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A. Detailed Dynamics of Feedforward SNNs
with LIF Neurons

An SNN operates by receiving an input time sequence
and generating an output time sequence (binary spike train)
through the iterative use of brain-inspired neuronal dynam-
ics. We consider feedforward SNNs with LIF neurons in
this work. Specifically, the network follows the difference
equation:

ul[t] = (1− 1

τ
)vl[t− 1] +Wlsl−1[t],

sl[t] = H(ul[t]− Vth),

vl[t] = ul[t]− Vths
l[t],

(S1)

where l = 1, · · · , L is the layer index, t = 1, · · · , T is the
time step index, {s0[t]}Tt=1 are the input to the network, and
{sl[t]}Tt=1 are the binary output sequence of the l-th layer, τ
is a pre-defined time constant, H(·) is the the Heaviside step
function, ul[t] is the membrane potential before resetting,
vl[t] is the potential after resetting, and Wl are the weight
to be trained. vl[0] is set to be 0 for l = 1, · · · , L.

The input s0 to the SNN can consist of either neuromor-
phic data or static data such as images. While neuromor-
phic data are inherently suitable for SNNs, when dealing
with static data, a common approach is to repeatedly apply
them to the first layer at each time step [31, 33, 26, 21]. This
allows the first layer to serve as a spike-train data generator.

The output of the network {sL[t]}Tt=1 is utilized for de-
cision making. In classification tasks, a common approach
involves computing o = 1

T

∑T
t=1 W

osL[t], where o ∈ Rc

and c represents the number of classes. The input sequence
{s0[t]}Tt=1 is classified as belonging to the i-th class if oi is
the largest value among {o1, · · · ,oc}.

*Corresponding author.

Due to the binary nature of spike communication be-
tween neurons, SNNs can be efficiently implemented on
neuromorphic chips, enabling energy-efficient applications.

B. Derivation for Eqs. (9) and (10)
Recall that

ϵl[t] ≜
∂ul[t+ 1]

∂ul[t]
+

∂ul[t+ 1]

∂sl[t]

∂sl[t]

∂ul[t]
, (S2)

which is the dependency between ul[t + 1] and ul[t]. We
derive Eq. (10) as below. We omit the derivation for Eq. (9)
since it is a simple corollary of Eq. (10).

Lemma 1 (Eq. (10)).

∂L
∂ul[t]

=
∂L

∂ul+1[t]

∂ul+1[t]

∂sl[t]

∂sl[t]

∂ul[t]

+

T∑
t′=t+1

∂L
∂ul+1[t′]

∂ul+1[t′]

∂sl[t′]

∂sl[t′]

∂ul[t′]

t′−t∏
t′′=1

ϵl[t′ − t′′].

(S3)

Proof. According to Fig. 2 and the chain rule, we have

∂L
∂ul[T ]

=
∂L

∂ul+1[T ]

∂ul+1[T ]

∂sl[T ]

∂sl[T ]

∂ul[T ]
, (S4)

and
∂L

∂ul[t]
=

∂L
∂ul+1[t]

∂ul+1[t]

∂sl[t]

∂sl[t]

∂ul[t]
+

∂L
∂ul[t+ 1]

ϵl[t], (S5)

when t = T − 1, · · · , 1. Eqs. (S4) and (S5) are standard
steps in the Backpropagation through time (BPTT) algo-
rithm.

Then we drive Eq. (S3) from Eq. (S5) by induction w.r.t.
t. When t = T − 1,

∂L
∂ul[T − 1]

=
∂L

∂ul+1[T − 1]

∂ul+1[T − 1]

∂sl[T − 1]

∂sl[T − 1]

∂ul[T − 1]
+

∂L
∂ul[T ]

ϵl[T − 1],

(S6)



which satisfies Eq. (S3). When t < T − 1, we assume
Eq. (S3) is satisfied for t + 1, then show that Eq. (S3) is
satisfied for t:

∂L
∂ul[t]

=
∂L

∂ul+1[t]

∂ul+1[t]

∂sl[t]

∂sl[t]

∂ul[t]
+

∂L
∂ul[t+ 1]

ϵl[t]

=
∂L

∂ul+1[t]

∂ul+1[t]

∂sl[t]

∂sl[t]

∂ul[t]

+

(
∂L

∂ul+1[t+ 1]

∂ul+1[t+ 1]

∂sl[t+ 1]

∂sl[t+ 1]

∂ul[t+ 1]

+

T∑
t′=t+2

∂L
∂ul+1[t′]

∂ul+1[t′]

∂sl[t′]

∂sl[t′]

∂ul[t′]

t′−t−1∏
t′′=1

ϵl[t′ − t′′]

ϵl[t]

=
∂L

∂ul+1[t]

∂ul+1[t]

∂sl[t]

∂sl[t]
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(S7)
where the first equation is due to Eq. (S5), and the second
equation is due to the assumption that Eq. (S3) is satisfied
for t+ 1.

