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Abstract—Bi-Level Optimization (BLO) is originated from the area of economic game theory and then introduced into the optimization

community. BLO is able to handle problems with a hierarchical structure, involving two levels of optimization tasks, where one task is

nested inside the other. In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of

complex problems, such as hyper-parameter optimization, multi-task and meta learning, neural architecture search, adversarial

learning and deep reinforcement learning, actually all contain a series of closely related subproblms. In this paper, we first uniformly

express these complex learning and vision problems from the perspective of BLO. Then we construct a best-response-based single-

level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO

methodologies, covering aspects ranging from fundamental automatic differentiation schemes to various accelerations, simplifications,

extensions and their convergence and complexity properties. Last but not least, we discuss the potentials of our unified BLO framework

for designing new algorithms and point out some promising directions for future research. A list of important papers discussed in this

survey, corresponding codes, and additional resources on BLOs are publicly available at: https://github.com/vis-opt-group/BLO.

Index Terms—Bi-level optimization, Learning and vision applications, Value-function-based reformulation, Best-response mapping, Explicit

and implicit gradients

Ç

1 INTRODUCTION

BI-LEVEL Optimization (BLO) is the hierarchical mathe-
matical program where the feasible region of one opti-

mization task is restricted by the solution set mapping of
another optimization task (i.e., the second task is embed-
ded within the first one) [1]. The outer optimization task is
commonly referred to as the Upper-Level (UL) problem,
and the inner optimization task is commonly referred to as
the Lower-Level (LL) problem. BLOs involve two kinds of

variables, referred to as the UL and LL variables,
accordingly.

The origin of BLOs can be traced to the domain of game
theory and is known as Stackelberg competition [2]. Subse-
quently, it has been investigated in view of many important

applications in various fields of science and engineering,

particularly in economics, management, chemistry, optimal

control, and resource allocation problems [3], [4], [5], [6].

Especially, in recent years, a great amount of modern
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applications in the fields of machine learning and computer
vision (e.g., hyper-parameter optimization [7], [8], [9], [10],
multi-task and meta learning [11], [12], [13], neural architec-
ture search [14], [15], [16], generative adversarial learn-
ing [17], [18], [19], deep reinforcement learning [20], [21],
[22] and image processing and analysis [23], [24], [25], just
name a few) have arisen that fit the BLO framework.

In general, most of the earlier BLOs are highly compli-
cated and computationally challenging to solve due to their
nonconvexity and non-differentiability [26], [27]. Despite
their apparent simplicity, BLOs are nonconvex problems
with an implicitly determined feasible region even if the UL
and LL subproblems are convex [28], [29]. Indeed, it has
been proved that even strictly checking the local optimality
of the simplest BLO model (e.g., linear BLO) is still a NP-
hard problem [30], [31]. In addition, the existence of multi-
ple optima for the LL subproblem can result in an inade-
quate formulation of BLOs, which could aggravate the
difficulty of theoretical analysis [32]. Despite the challenges,
a lot of research topics consisting of methods and applica-
tions of BLOs have followed in this field, see [27], [33]. Early
studies focused on numerical methods, including extreme-
point methods [34], branch-and-bound methods [3], [35],
descent methods [36], [37], penalty function methods [38],
[39], trust-region methods [40], [41], and so on. The most
often used procedure is to replace the LL subproblem with
its Karush–Kuhn–Tucker (KKT) conditions, and if assump-
tions are made (such as smoothness, convexity, among
others) the BLOs can be transformed into single-level opti-
mization problems [42], [43], [44]. However, due to the high
complexity of bi-level models, solving BLOs for large-scale
and high-dimensional practical applications in learning and
vision fields is still challenging [45].

The classical idea (e.g., the first-order approach in econom-
ics literature) to reformulate BLO is to replace the LL subprob-
lem Eq. (1) by its KKT conditions and minimize over the
original variables x and y aswell as themultipliers. The result-
ing problem is a so-called Mathematical Program with Equi-
librium Constraints (MPEC) [46], [47]. Unfortunately, MPECs
are still a challenging class of problems because of the pres-
ence of the complementarity constraint [48]. Solutionmethods
for MPECs can be categorized into two types of approaches.
The first one, namely, the nonlinear programming approach
rewrites the complementarity constraint into nonlinear
inequalities, and then allows to leverage powerful numerical
nonlinear programming solvers. The other one, namely, the
combinatorial approach tackles the combinatorial nature of
the disjunctive constraint. Despite the difficulties, MPEC has
been studied intensively in the last three decades [49].
Recently, some progress on the MPEC approach in dealing
with BLOs have been witnessed by the community of mathe-
matical programming, in the context of selecting optimal
hyper-parameters in regression and classification problems.
There are two issues caused by the multipliers in the MPEC
approach. First, in theory, if there exist more than one multi-
pliers for the LL subproblem, MPEC will not be equivalent to
the original BLO (in the local optimality scenario) [50]. Second,
the introduced auxiliary multiplier variables can limit the
numerical efficiencywhen solving the BLOproblem.

In recent years, a variety of machine learning and com-
puter vision tasks, including but not limited to, hyper-

parameter optimization [13], [51], [52], [53]), multi-task and
meta learning [54], [55], [56], [57], neural architecture
search [14], [16], [58], [59], adversarial learning [17], [18],
[21], [60], and deep reinforcement learning [20], [21], [61],
[62], have been investigated in application scenarios.
Despite the different motivations and mechanisms, all
these problems contain a series of closely related subpro-
blems and have a natural hierarchical optimization struc-
ture. However, although received increasing attentions in
both academic and industrial communities, there still lack
a unified perspective to understand and formulate these
different categories of hierarchical learning and vision
problems.

We notice that most previous surveys on BLOs (e.g., [1],
[63], [64], [65], [66], [67], [68]) are purely from the viewpoint
of mathematical programming and mainly focus on the for-
mulations, properties, optimality conditions and these clas-
sical solution algorithms, such as evolutionary methods [5].
In contrast, the aim of this paper is to utilize BLO to express
a variety of complex learning and vision problems, which
explicitly or implicitly contain closely related subproblems.
Furthermore, we present a unified perspective to compre-
hensively survey different categories of gradient-based BLO
methodologies in specific learning and vision applications.
In particular, we first provide a literature review on various
complex learning and vision problems, including hyper-
parameter optimization, multi-task and meta learning, neu-
ral architecture search, adversarial learning, deep reinforce-
ment learning and so on. We demonstrate that all these
tasks can be modeled as a general BLO formulation. Follow-
ing this perspective, we then establish a best-response-
based single-level reformulation to express these existing
BLO models. By further introducing a unified algorithmic
framework on the single-level reformulation, we can uni-
formly understand and formulate these existing gradient-
based BLOs and analyze their accelerations, simplifications,
extensions, and convergence and complexity proprieties.
Finally, we demonstrate the potentials of our framework for
designing new algorithms and point out some promising
research directions for BLO in learning and vision fields.

Compared with existing surveys on BLOs, our major
contributions can be summarized as follows:

1) To the best of our knowledge, this is the first survey
paper to focus on uniformly understanding and (re)
formulating different categories of complex machine
learning and computer vision tasks and their solu-
tion methods (especially in the context of deep learn-
ing) from the perspective of BLO.

2) By introducing a best-response-based single-level
reformulation and constructing a best-response-
based algorithmic framework, we obtain a general
and flexible platform that can successfully unify dif-
ferent existing gradient-based BLO methodologies
and uniformly analyze these accelerations, simplifi-
cations, and extensions in literature.

3) The convergence behaviors of gradient-based BLOs
are comprehensively analyzed. Especially, we estab-
lish a general convergence analysis template to
investigate the iteration behaviors of a series of gra-
dient-based BLOs from a unified perspective. The
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time and space complexity of various mainstream
schemes are also systematically analyzed.

4) Our gradient-based BLOplatform not only comprehen-
sively covers mainstream gradient-based BLO meth-
ods, but also has the potentials for designing new BLO
algorithms to dealwithmore challenging tasks.We also
point out somepromisingdirections for future research.

We summarize our mathematical notations in Table 1.
The remainder of this paper is organized as follows. We first
introduce some necessary fundamentals of BLOs in Sec-
tion 2. Then, Section 3 provides a comprehensive survey of
various learning and vision applications that all can be
modeled as BLOs. In Section 4, we establish an algorithmic
framework in a unified manner for existing gradient-based
BLO schemes. Within this framework, we further under-
stand and formulate two different categories of BLOs (i.e.,
explicit and implicit gradients for best-response) in Section 5
and Section 6, respectively. We also discuss the so-called
lower-level singleton issue of BLOs in Section 7. The conver-
gence and complexity properties of these gradient-based
BLOs are discussed in Section 8. Section 9 puts forward
potentials of our framework for designing new algorithms
to deal with more challenging pessimistic BLOs. Finally,
Section 10 points out some promising directions for future
research.

2 FUNDAMENTALS OF BI-LEVEL OPTIMIZATION

Bi-Level Optimization (BLO) contains two levels of optimi-
zation tasks, where one is nested within the other as a con-
straint. The inner (or nested) and outer optimization tasks

are often respectively referred to as the Lower-Level (LL)
and Upper-Level (UL) subproblems [1]. Correspondingly,
there are two types of variables, namely, the LL (y 2 Rn) and
UL (x 2 Rm) variables. Specifically, the LL subproblem can
be formulated as the following parametric optimization task

min
y2Y

fðx; yÞ; ðparameterized by xÞ; (1)

where we consider a continuous function f : Rm �Rn ! R

as the LL objective and Y � Rn is a nonempty set. By denot-
ing the value-function as cðxÞ :¼ miny2Yfðx; yÞ, we can
define the solution set of the LL subproblem with given x as
SðxÞ :¼ y 2 Y j fðx; yÞ � cðxÞf g: Then the standard BLO
problem can be formally expressed as

min
x2X

F ðx; yÞ; s:t: y 2 SðxÞ; (2)

where the UL objective F : Rm �Rn ! R is also a continu-
ous function and the feasible set X � Rm. In fact, a feasible
solution to BLO in Eq. (2) should be a vector of UL and LL
variables, such that it satisfies all the constraints in Eq. (2),
and the LL variables are optimal to the LL subproblem in
Eq. (1) for the given UL variables as parameters. In Fig. 1, we
provide a simple visual illustration for BLOs stated in Eq. (2).

The above BLO problem has a natural interpretation as a
non-cooperative game between two players (i.e., Stackel-
berg game [1]). Correspondingly, we may also call the UL
and LL subproblems as the leader and follower, respec-
tively. Then the “leader” chooses the decision x first, and
afterwards the “follower” observes x so as to respond with
a decision y. Therefore, the follower may depend on the

TABLE 1
Summary of Mathematical Notations
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leader’s decision. Likewise, the leader has to satisfy a con-
straint that depends on the follower’s decision.

It is worthwhile noting that the LL subproblem may have
multiple solutions for every (or some) fixed value of the UL
decision making variable x. When the solution of the LL
subproblem is not unique, it is difficult for the leader to pre-
dict which point in SðxÞ the follower will choose (see Fig. 1b
for example).

3 UNDERSTANDING AND MODELING PRACTICAL

PROBLEMS BY BLOS

In this section, we demonstrate that even with different
motivations and mechanisms, a variety of modern complex

learning and vision tasks (e.g, hyper-parameter optimiza-
tion, multi-task and meta learning, neural architecture
search, adversarial learning, deep reinforcement learning
and so on) actually share close relationships from the BLO
perspective. Moreover, we provide a uniform BLO expres-
sion to (re)formulate all these problems. Table 2 provides a
summary of learning and vision applications, which can be
understood and modeled by BLO.

