, 10, 15, 20, 25, 30}.

Table III shows the peak signal-to-noise ratio (PSNR) results
of different methods when the image data is corrupted by
zero-mean Gaussian noise, and the highest PSNR values are
marked in bold. The visual quality performance of all the
methods is reported in Figs. 1 and 2. From these results,
the following observations are made. First, the PSNR results
of the proposed methods (TRWTANN and TRWTAR-�p) and
other five methods (SNN, Liu, SRALT-�p, KBR, and TRPCA)
indicate that TRWTANN and TRWTAR-�p achieve the best

4https://github.com/canyilu/LibADMM-toolbox
5https://webpages.tuni.fi/foi/GCF-BM3D/index.html

denoising performance in most cases. Especially, for case of
δ = 15, TRWTAR-�p even outperforms the five comparing
methods by at least 1 dB on average PSNR. This illustrates the
effectiveness of the methods based on the WTAR for handling
Gaussian noise. Besides, the PSNR results of TRWTANN
and TRWTAR-�p indicate that using the nonconvex surrogate
strategy given in this article can improve the effectiveness of
the original method (TRWTANN) significantly. In addition,
from Figs. 1 and 2, it can be seen that the three tensor
recovery methods based on t-product (including TRPCA,
TRWTANN, and TRWTAR-�p) retain more information and
details about image, while the denoised images obtained by
SNN and Liu appear some white stripes. For the remaining
two methods including SRALT-�p and KBR, there are still
some residual noise within the denoised image. This validates
the effectiveness of the methods based on t-product.

B. Zero-Mean Gaussian-Impulse Mixed Noise: Color Image
Denoising

In this part, the proposed models are applied to image
recovery, where the color image is contaminated by the
mixture of zero-mean Gaussian noise Z0 and random val-
ued impulse noise. Because the clean color image can be
approximated by low-rank tensors, and the random valued
impulse noise with density level c can be regarded as sparse
errors S0,6 the noise can be removed from the color images
P = L0 + Z0 + S0 by all the seven methods (includ-
ing SNN, Liu, SRALT-�p, KBR, TRPCA, TRWTANN, and
TRWTAR-�p). All the methods are tested on the testing

6c3n1n2 entries in S0 uniformly distributed in [0, 255], and the remain
entries in S0 are zeros.
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Fig. 1. Denoised results on “Peppers,” δ = 20. (a) Noised image. (b) SNN. (c) Liu. (d) SRALT-�p. (e) KBR. (f) TRPCA. (g) TRWTANN. (h) TRWTAR-�p .

Fig. 2. Denoised results on “kodak image1,” δ = 30. (a) Noised image. (b) SNN. (c) Liu. (d) SRALT-�p . (e) KBR. (f) TRPCA. (g) TRWTANN.
(h) TRWTAR-�p .

image set that contains House, Lena, Peppers, F16, Baboon,
and the 1–3th and 12th images from the Kadak PhotoCD.
Meanwhile, the noise is set to zero-mean Gaussian noise
with standard deviations δ and random-valued impulse noise
with density level c. Besides, in this experiment, (δ, c) is set
to (δ, c) = {(0, 5%), (5, 5%), (5, 10%), (15, 10%), (15, 15%),
and (30, 15%)}.

All the methods are evaluated by the PSNR value and visual
results. From Table IV, it can be seen that the proposed
methods (TRWTANN and TRWTAR-�p) outperform SNN,
Liu, SRALT-�p, KBR, and TRPCA by a large margin in all
cases on PSNR values. As shown in Figs. 3 and 4, the proposed
methods retain more details in the denoised images. These
results indicate the superiority of the proposed methods. The
performance superiority is achieved by considering different
tensor transpose operations in the progress of estimating the

latent low-rank tensor, which makes use of the information
within the tensor data as much as possible. This illustrates
that the new tensor rank (WTAR) given in this article (see
Definition 14) is more reasonable in real applications than
others.

