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Abstract

In recent years, graph Transformers (GTs) have1

been demonstrated as a robust architecture for a2

wide range of graph learning tasks. However, the3

quadratic complexity of GTs limits their scalability4

on large-scale data, in comparison to Graph Neural5

Networks (GNNs). In this work, we propose the6

Kernel Decomposition Linear Graph Transformer7

(KDLGT), an accelerating framework for building8

scalable and powerful GTs. KDLGT employs the9

kernel decomposition approach to rearrange the or-10

der of matrix multiplication, thereby reducing com-11

plexity to linear. Additionally, it categorizes GTs12

into three distinct types and provides tailored ac-13

celerating methods for each category to encompass14

all types of GTs. Furthermore, we provide a the-15

oretical analysis of the performance gap between16

KDLGT and self-attention to ensure its effective-17

ness. Under this framework, we select two repre-18

sentative GTs to design our models. Experiments19

on both real-world and synthetic datasets indicate20

that KDLGT not only achieves state-of-the-art per-21

formance on various datasets but also reaches an22

acceleration ratio of approximately 10 on graphs of23

certain sizes.24

1 Introduction25

Recent years have seen significant advancements in the field26

of graph learning, with notable successes across a vari-27

ety of domains including social networks [Li et al., 2021;28

Zhong et al., 2020], molecular graphs [Huang et al., 2020;29

Wang et al., 2021], and knowledge graphs [Liu et al., 2021;30

Yasunaga et al., 2021]. One of the key approaches in31

this field is Graph Neural Networks (GNNs), which have32

been widely adopted as a powerful embedding approach33

for various graph learning tasks [Kipf and Welling, 2017;34
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Veličković et al., 2018; Hamilton et al., 2017]. The founda- 35

