Manuscript under review by AISTATS 2023

A Useful Technical Lemmas

Lemma 5 (Weyl’s inequality). Let A, B € R™*"™ with 01(A) > --- > 0,(A) and 01(B) > -+ > 0,.(B), where
r = min(m,n). Then,

max |o;(A) — 0;(A)| < [|A - Bl,.

€[]

Lemma 6. Let us define ® as the Hadamard product. Given two positive semi-definite (PSD) matrices A and B, it holds
that

Muin(A © B) = (min Bi; ) Anin(A).

Lemma 7 ([34]). Let h,.(z) = % (fl)reg”g/2 %e*lﬁ/z be normalized probabilist’s hermite polynomials. Let ¢(-) denote

[ d
ReLU , we define p1,(¢) = [~ ¢(x)h, (J;)%dx It holds that

V1 — 22+ (m — arccosx)

™

Q@) =) mi(9)a" =
r=0
Moreover; it holds that sup{r : p2(¢) > 0} = occ.

B Proof for Section [3.1]

We first present several useful inequalities. The proof mainly relies on basic norm inequalities and the Lipschitz property
of ReLU.

Lemma 8. For each s € [0, 7], suppose that ||[W (s)||2 < pu»

U(s)|l2 < pu, and ||a(s)]||2 < pa. It holds that
1Z(s)llF < call X, (15)

and
IVw ®(s)llp < co X 19(T) =yl
IVu®(s)|lp < cul| X p [[9(T) =y, (16)
[Va®(s)lly < ca | X p 19(7) — yll, -

Furthermore, for each k, s € [0, 7], it holds that
1Z(k) = Z($)llp < pa " (cw [W (k) = W(s)lly + cu [UK) = U(s)lly) [1X I, a7

and

l9(k) = 9(s)ll,
<(cw [W(E) = W(s)lly + cu [UK) = U(s)ly + callalk) — als)ll2) | X -

(18)
Proof. (1) Proof of Eq. (I5): Note that Z(s) = ¢(W (s)Z(s) + U (s)X). Using the fact that |¢(z)| < |z|, we have
1Z(s)z < WSl [1Z() 2 + U2 X1 p) < Puw 12l + pu [ X 5 -

Note that || W (s)||2 < g < 1, for each s € [0, 7], and thus it holds

p
1Z(s)llp < 7 _uﬁ 1 X p = ca | X|| -
(2) Proof of Eq. (T6): First, we have
_ 1
[T(T) 2 <

1—pu’
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and thus it holds that

IR(M)l2 < (a2 (1) 2| D7)l < faﬁw~

Then, we have

IVw (1)l = [| vee(Viw (7))[l2
=[(Z(r) @ I.) R(1) " (9(7) - »)l,
< [NZ2@)lly 1Rl [19() = yll,

Puba
< - Xpllgr) =yl
= )2 X l9(r Il

IVu ()|l = [[vec (Vo @(7))ll,
= ||({f(T) ® Ln) R(m) " (9(7) — y),

< T2 X 1)~y
Va2(0)l, = 12() = )l < T2 X 97) - wl
(3) Proof of Eq. (T7):
1Z(k) - Z(5)]|
= IBW(Z() + U()X) — 6(W ()2(5) + U)Xl
<[|W(R)Z(K) + U (k)X = W(s)Z(s) — U(s)X]|
(W02 - WHZE), + IWEZE) - WEZE), + 00X - UEX],)
|

<[Wk)[2l|Z(k) = Z(s)[r + (W (k) = W(s)ll, | Z(s)l[p + [UK) = U sl [ X1l )

<pullZ(k) — Z(s)||r + (

Consequently, we have

1Z(k) = Z(s)llp < pa " (cw [W (k) = W(s)lly + cu U k) = U(s)lly) | X

(4) Proof of Eq. (T8):

l9(k) = g(s)ll,
= lla(k)Z(k) = a(s)Z(s)l
<lla(k)Z(k) — a(k)Z(s)|| p + lla(k) Z(s) — a(s)Z(s)]
<lla(k)l21Z (k) = Z(s)llr + [la(k) — a(s)ll2]1Z]| 7

|
< (cw [W(k) =Ws)lly +eu [UK) =U(s)|l; + callalk) —als)ll2) [ X,
where the last inequality follows from Eq. (T7).