C. Time Complexity Analysis of SLTT and
BPTT

C.1. Pseudocode of the Bachpropagation Though
Time with Surrogate Gradinet Method

We present the pseudocode of one iteration of SNN train-
ing with the bachpropagation though time (BPTT) with sur-
rogate gradinet (SG) method in Algorithm S1. Note that the
forward pass is defined by

ul[t] = (1− 1

τ
)(ul[t−1]−Vths

l[t−1])+Wlsl−1[t], (S8)

where sl are the output spike trains of the lth layer, which
are calculated by:

sl[t] = H(ul[t]− Vth). (S9)

C.2. Time Complexity Analysis

The time complexity of each time step is dominated by
the number of scalar multiplication operations. In this sub-
section, we analyze the required scalar multiplications of
the Spatial Learning Through Time (SLTT) and BPTT with
SG methods. We show the pseudocode of SLTT in Algo-
rithm S2 again for better presentation.

Algorithm S1 One iteration of SNN training with the BPTT
with SG method.
Input: Time steps T ; Network depth L; Network parame-

ters {Wl}Ll=1; Training data (s0,y); Learning rate η.
1: //Forward:
2: for t = 1, 2, · · · , T do
3: for l = 1, 2, · · · , L do
4: Calculate ul[t] and sl[t] by Eqs. (S8) and (S9);
5: end for
6: end for
7: Calculate the loss L based on sL and y.
8: //Backward:
9: eLs [T ] =

∂L
∂sL[T ]

;
10: for l = L− 1, · · · , 1 do
11: elu[T ] = el+1

s [T ]∂s
l+1[T ]

∂ul[T ]
, els[T ] = elu[T ]

∂ul[T ]
∂sl[T ]

;
12: end for
13: for t = T − 1, T − 2, · · · , 1 do
14: for l = L,L− 1, · · · , 1 do
15: if l = L then
16: eLs [t] =

∂L
∂sL[t]

+ eLu [t+ 1]∂u
L[t+1]

∂sL[t]
;

17: else
18: els[t] = el+1

u [t]∂u
l+1[t]

∂sl[t]
+ elu[t+ 1]∂u

l[t+1]
∂sl[t]

;
19: end if
20: elu[t] = els[t]

∂sl[t]
∂ul[t]

+ elu[t+ 1]∂u
l[t+1]

∂ul[t]
;

21: ∆Wl += elu[t]
⊤sl−1[t]⊤;

22: end for
23: end for
24: Wl = Wl − η∆Wl, l = 1, 2, · · · , L;
Output: Trained network parameters {Wl}Ll=1.

Consider that each layer has d neurons. For simplicity,
we only consider the scalar multiplications for one interme-
diate time step (t < T ) and one intermediate layer (l < L).
Regarding the BPTT with SG method, it requires scalar
multiplications to update els[t], e

l
u[t], and ∆Wl at lines 18,

20, and 21 respectively in Algorithm S1. To update els[t],
two vector-Jacobian products are required. Since ∂ul[t+1]

∂sl[t]

is a diagonal matrix, the number of scalar multiplications
for updating els[t] is d2 + d. To update elu[t] at line 20, the
number is 2d, since the Jacobians ∂sl[t]

∂ul[t]
and ∂ul[t+1]

∂ul[t]
are

both diagonal. It requires d2 scalar multiplications to up-
date ∆Wl. Regarding the SLTT method, it requires scalar
multiplications to update elu[t] and ∆Wl at lines 12 and
13, respectively, in Algorithm S2. It requires d2 + d scalar
multiplications to update elu[t], and requires d2 to update
∆Wl. Then compared with the BPTT with SG method,
SLTT reduces the number of scalar multiplications by 2d
for one intermediate time step and one intermediate layer.
For SLTT-K, it requires updating elu[t] and ∆Wl only at K
randomly chosen time steps. Then the required number of



Algorithm S2 One iteration of SNN training with the SLTT
or SLTT-K methods.
Input: Time steps T ; Network depth L; Network param-

eters {Wl}Ll=1; Training data (s0,y); Learning rate η;
Required backpropagation times K (for SLTT-K).

