
Under review as a conference paper at ICLR 2023

SUPPLEMENTARY MATERIAL: NEURAL EPDOS: SPA-
TIALLY ADAPTIVE EQUIVARIANT PARTIAL DIFFEREN-
TIAL OPERATOR BASED NETWORKS

Anonymous authors
Paper under double-blind review

A GROUP REPRESENTATION

Formally, a group representation ρ of group G is a group homomorphism: G → GL(V), i.e.,
∀g1, g2 ∈ G, ρ(g1g2) = ρ(g1)ρ(g2). Here, V is a linear space, and GL(V) is the general linear
group on V (the set of all bijective linear transformations V → V , usually adopted as matrices).
Here, we mainly introduce three types of group representations that are often adopted in equivariant
researches.

Regular Representation It is a group representation commonly used for discrete groups. It acts on
a vector space R|G| by permuting its axes. If we associate every axis with a group element, then the
action ρG

reg(g) of regular representation permutes the axis associated with g1 to the axis associated
with gg1. Specifically, the matrix form of ρG

reg(g) is ρG
reg(g)gi,gj = δgi,gjg

1, where gi, gj , gjg ∈ G
denote the corresponding axes. Feature maps with regular representations as transformation type are
called regular fields.

Quotient Representation It is very similar to regular representation. The vector space is R|G|/|H|

and each axis is associated by cosets gH in the quotient space G/H of H , where H is a subgroup
of G. The action ρ

G/H
quot (g) of quotient representation permutes the axis associated with g1H

to the one associated with gg1H . Under the canonical basis, ρ
G/H
quot (g) is of the matrix form

ρ
G/H
quot (g)g1H,g2H = δg1H,gg2H . Feature maps with quotient representations as transformation type

are called quotient fields.

Irreducible Representation of SO(2) It refers to representations which cannot be decomposed
into more basic representations. One dimensional irreducible representation of SO(2) is trivial
representation, denoted as ψ0. Two-dimensional irreducible representations of SO(2) are

ψk(θ) =

[
cos(kθ), − sin(kθ)
sin(kθ), cos(kθ)

]
, k ∈ N+, (21)

where θ ∈ [0, 2π] denotes a rotation.

B PROOF OF LEMMA.1

Lemma 1 ρ̂(g) defined in Eq.(5) is a group representation of g on R|ΓN |.

Proof 1 As the elementary PDOs would not change when translation transform acts on f , we con-
sider ∀g1, g2 ∈ G act on f sequentially, and let f̃(x) := f(g−1

1 x), we have:

1δi,j = 1 if i = j, and δi,j = 0 otherwise.

1

Under review as a conference paper at ICLR 2023

∀α ∈ ΓN , ∂
α[f̃(g−1

2 x)](x) =
∑

β∈ΓN

ρ̂α,β(g2)∂
β [f̃](g−1

2 x) (22)

=
∑

β∈ΓN

ρ̂α,β(g2)
∑
γ∈ΓN

ρ̂β,γ(g1)∂
γ [f](g−1

1 g−1
2 x) (23)

=
∑
γ∈ΓN

(
∑

β∈ΓN

ρ̂α,β(g2)ρ̂β,γ(g1))∂
γ [f]((g2g1)

−1x) (24)

=
∑
γ∈ΓN

(ρ̂(g2)ρ̂(g1))α,γ∂
γ [f]((g2g1)

−1x) (25)

On the other hand,

∀α ∈ ΓN , ∂α[f̃(g−1
2 x)](x) = ∂α[f((g2g1)

−1x)](x) =
∑
γ∈ΓN

ρ̂α,γ(g2g1)∂
γ [f]((g2g1)

−1x) (26)

We can get ∀g1, g2 ∈ G, ρ̂ (g2g1) = ρ̂ (g2) ρ̂ (g1). Hence ρ̂ is a group representation of group G.

