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Abstract

Regularization plays a crucial role in machine learning models, especially for deep neural
networks. The existing regularization techniques mainly rely on the i.i.d. assumption and
only consider the knowledge from the current sample, without the leverage of the neigh-
boring relationship between samples. In this work, we propose a general regularizer called
Patch-level Neighborhood Interpolation (Pani) that conducts a non-local representa-
tion in the computation of networks. Our proposal explicitly constructs patch-level graphs
in different layers and then linearly interpolates neighborhood patch features, serving as a
general and effective regularization strategy. Further, we customize our approach into two
kinds of popular regularization methods, namely Virtual Adversarial Training (VAT) and
MixUp as well as its variants. The first derivedPani VAT presents a novel way to construct
non-local adversarial smoothness by employing patch-level interpolated perturbations. The
second derived Pani MixUp method extends the MixUp, and achieves superiority over
MixUp and competitive performance over state-of-the-art variants of MixUp method with
a significant advantage in computational efficiency. Extensive experiments have verified
the effectiveness of our Pani approach in both supervised and semi-supervised settings.

Keywords: Graph-based Regularization, Interpolation, (Semi-)Supervised Learning.

1. Introduction

In the statistical learning theory, regularization techniques are typically leveraged to achieve
the trade-off between empirical error minimization and the control of model complex-
ity (Vapnik and Chervonenkis, 2015). In contrast to the classical convex empirical risk
minimization where regularization can rule out trivial solutions, regularization plays a rather
different role in deep learning due to its highly non-convex optimization nature (Zhang et al.,
2016). Among all the explicit and implicit regularization, regularization with stochastic
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transformation, perturbations and randomness, such as adversarial training (Goodfellow
et al., 2014), dropout and MixUp (Zhang et al., 2017), play a key role in the deep learning
models due to their superiority in the performance (Berthelot et al., 2019b; Zhang et al.,
2017; Miyato et al., 2018; Berthelot et al., 2019a; Yao et al., 2022; Kim et al., 2021).

Nevertheless, the vast majority of regularization methods, including the aforementioned
ones, assume that the training samples are drawn independently and identically from an
unknown data-generating distribution. However, this i.i.d. assumption is commonly vio-
lated in realistic scenarios where batches or sub-groups of training samples are likely to
have internal correlations. Accounting for the correlations in real-world training data can
lead to statistically significant improvements in accuracy (Dundar et al., 2007; Yun et al.,
2019) and other benefits, including the robustness (Svoboda et al., 2018; Yao et al., 2022).
For example, Peer-Regularized Networks (PeerNet) (Svoboda et al., 2018) applied graph
convolutions (Velickovic et al., 2017; Kipf and Welling, 2016) to harness information of peer
samples, and verified its effectiveness on defending adversarial attacks. Motivated by these
facts, we design a general regularization strategy called Patch-level Neighborhood Interpo-
lation (Pani) that can fully utilize the internal relationship between samples by explicitly
constructing a graph within a mini-batch in order to consistently improve the generalization
of deep neural networks in both semi- and supervised settings. Our contributions can be
summarized as folllows:

• We propose a simple yet general effective non-local regularization called Patch-level
Neighborhood Interpolation (Pani). Pani linearly interpolates on the neighbor-
ing patch features and yields a non-local representation that additionally captures the
relationship of neighboring patch features in different layers.

• We explicitly customize our Pani approach into two classes of popular and general reg-
ularization strategies, i.e., Virtual Adversarial Regularization and MixUp, resulting in
Pani VAT and Pani MixUp. Pani VAT yields non-local adversarial perturbations,
providing a more informative adversarial smoothness in the semi-supervised learning
setting. Pani MixUp and MixMatch perform better than their vanilla versions with
computational efficiency by mixing fine-grained patch features and supervised signals.

• Extensive experiments demonstrate that both of the two derived regularization strate-
gies can outperform other state-of-the-art approaches in both supervised and semi-
supervised tasks, presenting the generality and superiority of our Pani method.