Initialize: ∆Wl = 0, l = 1, 2, · · · , L.
1: if using SLTT-K then
2: Sample K numbers in [1, 2, · · · , T ] w/o replace-

ment to form required bp steps;
3: else
4: required bp steps = [1, 2, · · · , T ];
5: end if
6: for t = 1, 2, · · · , T do
7: Calculate sL[t] by Eqs. (S8) and (S9); //Forward
8: Calculate the instantaneous loss ℓ;
9: if t in required bp steps then //Backward

10: eLu [t] =
1
T

∂ℓ
∂sL[t]

∂sL[t]
∂uL[t]

;
11: for l = L− 1, · · · , 1 do
12: elu[t] = el+1

u [t]∂u
l+1[t]

∂sl[t]
∂sl[t]
∂ul[t]

;
13: ∆Wl += elu[t]

⊤sl−1[t]⊤;
14: end for
15: end if
16: end for
17: Wl = Wl − η∆Wl, l = 1, 2, · · · , L;
Output: Trained network parameters {Wl}Ll=1.

scalar multiplication operations is proportional to K, which
is proportional to T for SLTT and BPTT.

D. Hard Reset Mechanism
In this work, we adopt the LIF model with soft reset as

the neuron model, as shown in Eq. (2). Besides the soft reset
mechanism, hard reset is also applicable for our method.
Specifically, for the LIF model with hard reset

u[t] = (1− 1

τ
)v[t− 1] +

∑
i

wisi[t] + b,

sout[t] = H(u[t]− Vth),

v[t] = u[t] · (1− sout[t]),

(S10)

we can also observe that the temporal components con-
tribute a little to ∂L

∂ul[t]
and the observation in Sec. 4.1

still holds. Consider the rectangle surrogate (Eq. (5)) with
γ = Vth, the diagonal elements of ϵl[t], which is the depen-
dency between ul[t+ 1] and ul[t], become

(
ϵl[t]

)
jj

=

{
λ
(
1− (sl[t])j − (ul[t])j

Vth

)
, 1

2
Vth <

(
ul[t]

)
j
< 3

2
Vth,

λ(1− (sl[t])j), otherwise.
(S11)

Since (sl[t])j ∈ {0, 1}, we have
(
ϵl[t]

)
jj

∈ (− 3
2λ,

1
2λ) ∪

{λ}, which is at least not large for commonly used small
λ. As a result, the spatial components in Eqs. (9) and (10)

Table S1: Comparison of accuracy between soft reset and
hard reset on CIFAR-10 and DVS-CIFAR10.

Dataset Reset Mechanism Acc

CIFAR-10 Soft 94.44%± 0.21%
Hard 94.34%

DVS-CIFAR10 Soft 82.20± 0.95%
Hard 81.40%

Table S2: Comparison between SLTT and BPTT on
CIFAR-10.

Time Steps Method Memory Time Acc

T = 2
BPTT 1.47G 1.81h 93.90%
SLTT 1.10G 1.80h 93.96%

T = 4
BPTT 2.19G 3.41s 94.29%
SLTT 1.09G 3.29h 94.17%

T = 6
BPTT 3.00G 6.35h 94.60%
SLTT 1.09G 4.58h 94.59%

dominate the gradients and then we can ignore the temporal
components without much performance drop.

We conduct experiments with the hard reset mechanism
on CIFAR-10 and DVS-CIFAR10, using the same training
settings as for soft reset. And the comparison between hard
reset and soft reset is shown in Tab. S1. We can see that our
method can also achieve competitive results with hard reset.

E. Performance Under the Smaller T Setting
We compare SLTT and BPTT with SG for smaller T on

CIFAR-10. The results are shown in Tab. S2. As T de-
creases, the behaviors of both methods tend to converge,
with SLTT consistently demonstrates better time and mem-
ory efficiency than BPTT with SG.

F. Comparison with the SOTA Using the Same
Network Architectures

We compare our method with other SOTA using the
same network architectures, and the results are shown in
Tab. S3. Our method achieves competitive results compared
with the SOTA methods, while enabling efficient training at
the same time. Furthermore, our method works on different
network backbones, showing its effectiveness and applica-
bility.

