
Neural Networks 161 (2023) 9–24

a

b

c

d

e

f

t
e
o
2
g
1
a

S
w

I
C

q
(

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

SPIDE: A purely spike-basedmethod for training feedback spiking
neural networks
Mingqing Xiao a, Qingyan Meng b,c, Zongpeng Zhang d, Yisen Wang a,e, Zhouchen Lin a,e,f,∗

National Key Laboratory of General Artificial Intelligence, School of Intelligence Science and Technology, Peking University, China
The Chinese University of Hong Kong, Shenzhen, China
Shenzhen Research Institute of Big Data, Shenzhen 518115, China
Center for Data Science, Academy for Advanced Interdisciplinary Studies, Peking University, China
Institute for Artificial Intelligence, Peking University, China
Peng Cheng Laboratory, China

a r t i c l e i n f o

Article history:
Received 29 May 2022
Received in revised form 19November 2022
Accepted 19 January 2023
Available online 24 January 2023

Keywords:
Spiking neural networks
Equilibrium state
Spike-based training method
Neuromorphic computing

a b s t r a c t

Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models
for energy-efficient applications on neuromorphic hardware. However, most supervised SNN training
methods, such as conversion from artificial neural networks or direct training with surrogate gradients,
require complex computation rather than spike-based operations of spiking neurons during training.
In this paper, we study spike-based implicit differentiation on the equilibrium state (SPIDE) that
extends the recently proposed training method, implicit differentiation on the equilibrium state (IDE),
for supervised learning with purely spike-based computation, which demonstrates the potential for
energy-efficient training of SNNs. Specifically, we introduce ternary spiking neuron couples and prove
that implicit differentiation can be solved by spikes based on this design, so the whole training
procedure, including both forward and backward passes, is made as event-driven spike computation,
and weights are updated locally with two-stage average firing rates. Then we propose to modify the
reset membrane potential to reduce the approximation error of spikes. With these key components, we
can train SNNs with flexible structures in a small number of time steps and with firing sparsity during
training, and the theoretical estimation of energy costs demonstrates the potential for high efficiency.
Meanwhile, experiments show that even with these constraints, our trained models can still achieve
competitive results on MNIST, CIFAR-10, CIFAR-100, and CIFAR10-DVS.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Spiking neural networks (SNNs) are brain-inspired models
hat transmit spikes between neurons for event-driven energy-
fficient computation. SNNs can be implemented with less energy
n neuromorphic hardware (Akopyan et al., 2015; Davies et al.,
018; Pei et al., 2019; Roy, Jaiswal, & Panda, 2019), which is re-
arded as the third generation of neural network models (Maass,
997) and is gaining increasing attention as an alternative to
rtificial neural networks (ANNs).
Different from ANNs, however, directly supervised training of

NNs is a hard problem due to the complex spiking neuron model
hich is discontinuous. To handle this problem, converting ANNs
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to SNNs (Deng & Gu, 2021; Hunsberger & Eliasmith, 2015; Rathi,
Srinivasan, Panda, & Roy, 2020; Rueckauer, Lungu, Hu, Pfeiffer, &
Liu, 2017; Sengupta, Ye, Wang, Liu, & Roy, 2019; Yan, Zhou, &
Wong, 2021), or many direct SNN training methods (Bellec, Salaj,
Subramoney, Legenstein, & Maass, 2018; Bohte, Kok, & La Poutre,
2002; Jin, Zhang, & Li, 2018; Kim, Kim and Kim, 2020; Meng,
Xiao et al., 2022; Neftci, Mostafa, & Zenke, 2019; Shrestha &
Orchard, 2018; Wu, Deng, Li, Zhu, & Shi, 2018; Wu et al., 2019;
Xiao, Meng, Zhang, Wang, & Lin, 2021; Zhang & Li, 2019, 2020;
Zheng, Wu, Deng, Hu, & Li, 2021) have been proposed to incorpo-
rate deep learning into SNNs (Tavanaei, Ghodrati, Kheradpisheh,
Masquelier, & Maida, 2019). While these methods can partly
solve the problems of unsatisfactory performance or high latency,
they require complex computation for gradient calculation or
approximation rather than the same spike-based computation
as the inference process. They aim at training SNNs with gen-
eral computational operations and deploying trained models for
energy-efficient inference with spiking operations.

As a different direction compared with these methods, it is

an important problem to consider if the training process can also
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ake advantage of the spiking nature of common spiking neurons
o that the computation of inference and training is consistent
nd the training process can also share the energy efficiency
ith event-driven computation. The consistency of the infer-
nce and training computation may also pave a path for directly
raining SNNs on neuromorphic hardware instead of training
odels on commonly used computational units and deploying

hem on chips. A few previous works try to train SNNs with
pikes (Guerguiev, Lillicrap, & Richards, 2017; Neftci, Augustine,
aul, & Detorakis, 2017; O’Connor & Welling, 2016; Samadi, Lil-
icrap, & Tweed, 2017; Thiele, Bichler, & Dupret, 2020; Thiele,
ichler, Dupret, Solinas, & Indiveri, 2019). They either are based
n direct feedback alignment (DFA) (Nøkland, 2016) and perform
oorly, or require special neuron models (Thiele et al., 2020,
019) that are hardly supported. Besides, they only focus on feed-
orward network structures imitated from ANNs, which ignores
eedback connections that are ubiquitous in the human brain and
nable neural networks to be shallower and more efficient (Ku-
ilius et al., 2019; Xiao et al., 2021). Actually, feedback structures
uit SNNs more since SNNs will naturally compute with multiple
ime steps, which can reuse representations and avoid additional
neconomical costs to unfold along the time as in ANNs (Kim, Li,
ark, Venkatesha, & Panda, 2022; Xiao et al., 2021). So training
lgorithms for feedback SNNs, which may also be degraded for
eedforward structures by taking feedback as zero, is worth more
xploration.
An ideal SNN training method should tackle the common

roblems, be suitable for flexible structures (feedforward or feed-
ack), and be with spike-based computation for efficiency and
igh neuromorphic plausibility. The implicit differentiation on
he equilibrium state (IDE) method (Xiao et al., 2021), which
s recently proposed to train feedback spiking neural networks
FSNNs), is a promising method that may be generalized to spike-
ased learning for the requirement. They derive that the for-
ard computation of FSNNs converges to an equilibrium state,
hich follows a fixed-point equation. Based on it, they propose
o train FSNNs by implicit differentiation on this equation, which
ackles the common difficulties for SNN training including non-
ifferentiability and large memory costs, and has interesting local
pdate properties. In their method, however, they leverage gen-
ral root-finding methods rather than spike-based computation
o solve implicit differentiation.

In this work, we extend the IDE method to spike-based IDE
SPIDE), which fulfills our requirements and has great potential
or energy-efficient training with spike-based computation. We
ntroduce ternary spiking neuron couples and propose to solve
mplicit differentiation by spikes based on them. Our method
s also applicable to feedforward structures by setting the feed-
ack connection as zero. In practice, however, it may require
ong time steps to stabilize the training with spikes due to the
pproximation error for gradients. So we further dive into the ap-
roximation error from the statistical perspective and propose to
imply adjust the reset potential of SNNs to achieve an unbiased
stimation of gradients and reduce the estimation variance of
NN computation. With these methods, we can train our models
n a small number of time steps, which can further improve the
nergy efficiency as well as the latency. This demonstrates the
trong power of spike-based computation for training SNNs. Our
ontributions include:

1. We propose the SPIDE method which is the first to train
high-performance SNNs by spike-based computation with
common neuron models. Specifically, we propose ternary
spiking neuron couples and prove that implicit differentia-
tion for gradient calculation can be solved by spikes based
on this design. Our method is applicable to both feedback

and feedforward structures. 1
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2. We theoretically analyze the approximation error of solv-
ing implicit differentiation by spikes, and propose to mod-
ify the reset potential to remove the approximation bias
and reduce the estimation variance, which enables training
in a small number of time steps.

3. Experiments show the low latency and firing sparsity dur-
ing training, and the theoretical estimation of energy costs
demonstrates the great potential for energy-efficient train-
ing of SNNs with spike-based computation. The perfor-
mance on MNIST, CIFAR-10, CIFAR-100 and CIFAR10-DVS
are competitive as well.