C COMPUTATION OF ρ̂(g)

It is not difficult to find that elementary PDOs of different orders are decoupled under coordinate
transformation, i.e.,

ρ̂α,β(g) = 0 if α1 + α2 ̸= β1 + β2 (27)

where α = (α1, α2), β = (β1, β2). In order to compute all ρ̂α,β(g) in which α1+α2 = β1+β2 = s,
we give a following program:

Algorithm 1 Computation of ρ̂(g)
Input: Highest order N of considered elementary PDO, group element g
Output: ρ̂(g)

1: ρ̂(0,0),(0,0)(g)← 1
2: for s = 1 to N do
3: for α1 = 1 to s do
4: α2 ← s− α
5: β1 ← s, β2 ← 0, ρ̂α,β(g)← g1,1ρ̂(α1−1,α2),(β1−1,β2)(g)
6: β1 ← 0, β2 ← s, ρ̂α,β(g)← g1,2ρ̂(α1−1,α2),(β1,β2−1)(g)
7: for β1 = 1 to s− 1 do
8: β2 = s− β1
9: ρ̂α,β(g)← g1,1ρ̂(α1−1,α2),(β1−1,β2)(g) + g1,2ρ̂(α1−1,α2),(β1,β2−1)(g)

10: end for
11: end for
12: α1 ← 0, α2 ← s
13: β1 ← s, β2 ← 0, ρ̂α,β(g)← g2,1ρ̂(α1,α2−1),(β1−1,β2)(g)
14: β1 ← 0, β2 ← s, ρ̂α,β(g)← g2,1ρ̂(α1,α2−1),(β1,β2−1)(g)
15: for β1 = 1 to s− 1 do
16: β2 = s− β1
17: ρ̂α,β(g)← g1,1ρ̂(α1,α2−1),(β1−1,β2)(g) + g2,1ρ̂(α1−1,α2),(β1,β2−1)(g)
18: end for
19: end for

The above program computes ρ̂(g) recursively and time complexity of the program is proportional
to number of ρ̂α,β(g) in which α1 + α2 = β1 + β2 = s.

2

Under review as a conference paper at ICLR 2023

D PROOF OF PROPOSITION.1

Proposition 1 The nonlinear PDOs in Eq.(7) are equivariant to affineH if and only if the coefficient
generators satisfy the following constraint:

∀α ∈ ΓN ,∀g ∈ G,∀y ∈ Rcin ,
∑

β∈ΓN

ρ̂β,α(g)Wβ(ρ(g)y)ρ(g) = ρ′(g)Wα(y).

Proof 2 As introduced in Section 3.1, an H-equivariant operator Ψ in Eq.(7) should satisfy the
following requirement:

∀h ∈ H, Ψ [π(h)[f]] = π′(h)[Ψ[f]], (28)

where H is a transformation group, π(h) and π′(h) are group actions, and f is the input field.
According to the definition of π Eq.(2), the LHS of Eq. (28) becomes:

∀x ∈ R2, Ψ[π(h)[f]](x) =
∑

β∈ΓN

Wβ(π(h)f(x))∂
β [π(h)f](x) (29)

=
∑

β∈ΓN

Wβ(ρ(g)f̃(x))∂
β [ρ(g)f̃](x), (30)

where f̃ denote f(g−1(x − t)). As the element PDOs are linear operators, we have: ∀β ∈
ΓN , ∂

β [ρ(g)f̃](x) = ρ(g)∂β [f̃](x). According to Eq.(5):

Eq.(30) =
∑

α∈ΓN

∑
β∈ΓN

ρ̂β,α(g)Wβ(ρ(g)f̃(x))ρ(g)∂
α[f](g−1(x− t)) (31)

On the RHS of Eq.(28), we have:

∀x ∈ R2, π′(h)[Ψ[f]] = π′(h)[
∑

α∈ΓN

Wα(f(x))∂
α[f](x)] (32)

=
∑

α∈ΓN

ρ′(g)Wα(f̃(x))∂
α[f](g−1(x− t)) (33)

Since the elementary PDOs are independent from each other and the arbitariness of f , the Eq.(31)
and Eq.(33) equal if and only if their corresponding coefficient matrices of each ∂α[f](g−1(x− t))
is equal.