3.1 Hyper-Parameter Optimization

Hyper-parameter Optimization (HO) refers to the problem
of identifying the optimal set of hyper-parameters that can’t
be learned using the training data alone. Early in learning
and vision areas, designing regularized models or
support vector machines are generally the recommended
approaches of selecting hyper-parameters [156]. Based on
the representation of the hierarchical structure, these
approaches are first expressed as a BLO problem and then
transformed into the single-level optimization problem by
replacing the LL subproblem with its optimality condi-
tion [157]. Due to the high computational cost, especially in
high-dimensional hyper-parameter space, these original
methods even could not guarantee a local optimal
solution [158].

In recent years, gradient-based HO methods with deep
neural networks have received extensive attention, which
are generally divided into two categories: iterative differen-
tiation (i.e., [7], [10], [11], [12], [13], [23], [71], [73], [75],
[159]) and implicit differentiation (i.e., [8], [9], [72], [74],
[135], [160], [161], [162], [163]), depending on how the gradi-
ent (w.r.t. hyper-parameters) can be computed. The former

TABLE 2
Summary of Related Learning and Vision Applications That Can Be (re)Formulated as BLOs

Task Important work Other work

HO [51] (ICML, 2017),
[13] (AISTATS, 2019),
[32] (ICML, 2020)

[69] (SIIMS, 2014), [70] (EURO, 2020), [71] (ICML, 2015), [72] (AISTATS, 2020),
[73] (ICML, 2018), [74] (ICML, 2016), [75] (arXiv, 2019), [9] (ICLR, 2019),
[53] (ICML, 2021), [76] (ICML, 2017), [77] (NIPS, 2020), [12] (ICML, 2018)

MFL [12] (ICML, 2018),
[56] (ICML, 2017)

[11] (arXiv, 2017), [78] (CVPR, 2018), [79] (CVPR, 2018), [80] (ICLR, 2018),
[81] (ICLR, 2017), [82] (ICLR, 2018), [83] (ICML, 2019)

MIL [84] (NIPS, 2019),
[57] (ICLR, 2019),
[85] (ICLR, 2019),
[86] (NIPS, 2019)

[87] (ICLR, 2017), [55] (ICML, 2017), [88] (ICML, 2017), [89] (arXiv, 2018),
[90] (arXiv, 2019), [91] (CVPR, 2020),[92] (AAAI, 2020), [93] (arXiv, 2018),
[94] (NIPS, 2019), [95] (ICLR, 2020), [96] (ICML, 2019),[97] (ICML, 2018),

[98] (CVPR, 2020), [99] (AAAI, 2020), [100] (ICASSP, 2020)
NAS [14] (ICLR, 2019),

[101] (NIPS, 2018),
[58] (TGRS, 2020),
[102] (CVPR, 2020),
[59] (ICLR, 2019)

[103] (ICLR, 2019), [104] (CVPR, 2018), [16] (ICLR, 2019), [105] (ICCV, 2019),
[106] (AISTATS, 2020), [107] (CVPR, 2020), [108] (AAAI, 2020),

[109] (CVPR, 2020), [110] (CVPR, 2019), [111] (NIPS, 2019), [112] (ICCV, 2019),
[113] (NIPS, 2019), [114] (CVPR, 2020), [115] (arXiv, 2019), [116] (SIGKDD, 2020),

[117] (CVPR, 2020), [118] (CVPR, 2020), [119] (arXiv, 2020)
AL [120] (arXiv, 2016),

[21] (arXiv, 2016)
[121] (AAAI, 2020), [122] (CVPR, 2020), [18] (arXiv, 2018), [17] (PR, 2019),

[123] (ICML, 2020), [60] (CVPR, 2020), [19] (CVPR, 2020), [124] (ICML, 2018)
DRL [20] (AAAI, 2020),

[21] (arXiv, 2016),
[61] (ICML, 2020)

[125] (CIRED, 2019), [62] (arXiv, 2020), [126] (NIPS, 2019), [127] (ICML, 2020),
[128] (AAMAS, 2020), [129] (arXiv, 2019), [130] (TSG, 2019), [131] (NeurIPS, 2016),
[132] (NeurIPS, 2017), [133] (arXiv, 2018), [61] (ICML, 2020), [134] (ICML, 2019)

Others [135] (SIIMS, 2013),
[23] (SSVM, 2015),
[136] (TIP, 2020),

[137] (TNNLS, 2020),
[138] (TIP, 2016)

[139] (ICML, 2016),[140] (ICLR, 2019), [25] (IJCAI, 2020), [141] (arXiv, 2019),
[142] (UAI, 2020), [143] (arXiv, 2021), [144] (arXiv, 2020), [145] (TIP, 2020),

[146] (arXiv, 2019), [147] (arXiv, 2020), [148] (T-RO, 2020), [149] (WACV, 2020),
[150] (arXiv, 2020), [151] (NIPS, 2020), [152] (arXiv, 2020), [153] (arXiv, 2020),

[154] (CVPR, 2020), [155] (ICLR, 2018)

The abbreviations are listed as follows: Hyper-parameter Optimization (HO), Meta-Feature Learning (MFL), Meta-Initialization Learning (MIL), Neural Archi-
tecture Search (NAS), Adversarial Learning (AL), and Deep Reinforcement Learning (DRL).

Fig. 1. Illustrating the problem of BLO. (a) first shows a standard BLO
problem with the situation of multiple solutions of f. Green curves indi-
cate LL objectives denoted by f, whose corresponding minimizers given
by SðxÞ are shown as green dots. The red curve represents the UL objec-
tive F whose minimizer is shown as the red dot. (b) further illustrates
that, in general, not all points (green dots) in SðxÞ could minimize the UL
objective denoted by F .
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approximates the best-response function by performing sev-
eral steps of gradient descent on the loss function, while the
latter derives the hyper-gradients through the implicit func-
tion theory. One particular type of gradient-based HO is the
data hyper-cleaning problem [13], [51], which generally
trains a linear classifier with a cross-entropy function (w.r.t.
parameters y) and learns to optimize the hyper-parameters
xwith a ‘2 regularization function.

Indeed, HO can be understood as the most straightfor-
ward application of BLO in learning and vision fields [156].
Specifically, the UL objective F ðx; y;DvalÞ aims to minimize
the validation set loss with respect to the hyper-parameters
(e.g. weight decay), and the LL objective fðx; y;DtrÞ needs
to output a learning algorithm by minimizing the training
loss with respect to the model parameters (e.g. weights and
biases). As illustrated in Fig. 2, the full dataset D is divided
into the training and validation datasets (i.e., Dtr [ Dval)
and we instantiate how to model the HO task from the per-
spective of BLO. Inspired by this nested optimization, most
HO applications can be characterized by the bi-level struc-
ture and formulated as the BLO problems. The UL subprob-
lem involves the optimization of hyper-parameters x and
the LL subproblem (w.r.t. weight parameters y) aims to find
the learning algorithm gyð�Þ by minimizing the training loss.

3.2 Multi-Task and Meta Learning

The goal of meta learning (a.k.a., learning to learn) is to
design models that can learn new skills or adapt to new
environments rapidly with a few training examples (see
Fig. 3 for a schematic diagram). As a variant of meta learn-
ing, multi-task learning just intends to jointly perform all
the given tasks [164], [165]. One of the most well-known
instances of meta learning is few-shot classification (i.e.,
N-way M-shot). Each task is a N-way classification
designed to learn the meta-parameter with M training sam-
ples selected from each of the class. Specially, the full meta

training data set D ¼ fDjg (j ¼ 1; . . . ; N) can be segmented
into Dj ¼ Dj

tr [ Dj
val, where Dj is linked to the j-th task.

According to the dependency between the meta-parame-
ters and the network parameters, current meta learning
based methods can be roughly categorized as two groups,
i.e., meta-feature learning and meta-initialization learning,
as can be seen in Fig. 4. Specifically, meta-initialization
learning aims to investigate the meta information of multi-
ple tasks by the network initialization, which can also be
understood as the promotion of fine-tuning [84], [86]. From
the BLO perspective, we actually formulate the network
parameters and their initialization (based on multi-task
information) by the LL and UL subproblems, respectively.
In contrast, meta-feature learning methods first separate the
network architecture as the meta feature extraction part and
the task-specific part. Then they formulate a hierarchical
learning process [11], [12], [56]. So in such tasks, we use the
UL and LL subproblems to model the meta-feature part and
the task-specific part, respectively.

3.2.1 Meta-Feature Learning

Meta-Feature Learning (MFL) aims to learn a sharing meta
feature representation of all tasks. Recently, series of meta
learning based approaches show that multi-task with hard
parameter sharing and meta-feature representation are
essentially similar [166], [167]. The optimization of meta-
learner with respect to meta-parameters based on the UL
subproblem is similar to HO [11], [12], [73]. The cross-
entropy function ‘ðx; yj;Dj

trÞ is actually considered as the
task-specific loss for the j-th task on the meta training data
set to define the LL objective.

As illustrated in the subfigure (a) of Fig. 4, following the
bi-level framework, the network architecture in this cate-
gory can be subdivided into two groups. The first is the
cross-task intermediate representation layer parameterized
by x (illustrated by the blue block), outputting the meta fea-
tures. The second is the logistic regression layer parameter-
ized by yj (illustrated by the green block), as the ground
classifier for the j-th task. As can be seen, the feature layers
are shared across all episodes, while the softmax regression
layer is episode (task) specific. We can also observe that the
process of network forward propagation corresponds to the
process of passing from the feature extraction part to the
softmax part.

Fig. 2. Schematic diagram of HO. The UL subproblem involves optimiza-
tion of hyper-parameters x based on Dtr;Dvalð Þ, while the LL subprob-
lem involves optimization of weight parameters y, aiming to find the
learning algorithm gyð�Þ based on Dtr.

Fig. 3. Illustrating the training process of meta learning. The whole pro-
cess is visualized to learn new tasks quickly by drawing upon related
tasks on corresponding data sets. It can be decomposed into two parts:
the “base-learner” trained for operating a given task and the “meta-
learner” trained to learn how to optimize the base-learner.

Fig. 4. Illustration of two architectures that are generally applied to multi-
task and meta learning: MFL and MIL. Both of them can be separated
into two parts: meta-parameters denoted by x (blue blocks) and parame-
ters denoted by yj (green blocks). (a) shows meta-parameters for fea-
tures shared across tasks and parameters of the logistic regression
layer. (b) shows meta (initial) parameters shared across tasks and
parameters of the task specific layer.

LIU ETAL.: INVESTIGATING BI-LEVELOPTIMIZATION FOR LEARNING AND VISION FROM AUNIFIED PERSPECTIVE: A SURVEY... 10049

Authorized licensed use limited to: Peking University. Downloaded on December 25,2022 at 03:37:07 UTC from IEEE Xplore.  Restrictions apply. 