1.1. Related Work

Virtual Adversarial Training (VAT) and Its Variants. Adversarial Training (Good-
fellow et al., 2014; Madry et al., 2017; Zhang et al., 2019; Tsipras et al., 2018) can provide
a new form of regularization beyond that provided by other generic regularization strate-
gies, such as dropout, pretraining and model averaging. VAT (Miyato et al., 2018) extends
the adversarial training through adversarially smoothing the posterior output distribution
with the leverage of unlabeled data, achieved great success in image classification (Miyato
et al., 2018), text classification (Miyato et al., 2016) and node classification (Sun et al.,
2019). There is a flurry of VAT variants (Luo et al., 2017; Yu et al., 2019), most of which
heavily rely on generative models to construct data manifold. Tangent-Normal Adversarial
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Regularization (TNAR) (Yu et al., 2019) extended VAT by considering the data manifold
and applied VAT along the tangent space and the orthogonal normal space of the data
manifold, outperforming previous semi-supervised approaches. VAT+SNTG (Luo et al.,
2017) constructed a graph based on the predictions of the teacher model to smooth the rep-
resentation on the low-dimensional manifold in the semi-supervised setting. By contrast,
our Pani method is a fine-grained patch-level and more general regularization that can be
leveraged to refine the representation of deep neural networks in both semi- and supervised
scenarios without the requirement of any generative model.

MixUp and Its Variants. MixUp (Zhang et al., 2017) has been widely used in vari-
ous machine learning tasks. However, MixUp samples tend to be unnatural and locally
ambiguous, which may confuse the model (Yun et al., 2019). To overcome this issue, Cut-
Mix (Yun et al., 2019) replaces the image region with a patch from another training sample
in a more straightforward way. MixUp variants, including Manifold MixUp (Verma et al.,
2019), AdaMixUp (Guo et al., 2019), SmoothMix (Lee et al., 2020), Puzzle Mix (Kim et al.,
2020) and Co-MixUp (Kim et al., 2021), have been proposed through various kinds of in-
terpolation and transformations. In addition, C-MixUp (Yao et al., 2022) extends MixUp
into the regression setting, investigating both its improvement on in-distribution general-
ization and out-of-distribution robustness. In semi-supervised learning, FixMatch (Sohn
et al., 2020) and MixMatch (Berthelot et al., 2019b) serve as a natural extension of MixUp
and achieve state-of-the-art accuracy. In contrast with VAT, MixMatch (Berthelot et al.,
2019b) utilizes one specific form of consistency regularization, i.e., using the standard data
augmentation for images, such as random horizontal flips, rather than computing adversar-
ial perturbations to smooth the posterior distribution of the classifier. Our Pani method
is proposed differently from other MixUp variants, and shares similarities with CutMix.
However, CutMix randomly cut patches, while our Pani linearly interpolates patch features
and is more general. Pani Method can also easily enhance the performance of MixMatch in
the semi-supervised setting.

Manifold Regularization. There is a flurry of papers introducing regularization from
classical manifold learning based on the assumption that the data can be modeled as a
low-dimensional manifold in the data space. As demonstrated in(Hinton et al., 2012; Ioffe
and Szegedy, 2015), regularizers that work well in the input space can also be applied
to the hidden layers of a deep network, which could further improve the generalization
performance. Our Patch-level Neighborhood Interpolation can be easily extended from
input to the hidden layers, enjoying the benefits of manifold regularization.

Non-local Image Filtering. Past non-local image filter methods (Tomasi and Manduchi,
1998; Buades et al., 2005; Sochen et al., 1998) leveraged both the pixel intensities and
their pixel neighbors together with their locations to design these non-shift-invariant filters.
Recently, Non-local Neural Networks (Wang et al., 2018) presented one effective non-local
operation that serves as a generic component for capturing long-range dependencies with
deep neural networks. Similarly, our Pani still can capture the correlation knowledge of
patch features within a batch, therefore yielding an improvement in performance for the
derived methods. Moreover, our method also serves as a novel non-i.i.d. regularization and
can reasonably generalize well to broader settings especially when the natural correlation
in the sub-group exists.



Sun∗ Yu∗ Lin Zhu†

2. Preliminary

Virtual Adversarial Training (VAT). VAT replaces true labels y of samples in the
formulation of adversarial training by current estimate p(y|x; θ̂) from the model:

min
θ

max
r,∥r∥≤ϵ

D
[
p(y|x; θ̂), p(y|x+ r; θ)

]
, (1)

whereD[q, p] measures the divergence between two distributions q and p. r is the adversarial
perturbation depending on the current sample x that can further provide smoothness in SSL.
Then the VAT regularization Rvadv(x, r; θ) is derived from the inner maximization:

Rvadv(x, r; θ) = max
r,∥r∥≤ϵ

D
[
p(y|x; θ̂), p(y|x+ r; θ)

]
(2)

One elegant part of VAT is that it utilized the second-order Taylor’s expansion of virtual
adversarial loss to compute the perturbation r, which can be computed efficiently by power
iteration with finite differences. Once the desired perturbation r∗ has been obtained, we
can conduct forward and back propagation to optimize the full loss function:

min
θ

L0 + βEx∼DRvadv(x, r
∗; θ), (3)

where L0 is the original supervised loss and β is the hyper-parameter to control the degree
of virtual adversarial smoothness.