. Related work

NN training methods. Early works seek biologically inspired
ethods to train SNNs, e.g. spike-time dependent plasticity (STDP)

Diehl & Cook, 2015; Kheradpisheh, Ganjtabesh, Thorpe, & Masque
ier, 2018) or reward-modulated STDP (Legenstein, Pecevski, &
aass, 2008). Since the rise of successful ANNs, several works

ry to convert trained ANNs to SNNs to obtain high perfor-
ance (Deng & Gu, 2021; Hunsberger & Eliasmith, 2015; Li,
eng, Dong, Gong and Gu, 2021; Rathi et al., 2020; Rueckauer
t al., 2017; Sengupta et al., 2019; Stöckl & Maass, 2021; Yan
t al., 2021). However, they typically suffer from extremely large
ime steps (some recent state-of-the-art works largely improved
his Bu et al., 2022; Li, Deng et al., 2021; Meng, Yan et al.,
022) and their structures are limited in the scope of ANNs. Oth-
rs try to directly train SNNs by backpropagation through time
BPTT) and use surrogate derivative for discontinuous spiking
unctions (Bellec et al., 2018; Deng, Li, Zhang, & Gu, 2022; Fang,
u, Chen, Huang et al., 2021; Fang, Yu, Chen, Masquelier et al.,
021; Jin et al., 2018; Lee, Delbruck, & Pfeiffer, 2016; Li, Guo et al.,
021; Neftci et al., 2019; Shrestha & Orchard, 2018; Wu et al.,
018, 2019; Zhang & Li, 2019; Zheng et al., 2021) or compute
radient with respect to spiking times (Bohte et al., 2002; Kim,
im et al., 2020; Zhang & Li, 2020). However, they suffer from
pproximation errors and large training memory costs, and their
ptimization with surrogate gradients is not well guaranteed
heoretically. Xiao et al. (2021) propose the IDE method to train
eedback spiking neural networks, which decouples the forward
nd backward procedures and avoids the common SNN training
roblems. Tandem learning (Wu, Chua et al., 2021), ASF (Wu,
hang et al., 2021), and DSR (Meng, Xiao et al., 2022) also share a
imilar thought of calculating gradients through spike rates, with
he main focus only on feedforward networks with closed-form
ransformations between successive layers instead of implicit
ixed-point equations at equilibrium states. However, all these
ethods require complex computation during training rather

han spike-based operations. A few works focusing on training
NNs with spikes either are based on feedback alignment and
imited in simple datasets (Guerguiev et al., 2017; Neftci et al.,
017; O’Connor & Welling, 2016; Samadi et al., 2017), or require
pecial neuron models that require consideration of accumulated
pikes for spike generation (Thiele et al., 2020, 2019), which is
ardly supported in practice. And they are only applicable to
eedforward architectures. Instead, we are the first to leverage
pikes with common neuron models to train high-performance
NNs with feedback or feedforward structures. The comparison
f different methods is illustrated in Table 1.

quilibrium of neural networks. The equilibrium of neural net-
orks is first considered by energy-based models, e.g. Hop-

ield Network (Hopfield, 1982, 1984), which view the dynamics
f feedback neural networks as minimizing an energy function
oward an equilibrium of the local minimum of the energy.
ith the energy function, recurrent backpropagation (Almeida,

987; Pineda, 1987) and more recent equilibrium propagation
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Table 1
Comparison of different supervised SNN training methods with respect to performance, latency, structure flexibility, neuron model, spike-based or not, and
neuromorphic plausibility.
Method High perform. Low latency Struc. Flexi. Common neuron model Spike-based Neuro. Plaus.

ANN-to-SNN ✓ ✓a
× ✓ × Low

BPTT with surrogate gradients ✓ ✓ ✓ ✓ × Low
DFA with Spikes × ? × ✓ ✓ High
SpikeGrad (Thiele et al., 2020) ✓ ? × × ✓ Medium
IDE (Xiao et al., 2021) ✓ ✓ ✓ ✓ × Low

SPIDE (ours) ✓ ✓ ✓ ✓ ✓ High

aTypical ANN-to-SNN methods require high latency. Some recent state-of-the-art works have largely improved this.
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(EP) (Scellier & Bengio, 2017) are proposed to train neural net-
works. These methods rely on the definition of the energy func-
tion and are hardly competitive with deep neural networks. With
the steady state of equilibrium, the contrastive Hebbian learning
method (Xie & Seung, 2003) is also proposed to train neural
networks, which is composed of a two-phase anti-Hebbian and
Hebbian procedure and is shown equivalent to backpropagation
in the limit of weak feedback. Detorakis, Bartley, and Neftci
(2019) propose a variant of this method with random feedback
weights which is similar to feedback alignment. However, these
methods hardly reach the high performance of backpropagation.
Recently, a new branch of deep equilibrium models (Bai, Kolter,
& Koltun, 2019; Bai, Koltun, & Kolter, 2020) is proposed. They
interpret the computation of weight-tied deep ANNs as solving
a fixed-point equilibrium point, and correspondingly propose
implicit models which are defined by solving the equilibrium
equations and trained by solving implicit differentiation. Their
equilibrium is defined by fixed-point equations rather than en-
ergy functions and they can achieve superior performance. These
works focus on ANNs rather than SNNs, except that Martin et al.
(2021), Mesnard, Gerstner, and Brea (2016) and O’Connor, Gavves,
and Welling (2019) generalize the idea of EP to SNNs. They follow
the energy-based EP method to approximate the gradients, which
is different from the equilibrium and the training method in this
work, and they are limited to tiny network scales and simple
datasets. As for the equilibrium of SNNs, Zhang, Zeng, Zhao and
Shi (2018) and Zhang, Zeng, Zhao and Xu (2018) consider the
equilibrium state of the membrane potential as an unsupervised
learning part, Li and Pehlevan (2020) and Mancoo, Keemink, and
Machens (2020) consider the equilibrium from the perspective
of solving constrained optimization problems, and Xiao et al.
(2021) draw inspiration from deep equilibrium models to view
feedback SNNs as evolving along time to an equilibrium state
following a fixed-point equation and propose to train FSNNs
by implicit differentiation on the equilibrium state (IDE). These
methods do not consider training SNNs with spike-based com-
putation. Differently, this work extends IDE to spike-based IDE,
which extends the thought of equilibrium of spikes to solving
implicit differentiation and enables the whole training procedure
to be based on spike computation with common neuron models,
providing the potential for energy-efficient training of SNNs.

3. Preliminaries

We first introduce preliminaries about spiking neural network
odels and the IDE training method (Xiao et al., 2021).

.1. Spiking neural network models

Spiking neurons draw inspiration from the human brain to
ommunicate with each other by spikes. Each neuron integrates
nformation from input spike trains by maintaining a membrane
otential through a differential equation and generates an output
 o
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spike once the membrane potential exceeds a threshold, follow-
ing which the membrane potential is reset to the reset potential.
We consider the commonly used integrate and fire (IF) and leaky
integrate and fire (LIF) neuron models, whose general discretized
computational form is:⎧⎨⎩ui [t + 1] = λ(ui[t] − (Vth − ureset )si[t]) +

∑
j

wijsj[t] + bi,

si[t + 1] = H(ui [t + 1] − Vth),
(1)

here ui[t] is the membrane potential of neuron i at time step
, si[t] is the binary output spike train of neuron i, wij is the
onnection weight from neuron j to neuron i, bi is bias, H is the
eaviside step function, Vth is the firing threshold, ureset is the
eset potential, and λ = 1 for the IF model while λ < 1 is a
eaky term for the LIF model. We use subtraction as the reset
peration. ureset is usually taken as 0 in previous work, while
e will reconsider it in Section 4.3. We mainly consider the IF
euron model by default and will demonstrate that our method
s applicable to the LIF model as well.

.2. Background about the IDE training method

Due to the complex spiking neuron model which is discon-
inuous, directly supervised training of SNNs is a hard problem,
ince the explicit computation is non-differentiable and therefore
ackpropagation along the forward computational graph is prob-
ematic. The IDE training method (Xiao et al., 2021) considers
nother approach to calculate gradients that does not rely on
he exact reverse of the forward computation, which avoids the
roblem of non-differentiability as well as large memory costs
y BPTT methods with surrogate gradients. Specifically, the IDE
raining method first derives that the (weighted) average firing
ate of FSNN computation with common neuron models would
radually evolve to an equilibrium state along time, which follows
fixed-point equation. Then by viewing the forward computation
f FSNN as a black-box solver for this equation, and applying im-
licit differentiation on the equation, gradients can be calculated
nly based on this equation and the (weighted) average firing rate
uring the forward computation rather than the exact forward
rocedure. Therefore, the forward and backward procedures are
ecoupled and the non-differentiability is avoided.
We briefly introduce the conclusion of equilibrium states in

ection 3.2.1 and the IDE method in Section 3.2.2.