B.1 Proof of Theorem[I|

Proof. We show by induction for every 7 > 0,
{ W (s)ll2 < pw, IU(s)ll2 < pus la(s)llz < pa, s € [0,7]

Ag > %, s €[0,7]
O(s+1) < (1-n2)" ®(0), selo,7]

15, IWE) =W 1 X+ UK - U)l; IXllp)

19)
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For 7 = 0, it is clear that Eq. (T9) holds. Assume that Eq. (T9) holds up to 7 iterations.
(1) With the triangle inequality,

IW(r+1) =WO)lp <Y IIW(s+1) —W(s)p
s=0

=> nlIVw(s)|l
s=0

<new | XIp Y 19(s) = yll,
s=0

T >\O s/2
<o X1 S (1= ) 190) -l
s=0

where the second inequality follows from Eq. (16), and the last one follows from induction assumption. Let u £
v/ 1 —=nXo/2. Then |W (7 4+ 1) — W(0)|| - can be bounded with

2
1— w2
(-

1—u™tt . 4 -
o Xl 1900) — ylle < S=cw [ X7 19(0) —yll> < 6, by Eq. @.

With Weyl’s inequality, it is easy to have | W (7 + 1)]|2 < p, < 1.

Using the similar technique, one can show that

[U(r+1) =UO)p <> U+ 1) = U(s)|l

s=0
= Y 0 IVe ) < e |X D 56) ~ vl
s=0 s=0
T Ao s/2
<nen X1 Y (107 ) 130 - ik

s=0

4 X
< 5 culIXllr 19(0) —yll2 <6, by Eq. @),

la(r +1) = a(0)|z < Y lla(s +1) — a(s)ll
s=0

=D 0lVa®(©)llp < calX e Y 19(s) — yll,
s=0 s=0

T >\O s/2 R
<renl1 X130 (103 ) 1900wl

s=0
4 .
<3G I X1 p 19(0) = yll2 <6, by Eq. ).
By Weyl’s inequality, it holds that || U (7 + 1)||2 < pu, and ||a(7 + 1)||2 < pa-
(2) Next, using Eq. (I7), we have
1Z(T+1) = Z(0)l
<Pa (o [IW(T +1) = W), + cu U +1) = U©O)],) | X
4 2 .
SWE H(en +en) 1IX 17 15(0) =yl

2 _f Vo, byEq. @)

<
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By Wely’s inequality, it implies that o (Z(7 + 1)) > 1/22. Thus, it holds A, 41 > 22.

(3) Furthermore, we define g = a(7 + 1) " Z(7) and note that
(T +1) — D(7)
= 150+ 1)~ 32+ G+ 1) —9) @)~ y) + (g -9 G) ~ ).
We bound each term of the RHS of this equation individually. Firstly, using Eq. (I8), we have
l9(r+1) —39(7)l;

<(ecw[[W(r +1) =W ()l + cu [[U(T +1) = U(7)lly + calla(r +1) = a(7)]2) [ X
<n-Crlg(r) —yll,,

where Oy 2 (2 + 2 +2) | X |7
Secondly, by Eq. (I7), we have
~ T /A~
Gr+1)-9) @) -y
<lla(r+ Dl 1Z2(r+1) = Z(7)llp [19(7) — yll,
<(cw [W(r+1) = W)y +cu [[U(T+1) = U)]) | X 7 19(7) = yll,
< (% + ) 1 X1 [9(r) - w3
<n-Callg(r) -yl
where Cy £ (2 + c2) 1X|[5.

Lastly, using the fact (a(7 + 1) — a(7)) | = —1V4®(7), we have

(9-9(r) (@)~ v)

=~ 0(Va2()2(1) (5(r) )
=—n(y(r) — y)TZ(T) Z(T)(g(1) —y)
<~ w2 9(r) - ol

where we use the induce assumption A, > %

Putting all bounds together, we have

= (1 =n(Xo —nC} —2C2)) &(7)
(1 —n(Xo —4C3)) ®(7), by the condition on

< (1 _ n?) o(r), by Eq. @).