MixUp. MixUp (Zhang et al., 2017) augments the training data with linear interpolation
on both input features and target. The resulting feature-target vectors are shown as follows:

x̃ = λxi + (1− λ)xj , ỹ = λyi + (1− λ)yj , (4)

where (xi, yi) and (xj , yj) are two feature-target vectors drawn randomly from the training
data. λ ∼ Beta(a, a) and a ∈ (0,∞). MixUp can be understood as a form of data aug-
mentation that encourages decision boundaries to transit linearly between classes. It is a
kind of generic regularization that provides a smoother estimate of uncertainty, yielding the
improvement of generalization.

Peer-Regularized Networks (PeerNet). The centerpiece of PeerNet (Svoboda et al.,
2018) is the learnable Peer Regularization (PR) layer designed to focus on improving the
adversarial robustness of deep neural networks. PR layer can be flexibly added to the feature
maps of deep models. Let Z1, ...,ZN be n × d matrices as the feature maps of N images,
where n is the number of pixels and d represents the dimension of the feature in each pixel,
i.e., number of channel in the feature map. The core of PeerNet is to find the K nearest
neighboring pixels for each pixel among all the pixels of N peer images via constructing a
K nearest neighbor graph in the d-dimensional space. Particularly, for the p-th pixel in the
i-th image zip, the k-th nearest pixel neighbor can be denoted as zjkqk taken from the pixel
qk of the peer image jk. Then the learnable PR layer is constructed by a variant of Graph
Attention Networks (GAT) (Velickovic et al., 2017):

z̃ip =

K∑
k=1

αijkpqkz
jk
qk
, αijkpqk =

LeakyReLU
(
exp

(
fa

(
zip, z

jk
qk

)))
∑K

k′=1 LeakyReLU
(
exp

(
fa

(
zip, z

jk′
qk′

))) , (5)
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where αijkpqk is the attention score determining the importance of the qk-th pixel of the j-th
peer image on the representation of current p-th pixel z̃ip taken from the i-th image. fa() is
a fully connected layer mapping from 2d-dimensional input to scalar output. Therefore, the
resulting learnable PR layer involves non-local filtering by leveraging the wisdom of pixel
neighbors from peer images, showing robustness against adversarial attacks.

3. Our Method: Patch-level Neighborhood Interpolation

For our method, one related work is PeerNet (Svoboda et al., 2018) that designed graph-
based layers to defend against adversarial attacks, but unfortunately, the construction of
pixel-level K-NN graphs in PeerNet (Svoboda et al., 2018) is costly in computation. By
contrast, our motivation is to develop a general regularization that can consistently boost
the performance of deep neural networks in both semi- and supervised settings rather than
the adversarial scenario. Besides, the construction way of a non-local layer in our method is
more flexible and can be determined by the specific objective function, as elaborated in the
following part. Moreover, our patch-level method can achieve the computational advantage
over pixel-level regularization, and incorporates more meaningful semantic correlations in
different layers. Particularly, a flexible patch size can be chosen according to the size of the
receptive field in different layers, yielding a more informative graph-based representation
and better regularization performance.

Step 1: Construction of K nearest neighbor patch graphs. As illustrated in Fig-
ure 1, in the first step of Patch-level Neighborhood Interpolation (Pani) we determine the
candidate peer images set Si for each image i. This can be achieved by random matching or
computing the semantically nearest image neighbors using e.g. the cosine distance. Next,
we construct the whole patches set Pi on the candidate peer images set Si for each image
i by clipping the corresponding patches in the different locations on an input or a feature
map. Following the establishment of patch set Pi, we construct K nearest neighbor patch

,

,

,

Pani VAT

Pani MixUp

Patch-level Neighborhood Interpolation (Pani) 

Figure 1: Pipeline of our Patch-level Neighborhood Interpolation followed by two derived
regularizations, i.e., Pani VAT and Pani MixUp. r represents the perturbation constructed
by our method and (λ, 1− λ) is the mixing coefficient pair.
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graphs based on the distance of patch features in order to find the neighbors of each patch
in a patch set Pi for ∀i = 1, .., N . Mathematically, following the definition in the PeerNet,
let zip be the p-th patch on the input or feature map Zi for the i-th image within one batch.