.2.1. Equilibrium states of FSNNs
Xiao et al. (2021) derive that the (weighted) average rate of

pikes during FSNN computation with common neuron models
ould converge to an equilibrium state following a fixed-point
quation given convergent inputs. We first focus on the con-
lusions with the discrete IF model under both single-layer and
ulti-layer feedback structures. The single-layer structure has

ne hidden layer of neurons with feedback connections on this
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ayer. The update equation of membrane potentials after reset is
let Vu = Vth − ureset ):

[t + 1] = u[t] + Ws[t] + Fx[t + 1] + b − Vus[t + 1], (2)

where u[t] and s[t] are the vectors of membrane potentials and
pikes of these neurons, x[t] is the input at time step t , W is
the feedback weight matrix, and F is the weight matrix from
inputs to these neurons. The average input and average firing
rate are defined as x[t] =

1
t

∑t
τ=1 x[τ ] and α[t] =

1
t

∑t
τ=1 s[τ ],

espectively. Define σ (x) = min(1,max(0, x)).
The equilibrium state of the single-layer FSNN is described

as Xiao et al. (2021): If the average inputs converge to an equilib-
rium point x[t] → x∗, and there exists γ < 1 such that ∥W∥2 ≤

γVth, then the average firing rates of FSNN with discrete IF model
will converge to an equilibrium point α[t] → α∗, which satisfies
the fixed-point equation α∗

= σ

(
1
Vth

(Wα∗
+ Fx∗

+ b)

)
. Note

that they take ureset = 0 in this conclusion, if we consider nonzero
ureset , the constraint and the fixed-point equation should be
∥W∥2 ≤ γ (Vth − ureset ) and α∗

= σ

(
1

Vth−ureset
(Wα∗

+ Fx∗
+ b)

)
.

The multi-layer structure incorporates more non-linearity into
the equilibrium fixed-point equation, which has multiple layers
with feedback connections from the last layer to the first layer.
The update equations of membrane potentials after reset are
expressed as:{
u1

[t + 1] = u1
[t] + W1sN [t] + F1x[t + 1] + b1

− Vus1[t + 1],

ul
[t + 1] = ul

[t] + Flsl−1
[t + 1] + bl

− Vusl[t + 1], (l = 2, . . . ,N).

(3)

The equilibrium state of the multi-layer FSNN with ureset is
described as Xiao et al. (2021): If the average inputs converge to
an equilibrium point x[t] → x∗, and there exists γ < 1 such that
∥W1

∥2∥FN∥2 · · · ∥F2∥2 ≤ γ (Vth − ureset )N , then the average firing
rates of multi-layer FSNN with discrete IF model will converge
to equilibrium points αl

[t] → αl∗, which satisfy the fixed-point
equations α1∗

= f1
(
fN ◦ · · · ◦ f2(α1∗), x∗

)
and αl+1∗

= fl+1(αl∗),

where f1(α, x) = σ

(
1

Vth−ureset
(W1α + F1x + b1)

)
and fl(α) =(

1
Vth−ureset

(Flα + bl)
)
.

As for the LIF model, the weighted average firing rate will
e considered to represent information: the weighted average
nput and weighted average firing rate are defined as x̂[t] =∑t

τ=1 λt−τ x[τ ]∑t
τ=1 λt−τ

and α̂[t] =

∑t
τ=1 λt−τ s[τ ]∑t

τ=1 λt−τ
, respectively. Xiao et al.

2021) has derived the equilibrium states of FSNN under the LIF
odel as well. The conclusions are similar to the IF model and the
quilibrium states follow the same fixed-point equation, except
hat weighted average firing rates (inputs) are considered and
here would be bounded random error for the equilibrium state.
e can view it as an approximate solver for the equilibrium state.

.2.2. IDE training method
Based on the equilibrium states in Section 3.2.1, we can train

SNNs by calculating gradients with implicit differentiation (Xiao
t al., 2021). Let α = fθ (α) denote the fixed-point equation
f the equilibrium state which is parameterized by θ , gθ (α) =

θ (α) − α, and let L(α∗) denote the objective function with re-
pect to the equilibrium state α∗. The implicit differentiation
atisfies

(
I −

∂ fθ (α∗)
∂α∗

)
dα∗

dθ =
∂ fθ (α∗)

∂θ
(Bai et al., 2019) (we follow

he numerator layout convention for derivatives). Therefore, the
ifferentiation of L(α∗) for parameters can be calculated based on
mplicit differentiation as:
∂L(α∗)

= −
∂L(α∗) (

J−1
|α∗

) ∂ fθ (α∗)
, (4)
∂θ ∂α∗ gθ ∂θ

12
where J−1
gθ |α∗ is the inverse Jacobian of gθ evaluated at α∗. The

calculation of inverse Jacobian can be avoided by solving an
alternative linear system (Bai et al., 2019, 2020; Xiao et al., 2021):

(
J⊤gθ |α∗

)
β +

(
∂L(α∗)
∂α∗

)⊤

= 0. (5)

Note that a readout layer after the last layer of neurons will be
constructed for output (Xiao et al., 2021), which is composed
of neurons that will not spike and will do classification based
on accumulated membrane potentials (e.g. realized by a very
large threshold). Then the output o is equivalent to a linear
transformation on the approximate equilibrium state, i.e. o =

Woα∗
+bo, and the loss will be calculated between o and labels y

with a common criterion such as cross-entropy. Then the gradient
on the equilibrium state can be calculated. For the solution of
implicit differentiation, Xiao et al. (2021) follow Bai et al. (2019,
2020) to leverage root-finding methods, while we will solve it
by spike-based computation, as will be derived in Section 4. We
consider that the (weighted) average firing rates α[T ] during the
orward computation of FSNNs at time step T roughly reach the
quilibrium state. Then by substituting α∗ by α[T ] in the above
quations, gradients for the parameters can be calculated only
ith α[T ] and the equation, and we calculate them based on
pikes. With the gradients, first-order optimization methods such
s SGD (Rumelhart, Hinton, & Williams, 1986) and its variants can
e applied to update parameters.

. Spike-based implicit differentiation on the equilibrium
tate

In this section, we present our SPIDE method that calculates
he whole training procedure based on spikes. We first intro-
uce ternary spiking neuron couples in Section 4.1 and how to
olve implicit differentiation in Section 4.2. Then we theoretically
nalyze the approximation error and propose the improvement
n Section 4.3. Finally, a summary of the training pipeline is
resented in Section 4.4. We also provide a brief illustration figure
f the overall process in Fig. 1.

.1. Ternary spiking neuron couples

The common spiking neuron model only generates spikes
hen the membrane potential exceeds a positive threshold,
hich limits the firing rate from representing negative infor-
ation. To enable approximation of possible negative values

or implicit differentiation calculation in Section 4.2, we require
egative spikes, whose expression could be:

i[t + 1] = T (ui[t + 1], Vth) =

⎧⎨⎩
1, ui[t + 1] > Vth

0, |ui[t + 1]| ≤ Vth

− 1, ui[t + 1] < −Vth

, (6)

and the reset is the same as usual: ui[t+1]− (Vth −ureset )si[t+1].
Direct realization of such ternary output, however, may be not
supported by common neuromorphic computation of SNNs.

We propose to leverage two coupled common neurons to
realize this computation. As illustrated in Fig. 2, the two coupled
neurons with the common IF model (Eq. (1)) receive opposite in-
puts and output opposite spikes, which aim to deal with positive
information and negative information with spikes, respectively.
They should share a reset operation in order to accord with
Eq. (6), which can be realized by the connections between them:
as we use subtraction as the reset operation, the connection
whose weight equals Vth − ureset enables one neuron to reset the
other equivalently. To see how this works, consider the condition
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Fig. 1. A brief illustration of the overall process of the proposed method and comparison with previous methods. (a) The proposed SPIDE method. Both forward and
ackward stages are implemented by spike-based computation. (b) The IDE method. The backward stage requires root-solver and complex computation to solve for
radients. (c) The BPTT with surrogate gradient (SG) method. The backward stage requires backpropagation through the unfolded computational graph with complex
omputation rather than spike operations.
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Fig. 2. Illustration of ternary spiking neuron couples.
13
that the accumulated membrane potential of neuron 1 reaches
Vth, then neuron 1 would generate a spike and reset, and the
output is this positive spike. At the same time, the membrane
potential of neuron 2 is −Vth and the neuron will not fire and
reset, but the spike from neuron 1 will reset it to −ureset , which
ccords with our desired reset for ternary output. Similarly, if the
nputs are negative, neuron 2 will generate a spike which will
e treated negative as output, and both neurons are reset. For
he operation of taking negative, one solution is to enable the
everse operation on hardware; another is to reconnect neuron
with other neurons while taking the weight negative to that
f neuron 1. As for most existing neuromorphic hardware, the
ouble connections to the two coupled neurons are more feasible,
nd this implies that twice the synaptic operations are needed for
ach spike. Therefore, such kind of coupled common neurons can
ealize ternary output.
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We note that the SpikeGrad algorithm (Thiele et al., 2020)
also requires neurons for ternary output. However, they do not
consider how such kind of operation can be implemented with
the common neuron models that follow the basic properties of
biological neurons, and moreover, they propose another modified
neuron model in practice that requires consideration of accu-
mulated spikes for spike generation, which is hardly supported
in practice. Differently, our method is with the common neuron
model (IF or LIF). This can be suitable for neuromorphic hard-
ware. Also, SpikingYOLO (Kim, Park, Na and Yoon, 2020) proposes
ternary neurons for the inference of SNNs converted from ANNs
without considering the implementation by the common neuron
models. Our ternary spiking neuron couples may also provide a
way to implement their method on hardware.