3.2.2 Meta-Initialization Learning

Meta-Initialization Learning (MIL) aims to learn a meta ini-
tialization for all tasks. MAML [88], known for its simplicity,
estimates initialization parameters with the cross-entropy
and mean-squared error for supervised classification and
regression tasks purely by the gradient-based search. Except
for initial parameters, recent approaches have focused on
learning other meta variables, such as updating strategies
(e.g., descent direction and learning rate [87], [90], [168]) and
an extra preconditioning matrix (i.e., [82], [97], [169]). More-
over, implicit gradient methods have a rapid development in
the context of few-shot meta learning. There exist a large vari-
ety of algorithms replacing the gradient process of the optimi-
zation of base-learner through calculation of implicit meta
gradient [84], [85], [94], [170]. Due to the large amount of com-
putation required to calculate the Hessian vector product in
the training process, various Hessian-free algorithms have
been proposed to alleviate the costly computation of second-
order derivatives, including but not limited to [54], [55], [56],
[57], [93], [95]. In particular, various first-order approximation
BLO algorithms have been proposed to avoid the time-con-
suming calculation of second-order derivatives in [89]. For
instance, a modularized optimization library was proposed
in [53] to unify several meta learning algorithms into a com-
mon BLO framework1.

As can be shown in subfigure (b) of Fig. 4, x denoted by
blue blocks corresponds to network initialization parameters,
and y denoted by green blocks corresponds tomodel parame-
ters and is treated as the updated variable satisfying the con-
dition yj0 ¼ x. Compared to MFL, there is no deeply
intertwined and entangled relationship between two varia-
bles ðx; yjÞ, and x is only explicitly related to y in the initial
state. As a bi-level coupled nested loop strategy, the LL sub-
problembased on base-learner is trained for operating a given
task, and the UL subproblem based on meta-learner aims to
learn how to optimize the base-learner. Among the well-
known approaches in this direction, most recent approaches
(i.e., [89], [171]) have claimed that the LL objective is denoted
by the task-specific loss on the training data set, i.e.,
fðx; fyjgÞ ¼ ‘ðx; yj;Dj

trÞ. By utilizing cross-entropy function,
the UL objective is given by F ðx; fyjgÞ ¼Pj ‘ðx; yj;Dj

valÞ:
Both MFL and MIL are essential solution strategies of one

optimizer based on another optimizer, thus conforming to the
construction of the BLO scheme. As a task-specific loss associ-
ated with the j-th task, the LL objective can be defined as yj 2
argminyj2Yf x; yj;Dj

tr

� �
, j ¼ 1; . . . ; N . Also, based on fDj

valg,
the UL objective can be given byminx2XF x; fyjg; fDj

valg
� �

.
To summarize, the UL meta-learner performs gradient

descent operations andupdates themeta-parameterwith feed-
back from base-learners to extract generalized meta knowl-
edge. Subsequently, the better meta knowledge is fed into the
base-learner (i.e., the LL subproblem) as part of its model for
optimizing y, thereby forming an optimization cycle.

3.3 Neural Architecture Search

Neural Architecture Search (NAS) seeks to automate the pro-
cess of choosing the optimal neural network architecture [172].

Recently, there has aroused a great deal of interest in gradient-
based differentiable NAS methods [14], [173], [174]. Specifi-
cally, these gradient-based differentiable NAS methods
mainly contain threemain concepts: search space, search strat-
egy and performance estimation strategy. As shown in Fig. 5,
by designing an architecture search space, they generally use a
certain search strategy to find the optimal network architec-
ture. Such a process can be regarded as the system of optimiz-
ing the operation and connection of each node.

DARTS [14], the most well-known instance, relaxed the
search space to be continuous and conducted searching for
architectures in a differentiable way to simultaneously opti-
mize the architectures and weights. Actually, each operation
corresponds to a coefficient in DARTS. By denoting x ¼ fxijg
as the architecture parameters and xij as the form of connection
between two nodes, the expression formula of mixed opera-
tions �oijð�Þ based on the softmax function can bewritten as

�oijð�Þ ¼
X
o2O

expðxijo ÞP
o02O expðxij

o0 Þ
oð�Þ;

where o and o0 are operations andO is the set of all candidate
operations. Then, oij ¼ argmaxo2Oxijo is further evaluated and
performed in order to obtain the optimal architecture. How-
ever, due to the sharp deterioration in performance caused by
the large number of skip connections, a great deal of
improved approaches have emerged, such as ENAS [104],
PC-DARTS [59], P-DARTS [105], just to name a few.

Currently, a series of gradient-based differentiable NAS
methods combined with meta learning have been proposed,
see [16], [107], [175], [176]. Based on the bi-level coupling
mechanism, these gradient-based differentiable NASmethods
have achieved promising results in the numerous visual and
learning applications, such as image classification [58], seman-
tic segmentation [110], [114], [177], object detection [102], [111],
[112], [116], [117], medical image analysis [114], [177], video
classification [139], recommendation system [119], graph net-
work [115], [129] and representation learning [129], etc.

Given the proper search space, it is helpful for these gra-
dient-based differentiable NAS methods to derive the opti-
mal architecture for different vision and learning tasks.
From the BLO’s point of view, the UL objective w.r.t. the
architecture weights (e.g. block/cell) can be parameterized
by x. And the LL objective w.r.t. the model weights can be
parameterized by y. Therefore, the full searching process
can virtually be formulated as a BLO paradigm, where the
UL objective is defined by F ðx; y;DvalÞ based on the valida-
tion data set Dval, and the LL objective is given by
fðx; y;DtrÞ based on the training data set Dtr.

Fig. 5. Schematic diagram of NAS. Derived from a predefined search
space A, NAS first selects an architecture A to transport into the perfor-
mance estimation strategy, then returns the estimated performance of A
to the search strategy.

1. The code for this library is available at https://github.com/dut-
media-lab/BOML
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3.4 Adversarial Learning

Adversarial Learning (AL) is currently deemed as one of the
most important learning tasks. It has been applied in a large
variety of application areas, i.e., image generation [18], [60],
[122], adversarial attacks [178] and face verification [17]. For
example, the work proposed in [60] introduced an adaptive
BLO model for image generation, which guided the generator
to reasonably modify the parameters in a complementary and
promotingway.Moreover, a new adversarial training strategy
has been proposed by learning a parametric optimizer with
neural networks to study the adversarial attack [18]. As the
current influential model, Generative Adversarial Network
(GAN) can be deemed as deep generative models [179].
Recently, targeting at finding pure Nash equilibrium of gener-
ator and discriminator, the author proposed to exploit a fully
differentiable search framework by formalizing as solving a
bi-levelmini-max optimization problem [19].

Most of the AL approaches can formulate the unsuper-
vised learning problem as a bi-level game between two
opponents: a generator which samples from a distribution,
and a discriminator which classifies the samples as real or
false, as shown in Fig. 6. The goal of GAN is to minimize
the duality gap denoted by VðD;GÞ:

minG maxD VðD;GÞ ¼ Eu�pdataðuÞlogDðuÞ
þ Ev�Nð0;1Þ log ð1�DðGðvÞÞÞ;

where the fixed random noise source v obtained from v �
N ð0;1Þ is input into the generator G, which, together with the
sampled real-world image u � pdata, is then authenticated
by the discriminator D. Notice that E denotes the expecta-
tion which implies that the average value of some functions
under a probability distribution.

Indeed, GAN problems generally correspond to the mini-
max BLO problems, where the LL discriminator denoted by
f targets on learning a robust classifier, and the UL genera-
tor denoted by F tries to generate the adversarial samples.
Specifically, the UL and LL objectives can be respectively
formulated as

F ðx; yÞ ¼ �Ev�N ð0;1Þ log ðDðGðvÞÞÞ;

fðx; yÞ ¼ �Eu�pdataðuÞlogDðuÞ
� Ev�Nð0;1Þ log ð1�DðGðvÞÞÞ;

where G and D are parameterized with variables x and y,
respectively. In other words, the LL subproblem targets at

maximizing the expected distance between characteristic
functions of real and generated data distributions and the
UL subproblem aims to maximizing the expected distance
of the generated distribution.

3.5 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) aims to make optimal
decisions by interacting with the environment and learning
from the experiences. Indeed, a variety of DRL tasks, includ-
ing Single-Agent Reinforcement Learning (SARL) [21], [22],
[62], Multi-Agent Reinforcement Learning (MARL) [20], [125],
[128], [180], Meta Reinforcement Learning (MRL) [61], [134],
[181], [182], and Imitation Learning (IL) [131], [132], [133],
which all can bemodeled and tackled by BLO techniques.

As for SARL problems, Actor-Critic (AC) type methods
have been widely studied and viewed as a bi-level or two-
time-scale optimization problems [22], [62], as illustrated in
Fig. 7. Indeed, AC type DRL methods often aim to simulta-
neously learn a state-action value-function Qp that predicts
to expect the discounted cumulative reward and a policy
which is optimal for that value function:

Qpðs; aÞ ¼ Esiþj�P;riþj�R;aiþj�p

X1
k¼0

gjriþjjsi ¼ s; ai ¼ a

 !
;

where P and R denote dynamics of the environment and
reward function, s and a are the state and action, i and j repre-
sent the i-th and j-th steps, and E is the expectation which
implies that the average value of some functionunder a proba-
bility distribution. The policy maximizes the expected dis-
counted cumulative reward for that state-action value-
function, i.e., p	 ¼ argmaxp Es0�p0;a0�p Qpðs0; a0Þð Þ; where s0,
a0 and p0 correspond to the initial state, initial action and the
initial state distribution, respectively. Under the BLO para-
digm, the actor and critic correspond to the UL and LL varia-
bles, respectively. Let x denote the parameters of the state-
action value-function and y denote the parameters of the pol-
icyp. TheUL andLL objectives respectively take the form

F ðx; yÞ ¼ Esi; ai � pðdivðEsiþ1;aiþ1;riþ1

riþ1 þ gQðsiþ1; aiþ1Þð Þ k Qðsi; aiÞÞÞ;
fðx; yÞ ¼ �Es0�p0;a0�pQ

pðs0; a0Þ;

where divð�jj�Þ represents any divergence.
MARL studies how multiple agents can collectively

learn, collaborate, and interact with each other in an envi-
ronment. In the classical MARL system, agents are treated

Fig. 6. Illustrating the architecture of GAN. The generator G is repre-
sented as a deterministic feed forward neural network (red blocks),
through which a fixed random noise v is passed to output GðvÞ. The dis-
criminator D is another neural network (green blocks) which maps the
sampled real-world image u � pdata and GðvÞ to a binary classification
probability.

Fig. 7. Illustrating the schematic diagram of AC learning. First the actor p
interacts with the environment to learn the state-action value-function
Qpðs; aÞ, and then the actor p is again obtained based on Qpðs; aÞ.
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equally and the goal is to solve the Markov game to an arbi-
trary Nash equilibrium when multiple equilibria exist, thus
lacking a solution for selection. To address this issue, the
work in [20] formulates MARL as the multi-state model-free
Stackelberg equilibrium learning problem. Thus, under
Markov games, they construct a BLO formulation to find
Stackelberg equilibrium to address the MARL task. Simi-
larly, a multi-agent bi-level cooperative reinforcement
learning algorithm was proposed in [125] to solve the sto-
chastic decision-making problem.

In recent years, MRL approaches (a.k.a., meta learning on
reinforcement learning tasks), which aim to learn a policy
that adapts fast to new tasks and/or environments, have
achieved remarkable success [181], [183]. For example, the
work in [182] learns a policy that can quickly adapt to other
related models only with one policy gradient step. By add-
ing control variables into gradient estimation, the work
in [134] can obtain low variance estimates for policy gra-
dients. While the work in [61] characterizes the optimality
gap of the stationary points attained by MAML for both
reinforcement learning and supervised learning. Since all
these works are based on the meta-initialization platform, it
is also natural to formulate these meta reinforcement learn-
ing methods from the perspective of BLOs.