Then denote the k-th nearest patch neighbor for zip as zjkqk taken from the patch qk of the
peer image jk in the candidate set Si.

Step 2: Linear interpolation. Next, in order to leverage the knowledge from neighbors,
different from the graph attention mechanism in PeerNet, we apply a more straightforward
linear interpolation on the neighboring patches for the current patch zip. Then, the general
formulation of our Patch-level Neighborhood Interpolation can be presented as follows:

z̃ip = zip +
K∑
k=1

ηipk(z
jk
qk

− zip), (6)

where ηipk is the combination coefficient for the p-th patch of i-th image w.r.t its k-th patch
neighbor, which can be computed through the power iteration similar to the manner of
VAT, or through random sampling from a specific distribution in randomness-based regu-
larization, e.g., MixUp and its variants. Moreover, the choice of linear interpolation in Eq. 6
enjoys a computational advantage over the nonlinear GAT form in PeerNet in the computa-
tion of networks. Finally, after the patch-level linear interpolation on patch features, we can
obtain the refined graph-based representation Z̃i for i-th image, ∀i = 1, ..., N . Note that
our proposed method can explicitly combine the advantages of manifold regularization and
non-local filtering in a flexible way. To further demonstrate the generality and effectiveness
of our Pani method, we propose the Pani version of two typical regularization strategies,
i.e., VAT and MixUp as well its variant MixMatch.

3.1. Pani VAT

Based on our Pani framework, we can construct a novel Pani VAT that utilizes the linear
interpolation of patch neighbors for each sample to manipulate the non-local perturbations,
thus providing more informative adversarial smoothness in the semi-supervised setting.
Consider a more general composite function form of the classifier f , i.e.,f(x) = g(z) and
z = h(x) where z denotes the hidden feature of input x or the input itself when the
reduced form happens. Combining VAT formulation Eq. 2, and Pani formulation Eq. 6, we
reformulate Pani VAT with perturbations on L layers in a deep neural network as follows:

max
η

D[g(z), g(z̃(η))] s.t.
L∑
l=1

w2
l ∥η(l)∥2 ≤ ϵ2, (7)

where D measures the divergence between two distributions. η = {ηipk} denotes the generic
perturbations from our Pani method and η(l) indicates the perturbations in l-th layer of
network. z̃(η) = {z̃ip} represents the smoothed feature map imposed by perturbation η
considering all patches in the way shown in Eq. 6. In particular, when L = 1, adversarial
perturbations are only imposed on the input feature, which is similar to the traditional
virtual adversarial perturbations. Additionally, wl is the hyper-parameter, adjusting the
weight of perturbation η(l) in different layers with the overall perturbations restrained in
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Algorithm 1 Pani VAT within a Batch

1: Input: neighbors K1, K2, classifier f , batch size B, perturbed layers L
2: Initialization: combination coefficient η
3: Compute K1 nearest image neighbors based on the distance of the second last layer

output from f and obtain K1 (K1 ≤ B) peer images set Si for each image i.
4: for l = 1 to L do:
5: Compute the patch set Pi for all K1 peer images on layer l for each image i .
6: Construct a K2 nearest patch neighbors graph for each patch in each image i.
7: Conduct Patch-level Neighborhood Interpolation via Eq. 6 for each patch.
8: end for
9: Conduct power iteration and finite difference to compute η∗ constrained by Eq. 7.

10: Return Rvadv(x, η
∗; θ)

an ϵ-ball. Next, we still utilize the similar power iteration and finite difference proposed in
VAT to compute the desired perturbation η∗. The resulting full loss function is defined as:

min
θ

L0 + βEx∼DRvadv(x, η
∗; θ), (8)

where L0 is the original supervised loss and β controls the degree of adversarial smoothness.
Rvadv(x, y, η

∗) = D[g(z), g(z̃(η∗))] can be attained after solving the optimization problem
in Eq. 7. For the implementation details, we describe them in Algorithm 1.