tion of GNNs is the local sparse message-passing mechanism, 36

which enables the nodes on the graphs to iteratively exchange 37

messages through the edges connecting them. However, the 38

limitations of the message-passing mechanism have become 39

increasingly apparent in recent research [Xu et al., 2019; 40

Morris et al., 2019; Maron et al., 2019], leading to a series 41

of works [Ying et al., 2021; Zhang et al., 2020; Chen et al., 42

2022] that have turned to Transformer architectures[Vaswani 43

et al., 2017] in pursuit of new breakthroughs. 44

Graph Transformers (GTs) represent a successful endeavor 45

to deploy Transformer architectures to graph data. By en- 46

abling nodes to attend to all other nodes within the graphs, 47

GTs encode graph structures as a soft inductive bias, rather 48

than the hard-coded message-passing approach. In contrast to 49

GNNs, GTs utilize absolute and relative positional encodings 50

(APEs and RPEs) to characterize graph topological struc- 51

tures, viewing the graphs as complete entities and enabling 52

long-range interactions for nodes. This overcomes limitations 53

inherent in the message-passing paradigm, such as limited 54

expressiveness [Xu et al., 2019], over-smoothing [Alon and 55

Yahav, 2021], and over-squashing [Alon and Yahav, 2021] 56

issues. However, despite these achievements, there remain a 57

plethora of challenges to be addressed in this area of research. 58

One of the most significant challenges faced by GTs is the 59

poor scalability. This is due to the global attention mecha- 60

nism, which results in quadratic time and memory complex- 61

ity with respect to the number of nodes in the graph. This 62

problem is particularly pronounced when utilizing GTs on 63

datasets consisting of larger graphs, such as citation and so- 64

cial network graphs, as limited GPU memory and excessive 65

running time impede their performance. Consequently, in the 66

application scenarios, GTs do not demonstrate a significant 67

advantage over GNNs. 68

In this work, we present the Kernel Decomposition Lin- 69

ear Graph Transformer (KDLGT), an accelerating framework 70

for building scalable and powerful GTs. Unlike previous 71

model-specific approaches, KDLGT is model-agnostic and 72

aims to provide a general solution for accelerating all GT 73

models. To achieve this, we employ the kernel decompo- 74



sition approach, which rearranges the matrix multiplication75

order of self-attention by designing a kernel function decom-76

position for the softmax function. Under this approach, the77

way to deal with RPE matrices becomes the key to reducing78

time complexity. Inspired by the fact that the RPE matri-79

ces of undirected graphs are symmetric and can be decom-80

posed into products of low-dimensional matrices, we cate-81

gorize RPE matrices into three types, which cover the most82

commonly used RPEs. Using KDLGT, we select two rep-83

resentative RPEs (such as Shortest Path Distance) and design84

our models. Additionally, we provide a theoretical analysis of85

the difference between the KDLGT framework and the tradi-86

tional self-attention method, and prove that this gap can be87

effectively bounded.88

We conduct experiments on 10 real-world datasets to89

demonstrate the superior performance of our proposed90

KDLGT framework. Additionally, we evaluate KDLGT on91

a series of synthetic graphs with varying scales to verify its92

efficiency. The experimental results show that KDLGT not93

only improves learning efficiency significantly but also pre-94

serves precision performance effectively and achieves state-95

of-the-art results on a variety of datasets. Furthermore, as96

anticipated, the acceleration ratio increases as the graph size97

increases, indicating the strong scalability of KDLGT. In par-98

ticular, KDLGT can achieve an acceleration ratio of approx-99

imately 10 on graphs of certain sizes. The contributions of100

this paper are listed as follows:101

• We propose the KDLGT framework, which successfully102

reduces the quadratic complexity of GTs to linear and103

improves the scalability of GTs greatly.104

• We provide a tight upper bound of the difference gap105

between KDLGT and GTs theoretically to illustrate106

KDLGT is a well-defined approximation of GTs.107

• We conduct experiments on both real-world and syn-108

thetic datasets. The experimental results indicate that109

KDLGT can significantly improve the learning effi-110

ciency while preserving precision performance of GTs111

well.112

2 Related Works113

2.1 Fast Transformers114

There have been a lot of works attempting to improve the115

efficiency of Transformer models. During the earliest pe-116

riod, researchers tend to restrict the context of self-attention117

to predefined, fixed patterns, thus limiting the size of the at-118

tention matrix and computational complexity. One example119

of this approach is the chunking paradigm, which involves120

dividing the input sequence into fixed blocks and considering121

the local receptive field of each block [Parmar et al., 2018;122

Qiu et al., 2020]. Another approach is to limit attention to cer-123

tain fixed intervals. Models such as the Sparse Transformer124

[Child et al., 2019] and Longformer [Beltagy et al., 2020]125

utilize stridden and dilated context windows for attention.126

In parallel, another line, the low-rank method, focuses on127

optimizing the self-attention architecture by approximating128

the self-attention matrix [Wang et al., 2020]. The primary129

objective is to reduce the computational complexity of ma- 130

trix multiplication from N2 to kN , where N is the number of 131

tokens and k is a constant dependent on the specific model. 132

One notable example is Linformer [Wang et al., 2020], which 133

shrinks the length dimension of the keys and values to a 134

lower-dimensional representation. Besides, by treating self- 135

attention as kernel functions, various low-rank methods can 136

be developed through kernelization approaches [Katharopou- 137

los et al., 2020; Choromanski et al., 2020; Peng et al., 2020], 138

which adopt an efficient kernelized reconstruction of the self- 139

attention matrix, thereby avoiding computing N2 matrices. 140

2.2 Graph Transformers 141

The initial attempt to incorporate attention mechanism into 142

graph-based models can be traced back to the Graph Atten- 143

tion Networks (GAT) architecture [Veličković et al., 2018], 144

which only considers the weights between nodes and one- 145

hop neighbors on the graphs. With the development of Trans- 146

former architectures, it is found that it is effective to adopt 147

the global receptive field of the Transformers on the graphs 148

[Ying et al., 2021; Kreuzer et al., 2021; Chen et al., 2022; 149

Zhang et al., 2020; Mialon et al., 2021]. Different from the 150

Transformer architectures applied to sequences, the design of 151

graph Transformers emphasizes the use of positional encod- 152

ings to capture the topological signal of the graphs. With- 153

out such encodings, the Transformer can only operate on the 154

fully-connected graphs. 155

SAN [Kreuzer et al., 2021] adopts Laplacian positional en- 156

codings for the nodes and combines two types of attention 157

mechanism, one for virtual fully-connected graphs while an- 158

other for real graph edges. Graphormer [Ying et al., 2021] in- 159

corporates three different positional encodings, namely cen- 160

trality, spatial and edge encoding respectively, combined with 161

dense attention architecture. Besides, it is also the first time to 162

introduce pair-wise graph distances to project RPEs in graph 163

Transformers. Further, GraphiT [Mialon et al., 2021] intro- 164

duces RPEs based on diffusion kernels. GraphTrans [Wu et 165

al., 2021] proposes the first hybrid architecture by stacking 166

Message Passing Neural Network and Transformer layers. 167

Later, SAT [Chen et al., 2022] proposes subtree and sub- 168

graph extractors to extract structural features on the graphs, 169

and then uses the similarity scores between features to define 170

positional encodings. 171

3 Preliminaries 172

In this section, we recap the preliminaries in self-attention 173

and graph Transformers. 174

Vaswani Self-Attention 175

The self-attention module is the key component of the Trans- 176

former architectures. It can be represented as the following 177

formulation: 178

Att (Q,K,V) = softmax
(
QKT

√
d

)
V, (1)

where Q,K,V ∈ RN×d, N and d denote the length of se- 179

quence and embedding dimension, respectively. 180



Further, after organizing the above formulation, we have:

Att(Q,K,V) = D−1AV, (2)

A = exp

(
QKT

√
d

)
, (3)