∀α ∈ ΓN ,
∑

β∈ΓN

ρ̂β,α(g)Wβ(ρ(g)f̃(x))ρ(g) = ρ′(g)Wα(f̃(x)) (34)

Due to the arbitrariness of f(x), the condition should be satisfied for any vector y ∈ Rcin :

∀α ∈ ΓN ,
∑

β∈ΓN

ρ̂β,α(g)Wβ(ρ(g)y)ρ(g) = ρ′(g)Wα(y). (35)

Hence, we get proposition.1.Q.E.D.

E PROOF OF PROPOSITION 2

Proposition 2 Eq.(8) is equivalent to the following form:

∀g ∈ G,∀y ∈ Rcin , W(ρ(g)y)(ρ̂(g)⊗ ρ(g)) = ρ′(g)W(y).

where ⊗ is the tensor product, and ∀y ∈ Rcin ,W(y) = [W(0,0)(y), ...,W(0,N)(y)].

Proof 3 Note that the dimension of coefficient matrices Wα(y) is cout × cin, and denote the ith
coefficient matrix in the W(y) as W[i](y), such that W(y)m,icin+n = (W[i](y))m,n.

3

Under review as a conference paper at ICLR 2023

According to proposition 1,

∀1 ≤ i ≤ |ΓN |,∀g ∈ G,∀1 ≤ m ≤ cout∑
1≤j≤|ΓN |

∑
1≤n≤cin

ρ̂ji(g)(W[j](ρ(g)y))m,nρnk(g) =
∑

1≤t≤cin

ρ′mt(g)(W[i](y))t,k

⇐⇒
∑

1≤j≤|ΓN |

∑
1≤n≤cin

W(ρ(g)y)m,jcin+nρ̂ji(g)ρnk(g) =
∑

1≤t≤cin

ρ′mt(g)W(y)t,icin+k

⇐⇒
∑

1≤j≤|ΓN |

∑
1≤n≤cin

W(ρ(g)y)m,jcin+n(ρ̂(g)⊗ ρ(g))jcin+n,icin+k = (ρ′(g)W(y))m,icin+k

⇐⇒(W(ρ(g)y)(ρ̂(g)⊗ ρ(g)))m,icin+k = (ρ′(g)W(y))m,icin+k.
(36)

Hence, we get the proposition 2. Q.E.D.

F PROOF OF PROPOSITION 3

Proposition 3 Suppose the input and output of operator (11) are both ρ(g)-field. If the ρ is a
regular or quotient representation of G, the constraint in Eq.(12) is equivalent to:

∀g ∈ G,∀y ∈ Rcin , w̄(ρ(g)y) = (ρ(g)⊗ ρ̂(g−1)⊤)w̄(y),

where ∀y ∈ Rcin , w̄(y) = vec([w(0,0)(y), ...,w(0,N)(y)]) is a large vector concatenated from all
generated vectors.

Before proving this proposition, we first prove the following lemma.

Lemma 2 For a n-dimensional permutation matrix P and a n-dimensional vector w, we have the
following equation:

Pdiag[w]P−1 = diag[Pw], (37)

where diag[·] is the operator that converting a n-dimensional vector to a n-dimensional diagonal
matrix with the vector as diagonal.

Proof 4 Proving Eq.(37) is equivalent to proving the following:

Pdiag[w] = diag[Pw]P (38)

Suppose the permutation matrix P corresponds to a permutation: ϕ : {1, . . . , n} → {1, . . . , n}.
Then we have Pi,j = δϕ(i),j . LHS of Eq.(38) is

(Pdiag[w])i,j =
n∑

k=1

δϕ(i),kwkδk,j = wϕ(i)δϕ(i),j . (39)

The RHS of Eq.(38) is

(diag[Pw]P)i,j =

n∑
k=1

n∑
l=1

δϕ(i),kwkδi,lδϕ(l),j (40)

=

n∑
l=1

wϕ(i)δi,lδϕ(l),j (41)

=wϕ(i)δϕ(i),j . (42)

So we have RHS=LHS which proves the lemma.