G. Dataset Description and Preprocessing
CIFAR-10 The CIFAR-10 dataset [16] contains 60,000
32×32 color images in 10 different classes, with 50,000
training samples and 10,000 testing samples. We normal-



Table S3: Comparisons with other SNN training methods using the same network architectures on CIFAR-10, CIFAR-100, ImageNet,
DVS-Gesture, and DVS-CIFAR10.

Method Network Time Steps Efficient Training Mean±Std (Best)

C
IF

A
R

-1
0

Dspike[19]

ResNet-18

6 % 94.25± 0.07%

TET[7] 6 % 94.50± 0.07%

DSR [21] 20 ! 95.40± 0.15%

RecDis[13] 6 % 95.55± 0.05%

SLTT (ours) 6 ! 94.44%± 0.21% (94.59%)
LTL-Online [32] 1

VGG-16

16 ! 92.85%

DIET-SNN [25] 1 10 % 93.44%

Temporal Pruning [5] 5 % 93.90%

SLTT (ours) 6 ! 93.28%± 0.02% (93.29%)

C
IF

A
R

-1
00

RecDis[13]

ResNet-18

4 % 74.10± 0.13%

TET[7] 6 % 74.72± 0.28%

DSR [21] 20 ! 78.50± 0.12%

Dspike[19] 6 % 74.24± 0.10%

SLTT (ours) 6 ! 74.38%± 0.30% (74.67%)

ANN-to-SNN[4] 1

VGG-16

8 ! 73.96%

DIET-SNN [25] 1 10 % 69.67%

Temporal Pruning [5] 5 % 71.58%

SLTT (ours) 6 ! 72.55%± 0.24% (72.83%)

Im
ag

eN
et

ANN-to-SNN [22] 1

ResNet-34

256, 512 ! 73.16%, 74.18%

ANN-to-SNN[18] 1 32, 256 ! 64.54%, 74.61%
TET[7] 6 % 64.79%

OTTT[30] 6 ! 65.15%

SEW [10] 4 % 67.04%

SLTT (ours) 6 ! 66.19%

STBP-tdBN [33]

ResNet-50

6 % 64.88%

SEW [10] 4 % 67.78%

ANN-to-SNN [22] 1 256, 512 ! 73.56%,75.04%

SLTT (ours) 6 ! 67.02%

ANN-to-SNN [22] 1

ResNet-101

256, 512 ! 73.50%,75.72%

SEW [10] 4 % 68.76%

SLTT-2 (ours) 6 ! 69.26%

D
V

S-
G

es
tu

re STBP-tdBN [33] ResNet-18 40 % 96.87%

SLTT (ours) 20 ! 97.68± 0.53% (98.26%)

OTTT [30] VGG-11 20 ! 96.88%

SLTT (ours) 20 ! 98.50± 0.21% (98.62%)

D
V

S-
C

IF
A

R
10

STBP-tdBN[33]

ResNet-18

10 % 67.80%

Dspike[19] 10 % 75.40± 0.05%

InfLoR[12] 10 % 75.50± 0.12%

SLTT (ours) 10 ! 81.87± 0.49% (82.20%)

DSR [21]

VGG-11

20 ! 77.27± 0.24%

OTTT [30] 10 ! 76.27± 0.05%(76.30%)

TET[7] 10 % 83.17± 0.15%

SLTT (ours) 10 ! 82.20± 0.95% (83.10%)

1 Pre-trained ANN models are required.

ize the image data to ensure that input images have zero
mean and unit variance. We apply random cropping with
4 padding on each border of the image, random horizontal
flipping, and cutout [8] for data augmentation. We apply
direct encoding [25] to encode the image pixels into time
series. Specifically, the pixel values are repeatedly applied

to the input layer at each time step. CIFAR-10 is licensed
under MIT.

CIFAR-100 The CIFAR-100 dataset [16] is similar to
CIFAR-10 except that it contains 100 classes of objects.



There are 50,000 training samples and 10,000 testing sam-
ples, each of which is a 32×32 color image. CIFAR-100 is
licensed under MIT. We adopt the same data preprocessing
and input encoding as CIFAR-10.

ImageNet The ImageNet-1K dataset [6] contains color
images in 1000 classes of objects, with 1,281,167 training
images and 50,000 validation images. This dataset is li-
censed under Custom (non-commercial). We normalize the
image data to ensure that input images have zero mean and
unit variance. For training samples, we apply random re-
sized cropping to get images with size 224×224, and then
apply horizontal flipping. For validation samples, we re-
size the images to 256×256 and then center-cropped them
to 224×224. We transform the pixels into time sequences
by direct encoding [25], as done for CIFAR-10 and CIFAR-
100.