D = diag(A1N ), (4)

where 1N ∈ RN is an all-one vector. In the following discus-181

sions, we will ignore the constant
√
d, since we can simply set182

Q′ = Q/
√
d to replace Q. It can be noticed that the multipli-183

cation complexity between D−1 and AV is O(Nd), while184

the computation complexity of D,A and AV is O(N2),185

O(N2d) and O(N2d), respectively.186

Graph Transformers187

Compared with sequence data, graph data has rich structure188

features. In GNNs, the edge-based message passing methods189

are usually used to describe the graph structures. While for190

graph Transformers, positional encodings are usually used to191

construct an RPE matrix to describe structures. In general, it192

is formulated as:193

Att(Q,K,V,B) = softmax
(
QKT

√
d

+B

)
V, (5)

where B ∈ RN×N is RPE matrix. (For preventing ambigu-194

ity, in the sequel, N represents the number of nodes in the195

graph.)196

4 Methodology197

In this section, we introduce KDLGT acceleration framework198

and our models in detail. First, we begin by summarizing199

the effective accelerating approaches for Transformers on se-200

quential data.201

4.1 Kernel Decomposition Approach202

Most existing methods for accelerating self-attention adopt203

the kernel decomposition approach. The core idea is to con-204

struct a kernel function ϕ to rearrange the order of matrix205

multiplication and nonlinear function exp in (3), which can206

be formulated as:207

A = exp(QKT ) ≈ ϕ(Q)ϕ(K)T =: Q′(K′)T , (6)

where Q′,K′ ∈ RN×r, r is the new embedding dimension.
In this way, the computation of attention score matrix A can
be avoided. Instead, we can first compute the multiplication
of (K′)T and V, and then compute the result between Q′

and (K′)TV. The time complexity of the two steps is both
O(Nrd). For (4), similarly, we can reverse the matrix multi-
plication order by letting (K′)T1N first. In specific, we can
approximate Vaswani self-attention as followings:

Âtt(Q,K,V) = D̂−1(Q′((K′)TV)), (7)

D̂ =diag(Q′((K′)T1N )). (8)

The time complexity is reduced from O(N2d) to O(Nrd).208

Let κ(x,y) = exp(xTy) ≈ ϕ(x)Tϕ(y), where x,y ∈209

Rd. It can be noticed that the most important component210

in the kernel decomposition approach is the design of kernel211

function ϕ. In this work, we adopt the following well-defined 212

function ϕ: 213

ϕ(x) :=
1√
r
exp

(
−||x||2

2

)(
exp(wT

1 x), . . . , exp(w
T
r x)

)
,

(9)
where wi ∼ N (0, Id), r ≤ d is a sampling number as well 214

as embedding dimension. We do not discuss here the validity 215

and stability of function ϕ and refer readers to [Choromanski 216

et al., 2020] for further details. Specifically, we adopt Gram- 217

Schmidt orthogonalization on wi in experiments to ensure 218

that they are linearly independent towards each other for the 219

validity of sampling. 220

4.2 Kernel Decomposition Linear Graph 221

Transformer 222

Further, when we turn our perspective to GT, the RPE matrix 223

B becomes the most significant difference between GTs and 224

Transformers. Therefore, we focus on the RPE matrix B and 225

provide a detailed analysis. 226

Here, we only consider undirected graphs. In this scenario,
as the graph structure is symmetric, B should also be a sym-
metric matrix. Suppose that the rank of B is d′ ≤ N , and
its d′ nonzero eigenvalues are λi, i = 1, . . . , d′, then we can
decompose B as follows:

B =Udiag([λ1, . . . , λd′ , 0, . . . , 0])UT

=Udiag([λ1, . . . , λd′ , 0, . . . , 0])[:, 0 : d′]

(Udiag([1, . . . , 1, 0, . . . , 0])[:, 0 : d′])T .

Let Bq = Udiag([λ1, . . . , λd′ , 0, . . . , 0])[:, 0 : d′], Bk = U 227

diag([1, . . . , 1, 0, . . . , 0])[:, 0 : d′], where Bq,Bk ∈ RL×d′
,[: 228

, i : j] represents the i to j rows of the second dimension, then 229

we have B = BqB
T
k . 230

Inspired by this, we categorize RPE matrices into the fol- 231

lowing three types for discussion and propose the Kernel De- 232

composition Linear Graph Transformer (KDLGT) accelerat- 233

ing framework. 234

Multiplication Decomposition 235

B = BqB
T
k , where Bq,Bk ∈ RN×d′

and d′ ≪ N , we have:

⟨Qi,Kj⟩+ ⟨B(i)
q ,B

(j)
k ⟩ = ⟨[Qi,B

(i)
q ], [Kj ,B

(j)
k ]⟩.

Therefore, QKT + B = [Q,Bq][K,Bk]
T , where [, ] repre- 236

sents concatenation operator. If we view [Q,Bq] and [K,Bk] 237

as Q and K in (6), then it can be accelerated by kernel decom- 238

position approach, and the complexity is O(N(d+ d′)r). 239

Addition Decomposition 240

Bij = bi + bj , b ∈ RN , we have:
⟨Qi,Kj⟩+ bi + bj = ⟨[Qi,bi, 1], [Kj , 1,bj ]⟩.