4.2. Solving implicit differentiation with spikes

Based on the coupled neurons in Section 4.1, we can solve
implicit differentiation with spikes. For notation simplicity, we
directly use Eq. (6) as a ternary neuron without detailing coupled
neurons below. Our main focus is on solving Eq. (5) with spikes.
We first consider the IF neuron model by default and will include
the LIF model later. The brief outline for the derivation is: we
first derive the update equation of membrane potentials, then
we derive the equivalent equation of the rate of spikes with
eliminating perturbation, and finally, we prove that the firing rate
converges to the solution of Eq. (5).

We first consider the single-layer condition. Let α[TF ] denote
the average firing rate of these neurons after the forward com-
putation with time steps TF as an approximate equilibrium state

(we treat the forward procedure as the first stage), g =

(
∂L

∂α[TF ]

)⊤

denote the gradient of the loss function on this approximate
equilibrium state, and m = σ ′(α[TF ]),M = Diag(m) denote a
mask indicator based on the firing condition in the first stage,

where σ ′(x) =

{
1, 0 < x < 1
0, else

. We will have another TB time steps

in the second backward stage to calculate implicit differentiation.
We set the input to these neurons as g at all time steps, which can
be viewed as input currents (Xiao et al., 2021; Zhang & Li, 2020).
Then along the inverse connections of neurons and with a mask
on neurons or weights and an output rescale, the computation of
FSNN with ternary neurons is:

u[t + 1] =u[t] +
1

Vth − ureset
(MW)⊤s[t] + g − (V b

th − ub
reset )s[t + 1],

(7)

where Vth, ureset and V b
th, u

b
reset are the threshold and reset poten-

tial during the first and second stage, respectively. Define the
‘average firing rate’ at this second stage as β[t] =

1
t

∑t
τ=1 s[τ ],

nd u[0] = 0, s[0] = 0, then through summation, we have (let
u = Vth − ureset , V b

u = V b
th − ub

reset ):

[t + 1] =
1
V b
u

(
t

t + 1
1
Vu

(MW)⊤β[t] + g −
u[t + 1]
t + 1

)
. (8)

Since there would be at most t spikes during t time steps, β
should be bounded in the range of [−1, 1]. The membrane po-
tential ui[t] will maintain the exceeded terms, i.e. define vi[t] =(

t
t+1

1
Vu
(MW)⊤β[t] + g

)
i
, we can divide ui[t] as uE

i [t] + uB
i [t],

where uE
i [t] = max

(
vi[t] − V b

th, 0
)

+ min
(
vi[t] + V b

th, 0
)
is the

exceeded term while uB
i [t] is a bounded term (Xiao et al., 2021)

which is typically bounded in the range of [−V b
th, V

b
th]. Then,

Eq. (8) turns into:

β[t + 1] =φ

(
1
b

(
t 1

(MW)⊤β[t] + g
))

−
1
b

uB
[t + 1]

, (9)

Vu t + 1 Vu Vu t + 1

14
where φ(x) = min(1,max(−1, x)). Note that if g and (MW)⊤
are in an appropriate range, there would be no exceeded term
and φ will not take effect. Indeed we will rescale the loss to
control the range of g, as will be indicated in Section 4.3. With this
consideration, we can prove that β[t] converges to the solution
of Eq. (5).

Theorem 1. If there exists γ < 1 such that ∥(MW)⊤∥2 ≤

γ (Vth − ureset )(V b
th − ub

reset ), then the average firing rate β[t] will
onverge to an equilibrium point β[t] → β∗. When V b

th − ub
reset = 1,

and there exists λ < 1 such that ∥(MW)⊤∥∞ ≤ λ(Vth − ureset ) and
g∥∞ ≤ 1 − λ, then β∗ is the solution of Eq. (5).

The proof and discussion of assumptions are in Appendix A.
ith Theorem 1, we can solve Eq. (5) by simulating this second

tage of SNN computation to obtain the ‘firing rate’ β[TB] as the
pproximate solution. Plugging this solution to Eq. (4), the gradi-
nts can be calculated by: ∇WL =

1
Vth−ureset

Mβ[TB]α[TF ]⊤, ∇FL =

1
Vth−ureset

Mβ[TB]x[TF ]⊤, and ∇bL =
1

Vth−ureset
Mβ[TB].

Note that in practice, even if the data distribution is not in a
proper range, we can still view φ as a kind of clipping for improp-
erly large numbers, which is similar to empirical techniques like
‘‘gradient clipping’’ to stabilize the training.

Then we consider the extension to the multi-layer condition.
Let αl

[TF ] denote the average firing rate of neurons in layer l after

the forward computation, g =

(
∂L

∂αN [TF ]

)⊤

denote the gradient

of the loss function on the approximate equilibrium state of the
last layer, and ml

= σ ′(αl
[TF ]),Ml

= Diag(ml) denote the
mask indicators. Similarly, we will have another TB time steps
in the second stage and set the input to the last layer as g at
ll time steps. The computation of FSNN with ternary neurons is
alculated as:

uN
[t + 1] =uN

[t] +
1
Vu

(M1W1)⊤s1[t] + g − V b
u s

N
[t + 1],

ul
[t + 1] =ul

[t] +
1
Vu

(Ml+1Fl+1)⊤sl+1
[t + 1]

− V b
u s

l
[t + 1], (l = N − 1, . . . , 1).

(10)

he ‘average firing rates’ βl
[t] are similarly defined for each layer,

nd the equivalent form can be similarly derived as:

βN
[t + 1] =φ

(
1
V b
u

(
t

t + 1
1
Vu

(M1W1)⊤β1
[t] + g

))
−

1
V b
u

uNB
[t + 1]
t + 1

,

βl
[t + 1] =φ

(
1
V b
u

(
1
Vu

(Ml+1Fl+1)⊤βl+1
[t + 1]

))
−

1
V b
u

ulB
[t + 1]
t + 1

.

(11)

he convergence of the ‘firing rate’ at the last layer to the solution
f Eq. (5) can be similarly derived as Theorem 1. However, we
eed to calculate gradients for each parameter as Eq. (4), which
s more complex than the single-layer condition. Actually, we can
erive that the ‘firing rates’ at each layer converge to equilibrium
oints, based on which the gradients can be easily calculated with
nformation from the adjacent layers. Theorem 2 gives a formal
escription.

heorem 2. If there exists γ < 1 such that ∥(M1W1)⊤∥2 ∥ (MN

FN )⊤ ∥2 · · · ∥(M2F2)⊤∥2 ≤ γ (Vth − ureset )N (V b
th − ub

reset )
N , then

he average firing rates βl
[t] will converge to equilibrium points

l
[t] → βl∗. When V b

th−ub
reset = 1, and there exists λ < 1 such that

(M1W1)⊤∥∞ ≤ λ(Vth − ureset ), ∥(MlFl)⊤∥∞ ≤ λ(Vth − ureset ), l =

, . . . ,N and ∥g∥ ≤ 1 − λN , then βN∗
is the solution of Eq. (5),
∞
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a
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[

M

p
n

e

nd βl∗
=

(
∂hN (αN ∗

)
∂hl(αN ∗)

)⊤

βN∗
, l = N − 1, . . . , 1, where hl(αN∗) =

l ◦ · · · ◦ f2
(
f1(αN∗

, x∗)
)
, l = N, . . . , 1.

The functions fl are defined in Section 3.2.1. For the proof
please refer to Appendix B. With Theorem 2, by putting the
solutions into Eq. (4), the gradients can be calculated by: ∇FlL =

1
Vth−ureset

Mlβl
[TB]αl−1

[TF ]⊤ (l = 2, . . . ,N), ∇F1L =
1

Vth−ureset
M1β1

TB]x[TF ]⊤, ∇W1L =
1

Vth−ureset
Mlβl

[TB]αN
[TF ]⊤, and ∇blL =

1
Vth−ureset

lβl
[TB] (l = 2, . . . ,N).