Generally, IL techniques are very useful when it is easier
for an expert to demonstrate the desired behavior rather
than to specify a reward function which would generate the
same behavior or to directly learn the policy in DRL
tasks [184]. In recent years, by connecting imitation learning
with generative adversarial learning, a series of Generative
Adversarial Imitation Learning (GAIL) techniques [131],
[132], [133] have been investigated to imitate an expert in a
model-free DRL scenario. Since GAIL type methods have a
natural connection to the mechanism of GANs, we can defi-
nitely formulate these models using BLOs.

3.6 Other Related Applications

The rapid development of deep learning has asserted its
dominance in the field of image processing and analysis. In
addition to the above mentioned tasks, there exist a signifi-
cant amount of other related learning and vision tasks that
can be re(formulated) as BLO problems, such as image
enhancement [24], [135], [138], [141], [185], image registra-
tion [25], image-to-image translation [186], image recogni-
tion [187], image compression [188] and other related works
[140], [142], [151]. For example, earlier work presented
in [135] considered the parameter learning problem for
image denoising models and incorporated a p-norm–based
analytical prior. Under the BLO formulation, the LL sub-
problem is given by a variational model that consists of
data fidelity and regularization terms, and the UL subprob-
lem is expressed by the loss function. Furthermore, the
work proposed in [138] formulated the discriminant dictio-
nary learning method for image recognition tasks as a BLO.
From this point of view, the UL subproblem can directly
minimize the classification error, while the LL subproblem
can use the sparsity term and the Laplacian term to charac-
terize the intrinsic data structure.

By addressing a unified BLO problem, the LL subproblem
is usually represented as a basic model that conforms to the

laws or principles of physics, while the UL subproblem usu-
ally considers further constraints on the variables [23], [139].

4 GRADIENT-BASED BLOS

In past years, gradient-based techniques have become the
most popular BLO solution strategies in learning and vision
fields. In fact, one of the first gradient-based BLO methodol-
ogy is [30]. Currently, a variety of explicit gradient-based
methods have been investigated to solve BLOs [71], [73], [189].
Specifically, the works in [12], [51] first calculate gradient flow
of the LL objective and then perform either reverse or forward
gradient computations for the UL subproblem. Similar ideas
have also been considered in [23], [75], [190], butwith different
specific implementations. On the other hand, there also exist
some implicit gradient based methods [72], [84], [191] to use
the implicit function theorem to obtain the gradient. In this
section, we first review three categories of mainstream BLO
formulations, which have been considered in various applica-
tion scenarios. We then demonstrate how to uniformly refor-
mulate these different BLOs from a single-level optimization
perspective and investigate the intrinsic structures of existing
gradient-based BLO algorithms within a unified algorithmic
platform.

4.1 Different Formulations of BLO

It is worthwhile to notice that the original BLO model given
in Eq. (2) is not clear in the case of the multiple LL optimal
solutions for some of the selections of the UL decision
maker [1]. Therefore, it is necessary to define, which solu-
tion out of the multiple LL solutions in SðxÞ should be con-
sidered. Here we actually consider three categories of
viewpoints, i.e., singleton, optimistic and pessimistic BLOs.

The most straightforward idea in existing learning and
vision literature is to assume that SðxÞ is a singleton. For-
mally, we call the BLO model is with the Lower-Level Sin-
gleton (LLS) condition if 8x 2 X , the solution set of the LL
subproblem (i.e., SðxÞ) is a singleton. In this case, we can
simplify the original model as

minx2XF ðx; yÞ; s:t: y ¼ argminy2Yfðx; yÞ: (3)

Such singleton version of BLOs is well-defined and could
cover a variety of learning and vision tasks (e.g., [7], [9],
[71], [74], just name a few). Thus, in recent years, dozens of
methods have been developed to address this nested opti-
mization task in different application scenarios (see the fol-
lowing sections for more details).

Furthermore, the situation becomes more intricate if the
LL subproblem is not uniquely solvable for each x 2 X .
Essentially, if the follower can be motivated to select an
optimal solution in SðxÞ that is also best for the leader (i.e.,
with respect to F ), it yields the so-called optimistic (strong)
formulation of BLO

minx2X miny2YF ðx; yÞ; s:t: y 2 argminy2Yfðx; yÞ
� �

: (4)

The above stated optimistic viewpoint has drawn increasing
attention in BLO literature [192], [193], [194] and recently
also been investigated in learning and vision fields [32],
[189], [195]. In Section 7, we will further explore how to
solve such optimistic BLOs in detail.
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If the leader does not have the information whether the
follower returns the best response y from SðxÞ in terms of
the UL objective F , then we have to assume that the fol-
lower is not cooperated with the leader. This is known as
the pessimistic (weak) formulation of BLO [196], [197] and
can be given as:

minx2X maxy2YF ðx; yÞ; s:t: y 2 argminy2Yfðx; yÞ
� �

:

(5)

It should be pointed out that till now we still lack efficient
gradient-based algorithms to address the pessimistic BLO
problems.2

4.2 BR-Based Single-Level Reformulation

In this work, we consider the optimal solution of the LL sub-
problem with a given UL variable x as the Best-Response
(BR) of the follower (denoted as y	ðxÞ). Then we can inter-
pret BLO as a game process, in which the leader x considers
what BR of the follower y is, i.e., how it will respond once it
has observed the quantity of the leader [1], [198]. Based on
the above understanding, we can reformulate the three dif-
ferent categories of BLOs as a unified single-level optimiza-
tion problem.

Specifically, given the UL variable x, we denote the corre-
sponding BR mapping as y	ðxÞ. In fact, if considering the
singleton BLO, y	ðxÞ can be directly obtained by the unique
LL solution. While for the optimistic and pessimistic BLOs,
we actually first define their Inner Simple Bi-level (ISB) sub-
problems (w.r.t., y)3 as

Optimistic ISB:miny2SðxÞF ðx; yÞ and Pessimistic ISB:maxy2SðxÞF ðx; yÞ:
(6)

Then by defining the solution set of ISB as eSðxÞ, we could
consider any y	ðxÞ 2 eSðxÞ as the BR mapping, because
points in eSðxÞ all obtain the minimum/maximum of F ðx; yÞ
in SðxÞ. Therefore, we can formulate the general BR map-
ping for different categories of BLOs as follows:

y	ðxÞ :¼ argminy2Yfðx; yÞ; Singleton;

y	ðxÞ 2 eSðxÞ :¼ argminy2SðxÞF ðx; yÞ; Optimistic;
argmaxy2SðxÞF ðx; yÞ; Pessimistic:

�8<:
(7)

Based on Eq. (7), we actually obtain the following value-
function-based reformulation (a single-level optimization
model) for BLOs stated in Eq. (2), i.e.,

minx2X’ðxÞ :¼ F ðx; y	ðxÞÞ; (8)

in which ’ðxÞ actually can be used to uniformly represent
the UL value-function of F from the singleton, optimistic
(i.e., infy2SðxÞ F ðx; yÞ) and pessimistic (i.e., supy2SðxÞF ðx; yÞ)
viewpoints.

4.3 A Unified Platform for Gradient-Based BLOs

Moving one step forward, the gradient of ’ w.r.t. the UL
variable x can be written as4

@’ðxÞ
@x|fflffl{zfflffl}

grad. of x

¼ @F ðx; y	ðxÞÞ
@x|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

direct grad. of x

þ GðxÞ|ffl{zffl}
indirect grad. of x

; (9)

where the indirect gradient GðxÞ can be further specified as
the following two components:

GðxÞ ¼ @y	ðxÞ
@x0

� 	0

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
BR Jacobian

@F ðx; y	ðxÞÞ
@y|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

direct grad. of y

: (10)

Here we use “grad.” as the abbreviation of gradient and
denote the transpose operation as ð�Þ0. Note that,y	ðxÞ as a gen-
eral mapping, can be given specific constraints and necessary
assumptions to fit their particular requirements for these spe-
cific gradient-based BLO approaches in order to obtain differ-
ent iteration formats and theoretical properties. For details,
please refer to the following contents. In fact, by simple com-
putation, the direct gradient is easy to obtain. However, the
indirect gradient is intractable to obtain becausewemust com-
pute the changing rate of the optimal LL solution with respect
to the UL variable (i.e., the BR Jacobian @y	ðxÞ

@x ). Please notice
that we will also call @’ðx

kÞ
@xk

as the practical BR Jacobian w.r.t. xk

in the following statements. The computation of the indirect
gradient GðxÞ naturally motives the formulation of y	ðxÞ to
obtain @y	ðxÞ

@x . For this purpose, a series of techniques have
recently been developed from either explicit or implicit per-
spectives, which obtain their optimal solutions by recurrent
differentiation through dynamic system and based on implicit
differentiation theory, respectively.

Nowwedemonstrate how to formulate various existing gra-
dient-based BLOs from a unified algorithmic platform.We first
summarize a general BLO updating scheme in Algorithm 1. It
can be seen that the key component of this algorithm is to calcu-
late the BR Jacobian. Thenwith @’ðxkÞ

@xk
, we can just perform stan-

dard (stochastic) gradient descent schemes to update xk. Based
upon our general algorithmic platform, we can observe that the
main differences of these existing BLO approaches are just their
specific strategies for calculating Jacobian of the BR mapping
under different conditions (i.e., w/ LLS andw/oLLS).

Algorithm 1. A General Gradient-Based BLO Scheme

Input: The UL and LL initialization.
Output: The optimal UL and LL solutions.
1: for k ¼ 1; . . . ;K do
2: Calculate the BR Jacobian @’ðxkÞ

@xk
.

% (Mainstream calculation strategies are summarized
in Figs. 8 and 9 and thoroughly surveyed in the following
sections)

3: Perform (stochastic) gradient descent to update xk.
% (based on @’ðxkÞ

@xk
)

4: end for

2. In Section 9, we will demonstrate that we can also obtain some
practical gradient-based iteration scheme within our general algorith-
mic platform for the pessimistic formulation of BLO.

3. It is known that the simple bi-level optimization is just a specific
BLO problem with only one variable [32], [199].

4. Please notice that we actually do not distinguish between the
operation of the derivatives and partial derivatives to simplify our
presentation.
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In Fig. 8, we summarize mainstream gradient-based BLOs
and illustrate their intrinsic relationships within our general
algorithmic platform. It can be observed that in the LLS sce-
nario, from the BR-based perspective, existing gradient meth-
ods can be categorized as two groups: Explicit Gradient for
Best-Response (EGBR, stated in Section 5) and Implicit Gradi-
ent for Best-Response (IGBR, stated in Section 6). As for
EGBR, there aremainly three types ofmethods, namely, recur-
rence-based EGBR (e.g., [12], [13], [14], [51], [71]), initializa-
tion-based EGBR (e.g., [89], [93] ) and proxy-based EGBR
methods (e.g., [81], [86], [169], [171]), differing from each other
in the way of formulating the BRmapping. For IGBR, existing
works consider two groups of techniques (e.g., linear sys-
tem [74], [84] andNeumann series [72]) to alleviate the compu-
tational complexity issue for the BR Jacobian. We emphasize
that the validity of the above BLO methodologies must
depend on the singleton of their LL solution set.When solving
BLOs without the LLS assumption, recent works in [32], [189]
havedemonstrated thatwe need tofirst construct BRmapping
based on both UL and LL subproblems, and then solve two
optimization subproblems, namely, the single-level optimiza-
tion subproblem (w.r.t. x) and the ISB subproblem (w.r.t. y).
While thework in [195] has introduced a series of barrier func-
tions and utilized interior point methods to obtain the BR
mapping for each given x.