C. Zero-Mean Gaussian-Impulse Mixed Noise: Video
Sequence Denoising

Similar to the case of color image denoising, video sequence
denoising can also be regarded as a low-rank tensor recovery
problem. In this case, each color frame of video is folded in
the third dimension of the data tensor L̂0 ∈ Rn1×n2×n3×3 (cor-
responding to the color video with size of n1 ×n2 ×n3 ×3) to
obtain clean tensor data L0 ∈ R

n1×n2×n3×3. Then, TRWTANN
and TRWTAR-�p are compared with the other five methods
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TABLE IV

COLOR IMAGE DENOISING RESULTS (PSNR) BY DIFFERENT METHODS

TABLE V

RESULTS ON VIDEO DATA WITH GAUSSIAN NOISE AND RANDOM-VALUED IMPULSE NOISE

including SNN, Liu, SRALT-�p, KBR, and TRPCA on the
video sequences contaminated by mixed noise to demonstrate
the effectiveness of the proposed model. In this experiment,
(δ, c) is set to (δ, c) = {(5, 10%), (10, 20%)}. Seven wildly
used test videos are taken from the YUV Video Sequences
to form the testing video set,7 including templete, grandma,
akiyo, bus, mobile, bridge-close, and bridge-far. The size of
each frame is 144 × 176, and only the first 30 frames of each
video are chosen for testing.

All the methods are also evaluated by the PSNR value
and visual results, and the evaluation results are listed in
Table V and Figs. 5 and 6. From these results, the following
observations can be obtained.

7http://trace.eas.asu.edu/yuv/

1) The methods based on t-product (including TRPCA,
TRWTANN, and TRWTAR-�p) obtains better results
than other methods (including SNN, Liu, SRALT-�p,
and KBR) in the case of video denoising. As shown in
Figs. 5 and 6, the methods based on t-product retain
more information of the video. This is because all
the three methods based on t-product have a recovery
guarantee. Also, they can find the low-rank subspace
of tensor data more exactly and utilize the information
within the real data more effectively than other low-rank
tensor recovery methods under mixed noise.

2) The proposed methods (including TRWTANN and
TRWTAR-�p) are more effective than other compar-
ing five methods. Especially, TRWTAR-�p outperforms
other comparing methods by at least 0.5 dB on average
PSNR value. This indicates that the proposed methods
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Fig. 3. Denoised results on “F16,” (δ, c) = (15, 10%). (a) Noised image. (b) SNN. (c) Liu. (d) SRALT-�p . (e) KBR. (f) TRPCA. (g) TRWTANN.
(h) TRWTAR-�p .

Fig. 4. Denoised results on “Kodak image1,” (δ, c) = (15, 10%). (a) Noised image. (b) SNN. (c) Liu. (d) SRALT-�p . (e) KBR. (f) TRPCA. (g) TRWTANN.
(h) TRWTAR-�p .

guarantee a more accurate low-rank recovery than other
comparing methods, and they are more robust against
noise and outliers. 3) In most cases, the results obtained
by TRWTAR-�p are better than those obtained by
TRWTANN, indicating the effectiveness of the general
algorithm given in this article.

D. Background Subtraction
In this part, the proposed models are applied to the back-

ground subtraction task that aims to separate the foreground
objects from the background. The background of each frame of
the video is static and similar, and it can be regarded as a low-
rank tensor L0. Meanwhile, the moving foreground objects can
be regarded as sparse noise S0, because they occupy only a

fraction of pixels in the video. Therefore, all the seven methods
including SNN, Liu, SRALT-�p, KBR, TRPCA, TRWTANN,
and TRWTAR-�p are tested on the five video sequences8 to
deal with the case of background subtraction.

To measure the background modeling output quantitatively,
S(A, B) = ((A

�
B)/(A

�
B)) is used to calculate the

similarity between the estimated foreground regions and the
ground truths. The quantitative results of different methods
are listed in Table VI, and it can be seen that the proposed
model achieves the best results. Also, the following obser-
vations can be made. First, TRPCA performs poorly in this
experiment. This is because the exact recovery [12] and the

8http://perception.i2r.a-star.edu.sg/bkmodel/bkindex.html
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Fig. 5. Denoised results on “bridge-close,” (δ, c) = (10, 20%). (a) Noised data. (b) SNN. (c) Liu. (d) SRALT-�p . (e) KBR. (f) TRPCA. (g) TRWTANN.
(h) TRWTAR-�p .