\ /\

C Proof for Section 4.1

C.1 Proof of Lemma[3]
Proof of Lemma[3] By Eq. (6), it is easy to show that for all 4, j € [n] and | > 1,

O _ g® g0 _ O
K=k K=K
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2 =1 4 g=15T g, .
Recall that we define cos 08») = : K(l,l)jl %1 and it holds that
Twtij

A = [ KU+l oK+ el ]

O’?UK](é_l) + %:c;acl Ji,Ki(f_l) +1
@
— 1 e
= (U?UKZ(Z e 1) ) 08
cos 0;; 1
@
0 1 l cos 0;; .
cos Gl(j) 1

11

R () W G g ¢ A
Fori=j, A}/ = (JwKﬁ +1) { 11

} . By the homogeneity of ReLLU, we have

K =2E, v a0 [00)6(V)

=2(c?2K\ Y +1)E V(v
(o2 K] )@.V,)w@,[l 1D[¢<u>¢<v>]
1 1
= (2KV+1) Q)

=K\ Y+ 1,

Note that K f? ) — 0, and it is easy to show that for all ¢ € [n] and [ > 1, it holds
21
e 1—oy
V=K = T—o2"

For all (i,7) € [n] x [n], we have
1
K =B, oA, [6)6(V)]
_ 2 g-(1-1) ’ ’
2 (o2KU 4 1)E L o) 1) (40060
W v)T~N| 0, ) J
cos 0;; 1

= (a?uKi(il_l) + 1) -Q (cos 91(;))

=pVQ (cos 91(;-)) .
Consequently, we prove Eq. (12).

By substituting Eq. 1i into the definition of cos 9%), one can show that

-1 -1
y aﬁ,K(l_l) + éwj%‘ B (Kfj ) 1) Q (cos9§j )) + éw:azj

a i
cos 0,
! 2KV 41 KV
Therefore, we have
-1
" (P -1)Q (cos 0§j )> + izl a;
cos Gij = .

Letting I — oo, Eq. is proved.

C.2 Proof of Theorem[3]

Proof of Theorem[3} (i) About ||K - K® ||F
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By the triangle inequality, we have
(1+1)
’Ku -
- ‘p(“‘l)Q (cos egj.“)) - 0@ (cos 91(;))‘
< ‘p(lﬂ)Q (COS HE;H)) —pQ (cos 91(;))‘ + ’p(lH)Q (cos 95?) - pQ (cos 97(;)) ‘ .

We bound each term individually.

Firstly, using the fact that |Q’(x)| < 1, we have

S (COS ogﬂ)) _ g (cos 95;))‘

< [p"*Y cos 91(;-“) — pUHD cos 92-)}
< p(”l) cos 9%*” — p(l) cos 02(;)‘ + ‘p(l) cos 01(;-) — p(l“) cos Gg)‘
< p(z+1) cos 9§;+1) i ) n ‘p(z) p(z+1)‘

1 2(1+1)
o2k LT (= L l—on 1-ou

=02 Kl(jl) — K-(l-fl)} + o2

ij w

oy K(l>+d :n x;

where the first equality follows from the fact that p(+1 = 62 KV 4 1, and cos 95;-“) = Py

Secondly, using the fact that |Q(z)| < 1, we have
’p(l“)Q (cos 9;?) — p(l)Q (cos 99) ‘ < ‘p(l“) — p(l)‘ = Uful.
Consequently, for [ > 1, it holds that
K - K| <02 | K - K|+ 202
This implies that, for [ > 1, we have
K - KV < 21 - )20,
Therefore, it holds that

’K” KY| = 0(102),

which implies that

|K K| =0(nali?).

(i1) About the positive definiteness of K.

The proof of this part is similar with those of [16}17]] which are based on Hermite polynomials. We refer the reader to [34]
for a detailed introduction about Hermite polynomials.