Remark. As shown in the adversarial part of Figure 1, the rationality of our Pani VAT
method lies in the fact that the constructed perturbations can entail more non-local in-
formation coming from neighbors of the current sample. Through the delicate patch-level
interpolation among neighbors of each patch, the resulting non-local virtual adversarial
perturbations are expected to provide more informative smoothness, thus enhancing the
performance of the classifier in the semi-supervised setting.

3.2. Pani MixUp

Next, we leverage Patch-level Neighborhood Interpolation to derive Pani MixUp. The core
formulation of Pani MixUp can be written as:

z̃ip = (1−
K∑
k=1

ηipk)z
i
p +

K∑
k=1

ηipkz
jk
qk

ỹi = (1−
K∑
k=1

P∑
p=1

ηipk
P

)yi +

K∑
k=1

P∑
p=1

ηipk
P

yjk , s.t. λ = 1−
K∑
k=1

P∑
p=1

ηipk
P

,

(9)

where (zi, yi) are the feature-target pairs randomly drawn from the training data. P is
the number of patches in each image and λ ∼ Beta(a, b) represents the importance of the
current input or target while conducting MixUp. To compute ηipk, we firstly sample λ
from Beta(a, b) and η0ipk from a uniform distribution respectively, then we normalize η0ipk
according to the ratio of λ to satisfy the constraint in Eq. 9 and thus obtain ηipk. It should
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be noted that due to the unsymmetric property of λ in our framework, we should tune both
a and b in our experiments. For simplicity, we fix b = 1 and only consider the a as the hyper-
parameter to pay more attention to the importance of the current patch, which is inspired
by the similar approach in MixMatch (Berthelot et al., 2019b). Here we reformulate Eq. 9
to illustrate that Pani MixUp is naturally derived from our Pani framework by additionally
considering several constraints:

z̃ip = zip +
K∑
k=1

ηipk(z
jk
qk

− zip)

s.t. λ = 1−
K∑
k=1

P∑
p=1

ηipk
P

, ∀i = 1, ..., N, λ ∼ Beta(a, b), ηipk ∈ [0, 1],∀i, p, k

(10)

where the first constraint in Eq. 10 can be achieved through normalization via λ. Meanwhile,
we impose ηipk ∈ [0, 1] as ηipk represents the interpolation coefficient. Further, we elaborate
on the procedure of Pani MixUp in Algorithm 2.

Algorithm 2 Pani MixUp within a Batch

1: Input: neighbors K, classifier f , batch size B, perturbed layers L, parameter a
2: Compute peer images by random matching and obtain peer images set Si for each image

i.
3: for l = 1 to L do:
4: Compute the patch set Pi on layer l for each image i.
5: Construct a K nearest patch neighbors graph for each patch in each image i.

6: Sample initial coefficient η
(l)
0 = {η0ipk} from U(0, 1) and λ from Beta(a, 1).

7: Normalize η
(l)
0 according to the ratio λ via Eq. 10 to compute η(l).

8: Conduct Pani MixUp over patch features and labels via Eq. 10 for each patch.
9: end for

10: Return supervised loss based on mixed features and labels.

Remark. Different from the role of η in the aforementioned Pani VAT where η serves
as the interpolated perturbations, the physical meaning of η in our Pani MixUp approach
is the linear interpolation coefficient to conduct MixUp. Despite this distinction, both of
the two extended regularization methods are naturally derived from our Pani framework,
further demonstrating the generality and superiority of our Pani strategy.

4. Experiments

In this section, we conduct extensive experiments for Pani VAT and Pani MixUp and its
variant Pani MixMatch on both semi- and supervised settings.

4.1. Pani VAT

Implementation Details. For fair comparison with VAT and its variants, e.g., VAT
+ SNTG (Luo et al., 2017) and TNAR (Yu et al., 2019), we choose the standard large
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Method CIFAR-10 (4,000 labels)

VAT (Miyato et al., 2017) 13.15± 0.2
VAT + SNTG (Luo et al., 2017) 12.49± 0.36
Π model (Laine and Aila, 2016) 16.55± 0.29
Mean Teacher (Tarvainen and Valpola, 2017) 17.74± 0.30
CCLP (Kamnitsas et al., 2018) 18.57± 0.41
ALI (Dumoulin et al., 2016) 17.99± 1.62
Improved GAN (Salimans et al., 2016) 18.63± 2.32
Tripple GAN (Li et al., 2017) 16.99± 0.36
Bad GAN (Dai et al., 2017) 14.41± 0.30
LGAN (Qi et al., 2018) 14.23± 0.27
Improved GAN + JacobRegu + tangent (Kumar et al., 2017) 16.20± 1.60
Improved GAN + ManiReg (Lecouat et al., 2018) 14.45± 0.21
TNAR (with generative models) (Yu et al., 2019) 12.06± 0.35