Fig. 6. Denoised results on “akiyo,” (δ, c) = (10, 20%). (a) Noised data. (b) SNN. (c) Liu. (d) SRALT-�p . (e) KBR. (f) TRPCA. (g) TRWTANN.
(h) TRWTAR-�p .

TABLE VI

BACKGROUND SUBTRACTION RESULTS OF DIFFERENT METHODS

stable recovery of TRPCA require that the support 	 of the
true latent sparse tensor is uniformly distributed. However, this
condition is not met in the background subtraction application
because the moving foreground objects are composed of sev-
eral contiguous regions. The proposed methods (TRWTANN

and TRWTAR-�p) can fix this problem well. This is because
they consider different transpose operators to make use of
the information within the tensor data effectively, and they
perform stably against the outliers. In addition, it should
be noted that Liu needs some additional effort to tune the
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weighted parameters empirically. By contrast, in our methods,
all of αk(1 ≤ k ≤ 3) are set to (1/3) so that the proposed
methods can be applied to real applications more easily.

VII. CONCLUSION AND FUTURE WORK

In this work, TVTR is discussed at first. It is discovered
that if different transpose operators are performed on the
observation tensor, different results will be obtained by the
tensor recovery algorithm with TVTR property. To solve this
issue, TRWTANN is taken to study the resulting tensor by a
series of transpose operators on the observation stensor, and
the information within the tensor data is utilized more effec-
tively. Besides, to balance the solvability and effectiveness
of TRWTANN, the nonconvex version (10) of TRWTANN,
i.e., TRWTAR-�p , is investigated. Then, the worst case error
bounds of the recovered tensor are given, and a nonconvex
optimization algorithm based on generalized tensor singular
value thresholding (GTSVT) is designed to solve the proposed
model (12) and its nonconvex version (10). The experimental
results validate the effectiveness of the proposed methods.

The existing definition of tensor product-based tensor rank
is limited to the order of 3. However, it is unreasonable since
lots of data have more than three orders of tensor such as color
video. This issue will be solved in our future work.

APPENDIX

A. Proof of Theorem 4

Lemma 1 [36]: Let w1, w2, . . . , wn be n positive numbers
such that

�n
k=1 wk = 1. Then, for any real numbers s and t

such that 0 < s < t < ∞, and for any a1, . . . , an ≥ 0, we
have �

n�
k=1

wkas
k

� 1
s

≤
�

n�
k=1

wkat
k

� 1
t

(24)

if and only if a1 = a2 = · · · = an .
Theorem 4: Let (L0,S0) be the pair of true low-

rank and sparse tensors, and L∗ be the solution to
the optimization problem (11). If the average of
the entries of the sparse component S0 is bounded
by T , and the cardinality of the support S0 is
bounded by m, then Err(L∗) = ((�L0 − L∗�F )/M) ≤

p
�

((2mT p + ((2δ)p/(M (p/2)−1)))/(M p(1 − (1/λ)))), where
λ > 1, M = 
3

k=1 nk . Remark n(1) = n2, n(2) = n1, and
n(3) = n3.

Proof: Let (L∗,S∗) be the optimal solution of (11), Z∗ =
P −S∗ −L∗, and Z0 = P −S0 −L0. By optimality, we have

�L∗�p
p,wa + λ�P − Z∗ − L∗�p

p,p

≤ �L0�p
p,wa + λ�P − Z0 − L0�p

p,p. (25)

Next, recall that a function f (·) is sub-additive if f (x + y) ≤
f (x) + f (y). According to the result in [37], a concave
function f : [0,∞) → [0,∞) with f (0) ≥ 0 is sub-additive.
Thus, for 0 < p < 1, f (x) = |x |p is concave (x is a scalar
here), |x |p is a sub-additive function. Since the sum of sub-
additive functions is sub-additive, f (x) = �x�p

p, x ∈ Rn is

also sub-additive, thereby implying �x�p
p − �y�p

p ≤ �x − y�p
p.