Thus QKT + B = [Q,b,1N ][K,1N ,b]T . Same as above, 241

the complexity is O(N(d+2)r) using the kernel decomposi- 242

tion approach. 243

Ineffective Decomposition 244

Suppose the rank of B is d′ = O(N), in this case, there is 245

no direct effective acceleration method, such as the shortest 246

path distance (SPD). However, we can still design approxi- 247

mate schemes to replace this type of RPE matrix (See sub- 248

section 4.3). 249



Figure 1: Illustration of the accelerating procedure of the KDLGT framework. The top and bottom of the left side represent the LSAT and
SAPDGT modules, which are of the multiplication decomposition and addition decomposition types, respectively. The right side represents
the rearrange of matrix multiplication order in kernel decomposition approach.

4.3 Our Models250

As shown in Figure 1, we propose two types of models suit-251

able for different decomposition scenarios under the KDLGT252

framework.253

Linear Structure-Aware Transformer254

There are lots of designs of RPE that match multiplication
decomposition. We take Structure-Aware Transformer (SAT)
[Chen et al., 2022] as an example, which summarizes a series
of multiplication-decomposition RPEs. Specifically, the RPE
matrix can be represented as:

BSAT
ij = κSAT(φ(vi, G), φ(vj , G)), (10)

κSAT(x,x
′) = ⟨Wqx,Wkx

′⟩/
√
d, (11)

where Wq,Wk ∈ Rd×d are parameter matrices and φ(v,G)255

is a structure extractor that extracts vector representations256

of some subgraph centered at v in the graph G. The struc-257

ture extractor here includes k-subtree GNN extractor and k-258

subgraph GNN extractor, which describe the structural infor-259

mation of different granularities, respectively.260

It can be easily noticed that:261

BSAT = SWq(SWk)
T /

√
d, (12)

where S ∈ RN×d,Si = φ(vi, G). Then, let BSAT
q = SWq ,262

BSAT
k = SWk/

√
d, we have:263

BSAT = BSAT
q (BSAT

k )T . (13)

It is clear that the SAT model can be accelerated under the264

multiplication decomposition framework. Additionally, other265

similar RPE designs can also be implemented within this266

framework.267

Shortest Anchor Path Distance Graph Transformer268

Shortest Path Distance (SPD) is a commonly used type of269

RPE in GTs. However, unfortunately, in most cases, the rank270

of the SPD RPE matrix is quite high, which makes it difficult271

and meaningless to decompose (ineffective decomposition).272

To address this issue, we propose a new type of distance,273

Shortest Anchor Path Distance (SAPD) to approximate SPD 274

distance, which can be easily decomposed. 275

The general idea is that we only focus on the distances be- 276

tween anchor nodes and nodes rather than recording the dis- 277

tances between all pairs of nodes on the graph, thereby ac- 278

celerating the computation. Anchor nodes, as a kind of coor- 279

dinates, can re-characterize the distance relationship between 280

nodes on the graph. Take arbitrary node a ∈ V as anchor 281

node, we define SAPD induced by a as followings: 282

da(vi, vj) =
1

2
d(vi, a) +

1

2
d(a, vj), (14)

where vi, vj ∈ V , 1 ≤ i, j ≤ N , d(·, ·) denotes SPD. 283

In order to ensure rationality, we adopt linear transforma- 284

tion f instead of the embedding method similar to SPD for 285

encoding RPE: 286

B
SAPD(a)
ij = f(da(vi, vj)) =

1

2
f(d(vi, a)) +

1

2
f(d(a, vj)).

(15)
In experiments, we set f(x) = cx, where c ∈ R is a learnable 287

parameter. Considering that the farther the distance is, the 288

lower the weight should be, we set c < 0. 289

Let bSAPD(a) = [ 12f(d(vi, a))]
N
i=1, then we have: 290

B
SAPD(a)
ij = b

SAPD(a)
i + b

SAPD(a)
j . (16)

Therefore, BSAPD(a) can do addition decomposition and thus 291

accelerate. In practice, we select K ≪ N nodes on the graph 292

as anchor nodes and pool the embedding about different an- 293

chor nodes to get node features. The overall time complexity 294

is O(NK(d+ 2)r), which is still linear. 295

In order to ensure that the anchor nodes are evenly dis- 296

tributed on the graph, we adopt a greedy algorithm[Pavan and 297

Pelillo, 2006] with time complexity of O(N) to solve the k- 298

dominant set on the graph as the anchor nodes set, where k is 299

a receptive field hyperparameter. In this way, we can ensure 300

that there is at least one anchor node in the k-hop neighbor- 301

hood of each node and the absolute error between SPD and 302

SAPD is within k, that is: 303

|d(vi, vj)− da(vi, vj)| ≤ k. (17)



5 Theoretical Analysis304

In order to ensure the effectiveness of KDLGT, we ana-305

lyze the difference gap in the attention matrix distribution of306

Vaswani self-attention and the kernel decomposition method,307

draw the following conclusion and make a detailed proof.308

Lemma 1. Let

P (Qi,Kj) =
E[κ(Qi,Kj)]

E[
∑N

k=1 κ(Qi,Kk)]
,

P ′(Qi,Kj) =
E[ϕ(Qi)

Tϕ(Kj)]

E[
∑N

k=1 ϕ(Qi)Tϕ(Kk)]
.