Pani VAT (input) 12.33± 0.091
Pani VAT (+hidden) 11.98± 0.106

Table 1: Classification errors (%) of compared methods on CIFAR-10 dataset without data
augmentation. The results of our Pani methods are the average ones under 4 runs.

convolutional network as the classifier as in (Miyato et al., 2018). For the option of dataset,
we focus on the standard semi-supervised setting on CIFAR-10 with 4,000 labeled data.
Unless otherwise noted, all the experimental settings in our method are the identical with
those in the Vanilla VAT (Miyato et al., 2018). In particular, we conduct our Pani VAT
on input layer and one additional hidden layer, yielding two variants Pani VAT (input)
and Pani VAT (+hidden). For the option of hyper-parameters, we conduct the delicate line
search for the best performance. In Pani VAT (input), we choose patch size as 2, K1 = 10
for the number of peer images, K2 = 10 to construct the nearest patch neighbor graph,
perturbation size ϵ and adjustment coefficient w1 as 2.5 and 1.0, respectively. For our Pani
VAT (+hidden) method, we opt K1 = 10 and overall perturbation size ϵ = 2.1. On the
considered two layers, we choose K2 as 10 and 50, patch size as 2 and 1 and the adjustment
coefficient w as 1 and 4, respectively.

Our Results. Table 1 presents the state-of-the-art performance achieved by Pani VAT
(+hidden) compared with other baselines on CIFAR-10. We focus on the baseline methods,
especially along the direction of variants of VAT and refer to the results from TNAR (with
generative models) method (Yu et al., 2019), the previous state-of-the-art variant of VAT
that additionally leverages the data manifold by generative models to decompose the di-
rections of virtual adversarial smoothness. It is worthy to remark that the performance of
relevant GAN-based approaches, such as Localized GAN (LGAN) (Qi et al., 2018) as well
as TNAR (with generative models) in Table 1, heavily rely on the established data manifold
by the generative models. It is well-known that one might come across practical difficul-
ties while implementing and deploying these generative models. By contrast, without the
requirement of generative models, our approach can eliminate this disturbance and
can still outperform these baselines. In addition, our Pani VAT (+hidden) achieves slight
improvement compared with Pani VAT (input), which serves as an ablation study, and thus
verifies the superiority of manifold regularization mentioned in our Pani framework part.
Overall, the desirable flexibility along with desirable stability (lower standard deviation
shown in Table 1) of Pani VAT further demonstrates the effectiveness of our Pani strategy.
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Figure 2: Average training time each epoch with respect to parameters K1, K2, number of
layers L and patch size.

Analysis of Computational Cost. Another noticeable advantage of our approach is the
negligible increase in computation cost compared with Vanilla VAT. In particular, one cru-
cial operation in our approach is the construction of patch set P and it can be accomplished
efficiently by as.strided function in Python or through the specific convolution operation in
Pytorch or TensorFlow. The index of K nearest neighbor graph can be efficiently attained
through topk operation. We conduct further sensitivity analysis on the computational cost
of our method concerning other parameters, i.e., K1 (number of peer images), K2 (num-
ber of patch neighbors), L (number of perturbed layers) and patch size s. As shown in
Figure 2, the variation of all parameters has negligible impact on the training time each
epoch compared with Vanilla VAT except the number of perturbed layers. The increasing
of computational cost presents an almost linear tendency with the increasing of the number
of the perturbed layers as the amount of floating-point calculation is proportional to the
number of perturbation elements, i.e., η, if we temporarily neglect the difference of time
in the back propagation process for different layers. Combining results from Table 1 and
Figure 2, we argue that better performance can be expected if we construct perturbations
on more hidden layers despite the increase of computation.