Consequently, (25) implies that

�P − Z∗ − L∗�p
p,p

≤ 1

λ

��L0�p
p,wa − �L∗�p

p,wa

� + �P − Z0 − L0�p
p,p

≤ 1

λ
�L0 − L∗�p

p,wa + �P − Z0 − L0�p
p,p (26)

where the last inequality is derived from the linearity property
in the definition of �·�p

p,wa on tensors. Based on this inequality,
�L∗ − L0�p

p,p can be bounded as follows:

�L0 − L∗�p
p,p

≤ �P − Z∗ − L∗�p
p,p + �P − Z∗ − L0�p

p,p

≤ �P − Z∗ − L∗�p
p,p + �P − Z0 − L0�p

p,p + �Z∗ − Z0�p
p,p

≤ 1

λ
�L0 − L∗�p

p,wa + 2�P − Z0 − L0�p
p,p + �Z∗ − Z0�p

p,p

= 1

λ

3�
k=1

αk

n(k)

�
rk�

i=1

�
σ (k)

i

�p

�
+ 2�P − Z0 − L0�p

p,p

+ �Z∗ − Z0�p
p,p (27)

where the third inequality is derived from substituting the
inequality (26) into the current inequality; rk is the rank of
the matrix bcirc((L0 − L∗)Tk ), and σ (k)

1 , σ (k)
2 , . . . , σ (k)

rk
are the

rk singular values of the matrix bcirc((L0 − L∗)Tk ).
Since �Z0�F ≤ δ and �Z∗�F ≤ δ, �Z0 − Z∗�F ≤ 2δ.

According to Lemma 1 and setting w j = (1/M),∀ j =
1, . . . , M , we have

�Z∗ − Z0�p
p,p ≤ M

	�Z∗ − Z0�F√
M


p

≤ (2δ)p

M
p
2 −1

.

By Lemma 1, and setting w j = (1/rk),∀ j = 1, . . . , rk , we
have�
σ (k)

1

�p + �
σ (k)

2

�p + · · · + �
σ (k)

rk

�p

rk

≤
⎛
⎝

��
σ

(k)
1

�2 + �
σ

(k)
2

�2 + · · · + �
σ

(k)
rk

�2

rk

⎞
⎠

p

(28)

thereby leading to

rk�
i=1

�
σ

(k)
i

�p ≤ r
1− p

2
k

�
rk�

i=1

�
σ

(k)
i

�2

� p
2

= r
1− p

2
k �bcirc((L0 − L∗)Tk )�p

F

= r
1− p

2
k (n(k))

p
2 �L0 − L∗�p

F . (29)

Applying this inequality to the final line in (27) results in

�L∗ − L0�p
p,p ≤ 1

λ

3�
k=1

αk

(n(k))1− p
2

r
1− p

2
k �L0 − L∗�p

F

+ 2mT p + (2δ)p

M
p
2 −1

. (30)

Since �P −Z0 − L0�p
p,p = �S0�p

p,p ≤ mT p, according to the
generalized power-mean inequality in Lemma 1 (by setting
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s = p, t = 1), we have	�S0�p
p,p

m


 1
p

≤ �S0�1
1,1

m
≤ T . (31)

Next, we show that �L0 −L∗�p
F ≤ �L∗ −L0�p

p,p. Denoting
L = L0 − L∗ and based on the fact that �L0 − L∗�F ≤
�L0 − L∗�1, we have

�L�F =
� �

i1,i2,i3

L2
i1i2i3

≤
�

i1,i2,i3

|Li1i2i3 |

=
�� �

i1,i2,i3

|Li1i2i3 |
�p� 1

p

≤
� �

i1,i2,i3

|Li1i2i3 |p

� 1
p

= �L�p,p (32)

where the second inequality is derived from the fact that
f (x) = x p(0 < p < 1) is a sub-additive function. Raising
both sides to the power of p yields �L0 − L∗�p

F ≤ �L∗ −
L0�p

p,p. Combining this inequality with (30), we have

�L0 − L∗�p
F ≤ 1

λ

3�
k=1

αk

(n(k))1− p
2

r
1− p

2
k �L0 − L∗�p

F

+ 2mT p + (2δ)p

M
p
2 −1

. (33)

Rearranging the terms, we have �L0 − L∗�p
F ≤ ((2mT p+

((2δ)p/(M (p/2)−1)))/(1 − (1/λ)
�3

k=1(αk/((n(k))1−(p/2)))

r1−(p/2)
k )) ≤ ((2mT p + ((2δ)p/(M (p/2)−1)))/(1 − (1/λ)

�3
k=1

(αk/((n(k))1−(p/2)))(n(k))1−(p/2))) (since rk ≤ n(k) and
1 − (p/2) > 0), and therefore

�L0 − L∗�F ≤ p

����2mT p + (2δ)p

M
p
2 −1

1 − 1
λ

(34)

provided that λ > 1.