Note that the gradient calculation shares an interesting local
roperty, i.e. it is proportional to the firing rates of the two
eurons connected by it: ∇Fli,j

L =
1

Vth−ureset
ml

iβ
l
iα

l−1
j . During

calculation, since we will have the firing rate of the first stage
before the second stage, this calculation can also be carried out
by event-based calculation triggered by the spikes in the second
stage. So the weight update could be event-driven as well.

Also, note that the theorems still hold if we degrade our feed-
back models to feedforward ones by setting feedback connections
as zero. In this setting, the dynamics and equilibriums degrade to
direct functional mappings, and the implicit differentiation de-
grades to the explicit gradient. We can still approximate gradients
with this computation.

In the following, we take V b
th − ub

reset = 1 by default to
fulfill the assumption of theorems (it may take other values if we
correspondingly rescale the outputs and we set 1 for simplicity).
Other techniques like dropout can also be included. Please refer
to Appendix C for details.

SPIDE with LIF neuron model. The above conclusions show that
we can leverage the equilibrium states with the IF neuron model
to solve implicit differentiation with spikes. As introduced in
Section 3.2.1, we can also derive the equilibrium states with the
LIF neuron model by considering the weighted average firing rate,
and the equilibrium fixed-point equations would have the same
form as those of the IF model except for some bounded random
error. Therefore, with the same thought, our SPIDE method can
leverage LIF neurons to approximate the solution of implicit
differentiation as well. We can replace IF neurons and average
firing rates with LIF neurons and weighted average firing rates,
and it will gradually approximate the same equilibrium states as
in Theorems 1 and 2 with bounded random error. The derivation
is similar to Xiao et al. (2021) and Theorems, and the repetitive
details are omitted here.

4.3. Reducing approximation error

Section 4.2 derives that we can solve implicit differentiation
with spikes, as the average firing rate will gradually converge
to the solution. In practice, however, we will simulate SNNs for
finite time steps, and a smaller number of time steps is better
for lower energy consumption. This will introduce approximation
error which may hamper training. In this subsection, we theoret-
ically study the approximation error and propose to adjust the
reset potential to reduce it. Inspired by the theoretical analysis on
quantized gradients (Chen, Gai, Yao, Mahoney, & Gonzalez, 2020),
we will analyze the error from the statistical perspective.

For the ‘average firing rates’ βl
[t] in Eq. (8) and the multilayer

counterparts, the approximation error e to the equilibrium states
consists of three independent parts ee, er and ei: the first is
ulE

[t + 1] that is the exceeded term due to the limitation of
spike number, the second is ulB

[t + 1] which can be viewed as
a bounded random variable, and the third is the convergence
error of the iterative update scheme without ul

[t + 1], i.e. let
bl

[t] denote the iterative sequences for solving βl∗ as bl
[t + 1] =

t 1 (Ml+1Fl+1)⊤bl
[t], the convergence error is ∥bl

[t] −
t+1 Vth−ureset

15
βl∗
∥. The second part er can be again decomposed into two

independent components er = eq + es: eq is the quantization
ffect due to the precision of firing rates ( 1T for T time steps) if

we first assume the same average inputs at all time steps, and
es is due to the random arrival of spikes rather than the average
condition, as there might be unexpected output spikes, e.g. the
average input is 0 and the expected output should be 0, but two
large positive inputs followed by one larger negative input at
the last time would generate two positive spikes while only one
negative spike. So the error is divided into: e = ee + eq + es + ei.
Since the iterative formulation is certain for ei, we focus on ee, eq
and es.

Firstly, the error eq due to the quantization effect is influenced
by the input scale and time steps TB. To enable proper input scale
and smaller time steps, we rescale the loss function by a factor
sl, since the magnitude of gradients with cross-entropy loss is
relatively small. We scale the loss to an appropriate range so that
information can be propagated by SNNs in smaller time steps,
and most signals are in the range of φ as analyzed in Section 4.2.
The base learning rate is scaled by 1

sl
correspondingly. This is also

adopted by Thiele et al. (2020).
Then given the scale and number of time steps, eq, ee and es can

be treated as random variables from statistical perspective, and
we view βl

[t] as stochastic estimators for the equilibrium states
with ei. For the stochastic optimization algorithms, the expecta-
tion and variance of the gradients are important for convergence
and convergence rate (Bottou, 2010), i.e. we hope an unbiased
estimation of gradients and smaller estimation variance. As for ee
and es, they depends on the input data and the expectations are
E[ee] = 0,E[es] = 0 (the positive and negative parts have the
same probability). While for eq, it will depend on our hyperpa-
rameters V b

th and ub
reset . Since the remaining terms in ulB

[t + 1]
caused by the quantization effect is in the range of [ub

reset , V
b
th] for

positive terms while [−V b
th, −ub

reset ] for negative ones, given V b
th −

ub
reset and considering the uniform distribution, only when ub

reset =

−V b
th, E[eq] = 0 for both positive and negative terms. Therefore,

we should adjust the reset potential from commonly used 0 to
−V b

th for unbiased estimation, as described in Proposition 3.

Proposition 3. For fixed V b
th − ub

reset and uniformly distributed
inputs and eq, only when ub

reset = −V b
th, β

l
[t] are unbiased estimators

for bl
[t].

Also, taking ub
reset = −V b

th achieves the smallest estimation
variance for the quantization effect eq, considering the uniform
distribution on [ub

reset , V
b
th]∪ [−V b

th, −ub
reset ]. Since the effects of ee,

es and ei are independent of eq and their variance is certain given
inputs, it leads to Proposition 4.

Proposition 4. Taking ub
reset = −V b

th reduces the variance of
estimators βl

[t].

With this analysis, we will take V b
th = 0.5, ub

reset = −0.5 in the
following. For Vth and ureset during the first forward stage, we will
also take ureset = −Vth.

4.4. Details and training pipeline

The original IDE method (Xiao et al., 2021) leverages other
training techniques including modified batch normalization (BN)
and restriction on weight spectral norm. Since the batch statis-
tical information might be hard to obtain for calculation of bio-
logical systems and neuromorphic hardware, and training with
the BN operation is hard to be implemented by spike-based
calculation, we drop BN in our SPIDE method. The restriction on
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Table 2
Evaluation of training with different time steps in the backward stage. Training
is on CIFAR-10 with AlexNet-F structure and TF = 30. Results are based on 3
uns of experiments.
TB Mean ± Std (Best)

50 88.41% ± 0.48% (89.07%)
100 89.17% ± 0.14% (89.35%)
250 89.61% ± 0.11% (89.70%)
500 89.57% ± 0.08% (89.67%)

the weight norm, however, is necessary for the convergence of
feedback models, as indicated in theorems. We will adjust it for a
more friendly calculation, please refer to Appendix C for details.

Algorithm 1 Forward procedure of SPIDE training - Stage 1.
Input: Network parameters F1, b1, · · · , FN , bN ,W1,W o, bo; Time steps TF ; Forward

hreshold Vth; Dropout rate r; Input data {x[t]}
TF
t=1;

Output: Output of the readout layer o.
1: Initialize ui[0] = 0(i = 1, 2, · · · ,N), o = 0
2: If use dropout, randomly generate dropout masks Di(i = 1, 2, · · · ,N),Df with

rate r // Di,Df are saved for backward
3: for t = 1, 2, · · · , TF do
4: if t == 1 then
5: u1[t] = u1[t − 1] + D1

⊙ (F1x[t] + b1)
6: else
7: u1[t] = u1[t − 1] + D1

⊙ (F1x[t] + b1) + Df
⊙ (W1sN [t − 1])

8: s1[t] = H(u1[t] − Vth)
9: u1[t] = u1[t] − 2Vths1[t] // ureset = −Vth , the same below
0: for l = 2, 3, · · · ,N do
1: ul[t] = ul[t − 1] + Dl

⊙ (F lsl−1
[t] + bl)

2: sl[t] = H(ul[t] − Vth)
13: ul[t] = ul[t] − 2Vthsl[t]
14: o = o + W osN [t] + bo // o can be accumulated here, or calculated later by

o = W oαN
+ bo

15: o =
o
T

6: αi
=

∑T
t=1 si[t]

T , i = 1, 2, · · · ,N // Save for backward, firing rate in Stage 1
7: mi

= (αi > 0) ∧ (αi < 1) // Save for backward, mask

18: If x is not constant, save x =

∑T
t=1 x[t]

T for backward
19: Return o

We summarize our training pipeline as follows. There are two
tages for the forward and backward procedures respectively. In
he first stage, SNNs receive inputs and perform the calculation as
qs. (1), (2), (3) for TF time steps, after which we get the output
rom the readout layer, and save the average inputs as well as
he average firing rates and masks of each layer for the second
tage. In the second stage, the last layer of SNNs will receive
radients for outputs and perform calculation along the inverse
onnections as Eqs. (6), (7), (10) for TB time steps, after which
e get the ‘average firing rates’ of each layer. With firing rates

rom two stages, the gradients for parameters can be calculated
s in Section 4.2 and then the first-order optimization algorithm
s applied to update the parameters. We provide detailed pseu-
ocodes for both stages in Algorithms 1 and 2, respectively. Fig. 1
lso illustrates the overall process.