Proof 5 Applying the above lemma to the proposition 1, the Eq.(12) in the main text becomes:

∀α ∈ ΓN ,∀g ∈ G,∀y ∈ Rcin ,
∑

β∈ΓN

ρ̂β,α(g)diag[wβ(ρ(g)y)] = diag[ρ(g)wα(y)]. (43)

4

Under review as a conference paper at ICLR 2023

We then prove this formula is equivalent to the following equation:
∀g ∈ G,∀y ∈ Rcin , W̄(ρ(g)y) = ρ(g)W̄(y)ρ̂(g−1), (44)

where W̄ is the matrix obtained by concating all the coefficient generator side by side such that
∀y ∈ Rcin ,W̄(y) = [w(0,0)(y), ...,w(0,N)(y)].

As proof 3, we denote the dimension of output from coefficient generator wα to be cin-dimensional
vector, and the ith coefficient generator concated in the W̄ as w[i], such that (W̄(y))n,i =
(w[i](y))n.

Consider diagonals on both sides of Eq.(43), we have:
∀1 ≤ i ≤ |ΓN |,∀g ∈ G,∀1 ≤ m ≤ cin,∑
1≤j≤|ΓN |

ρ̂ji(g)w[j](ρ(g)y) = ρ(g)w[i](y)

⇐⇒
∑

1≤j≤|ΓN |

ρ̂ji(g)(w[j](ρ(g)y))m =
∑

1≤t≤cin

ρmt(g)(w[i](y))t

⇐⇒
∑

1≤j≤|ΓN |

(W̄(ρ(g)y))m,j ρ̂ji(g) =
∑

1≤t≤cin

ρmt(g)(W̄(y))t,i

⇐⇒(W̄(ρ(g)y)ρ̂(g))m,i = (ρ(g)W̄(y))m,i

⇐⇒W̄(ρ(g)y)ρ̂(g) = ρ(g)W̄(y)

⇐⇒W̄(ρ(g)y) = ρ(g)W̄(y)ρ̂(g−1).

(45)

Then, we get the Eq.(44). Appling vec[·] operator on both sides of Eq.(44), we get the proposition 3.
Q.E.D.

G DETAILS ON MNIST-ROT EXPERIMENT

In all our models, we setN = 4 in Neural ePDOs for a trade-off between computation and accuracy.
We show the architecture for C16 model of regular field in MNIST-rot experiment at Table 1.

Table 1: Architecture of Neural PDOs (C16) on Mnist-rot classification, p means dropout rate.
Layer Number of output fields
Steerable PDOs 16
BatchNorm+ReLu
Neural ePDOs 24
BatchNorm+ReLu
Spatial max pooling
Neural ePDOs 32
BatchNorm+ReLu+Dropout(p=0.1)
Neural ePDOs 32
BatchNorm+ReLu+Dropout(p=0.1)
Spatial max pooling
Neural ePDOs 48
BatchNorm+ReLu+Dropout(p=0.1)
Neural ePDOs 64
BatchNorm+ReLu+Dropout(p=0.1)
Group pooling
Global max pooling
Fully connected 64
BatchNorm+ReLu
Fully connected+Softmax 10

We choose reduction ratio as r = 1, and partition number q = z
4 where z is number of input

fields of current layer for the coefficient generator. For model of quotient representation, we adopt

5

Under review as a conference paper at ICLR 2023

ρC16
reg ⊕ ρ

C16/C4

quot as the group representation and change the reduction ratio to r = 2. In addition, to
keep the parameters almost invariant, we make a few modifications to the number of output fields at
each layer. For theD16 regular representation model, we follow settings in (1) that keep the first five
layers being D16-equivariant, and restrict the final PDOs layer to be C16-equivariant. The numbers
of output fields of the six layers are 12, 16, 24, 24, 32, 128, while other hyperparameters are the
same as C16 regular representation model. We choose σ = 1 for the Gaussian derivatives.