B. Proof of Theorem 5

Lemma 2 [38]: Given any real vector v ∈ Rn , the associ-
ated v̄ = Fnv ∈ Cn satisfies

v̄1 ∈ R and Conj(v̄i ) = v̄n−i+2, i = 2, . . . ,

�
n + 1

2

�
.

(35)

Conversely, for any given complex v̄ ∈ Cn that satisfies
(35), there exists a real block circulant matrix circ(v) such
that Fncirc(v)F−1

n = Diag(v̄) holds.
Lemma 3 [39], [40]: For any matrices A, B ∈ Cm×n(m ≤

n), Re(tr(AB∗)) ≤ �m
i=1σi (A)σi(B), where σ1(A) ≥ σ2(A) ≥

· · · ≥ 0 and σ1(B) ≥ σ2(B) ≥ · · · ≥ 0 are the singular values
of A and B , respectively. The equality holds if and only if there
exist unitary matrices U and V such that A = Udiag(σ (A))V ∗
and B = Udiag(σ (B))V ∗ are the SVDs of A and B .

Lemma 4 [41]: For any lower bounded function g, p∗
1 ≥

p∗
2 if x1 ≥ x2 for any p∗

i ∈ proxλ,g(xi), i = 1, 2, where
proxλ,g(y) = arg minx∈R(1/2)(y − x)2 + λg(|x |).

Lemma 5: For any two tensors Ā, B̄ ∈ {M̄ ∈
Cn1×n2×n3 |M̄ (1) ∈ Rn1×n2; Conj(M̄ (i)) = M̄ (n3−i+2), i =
2, . . . , 
((n3 + 1)/2)�.}, then Im(�bdiag(Ā), bdiag(B̄)	) = 0.

Proof: According to Lemma 2, there exist two real block
circulant matrices bcirc(A) and bcirc(B) such that bdiag(Ā) =
(Fn3 ⊗ In1) · bcirc(A) · (F−1

n3
⊗ In2) and bdiag(B̄) = (Fn3 ⊗

In1) ·bcirc(B) · (F−1
n3

⊗ In2). Thus Im(�bdiag(Ā), bdiag(B̄)	) =
Im(�bcirc(A), bcirc(B)	) = 0.

Lemma 6: Let g : R+ → R+ be a function such that for
x ∈ R, g(|x |) ≥ 0, and g(0) = 0. Let Y = Udiag(σ (Y ))V ∗
be the SVD of Y ∈ Cm×n , then

arg min
Im(�X,Y 	)=0,X∈Cm×n

1

2
�Y − X�2

F + λ

min(m,n)�
i=1

g(σi (X))

= {U�V ∗|� ∈ diag(Tg(σ (Y ), λ))} (36)

where, for y ∈ Rh

Tg(y, λ) = arg min
x∈Rh

1

2
�y − x�2

F + λ

h�
i=1

g(|xi |).

Proof: For the convenience of discussion, remark that

A = arg min
Im(�X,Y 	)=0,X∈Cm×n

1

2
�Y − X�2

F + λ

min(m,n)�
i=1

g(σi(X))

and B = {U�V ∗|� ∈ diag(Tg(σ (Y ), λ))}.
For any two complex matrices X and Y that satisfy

Im(�X, Y 	) = 0, we have

�Y − X�2
F = �X�2

F + �Y�2
F − 2tr(XY ∗)

= �X�2
F + �Y�2

F − 2Re(tr(XY ∗))
≥ �σ(X)�2

2 + �σ(Y )�2
2 − 2�min(m,n)

i=1 σi (X)σi (Y )

= �σ(X) − σ(Y )�2
2. (37)

According to Lemma 3, the equality (37) holds if U and V are
left singular value vector matrix and right singular value vector
matrix of X , respectively. In this case, the optimal problem
(36) reduces to

arg min
x:x1≥···≥xmin(m,n)≥0

min(m,n)�
i=1

	
λg(|xi |) + 1

2
(xi − σi(Y ))2



.