To end up this section, we plot Fig. 9 to illustrate the opti-
mization processes of existing mainstream gradient-based
BLO methods from the BR mapping perspective and within
our unified algorithmic platform. In the following (i.e., Sec-
tions 5, 6, and 7), we will thoroughly survey these different
categories of gradient-based BLO algorithms (including
their acceleration, simplification and extension techniques)
and their theoretical properties (convergence behaviors and
computational complexity), accordingly.

5 EXPLICIT GRADIENT FOR BEST-RESPONSE

With the LLS condition,we delvedeep into the EGBR category
of methods, which aims to perform automatic differentiation

through the LL dynamic system [200], [201] to solve the BLO
problem. Specifically, given an initialization y0 ¼ C0ðxÞ at t ¼
0, the iteration process of EGBRs can be generallywritten as

yt ¼ Ctðyt�1; xÞ; t ¼ 1; . . . ; T; (11)

where Ct denotes some given updating scheme (based on
the LL subproblem) at t-th stage and T denotes the overall
LL iterations number. For example, we can formulate Ct

based on the gradient descent rule, i.e.,

Ctðyt�1; xÞ ¼ yt�1 � htdfðyt�1; xÞ; (12)

where dfðyt�1; xÞ is the descent mapping of f at t-th stage
(e.g., dfðyt�1; xÞ ¼ @fðx;yt�1Þ

@yt�1
) and ht denotes the correspond-

ing step size. Then we can calculate @’ðxkÞ
@xk

by substituting yT :
¼ CðxÞ approximately for y	ðxÞ, and the full dynamic sys-
tem can be defined as

CðxÞ :¼ CT 
 � � � 
C1 
C0ðxÞ: (13)

Here the notation 
 represents the compound dynamic
operation of the entire iteration. That is, we actually con-
sider the following optimization model

minx2X’T ðxÞ :¼ F ðx; yT ðxÞÞ; (14)

and need to calculate @’T ðxÞ
@x (instead of Eq. (9)) in the practi-

cal optimization scenario. Since it should be noted that C
actually obtains an explicit gradient for best-response of the
follower, we call this category of gradient-based BLOs as
EGBR approaches hereafter. Starting from the Eq. (11), it is
obvious to notice that yt may be affected by the coupling of
the variable x throughout the iteration. This coupling rela-
tionship will have a direct impact on the optimization pro-
cess of the UL variable in Eq. (9). In fact, existing EGBR
algorithms can be summarized from three perspectives. The
first is that, if x closely acts on yt during the whole iteration
process, the subsequent optimization of variable x will be
carried out recursively. The second is that when x only acts
in the initial step, the subsequent optimization of variable x

Fig. 8. Summary of the mainstream gradient-based BLOs. We categorize these existing approaches into two main groups, i.e., w/ and w/o LLS
assumptions. When solving BLOs with LLS assumption, these methods can be further divided into two categories: EGBR and IGBR. As for EGBRs,
they can be solved by different AD techniques (as denoted by the dashed rectangle). Very recently, two algorithms have also been proposed to
address BLOs without the LLS assumption. In particular, they actually introduce a bi-level gradient aggregation or a value-function-based interior-
point method to calculate the indirect gradient.
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will be simplified. The third class is to replace the whole
iterative process with a hyper-network, so as to efficiently
approximate the BR mapping. Ultimately, in such cases, we
divide them into three categories in terms of the coupling
dependence of the two variables and the solution proce-
dures, namely recurrence-based EGBR (stated in Sec-
tion 5.1), initialization-based EGBR (stated in Section 5.2)
and proxy-based EGBR (stated in Section 5.3).

5.1 Recurrence-Based EGBR

It can be seen from Eq. (11) that all the LL iterative variables
y0; y1; . . . ; yT depend on x, and x serves as a recursive vari-
able for the dynamic system. One of the most well-known
approaches for calculating @’T ðxÞ

@x (with the above recurrent
structure) is Automatic Differentiation (AD) [159], [202],
which is also known as algorithmic differentiation or simply
of “AutoDiff”. There exist two diametrically opposed
approaches for computing the gradient of recurrent neural
networks, one of which corresponds to backward propaga-
tion through time in a reverse-modeway [203], [204], and the
other corresponds to real-time recurrent learning in a for-
ward-mode way [205], [206]. Since then quite a number of
methods, closely related to this subject, have been pro-
posed [12], [13], [51], [71]. Here we would like to review
recurrence-based BR methods, covering forward-mode,
reverse-mode AD, truncated and one-stage simplifications.

Forward-Mode AD (FAD). To compute @’T ðxÞ
@x , FAD appeals

to the chain rule for the derivative of the dynamic sys-
tem [51]. Specifically, recalling that yt ¼ Ctðyt�1; xÞ, we
have that the operation Ct indeed depends on x both
directly by its expression and indirectly through yt�1.
Hence, by drawing upon the chain rule, the formulation is
given as5

@yt
@x

¼ @Ctðyt�1; xÞ
@yt�1

@yt�1

@x
þ @Ctðyt�1; xÞ

@x
: (15)

To simplify the notation, we denote Zt ¼ @yt
@x , At ¼ @Ctðyt�1;xÞ

@yt�1
,

Bt ¼ @Ctðyt�1;xÞ
@x for t > 0 and Z0 ¼ B0 ¼ @C0ðxÞ

@x . Then we can

rewrite Eq. (15) as Zt ¼ AtZt�1 þ Bt ðt ¼ 1; . . . ; T Þ. In this

way, we have the following formulation to approximate the

BR Jacobian

@yT ðxÞ
@x

¼ ZT ¼
XT
t¼0

YT
i¼tþ1

Ai

 !
Bt: (16)

Based on the above derivation, it is apparent that @’T ðxÞ
@x can be

computed by an iterative algorithm summarized in
Algorithm 2. Actually, FAD allows the program to update
parameters after each step, which may significantly speed up
the dynamic iterator and take up fewer memory resources
when the number of hyper-parameters is much smaller than
the number of parameters. It can be time-prohibitive for many
hyper-parameters in amore efficient and convenientway.

Algorithm 2. Forward-Mode AD (FAD)

Input: The UL variable at the current stage x and the LL
initialization y0.

Output: The gradient of ’T with respect to x, i.e., @’T
@x .

1: Z0 ¼ @C0ðxÞ
@x .

2: for t ¼ 1; . . . ; T do
3: yt ¼ Ctðyt�1; xÞ.
4: Zt ¼ AtZt�1 þ Bt.
5: end for
6: return

@F ðx;yT Þ
@x þ Z0

T
@F ðx;yT Þ

@yT
.

Reverse-Mode AD (RAD). RAD is a generalization of the
backward propagation algorithm and based on a Lagrang-
ian formulation associated with the parameter optimization
dynamics. By replacing y	ðxÞ by yT and incorporating
Eq. (16) into Eq. (9), a series of RAD works (e.g., [12], [51],
[71]) derived

Fig. 9. Illustrating the roadmap of different categories of gradient-based BLOs. In the left bottom region, the formulations in the solid rectangles (i.e.,
singleton and optimistic) have been widely studied. In contrast, since gradient-based methods for pessimistic BLOs have not been properly investi-
gated in existing literature, we denote this category of formulation by a dashed rectangle. In Section 9, we demonstrate that we can also obtain a
practical pessimistic BLO scheme within our general algorithmic platform.

5. Please notice that here we actually require ytðxÞ to be a continu-
ously differentiable function (w.r.t. x) for all t ¼ 1; . . . ; T . In existing
EGBRs, they just introduce differentiableCt to meet this requirement.
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@’T ðxÞ
@x

¼ @F ðx; yT Þ
@x

þ Z0
T

@F ðx; yT Þ
@yT

: (17)

Rather than calculating ZT by forward propagation as that
in FAD (i.e., Algorithm 2), the computation of Eq. (17) can
also be implemented by backward propagation. That is, we

first define gT ¼ @F ðx;yT Þ
@x and ��T ¼ @F ðx;yT Þ

@yT
. Then we update

gt�1 ¼ gt þ B0
t��t, and ��t�1 ¼ A0

t��t, with t ¼ T; . . . ; 0. Finally,

we have that @’T ðxÞ
@x ¼ g�1. Indeed, the above RAD calculation

is structurally identical to backward propagation through

time [51]. Moreover, we can also derive it following the clas-

sical Lagrangian approach. That is, we reformulate Eq. (14)
as the following constrained model

minx2X’T ðxÞ s:t:
y0 ¼ C0ðxÞ;
yt ¼ Ctðyt�1; xÞ; t ¼ 1; . . . ; T:

�
(18)

The corresponding Lagrangian function can be written as

Lðx; fytg; f��tgÞ ¼ ’T ðxÞ þ ��0
0 C0ðxÞ � y0

 �

þPT
t¼1 ��

0
t Ctðyt�1; xÞ � yt

 �

; (19)

where ��t denotes the Lagrange multiplier associated with
the t-th stage of the dynamic system. The KKT optimality
condition of Eq. (18) is obtained by setting all derivatives of
L to zero, satisfying the condition that ytðxÞ is a continu-
ously differentiable function w.r.t. x for the case that t ¼
1; . . . ; T . Then by some simple algebras, we have @’T ðxÞ

@x ¼ @L
@x .

Overall, we present the RAD algorithm in Algorithm 3.

Algorithm 3. Reverse-Mode AD (RAD)

Input: The UL variable at the current stage x and the LL
initialization y0.

Output: The gradient of ’T with respect to x, i.e., @’T
@x .

1: y0 ¼ C0ðxÞ.
2: for t ¼ 1; . . . ; T do
3: yt ¼ Ctðyt�1; xÞ.
4: end for
5: gT ¼ @F ðx;yT Þ

@x and ��T ¼ @F ðx;yT Þ
@yT

.
6: for t ¼ T; . . . ; 0 do
7: gt�1 ¼ gt þ B0

t��t and ��t�1 ¼ A0
t��t.

8: end for
9: return g�1.

Truncated RAD (TRAD): The above two precise calcula-
tion methods in many practical applications are tedious and
time-consuming with full backward propagation training.
As aforementioned, due to the complicated long-term
dependencies of the UL subproblem on yT ðxÞ, calculating
Eq. (17) in RAD is a challenging task. This difficulty is fur-
ther aggravated when both x and y are high-dimensional
vectors. More recently, the truncation idea has been revis-
ited to address the above issue and shows competitive per-
formance with significantly less computation time and
memory [13], [207], [208]. Specifically, by ignoring the long-
term dependencies and approximating Eq. (17) with partial
sums (i.e., storing only the lastM iterations), we have

@’T ðxÞ
@x

� gT�M :¼ @F ðx; yT Þ
@x

þ Z0
T�M

@F ðx; yT ðxÞÞ
@yT

; (20)

where ZT�M ¼PT
t¼T�Mþ1

QT
i¼tþ1 Ai

� �
Bt. It can be seen that

ignoring the long-term dependencies can greatly reduce the
time and space complexity for computing the approximate gra-
dients. Recently, thework in [13] has investigated the theoretical
properties of the above truncated RAD scheme, and confirmed
this fact that using few-step backward propagation could per-
form comparably to optimizationwith the exact gradient, while
requiring far lessmemory and half computation time.