. Experiments

In this section, we conduct experiments to demonstrate the
ffectiveness of our method and the great potential for energy-
fficient training. We simulate the computation on common com-
utational units. Please refer to Appendix C for implementation
etails and descriptions.

ffectiveness with a small number of backward time steps. As
hown in Table 2, we can train high-performance models with
ow latency (TF = 30) in a small number of backward time steps
uring training (e.g. T = 50), which indicates the low latency and
B

16
Algorithm 2 Backward procedure of SPIDE training - Stage 2.
Input: Network parameters F1, b1, · · · , FN , bN ,W1,W o, bo; Forward output o;

Label y; Time steps TB; Forward threshold Vth; Backward threshold V b
th = 0.5; Other

hyperparameters and saved variables;
Output: Trained network parameters F1, b1, · · · , FN , bN ,W1,W o, bo .

1: Calculate g =
∂L(o,y)

∂o // for CE loss, ∂L(o,y)
∂o = softmax(o)−y, in practice we will

scale the loss by a factor sl , then
∂L(o,y)

∂o = sl (softmax(o) − y)
2: Initialize ui[0] = 0, i = 1, 2, · · · ,N
3: for t = 1, 2, · · · , TB do
4: if t == 1 then
5: uN [t] = uN [t − 1] + W o⊤g
6: else
7: uN [t] = uN [t − 1] +W o⊤g +

1
2Vth

W1⊤(Df
⊙m1

⊙ s1[t − 1]) // mi is the
saved mask in Stage 1

8: sN [t] = T (uN [t], 0.5) // realized by two coupled neurons
9: uN [t] = uN [t] − sN [t] // realized by two coupled neurons
0: for l = N − 1,N − 2, · · · , 1 do
1: ul[t] = ul[t − 1] +

1
2Vth

F l⊤(Dl
⊙ml+1

⊙ sl+1
[t]) // mi is the saved mask

in Stage 1
2: sl[t] = T (ul[t], 0.5) // realized by two coupled neurons
3: ul[t] = ul[t] − sl[t] // realized by two coupled neurons

4: β i
=

∑T
t=1 si[t]

T , i = 1, 2, · · · ,N // ‘‘firing rate’’ in Stage 2
15: Calculate gradients: // Note that the below calculation can be realized by

event-driven accumulation based on the above si[t] considering the definition
of β i

6: (1) ∇F1L =
1

2Vth
(m1

⊙ β1)x⊤ // mi, x are the saved mask and average
input in Stage 1

17: (2) ∇F iL =
1

2Vth
(mi

⊙ β i)αi−1⊤
, i = 2, 3, · · · ,N // mi, αi are the saved

mask and firing rate in Stage 1
18: (3) ∇biL =

1
2Vth

(mi
⊙ β i), i = 1, 2, · · · ,N

19: (4) ∇W1L =
1

2Vth
(m1

⊙ β1)αN⊤ // mi, αi are the saved mask and firing
rate in Stage 1

20: (5) ∇WoL = αN
(

∂L(o,y)
∂o

)⊤

// αi is the saved firing rate in Stage 1

21: (6) ∇boL =

(
∂L(o,y)

∂o

)⊤

22: Update F1, b1, · · · , FN , bN ,W1,W o, bo based on the gradient-based optimizer
// SGD learning rate η + momentum α & weight decay µ, the base learning rate
is scaled by the factor sl of the loss, i.e. η =

η
sl

23: (1) Update the momentum Mθ = α ∗ Mθ + (1 − α) ∗ ∇θL, θ ∈

{F i, bi,W1,W o, bo}
4: (2) Update parameters θ = (1 − µ) ∗ θ + η ∗ Mθ , θ ∈ {F i, bi,W1,W o, bo}
5: (3) Restrict the norm of W1

6: Return F1, b1, · · · , FN , bN ,W1,W o, bo

high energy efficiency. Note that conventional ANN-SNN methods
require hundreds to thousands of time steps just for satisfactory
inference performance, and recent progress of the conversion
methods and direct training methods show that relatively small
time steps are enough for inference, while we are the first to
demonstrate that even training of SNNs can be carried out with
spikes in a very small number of time steps. This is due to our
analysis and improvement to reduce the approximation error, as
illustrated in the following ablation study.

Ablation study of reducing the approximation error. We conduct
ablation study on our improvement to reduce the approximation
error by setting the reset potential as negative threshold. To
formulate equivalent equilibrium states, we take the same Vth −

reset = Vu and the same V b
th − ub

reset = V b
u , and we consider the

ollowing settings: (1) both forward and backward stages apply
ur improvement, i.e. ureset = −Vth, ub

reset = −V b
th; (2) remove the

mprovement on the backward stage, i.e. V b
th = V b

u , ub
reset = 0; (3)

emove the improvement on both forward and backward stages,
.e. Vth = Vu, ureset = 0 and V b

th = V b
u , ub

reset = 0. The latter
wo setting are denoted by ‘‘w/o B’’ and ‘‘w/o F&B’’ respectively.
he models are trained on CIFAR-10 with AlexNet-F structure
nd 30 forward time steps. The training and testing curves un-
er different settings and backward time steps are illustrated
n Fig. 3. It demonstrates that without our improvement, the
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Fig. 3. Comparison of training and testing curves under different settings and backward time steps.
Fig. 4. Average firing rates for forward and backward stages during training. ‘A’ is AlexNet-F, ‘C’ is CIFARNet-F, and T is time steps for the backward stage.
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Table 3
Theoretical estimation of energy costs of the backward stage of training with
TF = 30, TB = 50.
Method OpNum OpEnergy Cost

SPIDE (ours) ≈ 0.03 × 50 (FiringRate × TB) 0.9 (AC) 1×
STBP 30 (TF ) 4.6 (MAC) 102×

Table 4
Theoretical estimation of energy costs of the forward stage with TF = 30.
Method OpNum OpEnergy Cost

Spike-based ≈ 0.07 × 30 (FiringRate × TF ) 0.9 (AC) 1×
Not spike-based 30 (TF ) 4.6 (MAC) 73×

training cannot perform well within a small number of backward
time steps, probably due to the bias and large variance of the
estimated gradients. When the backward time steps are large,
the performance gap is reduced since the bias of estimation is
reduced. It shows the superiority of our improvement in training
SNNs within a small number of backward time steps.

Firing rate statistics and potential of energy efficiency. Since the
nergy consumption of event-driven SNNs is proportional to the
umber of spikes, we present the average firing rates for forward
nd backward stages (for backward, both positive and negative
pikes are considered as firing) in Fig. 4. It shows the firing
parsity of our method, and spikes are sparser in the backward
tage with around only 3%. Combined with the small number of
ime steps, this demonstrates the great potential for the energy-
fficient training of SNNs with spike-based computation. We
heoretically estimate and compare the energy costs for the op-
rations of neurons of our method and the representative STBP
 5

17
method.1 We mainly focus on the energy of the backward stage
which is made spike-based and only requires accumulation (AC)
operations by SPIDE while requiring multiply and accumulate
(MAC) operations by STBP. Our operation number is estimated
as the firing rate multiplied by backward time steps TB, and
that of STBP is the forward time steps TF as STBP will repeat
the computation for TF times to backpropagate through time.
According to the 45 nm CMOS processor, the energy for 32 bit FP
MAC operation is 4.6 pJ, and for AC operation is 0.9 pJ. Therefore,
as shown in Table 3, when TF = 30, TB = 50, our method
could achieve approximately 102× reduction in energy cost.2
Additionally, if we consider that the forward computation of STBP
also has to be simulated by, e.g. GPU, to be compatible with the
backward stage and the computation is not spike-based, while
ours may be deployed with neuromorphic hardware for spike-
based computation, then the forward stage during training can
also reduce the energy by around 73×, as shown in Table 4. Note
that even for STBP with fewer forward time steps, e.g. 12 or 6,
the energy costs of SPIDE for the backward stage are still about
40× or 20× less than STBP, and our result in Table 6 will show
that SPIDE is also effective with smaller TF .