(38)

Since σ1(Y ) ≥ σ2(Y ) ≥ · · · ≥ σmin(m,n)(Y ), according to
Lemma 4, there exits x̂ ∈ Tg(σ (Y ), λ) such that x̂1 ≥ x̂2 · · · ≥
x̂min(m,n). Such a choice of Udiag(x̂)V ∗ is an optimal solution
of (36), so A ⊇ B holds. A ⊆ B is proven as follows.

If there X̂ belongs to A but not belongs to B, then according
to Lemma 3, we have (1/2)�Y −X̂�2

F+λ
�min(m,n)

i=1 g(σi (X̂)) >

(1/2)�σ(Y ) − σ(X̂)�2
2 + λ

�min(m,n)
i=1 g(σi (X̂)) =

(1/2)�Y − Udiag(σ (X̂))V ∗�2
F + λ

�min(m,n)
i=1 g(σi (X̂)).

Note that Im(�Udiag(σ (X̂))V ∗, Y 	) = 0, so the following
expression is a contradiction to X̂ ∈ A:

1

2
�Y − X̂�2

F + λ

min(m,n)�
i=1

g(σi(X̂))

> min
Im(�X,Y 	)=0,X∈Cm×n

1

2
�Y − X�2

F + λ

min(m,n)�
i=1

g(σi(X)).

Therefore, A = B.
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The following definitions are given before the proof of
Theorem 5 is presented.

1) M = {bdiag(M̄)|M̄ ∈ Cn1×n2×n3, M̄ (1) ∈
Rn1×n2 .Conj(M̄ (i)) = M̄ (n3−i+2), i =
2, . . . , 
((n3 + 1)/2)�}.

2) Let Sλ,g , S̄λ,g ∈ R
r×r×n3 , S̄(i)

λ,g = Tg(S̄(i), λ) and S̄λ,g =
bdiag(S̄λ,g) = (Fn3 ⊗ Ir ) · bcirc(Sλ,g) · (F−1

n3
⊗ Ir ).

Theorem 5: For any λ > 0 and Y ∈ R
n1×n2×n3 , if g

is increasing on [0,+∞), then the tensor singular value
thresholding operator obeys

Dg(Y, λ) ∈ arg min
X∈Rn1×n2×n3

λ�X�g
∗,a + 1

2
�Y − X�2

F . (39)

Proof: It is shown first that Dg(Y, λ) is a real tensor.
Assume U ∗t S ∗t V∗ is the t-SVD of Y . Then, according to
Theorem 1, U and V are real. Since S̄ is real, and S̄ ∈ M,
we have S̄λ,g ∈ M. According to Lemma 2, there exists a real
black circulant matrix bcirc(Sλ,g) such that S̄λ,g = (Fn3 ⊗ Ir ) ·
bcirc(Sλ,g) ·(F−1

n3
⊗ Ir ) . Therefore, Dg(Y, λ) = U ∗t Sλ,g ∗t V∗

is real.
According to the definition of Dg(Y, λ) and

Lemma 6, (Fn3 ⊗ In1) · bcirc(Dg(Y, λ)) · (F−1
n3

⊗ In2) ∈
arg minIm(�X,Ȳ 	)=0(1/2)�Ȳ − X�2

F + λ
�min(n1,n2)n3

i=1 g(σi(X)).
On the other hand, since (Fn3 ⊗ In1) · bcirc(Dg(Y, λ)) ·
(F−1

n3
⊗ In2) ∈ M, (Fn3 ⊗ In1) · bcirc(Dg(Y, λ)) ·

(F−1
n3

⊗ In2) ∈ arg minIm(�X,Ȳ 	)=0,X∈M(1/2)�Ȳ − X�2
F +

λ
�min(n1,n2)n3

i=1 g(σi(X)) = arg minX∈M(1/2)�Ȳ − X�2
F +

λ
�min(n1,n2)n3

i=1 g(σi(X)), where the second equation holds
according to Lemma 5 (Note that Ȳ ∈ M). Therefore,
Dg(Y, λ) ∈ arg minX∈Rn1×n2×n3 λ�X�g

∗,a + (1/2)�Y − X�2
F .
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