One-Stage RAD. Limited and expensive memory is often a
bottleneck inmodernmassive-scale deep learning applications.
For instance, multi-step iteration of the inner program will
cause a lot of memory consumption [88]. Inspired by BLO, a
variety of simplified and elegant techniques have been adopted
to circumvent this issue. Thework in [14] proposes another sim-
plification of RAD, which considers a fixed initialization y0 and
only performs one-step iteration in Eq. (11) to remove the recur-
rent structure for the gradient computation in Eq. (17), i.e.,

@’1ðxÞ
@x

¼ @F ðx; y1ðxÞÞ
@x

þ @y1ðxÞ
@x0

� 	0
@F ðx; y1ðxÞÞ

@y1ðxÞ
: (21)

By formulating the dynamic system like that in Eq. (12), we

then write
@y1ðxÞ
@x as

@y1
@x0

¼
@ y0 � @fðx;y0Þ

@y0

� �
@x0

¼ � @2fðx; y0Þ
@y0@x

0 : (22)

Since calculating Hessian in Eq. (22) is still time-consuming,
to further simplify the calculation, we can adopt finite
approximation [14] to cancel the calculation of the Hessian
matrix (e.g., central difference approximation). The specific
derivation can be formalized as follows:

@F ðx; y1Þ
@y1

@2fðx; y0Þ
@y0@x

0 �
@fðx;yþ

0
Þ

@x � @fðx;y�
0
Þ

@x

2�
; (23)

in which y�0 ¼ y0 � �
@F ðx;y1Þ

@y1
, and � is set to be a small

scalar [59].

5.2 Initialization-Based EGBR

The research community has started moving towards the
challenging goal of building general purpose initialization-
based optimization systems whose ability to learn the initial
parameters is better. Regardless of the recurrent structure, we
need to consider the special setting to analyze a family of algo-
rithms for learning the initialization parameters, named ini-
tialization-based EGBRmethods. In this series, MAML [88] is
considered as the most representative and important work.
By making more practical assumptions about the coupling
dependence of two variables, thesemethods no longer use the
full dynamic system to explicitly and accurately describe the
dependency between x and y as discussed above in Eq. (18),
but adopt a further simplified paradigm.

Specifically, by treating the iterative dynamic system
with only the first step that y is explicitly related to x, this
process can be formulated as

minx2X’T ðxÞ s:t:
y0 ¼ C0ðxÞ;
yt ¼ Ctðyt�1Þ; t ¼ 1; . . . ; T;

�
(24)
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where x represents the network initialization parameters,
and yt represents the network parameters after performing
some sort of update. Given initial condition C0ðxÞ, then we
obtain the following simplified formula

yT ¼ C0ðxÞ �
XT
t¼1

dfðyt�1Þ; (25)

where dfðyt�1Þ is the descent mapping of f at the t-th stage
(e.g., dfðyt�1Þ ¼ @fðx;yt�1Þ

@yt�1
). Finally, we have the Jacobian

matrix as follows

@yT
@x

¼
@ C0ðxÞ �

PT
t¼1 dfðyt�1Þ

� �
@x

: (26)

Then we have to calculate the Hessian matrix term @2f
@yt�1@x

0 ,
which is time-consuming in real computation scenarios. To
reduce the computational load, wewill introduce two remark-
ably simple algorithms via a series of approximate transforma-
tion operations below. Among various schemes to simplify the
algorithm based on initialization-based EGBR approaches,
first-order approximation (e.g., [89], [93]) and layer-wise trans-
formation (e.g., [81], [86], [169], [171]) are among themore pop-
ular. Very recently, the works in [209], [210] also consider the
initialization as an auxiliary variable to improve the perfor-
mance of RAD.

First-Order Approximation. For example, the most represen-
tative algorithms (i.e., FOMAML [89] and Reptile [93]) adopt
the operation of first-order approximation, a way to alleviate
the Hessian term computation problem without sacrificing
much performance. Specifically, this approximation ignores
the second derivative term by removing the Hessian matrix

@2f
@yt�1@x

0 , thus simplifying the substitution of @’T ðxÞ
@x performed by

@’T ðxÞ
@x

¼ @F ðx; yT ðxÞÞ
@x

þ @C0ðxÞ
@x0

� 	0
@F ðx; yT ðxÞÞ

@yT ðxÞ
: (27)

In addition, there is another first-order extension to simplify
Eq. (26) via the operation of difference approximation [93].
Instead of avoiding the Hessian term directly, it tries to
approximate

@yT
@x (i.e.,yT � x and ðyT � xÞ=a) in another soft

way, where a is the step size used for the gradient descent
operation. Contrary to [89], this method offers to employ
different linear combinations of all steps, as opposed to
using only the last step. Overall, the above algorithm can
significantly reduce the computational cost while maintain-
ing roughly comparable performance.

Layer-Wise Transformation. Indeed, there are also a series
of learning-based BLOs related to layer-wise transforma-
tion, i.e., Meta-SGD [81], T-Net [171], Meta-Curvature [86]
and WarpGrad [169]. In addition to initial parameters, this
type of work focuses on learning some additional parame-
ters (or transformation) at each layer of the network. From
the above Eq. (25), it can be uniformly formulated as

yT ¼ C0ðxÞ �
XT
t¼1

Pðyt�1;vvÞdfðyt�1Þ; (28)

where Pðyt�1;vvÞ defines the matrix transformation learned at
each layer and vv is an auxiliary vector (e.g., learning rate). For
example, Meta-SGD [81] learns a vector vv of learning rates

and P corresponded to diagðvvÞ, and T-Net [171] aims to learn
block-diagonal preconditioning linear projections. Similarly,
an additional block-diagonal preconditioning transformation
is also performed byMeta-Curvature [86]. WarpGrad [169] is
closely related to the concurrent work ofMeta-Curvature [86],
which defines the preconditions gradient from a geometrical
point of view and replaces the linear projectionwith a non-lin-
ear preconditioningmatrix as awarp layer.

5.3 Proxy-Based EGBR

Generally speaking, calculating the BR mapping (or BR
Jacobian) is key to solve BLOs. Recently, several proxy-
based EGBR methods (e.g., [9], [77], [163]) utilize the differ-
entiable hyper-network (denoted as CuuðxÞ with parameters
uu) to substitute the dynamic system CðxÞ and then approxi-
mate the BR mapping,6 i.e.,

CuuðxÞ ! CðxÞ � y	ðxÞ: (29)

Specifically, they train a hyper-network that takes hyper-
parameters x as input and outputs the approximate optimal
set of weights as the optimal solution of the LL subproblem.

In fact, both global and local proxy techniques have been
considered to approximate the BRmapping. From the perspec-
tive of global approximation, first, if the distribution pðxÞ � X
is fixed, they learn uu by minimizing Ex�pðxÞfðx;CuuðxÞÞ, so that
CuuðxÞ can approximate the BR mapping in a neighborhood
around the current x, and second update xwithCuu as a proxy
substituted into Eq. (14), i.e.,

x	 � argminx2XF ðx;CuuðxÞÞ: (30)

For local approximation, by introducing a small UL disturbing
term, they first minimize the objective E��pð�jdÞfðxþ �;Cuuðxþ
�ÞÞ, where � represents the perturbation noise added to x, and
pð�jdÞ is defined as a factorized Gaussian noise distribution
with a fixed scale parameter d. After that, the UL variable x is
updated byminimizing the proxy function, i.e., Eq. (30).

In comparison to other types EGBRs, proxy-based EGBRs
can easily replace existing modules in deep learning libraries
with hyper-counterparts that accept an additional vector of
UL variable as input and adapt online, thereby requiring less
memory consumption tomeet the performance requirements.

6 IMPLICIT GRADIENT FOR BEST-RESPONSE

In contrast to the EGBRmethods surveyed above, IGBRmeth-
ods in essence can be interpreted as introducing Implicit Func-
tion Theory (IFT) to derive BR Jacobian [211]. In particular,
IGBR type BLOs only rely on the solution to the LL optimiza-
tion and can effectively decouple the UL gradient computa-
tion from the choice of LL optimizer. Indeed, the gradient-
based BLO methodologies with implicit differentiation are
radically different from EGBR methods, which have been
extensively applied in a string of applications (e.g., [72], [84],
[191]). As an example, a set of early IGBR approaches (e.g.,
[160], [161]) used implicit differentiation to select hyper-
parameters of kernel-based models. Recently, IGBR type
approaches have been applied in different application

6. Note that, these methods assume y	ðxÞ is a continuously differen-
tiable function and X and Y denote the whole space [9], [77], [163].
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scenarios, such as learning hyper-parameter for neural net-
works [72] and variationalmodels [135].

Now we demonstrate how to derive IGBRs to solve BLOs.
Specifically, in the LLS optimization scenario, we first require
that fðx; yÞ satisfies the smooth condition (or at least twice con-
tinuously differentiable) w.t.r. both the UL and LL variables,
and y	ðxÞ is a continuously differentiable functionw.r.t. x. Then
we candirectly obtain the implicit gradient of x (i.e.,GðxÞ) based
on the first-order optimality condition (i.e., @fðx;y

	ðxÞÞ
@y	ðxÞ ¼ 0). That

is, by deriving the above equationw.r.t. x, we have that

@y	ðxÞ
@x0

þ @2fðx; y	ðxÞÞ
@y	ðxÞ@y	ðxÞ0
� 	�1

@2fðx; y	ðxÞÞ
@y	ðxÞ@x0 ¼ 0:

By further assuming that @2fðx;y	ðxÞ
@y	ðxÞ@y	ðxÞ0 is invertible, and draw-

ing upon the chain rule, the indirect gradient GðxÞ can be
obtained as follows:

GðxÞ ¼ � @2fðx; y	Þ
@y	@x0

� 	0
@2fðx; y	Þ
@y	@y	0

� 	�1
@F ðx; y	Þ

@y	
: (31)

Intuitively, Eq. (31) has offered the exact indirect gradient for-
mulation but is generally calculated based on numerical
approximations in practice. From a computational point of
view, due to involving a large number of repeated product
operations ofHessian-vector and Jacobian-vector, EGBRs based
on high-dimensional data are usually computationally expen-
sive and time-consuming. Thus a few implicit techniques, such
as IGBR based on linear system [74], [84] and Neumann series
[72], have been proposed to address this computational issue.

Based on Linear System. To calculate the Hessian matrix
inverse more efficiently, it is generally assumed that solving
linear systems is a common operation (e.g., HOAG [74],
IMAML [84]). Specially, ð @2f

@y@y0Þ�1 @F
@y can be computed as the

solution to the linear system ð @2f
@y@y0Þq ¼ @F

@y for q. Based on the
above derivation, it is apparent that @F

@x can be directly com-
puted by the algorithm summarized in Algorithm 4.

Algorithm 4. Implicit Gradient by Solving Linear System

Input: The UL variable at the current state, i.e., x.
Output: The gradient of F with respect to x, i.e., @F

@x .
1: Optimize the LL variable up to tolerance �. That is, find y"

such that

ky	ðxÞ � y"k � �:

2: Solve the linear system

@2fðx; y"Þ
@y"@y

0
"

� 	
q ¼ @F ðx; y"Þ

@y"
;

for q up to the tolerance �, i.e., @2f
@y"@y

0
"

� �
q� @F

@y"

��� ��� � �:
3: Compute approximate gradient by

p ¼ @F ðx; y"Þ
@x

� @2fðx; y"Þ
@y"@x

0

� 	0
q:

4: return p.