All our models are trained using the Adam optimizer (2) for 200 epochs with a batch size of 64. The
learning rate is initialized as 0.002 and is reduced by 10 at the 60th, 120th and 160th epochs. The
weight decay is set as 0.0001 and we augment the dataset with random rotations during training.

H DETAILS ON IMAGENET EXPERIMENT

For ImageNet100, we train the model using SGD optimizer for 80 epochs with momentum of 0.9,
a batch size of 256 and weight decay of 1e-4. The learning rate is initialized at 0.1 and divided
by 5 after 20, 40, 60 epochs. Linear warm-up for 1 epoch with its ratio of 0.1 is adopted at the
start of training. For each Neural PDOs, we set the reduction ratio r = 2, and the partition number
q = 10 for the coefficient generator. We use random crops, horizontal flips as data augmentation.
For ImageNet1k, we train the model for 100 epochs with learning rate initialized at 0.1 and diveded
by 10 at 30, 60, 90 epochs while keeping other setting invariant. We choose σ = 1 for the Gaussian
derivatives

I COMPARISON WITH METHOD IN STEERABLE PDOS

In steerable PDOs (1), they first make use of the duality between polynomials and PDOs to construct
an isomorphic map from PDOs to matrices of polynomials, which transforms the problem of finding
equivariant PDOs into the problem of solving polynomials based equivariant kernel. Then, they
solve the polynomials based equivariant kernel by extending the solution basis of the equivariant
kernel in E2CNN(3) to the polynomials form. However, such a method can not be easily extended
to the non-linear PDOs proposed in the main paper, because there is no such isomorphic map to
transform non-linear PDOs into matrices of polynomials. In comparison, we directly deduce the
equivariant constraint on the coefficients of PDOs.

Note that the solution space of steerable PDOs is exactly included in the solution space of Eq.(9), as
we choose the coefficient generator to be the constant function of the input.

In addition, our method no longer needs to compute the solution basis for each irreducible repre-
sentation pairs manually beforehand, because the solving process is totally automatic for any repre-
sentation pairs under our framework, which makes it much easier to extend to G ≤ O(n) for any
n ∈ N.

J HYPERPARAMETERS ANALYSIS

In this section, we investigate the influence of the hyperparameters change in Neural ePDOs. As
pointed out in Section 6 in the main text, the number of our models’ parameters is mainly controlled
by the partition number p and the reduction ratio r, so we vary these two parameters respectively.
The results are shown in Table 2 and Figure.1. We can see that all the Neural ePDOs models
outperform steerable PDOs with significantly fewer parameters. Besides, as the size of Neural
ePDOs is large enough, the performance gain is very limited, which demonstrates such a design can
help to trade off efficiency and accuracy.

Table 2: Hyperparameters Analysis of Neural ePDOs. z is the number of input fields of the current
layer. The test error with standard deviations are averaged over 5 runs.

hyperparameters p = z
8 p = z

4 p = z
2

r=1 0.62±0.05 0.65± 0.04 0.67± 0.03
r=2 0.66±0.06 0.64±0.03 0.69± 0.03
r=4 0.66±0.04 0.67± 0.03 0.71± 0.04

6

Under review as a conference paper at ICLR 2023

Figure 1: A comparison between Neural ePDOs of various model sizes and Steerable PDOs. The
x-coordinate denotes the model parameters and the y-coordinate denotes the average test error. The
blue dots are used to denote Neural ePDOs of various hyperparameters and the red square is used to
denote Steerable PDOs.