Then we have:
1− cmax

1 + cmax
≤ P ′(Qi,Kj)

P (Qi,Kj)
≤ 1 + cmax

1− cmax
,

in which cij =
√

1
r (exp(∥Qi +Kj∥2)− 1), while cmax =309

max{cij}Ni,j=1.310

Proof. For simplicity, here we note κ′(Qi,Kj) = ϕ(Qi)
T311

ϕ(Kj). According to Lemma 2 in [Choromanski et al.,312

2020], we have:313

MSEκ,κ′
(Qi,Kj) = (cijκ(Qi,Kj))

2, (18)

where MSEκ,κ′
(Qi,Kj) = E[(κ(Qi,Kj) − κ′(Qi,Kj))

2].314

Since for any random variable X, E(X2) = E2(X)+Var(X),315

E[X] ≤
√

E[X2] holds, we have:316

E[∥κ(Qi,Kj)− κ′(Qi,Kj)∥] ≤ cijκ(Qi,Kj). (19)
Expanding and rearranging (19), we can derive:

(1− cij)E[κ(Qi,Kj)] ≤E[κ′(Qi,Kj)]

≤(1 + cij)E[κ(Qi,Kj)] (20)

Let cmax
i = max{cij}Nj=1. Here, we assume that cij ∈ [0, 1).317

Moreover, we obtain:318

1− cij
1 + cmax

i

≤ P ′(Qi,Kj)

P (Qi,Kj)
≤ 1 + cij

1− cmax
i

. (21)

Finally, after further scaling, we have:319

1− cmax

1 + cmax
≤ P ′(Qi,Kj)

P (Qi,Kj)
≤ 1 + cmax

1− cmax
. (22)

320

It can be easily verified that P ′(Qi,Kj) = P (Qi,Kj) for321

∀i, j ∈ {1, 2, . . . , N} if cmax = 0, which means that the dis-322

tance of Vaswani and approximated self-attention matrix dis-323

tributions is upper-bounded by the constant cmax. Besides,324

this upper bound increases monotonically with cmax. It is325

worth noting that we have assumed that the range of cij is326

[0, 1) in the proof. This assumption can be validated from an327

experimental point of view. In practice, after normalization328

layers which are stacked following self-attention blocks, the329

mean and variance of Qi and Kj are 0 and 1, respectively.330

Therefore, E[cij ] = 0, and this also implies that cmax has331

a large probability distribution around 0, which we also ver-332

ify in Section 6.2. In conclusion, the difference between the333

two matrix distributions can be effectively controlled theoret-334

ically. Therefore, our KDLGT framework is a well-defined335

linear approximation of quadratic GTs.336

6 Experiments 337

In this section, we present an evaluation of the precision 338

and efficiency of our proposed Linear Structure-Aware Trans- 339

former (LSAT) and Shortest Anchor Path Distance Graph 340

Transformer (SAPDGT) in comparison to state-of-the-art 341

models on several graph benchmark datasets. 342

6.1 Experimental Setup 343

Datasets 344

We investigate the performance of LSAT and SAPDGT on 345

both real-world datasets and synthetic datasets. The dataset 346

statistical details are presented in Table 1. 347

For real-world datasets, 6 graph-level datasets and 4 348

node-level datasets are adopted. The benchmarking-GNN 349

[Dwivedi et al., 2020] (ZINC), OGB [Hu et al., 2020] 350

(OGBG-MOLHIV) and TUD [Morris et al., 2020] (MUTAG, 351

COX2 MD, PROTEINS, NCI1) are all popular graph-level 352

benchmark datasets, where each graph represents a molecule, 353

and nodes represent atoms in the molecules. The Cora, Cite- 354

seer and PubMed [Yang et al., 2016] are popular citation 355

datasets, whose nodes represent academic papers and node 356

features are the word bag of papers. LastFM-Asia [Rozem- 357

berczki and Sarkar, 2020] is a social network that was col- 358

lected from the public API in March 2020. Their nodes are 359

LastFM users from Asian countries and edges are mutual 360

follower relationships between them. The node features are 361

extracted based on the artists liked by the users. In the ex- 362

periments, for the datasets without public splits, we use ran- 363

dom split with the ratio of training/validation/test sets being 364

7/1.5/1.5. 365

For synthetic datasets, we generate a series of graphs for 366

efficiency experiments. The size of the synthetic graphs in- 367

creases from 211 to 214 in proportion to
√
2. (When the size 368

is a non-integer, it will be rounded down.) Besides, in order 369

to limit the density of the graph, we adopt 6-regular graphs 370

here. 371

Dataset # graphs # classes Avg # nodes Avg # edges

ZINC ∼250,000 − 23.2 49.8
OGBG-MOLHIV 41127 2 25.5 27.5

MUTAG 188 2 17.9 57.5
COX2 MD 303 2 41.2 43.5
PROTEINS 1113 2 39.1 184.7

NCI1 4110 2 29.8 94.5
Cora 1 7 2708 5429

Citeseer 1 6 3312 4732
PubMed 1 3 19717 44338

LastFM-Asia 1 18 7624 27806

Table 1: Statistics of real-world datasets. The symbol in # classes
column represents the regression task.