Based on Neumann Series. Instead of solving the linear sys-
tem, another type of IGBM (i.e., Neumann IFT [72]) method
aims to calculate the Neumann series to approximate the
inverse of Hessian matrix. Specifically, rather than solving
the linear system in the second step of Algorithm 4, the
inverse Hessian is expressed as the following Neumann
series:

@2f

@y@y0

� 	�1

¼ lim
i!1

Xi
j¼0

I� @2f

@y@y0

� 	j

;

where I denotes an identity matrix with proper size. If the
operator I� @2f

@y@y0 is contractive, it leverages that unrolling
differentiation for i steps around locally optimal weights
y	ðxÞ is equivalent to approximating the inverse with the
first i terms in Neumann series. In this way, the entire com-
putation can efficiently perform vector-Jacobian products,
thus providing a cheap approximation to the inverse-Hes-
sian-vector product.

7 BLO BEYOND LOWER-LEVEL SINGLETON

As stated in the above Sections 4, 5, and 6, different catego-
ries of gradient-based algorithms have been proposed to
address BLOs. However, most of these approaches rely on
the LLS assumption (i.e., the solution set of the LL subprob-
lem is a singleton) stated in Section 4 to simplify their opti-
mization process and theoretical analysis. That is to say, the
sequence fytgTt¼0 generated by these mainstream methods
could converge to the true optimal solution only if the LLS
condition is satisfied. Unfortunately, it has been demon-
strated that such LLS assumption is too restrictive to be sat-
isfied in most real-world learning and vision applications.
For example, the works in [32], [189] have designed a series
of counter-examples to illustrate that these existing EGBRs
cannot obtain the correct solution if the LLS assumption is
not satisfied.

In this section, we review some recent works [32], [189],
[195], which can efficiently address the LLS issue in the opti-
mistic BLO scenario. The key optimization process of these
works is to obtain the solution set of the ISB (i.e., Eq. (6)).
That is, these works actually adopted different techniques,
such as the UL and LL gradient aggregation [32], [189] and
value-function-based interior-point method [195] to solve
Eq. (6) for BLOs without the LLS condition.

UL and LL Gradient Aggregation. Differing from previous
EGBR type methods which only rely on the gradient infor-
mation of the LL subproblem to update y, a more general-
ized EGBR type method, Bi-level Descent Aggregation
(BDA) method [32], characterizes an aggregate computation
of both the LL and the UL descent information. With a given
UL variable x, the aggregated descent direction w.r.t. the
ISB subproblem (i.e., Eq. (6)) can be defined as

dðyt�1; xÞ ¼ rt
@F ðx; yt�1Þ

@yt�1

þ ð1� rtÞ
@fðx; yt�1Þ

@yt�1

; (32)

where rt 2 ð0; 1
 is the aggregation parameter (tending to

zero [212], [213]), and
@F ðx;yt�1Þ

@yt�1
(or

@fðx;yt�1Þ
@yt�1

) stands for the

descent directions of the UL (or LL) objectives.
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Value-Function-Based Interior-Point Method. Different from
EGBRs and IGBRs, a more recent Value-Function Best-
Response (VFBR) type BLO methods reformulate BLO into
a ISB optimization problem by the value function of the UL
objective. After that, they further transform it into a single-
level optimization problem with an inequality constraint
through the value function of the LL objective. Recently, a
typical VFBR work, named Bi-level Value-Function-based
Interior-point Method (BVFIM) [195], has designed a log-
barrier penalty-based single-level reformulation for Eq. (6)
to address the LLS issue in the non-convex scenario. Specifi-
cally, BVFIM first reformulates the ISB subproblem in
Eq. (6) as follows:

miny2YF ðx; yÞ; s:t: fðx; yÞ � cmðxÞ; (33)

where cmðxÞ is a regularized value function of the LL sub-
problem, i.e.,

cmðxÞ ¼ miny2Yfðx; yÞ þ m1

2
kyk2 þ m2: (34)

Here m1;m2 are two positive constants and we denote m ¼
ðm1;m2Þ. Then the relaxed inequality constraint fðx; yÞ �
cmðxÞ is penalized to the objective by a log-barrier penalty
and thus Eq. (33) can be approximated by

’m;u;t xð Þ ¼ miny2YF ðx; yÞ þ u

2
kyk2

� t lnðcmðxÞ � fðx; yÞÞ; (35)

where ðm; u; tÞ > 0. Finally, BVFIM proves that indirect gra-
dient GðxÞ in Eq. (10) can be obtained by solving a series of
Eq. (35) with decreasing parameters ðm; u; tÞ (tending to
zero). It should be noticed that BVFIM can successfully
avoid these time-consuming Hessian-vector and Jacobian-
vector products, which are necessary for previous gradient-
based BLOs. So this method is more suitable for BLO tasks
with complex LL subproblems.

8 THEORETICAL INVESTIGATIONS

In addition to modeling various learning and vision appli-
cations from the perspective of BLO and establishing a gen-
eral algorithmic framework to unify different categories of
existing BLO algorithms, in this section, we further investi-
gate some important theoretical issues of BLOs, including
the convergence behaviors and computational complexity
of gradient-based BLOs, which actually can provide us
insights and guidance in practical application scenarios
(e.g., adopt/design proper BLO methods).

8.1 Convergence Properties and Required
Conditions

In existing literature, two categories of convergence proper-
ties have been proved for gradient-based BLOs. The first
type is “convergence towards stationarity”, which guaran-
tees that the UL value-function can converge to a first-order

stationary point satisfying limK!1 k @’ðxK
T
Þ

@xK
T

k ¼ 0. Here we

actually consider the convergence property of the UL vari-

able, i.e., the number of UL iteration K tends to infinity
(with a fixed number of LL iteration T ). The other

convergence results actually characterize the following

properties: xT
s!x	7 and infx2X ’T ðxÞ ! infx2X ’ðxÞ) when

T ! 1. That is, they prove that for any limit point �x of the
sequence fxTg, if xT is a global (resp. local) minimum of
’T ðxÞ, then �x is a global (resp. local) minimum of ’ðxÞ. For
convenience, we call this type of property as “convergence
towards global/local minimum”8. In Table 3, we analyze
the convergence properties and conditions required by the
UL and LL subproblems for different categories of gradient-
based BLOs, including EGBRs (e.g., RHG [12], TRAD [13],
HF-MAML [214], STN [9] and BDA [32]), IGBRs (e.g.,
HOAG [74] and IMAML [84]) and VFBR (e.g., BVFIM [195]).

To guarantee the convergence to stationary solutions,
some EGBRs (e.g., TRAD [13], HF-MAML [214] and
STN [9]) required the first-order Lipshitz assumption for
the UL and LL objectives (i.e., “LF” and “Lf” for short) and
the twice continuously differentiable property for the LL
objective. In addition, there are also some EGBRs that
require additional strong assumptions to obtain the first-
order stationary points. For instance, HF-MAML [214] relies
on second-order Lipshitz assumption (denoted as
“Lipschitz-Hessian”) for the LL objective, while STN [9]
needs the nonsingular Hessian assumption for the LL objec-
tive. As for IGBRs (e.g., HOAG [74] and IMAML [84]), they
generally require that the gradient (w.r.t. y) of both the UL
objective and the LL objective are Lipschitz continuous. As
another mainstream EGBR, the work [12] requires that the
LL dynamic system fyT ðxÞg is uniformly bounded on X
and yT ðxÞ uniformly converges to y	ðxÞ when T ! 1. Then
we can obtain the convergence towards the global/local
minimum. As for IGBRs, both the Lipshitz Hessian and non-
singular Hessian are key properties to guarantee their sta-
tionarity convergence [74], [84], [214].

8.2 A General Proof Template for EGBRs

In this subsection, we would like to further provide a gen-
eral proof template to analyze the convergence behaviors
(i.e., convergence towards global/local minimum) of EGBR
methods in more detail. In particular, given the output of
the LL dynamic system (i.e., yT ðxÞ), we first introduce two
elementary properties on it as follows:

1) Uniform approximation quality to the LL solution:
fyT ðxÞg is uniformly bounded on X , and for any � >
0, there exists tð�Þ > 0 such that whenever T > tð�Þ,
we have

supx2X fðx; yT ðxÞÞ � cðxÞ� � � �;

or

supx2Xk
@fðx; yT ðxÞÞ

@yT ðxÞ
k � �;

where cðxÞ denotes the LL value-function, i.e., cðxÞ :
¼ miny2Yfðx; yÞ.

7. Here we use “
s!” to denote subsequential convergence.

8. We will provide more details on this convergence property in the
following subsection (i.e., Theorem 1).
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2) Pointwise approximation quality to the ISB solution: For
each x 2 X , we have

lim
T!1

distðyT ðxÞ; eSðxÞÞ ¼ 0;

where eSðxÞ represents the solution set of the ISB sub-
problem in Eq. (6) and distð�; �Þ denotes the point-to-
set distance.

Equipped with the above two properties on fyT ðxÞg, we
can present general convergence results of Eqs. (11), (12),
(13), and (14) in the following theorem.9

Theorem 1 (Convergence towards global/local mini-
mum). Suppose that the generated sequence ytðxÞ

� �
satisfies

the above two properties. Let xT be a global (resp. local) mini-
mum of ’T ðxÞ, i.e., xT 2 argminx2X’T ðxÞ. Then we have

(1) Any limit point �x of the sequence fxTg is a global (resp.
local) minimum of ’ðxÞ, i.e., �x 2 argminx2X’ðxÞ.

(2) infx2X ’T ðxÞ ! infx2X ’ðxÞ as T ! 1.

Proof. In the following, we first state the key steps for prov-
ing convergence properties in the global scenario and
then demonstrate how to obtain the local convergence
properties accordingly.

Step 1. We should first verify that for �x 2 X , c satisfies

limsup
x!�x

cðxÞ ¼ cð�xÞ:

Step 2. Then for any limit point �x of the sequence fxTg,
there exists ymðxmÞ ! �y for a subsequence fxmg and
some �y. Thus we can obtain �y 2 Sð�xÞ.

Step 3. Next, we verify the convergence property of
the UL objective as follows:

lim
T!1

’T ðxÞ ¼ ’ðxÞ:

Step 4. For any � > 0, we verify the following inequal-
ity:

’ð�xÞ � F ðxm; ymðxmÞÞ þ � � lim
m!1

’mðxÞ þ �; 8x 2 X :

Step 5. Finally, we verify the following inequality

limsup
T!1

inf
x2X

’T ðxÞ
� 


� inf
x2X

’ðxÞ:

Thus we can obtain convergence results stated in
Theorem 1.

For convergence to the local minimum, we actually
consider xT as a local minimum of ’T ðxÞ with uniform
neighborhood modulus d > 0. Then any limit point �x of
the sequence fxTg is a local minimum of ’ðxÞ, i.e., there
exists ~d > 0 such that ’ð�xÞ � ’ðxÞ; 8x 2 Bdð�xÞ \ X .
According to the neighborhood property to spread out
the analysis, the result of convergence towards local min-
imum can also be proved by the same steps. tu
The above theoretical results actually provide us a gen-

eral recipe to analyze the iteration behaviors and conver-
gence properties of gradient-based BLOs, especially for
EGBRs. In other words, we can understand that these exist-
ing numerical schemes and their required assumptions on
the UL and LL subproblems are just to meet the above ele-
mentary iteration properties.