Following from Lemmal(7] for (i, j) € [n] x [n], it holds that

1
K;; = ﬁQ(COS 0i;) = 02 Z,ur (cosB;;)"

w r=0
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Let H = [hy,- -, hy] where hq, - - , hy,, be unit vectors such that cos §;; = h, h; for all (i, ) € [n] x [n]. Itis easy to
check that [(H " H)(©")];; = (h h;)" holds for all (i, j) € [n] x [n]. Then, K can be rewritten as

Z p2(¢)(H " H)©m), (20)

0-2

Following from Lemmal[6} we show that K is a sum of a series of PSD matrices. Thus, it suffices to show that K is strictly
positive definite if there exists a r such that u2(¢) # 0 and (H " H)(©") is strictly positive definite.

For any unit vector v = [vq,- -+ ,v,]" € R", it holds that

v (H H)©y = Z vv;(h; h;)"

= E v;vj(cos B;;)"
= E v? + g v;vj(cos 0;;)"

i#]
=1+ Z 1}1'1}]‘ COS Hij)r
oy
Let us define 3 = max;; | cos 6;;]. By Eq. (14), it holds that

1
JiQ(COS 0;;) + (1 — ai)gw;rwj

|cos 0;5] =

1
= |03)Q(COSQU)’ -+ ‘(1 — Cfi))*wjmj

d

<ol +1-02 =1.

forall (i, j) € [n]x [n]. The last inequality follows from that facts that |Q(z)| < 1for |z| < 1 and max;»; (| 1z] z;|) <1
(by Assumption [2). Therefore, it holds that

8 <1

Taking r > — }Zggzg, we have

2
> viwg(cos 0)"| <D Jvil[v; |87 < (Z Ui|) BT <nf" <1
i# i#] i

By Weyl’s inequality, it holds that v " (H " H)(©"v > 0, i.e. (H " H)(©") is positive definite. Following from Lemma
it holds that p2(¢) > 0. Therefore, the positive definiteness of K is proved. O

D Proof for Section

D.1 Proof of Theorem [

Proof. Using standard bounds on the operator norm of Gaussian matrices, it holds w.p. > 1 — exp (m),

[t = 2], < 220 |27

Therefore, it holds that

4 o
2

)Hz)7
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and

ool = o (2vam) 7],

)

For z; 7, we have

E [1 (zil))ngl)} —E {;QS(Uwi)Tgb(Uwi)] ~ 1.

m

Using Bernstein inequality, it holds w.p. > 1 — exp{—Q (th)}

1 T
‘ (zgl)) zgl) - 1‘ <t.
m
Consequently, we have

l
G- G

T
o () ()

-
<l|zz; — ziTz](-l)‘ + z;zj(.l) — (zi(l)) (zj(.l))’
l l )
<heida = =, + =] == =],
L
<C (2\/§aw) m (1 + \/i) .

where C' is an absolute positive constant. Lastly, letting ¢ be an absolute positive constant, we prove Theorem[d]by applying
the simple union bound. O

E Proof for Section

In this section, we define G‘E? = Ewn(0,n)[¢(w " h)¢(w " h')]. Combining Lemmaand the homogeneity of ReLU,

we write égé) as

By the triangle inequality, we have

L o A0
—Gif — Gy

1
7(;f(_l_) _ Kz(l)
m

m J

n ‘(;5? _ Ki(j.)‘ . @1

S ‘

E.1 Proof of Theorem 3

Lemma 9. For i = j, with probability at least 1 — lexp{fﬂ(m&:Q) + O(%) }, it holds that

1
’GE? ~KV| <, 22)
m

or equivalently, %fo) —p0| <.
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Proof. Following Lemma we reconstruct Gl(éﬂ) as
G =0 (MR 6 (M),
2 T al0)
where ||hl|3 = h'h = 22G; + 1.