4.2. Pani MixUp

Implementation Details. We strictly follow the codebase of MixUp (Zhang et al., 2017),
Co-MixUp (Kim et al., 2021) MixMatch (Berthelot et al., 2019b) for a fair comparison,
respectively, on CIFAR-10, CIFAR-100 and TinyImageNet datasets. After the line search
of hyper-parameters for the best performance, we choose patch size as 16, parameter a in
Beta distribution as 2.0 for the data augmentation setting while we choose the patch size 8,
a = 2.5 on the setting without data augmentation across all neural architectures on CIFAR-
10 and CIFAR-100. On the TinyImageNet dataset, we set the image dimension as 64× 64
and batch size as 100. We also introduce a mask mechanism on η to avoid overfitting, which
randomly set ηipk = 0 based on a ratio. In practice, we set the mask ratio as 0.6 in the data
augmentation setting while setting is as 0.4 in the scenario without data augmentation.
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Dataset Model Aug ERM MixUp (a = 1) Pani MixUp (input)

CIFAR-10

PreAct ResNet-18
✓ 5.43 ± 0.16 4.24 ± 0.16 3.93 ± 0.12
× 12.81 ± 0.46 9.88 ± 0.25 8.12 ± 0.09

PreActResNet-34
✓ 5.15 ± 0.12 3.72 ± 0.20 3.36 ± 0.15
× 12.67 ± 0.26 10.60 ± 0.57 8.13 ± 0.32

WideResNet-28-10
✓ 4.59 ± 0.06 3.21 ± 0.13 3.02 ± 0.11
× 8.78 ± 0.20 8.08 ± 0.39 5.79 ± 0.03

CIFAR-100

PreAct ResNet-18
✓ 24.96 ± 0.51 22.15 ± 0.72 20.90 ± 0.21
× 39.64 ± 0.65 41.96 ± 0.27 32.03 ± 0.34

PreActResNet-34
✓ 24.85 ± 0.14 21.49 ± 0.68 19.46 ± 0.29
× 39.41 ± 0.80 41.96 ± 0.24 34.48 ± 0.86

WideResNet-28-10
✓ 21.00 ± 0.09 18.58 ± 0.16 17.39 ± 0.16
× 31.91 ± 0.77 35.16 ± 0.33 27.71 ± 0.63

TinyImageNet

PreAct ResNet-18
✓ 44.90 ± 0.28 42.84 ± 0.35 42.20 ± 0.39
× 54.95 ± 0.63 60.58 ± 0.83 52.25 ± 0.75

PreActResNet-34
✓ 40.66 ± 1.64 43.18 ± 0.84 40.03 ± 0.61
× 51.03 ± 0.57 55.91 ± 1.09 49.56 ± 0.94

WideResNet-28-10
✓ 42.30 ± 0.51 40.64 ± 0.77 38.97 ± 0.81
× 48.47 ± 0.24 51.19 ± 1.19 46.26 ± 0.70

Table 2: Test error in comparison with ERM, MixUp and Pani MixUp (input). All results
are averaged under 5 runs. Our implementation is based on MixUp (Zhang et al., 2017).

Result 1: Comparison with MixUp. Based on the codebase of MixUp, we compare
ERM (Empirical Risk Minimization), MixUp training and our approach for different neural
architectures. For a fair comparison with input MixUp, we conduct our approach only on
the input layer. Table 2 presents the consistent superiority of Pani MixUp over ERM (nor-
mal training) as well as Vanilla MixUp over different deep neural network architectures. It
is worth noting that the superiority of our approach in the setting without data augmen-
tation can be more easily observed than that with data augmentation. Another interesting
phenomenon is that MixUp suffers from one kind of collapse in performance as the accu-
racy of MixUp is even inferior to the ERM on CIFAR-100 and TinyImageNet on the setting
without data augmentation. By contrast, our approach exhibits consistent advantages ERM
and MixUp across various settings and network architectures.

Result 2: Comparison with Variants of MixUp. We empirically demonstrate that
Pani MixUp can achieve comparable accuracy compared with variants of MixUp methods,
e.g., Co-MixUp. We implement our Pani MixUp method based on the code base of (Kim
et al., 2021) with the step size 0.05 and additionally compare the performance on WRN16-8
and ResNeXt29-4-24 architectures on CIFAR-100 as opposed to Table 2. In Table 3, all
results are evaluated with the data augmentation. It suggests that Pani MixUp outperforms
its similar baseline CutMix across all considered settings, which is also based on patches.
Our Pani MixUp is also on par with the state-of-the-art Co-MixUp on CIFAR-100, although
Co-MixUp performs better than other baselines, especially on Tiny-ImageNet. However,
we next show our method is more efficient in computation than Co-MixUp.