It can be observed that classical EGBRs (e.g., [12], [13])
require to first enforce the LLS assumption on the BLO

TABLE 3
Summarizing the Convergence Results of Mainstream Gradient-Based Methods for BLOs Within Our Framework

Category Method LLS UL LL Main convergence results
LF SC Lf C2 SC Lip-Hess NS-Hess

EGBR TRAD [13] ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ Stationarity:
@’ðxK

T
Þ

@xK
T

! 0.
HF-MAML [214] ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗
STN [9] ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓
RHG [12] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Global/local minimum: xT

s!x	;
infx2X ’T ðxÞ ! infx2X ’ðxÞ.BDA [32] ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗

✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗
BDA [189] ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

VFBR BVFIM [195] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

IGBR HOAG [74] ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ Stationarity:
@’ðxK

T
Þ

@xK
T

! 0.
IMAML [84] ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

1 Notice that F ðx; yÞ is continuously differentiable on X � Y (X is a compact set) and fðx; yÞ is continuously differentiable on Rm � Y. The feasible solution set
Y represents the whole space Rn.
2“LF (resp. Lf )” means the gradient of F ðx; �Þ (resp. fðx; �Þ) is Lipschitz continuous with Lipschitz constant LF (resp. Lf ). SC means strongly convex and C2
implies that fðx; �Þ is second-order continuously differentiable w.r.t. y.
3“NS-Hess” and “Lip-Hess” represent the nonsingularity and Lipschitz properties of Hessian @2f

@y@y0 , respectively. Please refer to [74], [84], [214] for more details
on these variational analysis concepts.
3Here we respectively represent “required” and “not required” by “✓” and “✗” for these properties.
4We summarize two kinds of convergence properties, i.e., “stationarity” and “global/local minimum”. The former implies that the gradient descent on the UL

value-function converges to first-order stationary points satisfying limK!1 k @’ðxK
T
Þ

@xK
T

k ¼ 0 (with a fixed number of LL iterations T ), while the latter characterizes

the convergence towards global/local minimum satisfying xT
s!x	 and infx2X ’T ðxÞ ! infx2X ’ðxÞ as T ! 1.

9. Here we actually provide a brief proof roadmap, which is summa-
rized based on theoretical studies in existing works [32], [51], [189],
[195].
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problem. The work in [12] assumes that the UL and LL
objectives are continuously differentiable and also enforces
the restrictive (local) strong convexity assumption on the LL
objective. In fact, such properties can ensure the uniform
convergence of fyT ðxÞg towards y	ðxÞ, thus leading to the
two elementary properties. In fact, the LLS assumption con-
sidered in [12] is stricter than that required in the proof tem-
plate. The works in [32], [189] also consider that the UL and
LL objectives are continuously differentiable, but make a
weaker assumption on the LL objective, i.e., fðx; yÞ is level-
bounded in y and locally uniform in x 2 X (or the gradient
of fðx; �Þ is Lipschitz continuous). Indeed, it can be verified
that the conditions in [32], [189] can also ensure two elemen-
tary properties required by our proof template. Therefore,
we have that the above two elementary convergence prop-
erties hold and we can obtain the convergence results stated
in Theorem 1.

It has been verified in [32], [189] that these classical
EGBRs [12], [13] may lead to incorrect solutions if the LLS
assumption is not satisfied. As stated in the above Section 7,
BDA [32], [189] has been proposed to extend the EGBR
method to address this issue. Theoretically, the work in [32]
actually introduces the LL solution set property and the UL
objective convergence property. Theoretical investigations
in [189] further demonstrate that the iterative gradient-
aggregation dynamics can solve the ISB subproblem with-
out the LL singleton assumption and the UL strong convex-
ity. Again, in order to remove the restrictive singleton and
convex assumptions on the LL objective, BVFIM [195] fur-
ther proves the same convergence results by introducing
the strong constraints on a series of positive decreasing
parameters ðm; u; tÞ when fðx; yÞ and F ðx; yÞ are level-
bounded in y and locally uniformly in x 2 X .

8.3 Time and Space Complexity

In this subsection, we analyze the complexity of time and
space for these mainstream gradient-based BLO methods
(i.e., EGBRs [13], [32], [51], IGBRs [72], [74], [84] and
VFBR [195]), as summarized in Table 4. Please notice that
here we just follow most BLO literature (e.g., [13], [14], [51])
to only estimate the complexity of computing the gradient
of ’ w.r.t. x (defined in Eq. (9)) with a fixed (e.g., T -step) LL
iteration.

EGBR: As discussed in Section 5, EGBRs generally con-
struct the BR mapping y	ðxÞ or the indirect gradient GðxÞ
with the implementation of an unrolled dynamic system
(see Eq. (13)). In [51], the dynamic system can be imple-
mented in either a forward automatic differential mode (i.e.,
FAD) or a reverse automatic differential mode (i.e., RAD).
Especially, BDA implements a reverse aggregated gradient
flow from the UL and LL subproblems to approximate the
BR mapping. More specifically, taking into account the fact
that the Hessian-matrix product is repeatedly calculated
(i.e.,

PT
t¼0

QT
i¼tþ1 Ai

� �
Bt) in the forward propagation, FAD

requires the space complexity OðmnÞ and the time complex-
ity Oðm2nT Þ. RAD in the backward pass needs to evaluate
Hessian- and Jacobian-vector products, and stores all the
intermediate variables fyt 2 RngTt¼1 in memory. So we have
that the time and space costs are Oðnðmþ nÞT Þ and Oðmþ
nT Þ, respectively. By ignoring the long-term dependencies,

TRAD uses the truncated backward propagation trajectory
with a smaller number of steps (i.e., M < T ). As for BDA,
with the similar backward propagation manner, we have
that the complexity of time and space is the same as that for
RAD.

IGBR: As for IGBRs, we observe that they require to
derive the indirect gradient based on the implicit function
theorem, which results in the overloaded computation with
respect to the inverse of Hessian (see Eq. (31)). To mitigate
this problem, IGBRs generally solve a linear system by Con-
jugate Gradient (CG) [74], [84] or Neumann series [72], as
stated in Section 6. Without loss of generality, we uniformly
assume that these methods perform J-step iterations to
solve the linear system. Each step contains a hessian-vector
product computation requiring the time cost Oðmþ n2JÞ.
Then with a T -step gradient descent on the LL subproblem,
we have that the overall time and space complexities can be
written as Oðmþ nT þ n2JÞ and Oðmþ nÞ, respectively. It
should be noted that the iteration step J generally relies on
the properties of Hessian-matrix, thus it should be set much
larger than T .

VFBR: It has been stated in Section 7 that VFBR type
method (i.e., BVFIM) does not require to solve the unrolled
dynamic system or approximate the inverse of Hessian,
thus can obtain lower time and space complexity than
EGBRs and IGBRs, especially on BLOs with high-dimen-
sional LL subproblems. Specifically, we use Q1 and Q2 to
represent the number of gradient iterations for solving the
regularized subproblems in Eqs. (34) and (35), respectively.
Then it can be checked that the time costs of calculating
each gradient descent for the LL and UL value-functions are
OðnQ1Þ and OðnQ2Þ, respectively. Moreover, we require
additional OðmÞ time to perform the UL gradient updating.
Thus the overall time cost of BVFIM is Oðmþ nðQ1 þQ2ÞÞ.
As for the space complexity, it is easy to check that BVFIM
requires Oðmþ nÞ space cost and is the same as that in
IGBRs.

It can be seen in Table 4 that the reverse propagation
methods (i.e., RAD, TRAD and BDA) have benefited from
the lightweight matrix-vector multiplication (rather than
the overweight Hessian-matrix), thus can obtain less
computational complexity in comparison to the forward
propagation approach (e.g., FAD). Especially for TRAD, the
time and space complexity can be further reduced by the
truncated backward propagation strategy. Compared with
EGBRs, IGBRs maintain higher computational complexity
due to the overloaded computation in terms of the inverse

TABLE 4
Comparison of the Time and Space Complexity for Several Gra-

dient-Based Mainstream BLOs

Category Method Time Space

EGBR FAD [51] Oðm2nT Þ OðmnÞ
RAD [51] Oðnðmþ nÞT Þ Oðmþ nT Þ
BDA [32] Oðnðmþ nÞT Þ Oðmþ nT Þ
TRAD [13] Oðnðmþ nÞMÞ Oðmþ nMÞ

IGBR CG [74], [84] Oðmþ nT þ n2JÞ Oðmþ nÞ
Neumann [72] Oðmþ nT þ n2JÞ Oðmþ nÞ

VFBR BVFIM [195] Oðmþ nðQ1 þQ2ÞÞ Oðmþ nÞ
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of Hessian. In contrast, VFBR can obtain lower time-con-
suming than both EGBRs and IGBRs. It actually also outper-
forms EGBRs in costing less memory, especially when
solving the LL subproblem on high-dimensional tasks (e.g.,
with extremely large n).

9 POTENTIALS FOR NEW ALGORITHMS DESIGN

As the last but not least part of the survey, this section aims
to demonstrate the potentials of our general algorithmic
framework for designing new gradient schemes for chal-
lenging BLO formulations, such as pessimistic BLOs (stated
in Eq. (5)).

In fact, pessimistic BLO formulation can be naturally
interpreted as a non-cooperative game between two players
and has been utilized to formulate problems in the area of
mathematical programming [215], [216], [217] and other
application fields, such as economics [218], [219] and biol-
ogy [220]. However, from the pessimistic viewpoint, the UL
player (i.e., leader) cannot anticipate the LL player (i.e.,
follower)’s decision, the constraint must be satisfied for any
rational decision of the follower, thus pessimistic BLO is
perceived to be very difficult to solve, especially in high-
dimensional application scenarios [196].

Now we demonstrate how to develop a practical algo-
rithm within our BR mapping based BLO algorithmic
framework for pessimistic BLO formulations10. Concretely,
based on Eq. (5) and pessimistic BR mapping (defined in
Eq. (7)), we can follow the similar idea in Eq. (32) to aggre-
gate the UL and LL gradients

edðyt�1; xÞ ¼ �rt
@F ðx; yt�1Þ

@yt�1

þ ð1� rtÞ
@fðx; yt�1Þ

@yt�1

:

With the above procedure, it can be seen that the only differ-
ence between d and ed is just the sign of the UL gradient.
Thus we can adopt the same calculation scheme as that
in [32], [53] to solve Eq. (5). The corresponding roadmap is
also illustrated in Fig. 9.

10 CONCLUSIONS AND FUTURE PROSPECTS

Bi-Level Optimization (BLO) is an important mathematical
tool for modeling and solving machine learning and com-
puter vision problems that have hierarchical optimization
structures, such as hyper-parameter optimization, multi-
task and meta learning, neural architecture search, adver-
sarial learning and deep reinforcement learning, etc. In the
above sections, we first demonstrated how to formulate dif-
ferent learning and vision tasks from a uniform BLO per-
spective. We then established a value-function-based
single-level reformulation for different categories of BLO
models and proposed a best-response-based optimization
platform to uniformly understand and formulate a variety
of existing gradient-based BLO methods. The convergence
behaviors and complexity properties of these BLO algo-
rithms have also been discussed. We also demonstrated

potentials of our BLO platform for designing new algo-
rithms to solve the more challenging pessimistic BLOs tasks.
Future research of BLOs may focus but is not limited to the
following aspects:

� Theoretical breakthrough: The convergence behaviors
of gradient-based algorithms on various challenging
BLOs, such as pessimistic BLOs [215], [221], [222],
BLOs with complex constraints [223], [224], noncon-
vex objectives [225] and multiple followers [226],
should be investigated.

� Computational improvement: It is also urgent to design
efficient acceleration techniques (e.g., momentum
and its variations) to speed up gradient-based BLOs
in high-dimensional optimization scenario [227],
[228], [229].

� Wider applications: Recent deep learning tasks (e.g.,
knowledge distillation [230], self-supervised learn-
ing [231], and transformer [232]) are more and more
sophisticated. BLOs should be a promising tool to for-
mulate and analyze these complex learning paradigms.
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