(1) For fixed h, by the standard Bernstein inequality, it holds w.p. > 1 — exp{—Q (me?) },

<e

(x3

‘16‘%*1) G+
m

(2) For all h, note that the e-net size is at most exp{O(l log %) } Therefore, it holds wp. > 1 —
exp{—Q(msQ) + O(l log %) },

’ GUTD _ G+
(3) Substitute the choice of h such that hT h = %GE? + 1. We have

1+1) I+1 1 l l
‘G( Kz(z )| =02 EGz('i) _Ki(i) .
And we have, w.p. > 1 — exp{—Q(me?) + O(llog 1)},
1 | o ’1G<_z_+1) _ gt ’G(m) K.(.l“)’ <02 |Ltah _ k0|,
11 (23 — m kX3 (23 (23 kX3 — m 1 (23
which implies that with probability at least 1 — [ exp{—Q(me?) + O(llog 1)}, we have
1— 21
‘GE? ~ K 7”5 23)
O

Lemma 10. For i # j, with probability at least 1 — I? exp{—Q(me?) + O(llog 1) }, it holds that

’ G KD <:
m N

Proof. Following Lemmal we reconstruct G(l+1) as

GEY = (MR)T ¢ (MR),

ij
where hTh' = el G(l) +ixTa,
m O ij d*’i U

(1) For fixed h and h’, by the standard Bernstein inequality, we have w.p. > 1 — exp{—Q(me?)}

1] SE

’ G(z+1 G
m

(2) For all h, h'/, note that the e-net size is at most exp{O(l log é) } Therefore, wp. > 1 —exp{—Q(msQ) + O(l log é) },
it holds that

‘G(l+1 G+

ZJ
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(3) Substituting the choice of h and h’ such that hTh’ = ”’“ G(l) + dch x;. We have

A(14+1) (i+1)
Gij - Kij

= AgiH)A;lfl)Q(cos ég“)) — oD Q(cos 91(;+1))‘

< ( /AZ(§+1)A§lJ+1) _ p(z+1)) Q(cos 9(l+ ) ‘ + ’p(l+1) (Q(Cos égﬂ)) — Q(cos 9(l+1))>’
< A%H)A;lfl) — D] 4 ptHy) ‘cos éz(j“ — cos b, (D1 1Q()| < 1 and Q(-) is 1-Lipschitz
< A§£+1)A§_lj_4r1) _ p(l+1) + ’( Al('iH)A;ljJrl) i p(l+1) _ A%H)A;Zjﬂ)) cos ég_ﬂ) _ p(l+1)c059 (1+1)

<2‘ AT ATD 0y

+ ‘ AlFD A cog gD _ D05 gL |

From the definition of G, it holds that A{/*TY

wa® 4 1. Applying Lemma@ it holds wp. > 1 —
lexp{—Q (msg) + (’)(l log %)},

‘ A(.HI)A(.Z*I)— (4+1)
i JJ

2
’\/ “’G(”+1 <‘;T;G§§?+1) — (2K +1)| <e

Moreover, note that \/AEEH)A%H) cos 9<l+1) A(l+1) 12“ Gl(.;) + éa:j:c] and p(”l)cos H%H) o2 K(l) + = a: ;.

Thus, it holds that
[AG+D) 20+1)  A0+1) (141 +| _ L Lo
‘ A, Ajj cos@ij —p( )COSGU = EG” — K‘
Thus, w.p. > 1 — Lexp{—Q (me?) + O(llog 1)}, it holds that
A(1+1) (1+1) 2 | L~ 0

Consequently, w.p. > 1 — lexp{ —Q(me?) + O(l log = )} we have

1+ (1+1)
EGij - Kij

1 ~
< ’GE;H) e
m

. 1
+|G0 -k e v ot |Gl - K
m

By applying the induction argument, one can show that for [ > 1, it holds w.p. > 1 — [? exp{ —Q(me?) + O(l log %) },

L o 0)
’mGij —Kij <eg

Now we are ready to prove Theorem 3]

Proof of Theorem[3] Combing Lemmas [ and [I0] with the standard union bound, we have wp. > 1 —
n?12 exp{—Q(me?) + O(llog 1)}
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Take ¢ = (2ﬁaw)l and notice that 02 < i. It holds wp. > 1 — n?Zexp{-Q(8cZm)+0O(1?)} > 1 -

8
n?exp{—Q(8'c2m) + O(1%)},
!
ch:“) ~KO| = (9<n (2v20u) )
m

F