DVS-Gesture The DVS-Gesture [1] dataset is recorded
using a Dynamic Vision Sensor (DVS), consisting of spike
trains with two channels corresponding to ON- and OFF-
event spikes. The dataset contains 11 hand gestures from 29
subjects under 3 illumination conditions, with 1176 train-
ing samples and 288 testing samples. The license of DVS-
Gesture is Creative Commons Attribution 4.0. For data
preprocessing, we follow [11] to integrate the events into
frames. The event-to-frame integration is handled with the
SpikingJelly [9] framework.

DVS-CIFAR10 The DVS-CIFAR10 dataset [17] is a neu-
romorphic dataset converted from CIFAR-10 using a DVS
camera. It contains 10,000 event-based images with pixel
dimensions expanded to 128×128. The dataset is licensed
under CC BY 4.0. We split the whole dataset into 9000
training images and 1000 testing images. Regarding data
preprocessing, we integrate the events into frames [11], and
reduce the spatial resolution into 48×48 by interpolation.
For some experiments, we take random horizontal flip and
random roll within 5 pixels as data augmentation, the same
as [7].

H. Network Architectures
H.1. Scaled Weight Standardization

An important characteristic of the proposed SLTT
method is the instantaneous gradient calculation at each
time step, which enables time-steps-independent memory
costs. Under our instantaneous update framework, an ef-
fective technique, batch normalization (BN) along the tem-
poral dimension [33, 19, 7, 21], cannot be adopted to our
method, since this technique requires gathering data from
all time steps to calculate the mean and variance statistics.

For some tasks, we still use BN components, but their cal-
culated statistics are based on data from each time step. For
other tasks, we replace BN with scaled weight standardiza-
tion (sWS) [24, 2, 3], as introduced below.

The sWS component [2], which is modified from
the original weight standardization [24], normalizes the
weights according to:

Ŵi,j = γ
Wi,j − µWi,·

σWi,·

, (S12)

where the mean µWi,· and standard deviation σWi,· are cal-
culated across the fan-in extent indexed by i, N is the di-
mension of the fan-in extent, and γ is a fixed hyperparame-
ter. The hyperparameter γ is set to stabilize the signal prop-
agation in the forward pass. Specifically, for one network
layer z = Ŵg(x), where g(·) is the activation and the ele-
ments of x are i.i.d. from N (0, 1), we determine γ to make
E(z) = 0, and Cov(z) = I. For SNNs, the activation g(·) at
each time step can be treated as the Heaviside step function.
Then we take γ ≈ 2.74 to stable the forward propagation, as
calculated by [30]. Furthermore, sWS incorporate another
learnable scaling factor for the weights [2, 30] to mimic the
scaling factor of BN. sWS shares similar effects with BN,
but introduces no dependence of data from different batches
and time steps. Therefore, sWS is a convincing alternative
for replacing BN in our framework.

H.2. Normalization-Free ResNets

For deep ResNets [14], sWS cannot enjoy the similar
signal-preserving property as BN very well due to the skip
connection. Then in some experiments, we consider the
normalization-free ResNets (NF-ResNets) [2, 3] that not
only replace the BN components by sWS but also introduce
other techniques to preserve the signal in the forward pass.

The NF-ResNets use the residual blocks of the form
xl+1 = xl +αfl (xl/βl), where α and βl are hyperparame-
ters used to stabilize signals, and the weights in fl(·) are im-
posed with sWS. The carefully determined βl and the sWS
component together ensure that fl(xl/βl) has unit variance.
α controls the rate of variance growth between blocks, and
is set to be 0.2 in our experiments. Please refer to [2] for
more details on the network design.

H.3. Description of Adopted Network Architectures

We adopt ResNet-18 [14] with the pre-activation resid-
ual blocks [15] to conduct experiments on CIFAR-10 and
CIFAR-100. The channel sizes for the four residual blocks
are 64, 128, 256, and 512, respectively. All the ReLU acti-
vations are substituted by the leaky integrate and fire (LIF)
neurons. To make the network implementable for neuro-
morphic computing, we replace all the max pooling opera-
tions with average pooling. To enable instantaneous gradi-
ent calculation, we adopt the BN components that calculate



the mean and variance statistics for each time step, not the
total time horizon. Then for each iteration, a BN component
is implemented for T times, where T is the number of total
time steps.