1 The energy costs of the IDE method are hard to estimate because IDE
everages root-finding methods (e.g. Broyden’s method) to solve implicit dif-
erentiation, which may involve many complex operations and the iteration
umber may depend on the convergence speed. If we consider the fixed-point
pdate scheme with a fixed iteration number N as the root-finding method in
he IDE, its operation number is about the same as STBP with N time steps to
ackpropagate. As the iteration threshold of IDE is usually taken as 30 (i.e. the
aximum iteration number for root-finding methods if the update does not
onverge before it), the energy estimation of STBP with 30 time steps can also
e an effective surrogate result for IDE.
2 Note that the realization of ternary spiking neuron couples may require

wice the synaptic operations under some cases (see Section 4.1), so the energy
ost reduction may be halved. Despite this, we could still achieve approximately
0× reduction in energy cost.
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Table 5
Performance on MNIST with 3 runs of experiments. ‘‘N.A.’’ means the method is not spike-based.
MNIST

Method Network structure TF TB Mean ± Std (Best) Neurons Params

BP (Lee et al., 2016) 20C5-P2-50C5-P2–200 >200 N.A. (99.31%) 33k 518k
STBP (Wu et al., 2018) 15C5-P2-40C5-P2–300 30 N.A. (99.42%) 26k 607k
IDE (Xiao et al., 2021) 64C5 (F64C5) 30 N.A. 99.53% ± 0.04% (99.59%) 13k 229k

SpikeGrad (Thiele et al., 2020) 15C5-P2-40C5-P2–300 Unknown Unknown 99.38% ± 0.06% (99.52%) 26k 607k
SPIDE (ours) 64C5s-64C5s-64C5 (F64C3u) 30 100 99.34% ± 0.02% (99.37%) 20k 275k
SPIDE (ours, degraded) 15C5-P2-40C5-P2–300 30 100 99.44% ± 0.02% (99.47%) 26k 607k
Table 6
Performance on CIFAR-10 with 3 runs of experiments. ‘‘N.A.’’ means the method is not spike-based.
CIFAR-10

Method Network structure TF TB Mean ± Std (Best) Neurons Params

ANN-SNN (Sengupta et al., 2019) VGG-16 2500 N.A. (91.55%) 311k 15M
ANN-SNN (Deng & Gu, 2021) CIFARNet 400–600 N.A. (90.61%) 726k 45M
STBP (Wu et al., 2019) AlexNet 12 N.A. (85.24%) 595k 21M
STBP (w/o NeuNorm) (Wu et al., 2019) CIFARNet 12 N.A. (89.83%) 726k 45M
STBP (Xiao et al., 2021) AlexNet-F 30 N.A. (87.18%) 159k 3.7M
IDE (Xiao et al., 2021) AlexNet-F 30 N.A. 91.74% ± 0.09% (91.92%) 159k 3.7M
IDE (Xiao et al., 2021) CIFARNet-F 30 N.A. 92.08% ± 0.14% (92.23%) 232k 11.8M

SpikeGrad (Thiele et al., 2020) CIFARNet Unknown Unknown 89.49% ± 0.28% (89.99%) 726k 45M
SPIDE (ours) AlexNet-F 12 250 89.11% ± 0.29% (89.43%) 159k 3.7M
SPIDE (ours) AlexNet-F 30 250 89.61% ± 0.11% (89.70%) 159k 3.7M
SPIDE (ours) CIFARNet-F 30 250 89.94% ± 0.17% (90.13%) 232k 11.8M
i

Competitive performance on common datasets. We evaluate the
erformance of our method on static datasets MNIST (LeCun,
ottou, Bengio, & Haffner, 1998), CIFAR-10, and CIFAR-100
Krizhevsky & Hinton, 2009), as well as the neuromorphic dataset
IFAR10-DVS (Li, Liu, Ji, Li, & Shi, 2017). We compare our method
o several ANN-SNN methods (Deng & Gu, 2021; Sengupta et al.,
019), direct SNN training methods (Wu et al., 2018; Xiao et al.,
021), and SpikeGrad (Thiele et al., 2020) with similar network
tructures. As shown in Tables 5 and 6, we can train both feed-
orward and feedback SNN models with a small number of time
teps and our trained models achieve competitive results on
NIST and CIFAR-10. Compared with SpikeGrad (Thiele et al.,
020), we can use fewer neurons and parameters due to flexible
etwork structure choices, and a small number of time steps
hile they do not report this important feature. Besides, we
se common neuron models while they require special neuron
odels that are hardly supported, as indicated in Section 4.1.
ompared with the original IDE method (Xiao et al., 2021), our
eneralization performance is poorer as we discard the BN com-
onent. As shown in Fig. 5, the SPIDE method can achieve the
ame training accuracy as the IDE method, while the general-
zation performance is poorer. Since the hyperparameters are
he same for experiments, except that we drop the modified BN
omponent (as explained in Section 4.4), the performance gap
ay be caused by the implicit regularization effect of BN. We

ry to drop the modified BN component for IDE and the results
n Fig. 5 show that it achieves similar performance (89.93%) as
PIDE. Therefore, the optimization ability of the SPIDE method
hould be similar to that of IDE, while future work could in-
estigate techniques that are similar to BN but more friendly
o the spike-based computation of SNNs to further improve the
erformance.
The results on CIFAR-100 are shown in Table 7 and our model

an achieve 64.07% accuracy. Compared with IDE, the perfor-
ance is poorer, and the main reason is probably again the
bsence of BN which could be important for alleviating overfit-
ing on CIFAR-100 with a relatively small number of images per
lass. The training accuracy of SPIDE is similar to IDE (around
3% v.s. around 94%) while the generalization performance is
oorer. Despite this, the performance of our model is competitive
18
for networks without BN and our model is with fewer neurons
and parameters and a small number of time steps. Compared
with SpikeGrad (Thiele et al., 2020), we can use fewer neurons
and parameters due to flexible network structure choices, and
we leverage common neuron models while they do not. Fu-
ture work could investigate more suitable structures and more
friendly techniques to further improve the performance.

The results on CIFAR10-DVS are shown in Table 8, and our
model can achieve 60.7% accuracy. It is competitive among results
of common SNN models, demonstrating the effectiveness of our
method.

The above results show the effectiveness of our method even
with the constraint of purely spike-based training. We note that
there are some recent works that achieve higher state-of-the-
art performance (Deng et al., 2022; Fang, Yu, Chen, Huang et al.,
2021; Fang, Yu, Chen, Masquelier et al., 2021; Li, Guo et al.,
2021; Zheng et al., 2021). However, their target is different from
ours which aims at training SNNs with purely spike-based com-
putation as introduced in Section 1, and they leverage many
other techniques such as batch normalization along the temporal
dimension or learnable membrane time constant. We do not
aim at outperforming the state-of-the-art results but demonstrate
that a competitive performance can be achieved even with our
constraints of purely spike-based training with common neuron
models. And our future work could seek techniques friendly to
neuromorphic computation to further improve the performance.

As a preliminary attempt, we provide the result of applying the
scaled weight standardization (sWS) technique which is shown as
a powerful method to replace BN in ResNets (Brock, De and Smith,
2021; Brock, De, Smith and Simonyan, 2021) and SNNs (Xiao,
Meng, Zhang, He, & Lin, 2022). Particularly, sWS standardizes
weights instead of activations by Ŵi,j = γ ·

Wi,j−µWi,·
σWi,·

√
N

, where

µWi,· and σWi,· are the mean and variance calculated along the
nput dimension, and the scale γ is determined by analyzing
the signal propagation with different activation functions (typi-
cally taken as γ =

√
2√

1− 1
π

). Brock, De, Smith (2021) show that

normalization-free ResNets with the sWS technique can achieve
a similar performance as common ResNets with BN. We apply
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Fig. 5. Comparison of training and testing curves between IDE and SPIDE on CIFAR-10 with AlexNet-F structure and TF = 30.
Table 7
Performance on CIFAR-100 with 3 runs of experiments. ‘‘N.A.’’ means the method is not spike-based.
Method Network structure BN TF TB Mean ± Std (Best) Neurons Params

BP (Thiele et al., 2020) CIFARNet × Unknown N.A. (64.69%) 726K 45M
IDE (Xiao et al., 2021) CIFARNet-F ✓ 30 N.A 71.56% ± 0.31% (72.10%) 232K 14.8M