Baselines 372

In the experiments, in addition to comparing with SAT and 373

Graphormer which are quadratic-complexity graph Trans- 374

formers and used as precision performance upper bound, 375

we also select the following effective graph Transformers as 376

strong baselines. 377

• GPS [Rampášek et al., 2022] GPS is an effective 378

GT architecture designed through GNN + Performer 379



paradigm. In experiments, we use its Laplacian eigen-380

vectors encodings (LapPE) and random-walk structural381

encoding (RWSE) as position encodings. In order to382

avoid the influence of the GNN encoder in the GPS383

model, we set None (no GNN encoder) as the compari-384

son experiment.385

• GKAT [Choromanski et al., 2022] GKAT is a GT model386

which applies low-rank masked attention via Random387

Walks Graph-Nodes Kernel (RWGNK).388

• DGT [Park et al., 2022] DGT reduces self-attention389

quadratic time complexity by performing sparse atten-390

tion with dynamically sampled key and value pairs.391

Settings392

Our models are implemented in PyTorch [Paszke et al.,393

2017]. We use Adam [Kingma and Ba, 2015] as the op-394

timizer and set hyper-parameter ϵ to 1e-7 and (β1, β2) to395

(0.99, 0.999), respectively. Besides, the initial learning rate396

is set to 1e-4 with a linear decay learning rate scheduler. The397

training and inference batch sizes are both set to 128. All398

models are trained and evaluated on 3 NVIDIA RTX 3090399

GPUs for the fairness of efficiency comparison.400

6.2 Experimental Results401

Graph and Node Representation Experiments402

Table 2 summarizes the performance of LSAT and SAPDGT403

on graph-level and node-level datasets. First of all, in general404

it can be observed that the precision performance degradation405

of LSAT and SAPDGT is not significant compared to SAT406

and Graphormer, respectively. Additionally, it is notewor-407

thy that SAPDGT achieves better results than its upper bound408

Graphormer on the MUTAG, PROTEINS, and NCI1 datasets,409

and LSAT also outperforms its upper bound SAT on the Cora,410

Citeseer, and LastFM-Asia datasets. This highlights the ex-411

ceptional generalization capability of our proposed KDLGT412

framework.413

Specifically, on graph-level tasks, LSAT and SAPDGT414

achieve state-of-the-art results on the OGBG-MOLHIV,415

COX2 MD, PROTEINS, and NCI1 datasets. Besides, there416

is a significant performance margin between LSAT, SAPDGT417

and baselines on the NCI1 dataset. Furthermore, by compar-418

ing the results of GPS with or without GNN encoders, it can419

be observed that the contribution of GNN encoders to the per-420

formance of GPS is substantial. If the blessing of GNN en-421

coders is lost, the performance of GPS will drop sharply. We422

think that this method of using GNN encoders to enhance per-423

formance is not specific to GPS and is applicable to various424

GT models, including our proposed models. Therefore, it is425

fairer and more reasonable to compare the performance of our426

model with the GPS model without GNN encoders. Under427

these conditions, it can be observed that LSAT and SAPDGT428

achieve state-of-the-art results on all graph-level datasets.429

In regards to node-level tasks, unfortunately, it can be no-430

ticed that SAT and Graphormer do not perform well on node431

classification datasets with high edge homogeneity such as432

the Cora, Citeseer, and PubMed datasets. As a result, LSAT433

and SAPDGT do not exhibit significant advantages over the434

Figure 2: The accelerating ratio experimental results of the LSAT to-
wards the SAT. The left and right sub-graphics represent the results
of evaluating (forward only) and training (including both forward
and backward), respectively. The parameter d denotes the embed-
ding dimension of the models. The exceeding of the x-tick range
indicates the out-of-memory problem of the SAT.