We adopt VGG-11 [28] to conduct experiments on DVS-
Gesture and DVS-CIFAR10. As done for Resnet-18, we
substitute all the max poolings with average poolings and
use the time-step-wise BN. We remove two fully connected
layers [21, 7, 30] to reduce the computation. A dropout
layer [29] is added behind each LIF neuron layer to bring
better generalization. The dropout rates for DVS-Gesture
and DVS-CIFAR10 are set to be 0.4 and 0.3, respectively.

We also adopt VGG-11 (WS) to conduct experiments
on DVS-Gesture and achieve state-of-the-art performance.
VGG-11 (WS) is a BN-free network that shares a similar ar-
chitecture with VGG-11 introduced above. The difference
between the two networks is that VGG-11 consists of the
convolution-BN-LIF blocks while VGG-11 (WS) consists
of the convolution-sWS-LIF blocks.

We adopt NF-ResNet-34, NF-ResNet-50, and NF-
ResNet-101 to conduct experiments on ImageNet. Those
networks are normalization-free ResNets introduced in Ap-
pendix H.2. In Figs. 1 and 3 of the main content, the used
network for ImageNet is NF-ResNet-34.

I. Training Settings

All the implementation is based on the PyTorch [23] and
SpikingJelly [9] frameworks, and the experiments are car-
ried out on one Tesla-V100 GPU or one Tesla-A100 GPU.

For CIFAR-10, CIFAR-100, and DVS-Gesture, we adopt
the loss function proposed in [7]:

L =
1

T

T∑
t=1

(1− λ)ℓ1(o[t], y) + λℓ2(o[t], Vth), (S13)

where T is the number of total time steps, ℓ1 is the cross
entropy function, ℓ2 is the mean squared error (MSE) func-
tion, o[t] is the network output at the t-th time step, y is
the label, λ is a hyperparameter taken as 0.05, and Vth is
the spike threshold which is set to be 1 in this work. For
ImageNet, we use the same loss but simply set λ = 0. For
DVS-CIFAR10, we also combine the cross entropy loss and
the MSE loss, but the MSE loss does not act as a regulariza-
tion term as in [7]:

L =
1

T

T∑
t=1

(1− λ)ℓ1(o[t], y) + λℓ2(o[t], y), (S14)

where α is also taken as 0.05. Our experiments show that
such loss performs better than that defined in Eq. (S13) for
DVS-CIFAR10.

Table S4: Training hyperparameters about optimization.
“WD” means weight decay, “LR” means initial learning
rate, and “BS” means batch size.

Dataset Epoch LR BS WD
CIFAR-10 200 0.1 128 5× 10−5

CIFAR-100 200 0.1 128 5× 10−4

ImageNet (pre-train) 100 0.1 256 1× 10−5

ImageNet (fine-tune) 30 0.001 256 0
DVS-Gesture 300 0.1 16 5× 10−4

DVS-CIFAR10 300 0.05 128 5× 10−4

For all the tasks, we use SGD [27] with momentum 0.9
to train the networks, and use cosine annealing [20] as the
learning rate schedule. Other hyperparameters about opti-
mization are listed in Tab. S4. For ImageNet, we first train
the SNN with only 1 time step to get a pre-trained model,
and then fine-tune the model for multiple time steps.

In Section. 5.3 of the main content, we compare the pro-
posed SLTT method and OTTT [30] following the same ex-
perimental settings as introduced in [30]. For both meth-
ods, we adopt the NF-ResNet-34 architecture for ImageNet
and VGG-11 (WS) for other datasets. And the total number
of time steps for CIFAR-10, CIFAR-100, ImageNet, DVS-
Gesture, and DVS-CIFAR10 are 6, 6, 6, 20, and 10, respec-
tively.

J. Societal impact and limitations
There is no direct negative societal impact since this

work focuses on efficient training methods for SNNs. Com-
pared with ANNs, the inference of SNNs requires less en-
ergy consumption and produces less carbon dioxide emis-
sions. Our proposed method can further reduce energy con-
sumption in the SNN training process. As for the limitation,
the SLTT method cannot be equipped with some network
techniques, such as batch normalization along the tempo-
ral dimension, since the proposed method is conducted in
an online manner, which is biologically more plausible and
more friendly for on-chip training. It may require the explo-
ration of more techniques that are compatible with online
learning of SNNs.
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