Dataset (Model) Vanilla Input Manifold CutMix Puzzle Mix Co-MixUp Pani MixUp

CIFAR-100 (PreActResNet18) 23.59 22.43 21.64 21.29 20.62 19.87 20.90
CIFAR-100 (WRN16-8) 21.70 20.08 20.55 20.14 19.24 19.15 19.10
CIFAR-100 (ResNeXt29-4-24) 21.79 21.70 22.28 21.86 21.12 19.78 21.13
Tiny-ImageNet (PreActResNet18) 43.40 43.48 40.76 43.11 36.52 35.85 40.19

Table 3: Test Error compared with more variants of MixUp, including CutMix and Co-
MixUp on CIFAR-100 and Tiny-ImageNet. Results are averaged over 3 seeds after 1,200
epochs. Our implementation is based on Co-MixUp (Kim et al., 2021).
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Figure 3: Learning curves with respect to the training time over ERM, MixUp and our
approach, where m indicates minutes, “with Aug” and “without Aug” denote the settings
with and without data augmentation, respectively.

Figure 4: Comparison of Training
Time per epoch on CIFAR-10.

Pani MixUp is Computationally Efficient.
We first validate Pani MixUp is as computationally
efficient as vanilla MixUp when compared with the
normal training (ERM). Figure 3 presents all learn-
ing curves concerning the training time, where we
choose ResNet-18 as the basic test model. We can
easily observe that with the negligible increase in
computation overhead, Pani MixUp achieves better
performance than MixUp. In addition, we also com-
pare the computation cost of Pani MixUp with vari-
ants of MixUp, especially the state-of-the-art Co-
MixUp. In Figure 4, we reveal that Co-MixUp is
more expensive in computation even in the parallel version, although it can achieve favor-
able performance as suggested in Table 3. By contrast, Pani MixUp achieves comparable
results with Co-MixUp on a large number of settings in Table 3, which enjoys significant
advantage of the efficiency in computation.

Further Extension to MixMatch. We further incorporate our approach into Mix-
Match (Berthelot et al., 2019b) that naturally extends MixUp to the semi-supervised setting.
The resulting approach, which we call Pani MixMatch, elegantly replaces the MixUp part
in the MixMatch with our Pani MixUp, thus imposing Pani MixUp by additionally incor-
porating patch neighborhood correlation knowledge. We apply the same hyper-parameters

Methods CIFAR-10 (4,000 labels)

PiModel (Laine and Aila, 2016) 17.41± 0.37
PseudoLabel (Lee, 2013) 16.21± 0.11
MixUp (Zhang et al., 2017) 13.15± 0.20
VAT (Miyato et al., 2017) 11.05± 0.31
MeanTeacher (Tarvainen and Valpola, 2017) 10.36± 0.25
MixMatch (Berthelot et al., 2019b) 6.24± 0.06

Pani MixMatch 6.08± 0.074

Table 4: Performance of our Pani MixMatch in semi-supervised setting on CIFAR-10 with
4000 labels. The reported result is evaluated via the median of last 20 epoch while training
average under 4 runs.
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involved in Pani as in Pani MixUp and other ones are the same as MixMatch. Results in
Table 4 reveals that Pani MixMatch can further improve the performance of MixMatch in
the standard semi-supervised setting, thus verifying the effectiveness and flexibility of our
Patch-level Neighborhood Interpolation method.

5. Discussion and Conclusion

Since the proposed Pani framework is general and flexible, more regularizations and appli-
cations could be considered in the future, such as more regularization methods and appli-
cations in natural language processing tasks. We leave this exploration as future works. In
addition, an analysis of the theoretical properties of Pani is also valuable in the future.

The recent tendency of the regularization design attaches more importance to consis-
tency and flexibility in various kinds of settings. Along this way, we propose a general
regularization motivated by additional leverage of neighboring information existing in the
sub-group of samples, e.g., within one batch, which can elegantly extend previous presti-
gious regularization approaches in a wider range of scenarios. Our proposed Patch-level
Neighborhood Interpolation (Pani) method is flexible and efficient, which can be further
incorporated in VAT and MixUp as well as its variants. Our work paves the way toward
better understanding and leveraging the knowledge of relationships between samples to
design better regularization and improve generalization over a wide range of settings.
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