baselines on these datasets. Conversely, on the node classifi- 435

cation datasets with low edge homogeneity such as LastFM- 436

Asia, LSAT outperforms the baselines by a significant mar- 437

gin. This illustrates that LSAT is more suitable for learning 438

on large-scale, low-homogeneity graph data. 439

Efficiency Experiments 440

Here, we take the multiplication decomposition type, specif- 441

ically LSAT, as an example, and use the accelerating ratio as 442

a metric to analyze the performance of our proposed KDLGT 443

framework under different graph sizes and model settings of 444

embedding dimension d. The number of attention heads is 445

fixed at 4 and the number of label classes of synthetic data is 446

set to 5. The results of evaluating (forward only) and train- 447

ing (including both forward and backward) are recorded and 448

presented in Figure 2. 449

First of all, it can be noticed that LSAT exhibits signifi- 450

cant acceleration efficiency compared to SAT on large-scale 451

graph data, achieving a remarkable result of 9.63x under cer- 452

tain data scales. Since LSAT is linear complexity while SAT 453

is quadratic, it is expected that the acceleration ratio should 454

increase linearly with respect to graph size N in theory, which 455

is also supported by the results presented in Figure 2. It 456

should be noted that here the horizontal axis is log2(N), thus 457

the curve actually grows linearly. 458

Moreover, the embedding dimension d also plays an im- 459

portant role. Generally, as the ratio of N/d increases, the ac- 460

celeration ratio becomes more pronounced. In extreme cases, 461

such as when N ≤ 211.5, the acceleration ratio may be less 462

than 1 due to the relatively small size of the graph, where d 463

becomes the dominant factor affecting efficiency. In this sce- 464

nario, the time saved by the KDLGT framework is less than 465

the time required for other additional operations (such as sam- 466

pling), resulting in an overall increase in time. This indicates 467

that the KDLGT framework is more suitable for accelerating 468

large-scale data, which aligns with the goal of this research. 469

Lastly, it is not surprising that the KDLGT framework also 470

optimizes the space complexity of the Vaswani self-attention. 471

In the experiments, we notice that when N > 214, an out-of- 472

memory (OOM) problem occurs for SAT while LSAT can 473

still operate normally. In conclusion, the KDLGT frame- 474

work achieves obvious advantages in both time complexity 475

and space complexity when applied to large-scale graph data. 476



Model ZINC OGBG-MOLHIV MUTAG COX2 MD PROTEINS NCI1

MAE↓ AUCROC↑ Acc↑ Acc↑ Acc↑ Acc↑

SAT 0.082 ± 0.004 79.54± 1.32 92.26± 1.66 70.63± 1.54 77.51± 2.43 81.69± 1.08
Graphormer 0.122 ± 0.006* 74.55± 1.06 92.30± 2.73 68.33± 0.71 75.10± 1.07 78.95± 1.52

GPS (None + LapPE) 0.425± 0.081 71.15± 1.59 87.21± 3.28 65.22± 1.01 72.02± 1.51 68.07± 1.33
GPS (GNN + LapPE) 0.131± 0.003 76.60± 0.63 90.65± 1.23 67.39± 0.62 75.60± 1.22 71.47± 0.89
GPS (None + RWSE) 0.213± 0.008 73.09± 0.88 86.21± 2.09 68.89± 0.96 71.43± 2.88 73.26± 1.97
GPS (GNN + RWSE) 0.070± 0.004* 78.80± 0.49* 91.38± 0.77 73.91± 0.35 74.91± 0.98 75.53± 1.48
GKAT - - 87.94± 1.54 63.03± 1.14 75.80± 3.80* 75.20± 2.40*

LSAT 0.130± 0.002 78.98± 1.78 90.18± 1.85 69.69± 1.32 76.22± 1.64 81.33± 0.71
SAPDGT 0.159± 0.008 73.75± 1.41 93.16± 3.32 67.76± 1.68 77.27± 2.05 81.99± 1.03

Model Cora Citeseer PubMed LastFM-Asia

SAT 83.06± 0.81 73.83± 0.79 89.19± 0.29 85.33± 0.79
Graphormer 73.34± 0.43 64.51± 0.53 OOM 70.88± 0.94

GPS (None + LapPE) 80.98± 0.76 75.90± 0.65 OOM 72.57± 0.86
GPS (GNN + LapPE) 84.05± 0.59 85.30± 0.28 OOM 73.31± 0.41
GPS (None + RWSE) 82.08± 0.52 81.30± 1.01 OOM 78.14± 0.55
GPS (GNN + RWSE) 89.37± 0.19 90.89± 0.38 OOM 80.83± 0.52
GKAT 73.84± 0.94 69.22± 0.80 72.31± 0.58 77.65± 1.02
DGT 87.45± 0.60* 77.04± 0.57* 89.22± 0.14* -

LSAT 83.37± 0.21 74.03± 0.32 89.03± 0.06 85.42± 0.27
SAPDGT 72.02± 0.85 62.63± 1.17 OOM 71.27± 1.34

Table 2: Test performance on graph-level (upper) and node-level (lower) datasets. Shown results are the mean ± s.d. of 10 runs with different
random seeds. Results with * are taken from the corresponding works. OOM represents out of memory. Highlighted ones are the top first,
second, third results, respectively.

Figure 3: The distribution of the cmax in the bottom and top model
layers.