K TRAINING AND TESTING TIME COMPARISON

In this section, we compare the training and testing time between Neural ePDOs and Steerable PDOs
(1). We train and test models on a single GTX 1080 Ti. The training time is obtained by training
model for 1 epoch, and the test time is the inference time for one image. The results are shown in
Table 3.

Table 3: Training and testing time of Neural ePDOs compared to Steerable PDOs.
Model Testing time(s) Training time(s)

Steerable PDOs 0.0194 50.25
Neural ePDOs 0.0201 102.45

As shown in Table 3, the gap between the test time of Neural ePDOs and steerable PDOs is minor.
However, the training time of steerable PDOs is shorter, despite Neural ePDOs having fewer FLOPs.
It is because the steerable PDOs is implemented using convolution operators, which are highly
optimized in existing speedup libraries. In comparison, we just give a naive implementation of
Neural ePDOs without any support from these libraries. We leave implementing the specific CUDA
kernel for GPU acceleration to further speed up the training process for Neural ePDOs as future
work.

L FILTERS OF FINITE DIFFERENCE METHOD

The ∂̇ is used to denote the discretization of PDOs.

7

Under review as a conference paper at ICLR 2023

L.1 FILTERS OF SIZE 3×3

∂̇0 =

[
0 0 0
0 1 0
0 0 0

]
∂̇x =

1

h

 0 0 0
− 1

2 0 1
2

0 0 0

 ∂̇y =
1

h

 0 1
2 0

0 0 0
0 − 1

2 0


∂̇xx =

1

h2

[
0 0 0
1 −2 1
0 0 0

]
∂̇xy =

1

h2

 − 1
4 0 1

4
0 0 0
1
4 0 − 1

4

 ∂̇yy =
1

h2

[
0 1 0
0 −2 0
0 1 0

]

∂̇xxy =
1

h3

 1
2 −1 1

2
0 0 0
− 1

2 1 − 1
2

 ∂̇xyy =
1

h3

 − 1
2 0 1

2
1 0 −1
− 1

2 0 1
2

 ∂̇xxyy =
1

h4

[
1 −2 1
−2 4 −2
1 −2 1

]

L.2 FILTERS OF SIZE 5×5

∂̇xxx =
1

h3


0 0 0 0 0
0 0 0 0 0
− 1

2 1 0 −1 1
2

0 0 0 0 0
0 0 0 0 0

 ∂̇yyy =
1

h3


0 0 1

2 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 1 0 0
0 0 − 1

2 0 0



∂̇xxxx =
1

h4


0 0 0 0 0
0 0 0 0 0
1 −4 6 −4 1
0 0 0 0 0
0 0 0 0 0

 ∂̇xxxy =
1

h4


0 0 0 0 0
− 1

4
1
2 0 − 1

2
1
4

0 0 0 0 0
1
4 − 1

2 0 1
2 − 1

4
0 0 0 0 0



∂̇xyyy =
1

h4


0 − 1

4 0 1
4 0

0 1
2 0 − 1

2 0
0 0 0 0 0
0 − 1

2 0 1
2 0

0 1
4 0 − 1

4 0

 ∂̇yyyy =
1

h4


0 0 1 0 0
0 0 −4 0 0
0 0 6 0 0
0 0 −4 0 0
0 0 1 0 0


REFERENCES

[1] Erik Jenner and Maurice Weiler. Steerable partial differential operators for equivariant neural
networks. arXiv preprint arXiv:2106.10163, 2021.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] Maurice Weiler and Gabriele Cesa. General E (2)-equivariant steerable CNNs. Advances in
Neural Information Processing Systems, 32, 2019.

8

	Group representation
	Proof of Lemma.1
	Computation of (g)
	Proof of proposition.1
	Proof of proposition 2
	Proof of proposition 3
	Details on MNIST-rot Experiment
	Details on ImageNet experiment
	Comparison with Method in steerable PDOs
	Hyperparameters Analysis
	Training and Testing time Comparison
	Filters of Finite Difference Method
	Filters of size 33
	Filters of size 55