The Distribution of the cmax477

We conduct the cmax distribution experiment on the NCI1478

dataset as ablation studies. We adopt a three-layer LSAT479

model and fix the parameters after training for experiments.480

For visualization, we randomly sample 1, 000 graphs and use481

the frequency of occurrence to approximate the probability482

distribution. In particular, we directly obtain the maximum483

value of the cmax of different attention heads for simplicity.484

The experimental results are shown in Figure 3.485

Overall, it can be observed that the distribution of the cmax486

is concentrated around 0, which supports our assumption in487

Section 5. Therefore, it is reasonable to assert that cij ∈ [0, 1)488

for ∀i, j ∈ {1, 2, . . . , N}.489

Taking the result of the bottom layer as an example, we can490

verify the distribution gap between SAT and LSAT attention491

matrix exactly. The expectation and maximum values of cmax492

are around 0.1 and 0.3, corresponding to the upper bound493

value 1 + cmax/1− cmax of 1.22 and 1.86, respectively. The 494

difference between the two distributions at the expectation 495

value is not significant. Considering the extremely infrequent 496

occurrence of maximum value, we think this numerical be- 497

havior is acceptable. 498

Furthermore, it can be noticed that the expected value and 499

the maximum value of the top layer is smaller than those of 500

the bottom layer. We speculate that this is the result of the 501

normalization layers in the GTs. The data features which are 502

fed to the top layer, compared with the bottom layer, have 503

gone through more normalization layers. As a result, the 504

mean and variance of them are more stable, so the distribu- 505

tion of the cmax is closer to 0. Therefore, it can be inferred 506

that the closer to the top layer, the better the approximation 507

performance of our KDLGT framework. 508

7 Conclusion 509

In this work, we present the Kernel Decomposition Linear 510

Graph Transformer (KDLGT), an accelerating framework for 511

building scalable and powerful GTs. Under KDLGT frame- 512

work, we select two representative GTs and design our mod- 513

els LSAT and SAPDGT. On one hand, a rigorous theoretical 514

analysis is conducted to ensure performance guarantees. On 515

the other hand, a series of experiments are carried out to eval- 516

uate the KDLGT in terms of precision and efficiency. Both 517

the theoretical analysis and experimental results demonstrate 518

that the KDLGT not only significantly improves learning ef- 519

ficiency but also preserves the precision performance of the 520

GTs and achieves state-of-the-art results on various datasets. 521
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Yoshua Bengio. Graph attention networks. In Interna-664

tional Conference on Learning Representations, 2018.665

[Wang et al., 2020] Sinong Wang, Belinda Z Li, Madian666

Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention667

with linear complexity. arXiv preprint arXiv:2006.04768,668

2020.669

[Wang et al., 2021] Yuyang Wang, Jianren Wang, Zhonglin670

Cao, and Amir Barati Farimani. Molclr: Molecular con-671

trastive learning of representations via graph neural net-672

works. arXiv preprint arXiv:2102.10056, 2021.673

[Wu et al., 2021] Zhanghao Wu, Paras Jain, Matthew674

Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion675

Stoica. Representing long-range context for graph neural676

networks with global attention. Advances in Neural Infor-677

mation Processing Systems, 34:13266–13279, 2021.678

[Xu et al., 2019] Keyulu Xu, Weihua Hu, Jure Leskovec, and679

Stefanie Jegelka. How powerful are graph neural net-680

works? In International Conference on Learning Rep-681

resentations, 2019.682

[Yang et al., 2016] Zhilin Yang, William W. Cohen, and 683

Ruslan Salakhutdinov. Revisiting semi-supervised learn- 684

ing with graph embeddings. In International Conference 685

on Machine Learning, pages 40–48. PMLR, 2016. 686

[Yasunaga et al., 2021] Michihiro Yasunaga, Hongyu Ren, 687

Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa- 688

gnn: Reasoning with language models and knowledge 689

graphs for question answering. In North American 690

Chapter of the Association for Computational Linguistics 691

(NAACL), 2021. 692

[Ying et al., 2021] Chengxuan Ying, Tianle Cai, Shengjie 693

Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, 694

and Tie-Yan Liu. Do transformers really perform badly 695

for graph representation? Advances in Neural Information 696

Processing Systems, 34:28877–28888, 2021. 697

[Zhang et al., 2020] Jiawei Zhang, Haopeng Zhang, Con- 698

gying Xia, and Li Sun. Graph-bert: Only attention is 699

needed for learning graph representations. arXiv preprint 700

arXiv:2001.05140, 2020. 701

[Zhong et al., 2020] Ting Zhong, Tianliang Wang, Jiahao 702

Wang, Jin Wu, and Fan Zhou. Multiple-aspect attentional 703

graph neural networks for online social network user lo- 704

calization. IEEE Access, 8:95223–95234, 2020. 705


	Introduction
	Related Works
	Fast Transformers
	Graph Transformers

	Preliminaries
	Vaswani Self-Attention
	Graph Transformers


	Methodology
	Kernel Decomposition Approach
	Kernel Decomposition Linear Graph Transformer
	Multiplication Decomposition
	Addition Decomposition
	Ineffective Decomposition

	Our Models
	Linear Structure-Aware Transformer
	Shortest Anchor Path Distance Graph Transformer


	Theoretical Analysis
	Experiments
	Experimental Setup
	Datasets
	Baselines
	Settings

	Experimental Results
	Graph and Node Representation Experiments
	Efficiency Experiments
	The Distribution of the c


	Conclusion