SpikeGrad (Thiele et al., 2020) CIFARNet × Unknown Unknown (64.40%) 726K 45M
SPIDE (ours) CIFARNet-F × 30 100 63.57% ± 0.30%(63.91%) 232K 14.8M
SPIDE (ours) CIFARNet-F × 30 250 64.00% ± 0.11%(64.07%) 232K 14.8M
Table 8
Performance on CIFAR10-DVS.
Method Model TF TB Accuracy

Gabor-SNN (Sironi, Brambilla, Bourdis, Lagorce, & Benosman, 2018) Gabor-SNN N.A N.A 24.5%
HATS (Sironi et al., 2018) HATS N.A N.A 52.4%
STBP (Wu et al., 2019) Spiking CNN (LIF, w/o NeuNorm) 40 N.A 58.1%
STBP (Wu et al., 2019) Spiking CNN (LIF, w/ NeuNorm) 40 N.A 60.5%
Tandem learning (Wu, Chua et al., 2021) Spiking CNN (IF) 20 N.A 58.65%
ASF-BP (Wu, Zhang et al., 2021) Spiking CNN (IF) Unknown N.A 62.5%

SPIDE (ours) Spiking CNN (IF) 30 250 60.7%
Table 9
Performance of LIF neurons on MNIST, CIFAR-10, and CIFAR-100. Results are based on 3 runs of experiments.
Dataset Forward model Backward model TF TB Mean ± Std (Best)

MNIST
IF IF 30 100 99.34% ± 0.02% (99.37%)
LIF IF 30 100 99.32% ± 0.04% (99.37%)
LIF LIF 30 100 99.34% ± 0.05% (99.39%)

CIFAR-10
IF IF 30 250 89.94% ± 0.17% (90.13%)
LIF IF 30 250 89.66% ± 0.12% (89.78%)
LIF LIF 30 250 89.54% ± 0.14% (89.72%)

CIFAR-100
IF IF 30 250 64.00% ± 0.11% (64.07%)
LIF IF 30 250 64.04% ± 0.03% (64.06%)
LIF LIF 30 250 63.81% ± 0.19% (63.97%)
this technique to our experiment on CIFAR-10 and the perfor-
mance of the AlexNet-F structure improves from 89.61% to 90.37%
and the performance of the CIFARNet-F structure improves from
89.94% to 90.85%. It shows that we can effectively leverage other
techniques to improve performance.

Results with LIF neuron model. As introduced in Section 4.2, our
SPIDE method is also applicable to the LIF neuron model. We con-
duct experiments on MNIST, CIFAR-10, and CIFAR-100 to verify
the effectiveness of SPIDE with LIF neurons. Following Xiao et al.
(2021), the leaky term for LIF neurons is set as λ = 0.95 for
NIST and λ = 0.99 for CIFAR-10 and CIFAR-100. The network
tructure for CIFAR-10 and CIFAR-100 is taken as CIFARNet-F, and
ther details are the same as the experiment for IF neurons. The
esults are shown in Table 9. It demonstrates that SPIDE is also
ffective for LIF neurons.
19
6. Conclusion

In this work, we propose the SPIDE method that generalizes
the IDE method to enable purely spike-based training of SNNs
with common neuron models and flexible network structures.
We prove that the implicit differentiation can be solved with
spikes by our coupled neurons. We also analyze the approxi-
mation error due to finite time steps and propose to adjust the
reset potential of SNNs. Experiments show that we can achieve
competitive performance with a small number of training time
steps and sparse spikes, which demonstrates the great potential
of our method for energy-efficient training of SNNs with spike-
based computation. As for the limitations, SPIDE and IDE mainly
focus on the condition that inputs are convergent in the context of
average accumulated signals, e.g. image classification with static
or neuromorphic inputs. For long-term sequential data such as
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peech, we may define the final average inputs as the convergent
nputs and directly apply our method, but the error flow through-
ut time is not carefully handled. An interesting future work is
o generalize the methodology to time-varying inputs with more
areful consideration of error flows and equilibriums, e.g. with
ertain time windows.
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ppendix A. Proof of Theorem 1

roof. We first prove the convergence of β[t]. Let Vu and V b
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th − ub

reset respectively. Consider ∥β[t +

] − β[t]∥, it satisfies:

∥β[t + 1] − β[t]∥ (
φ

(
1
V b
u

(
t

t + 1
1
Vu

(MW)⊤β[t] + g
))

−
1
V b
u

uB
[t + 1]
t + 1

)
−

(
φ

(
1
V b
u

(
t − 1
t

1
Vu

(MW)⊤β[t − 1] + g
))

−
1
V b
u

uB
[t]
t

)
≤

φ

(
1
V b
u

(
1
Vu

(MW)⊤β[t] + g
))

− φ

(
1
V b
u

(
1
Vu

(MW)⊤β[t − 1] + g
))

+

φ

(
1
V b
u

(
t

t + 1
1
Vu

(MW)⊤β[t] + g
))

−
1
V b
u

uB
[t + 1]
t + 1

−φ

(
1
V b
u

(
1
Vu

(MW)⊤β[t] + g
))

+

φ

(
1
V b
u

(
t − 1
t

1
Vu

(MW)⊤β[t − 1] + g
))

−
1
V b
u

uB
[t]
t

−φ

(
1
V b
u

(
1
Vu

(MW)⊤β[t − 1] + g
))

≤

φ

(
1
V b
u

(
1
Vu

(MW)⊤β[t] + g
))

− φ

(
1
V b
u

(
1
Vu

(MW)⊤β[t − 1] + g
))

+
1
V b
u

( 1
t + 1

1
Vu

(MW)⊤β[t]
 +

uB
[t + 1]
t + 1


+

1
t

1
Vu

(MW)⊤β[t − 1]
 +

uB
[t]
t

)
. (A.1)
w

20
As ∥(MW)⊤∥2 ≤ γVuV b
u , γ < 1, and |uB

i [t]| is bounded, we
have ∥β[t + 1]∥ ≤ γ ∥β[t]∥+
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And since ∥(MW)⊤∥2 ≤ γVuV b
u , we have:φ
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Therefore, when t > T1, it holds that:

∥β[t + 1] − β[t]∥ ≤ γ ∥β[t] − β[t − 1]∥ +
ϵ(1 − γ )

2
. (A.4)

By iterating the above inequality, we have ∥β[t +1]−β[t]∥ ≤
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2 , and therefore

∥β[t + 1] − β[t]∥ < ϵ. According to Cauchy’s convergence test,
he sequence {β[t]}∞i=0 converges to β∗. Considering the limit, it
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Therefore,
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Taking fθ (α∗) = σ

(
1

Vth−ureset
(Wα∗

+ Fx∗
+ b)

)
(i.e. the fixed-

oint equation at the equilibrium state as in Section 3.2.1) explic-
tly into Eq. (5), the linear equation turns into

(
1
Vu
(MW)⊤ − I

)
β+

= 0, where Vu,M, g are previously defined. Therefore, β∗

atisfies this equation. And since ∥(MW)⊤∥2 ≤ γVu, γ < 1, the
quation has the unique solution β∗. □

emark 1. As for the assumptions in the theorem, firstly, when
b
th − ub

reset = 1 as we will take, the assumption for the conver-
ence is weaker than that for the convergence in the forward
tage (in Section 3.2.1), because ∥(MW)⊤∥2 ≤ ∥W∥2 as M is a
iagonal mask matrix. We will restrict the spectral norm of W
ollowing Xiao et al. (2021) to encourage the convergence of the
orward stage (in Appendix C), then this backward stage would
onverge as well.
The assumptions for the consistency of the solution is a suf-

icient condition. In practice, the weight norm will be partially
estricted by weight decay and our restriction on Frobenius norm
in Appendix C), as well as the diagonal mask matrix M which
ould be sparse if the forward firing events are sparse, and we
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ill rescale the loss so that the input g is in an appropriate range,
s indicated in Section 4.3. Even if these assumptions are not
atisfied, we can view φ as a kind of empirical clipping techniques
o stabilize the training, as indicated in Section 4.2. The discussion
s similar for the multi-layer condition (Theorem 2) in the next
ection.

ppendix B. Proof of Theorem 2
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(
βN

[t]
)
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(
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(
βN
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)
· · ·

)
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N

(
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1

(
· · · g t
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)
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[t]
)

, g,

uNB
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)
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(
g1

(
· · · gN−1

(
βN

[t]
)
· · ·

)
, g

) 
+

g t
N

(
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1

(
· · · g t−1
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βN

[t − 1],uN−1B
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u1B
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)
, g,uNB

[t]
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(
g1

(
· · · gN−1

(
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· · ·

)
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(
· · · gN−1

(
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[t]
)
· · ·

)
, g

)
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(
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(
· · · gN−1

(
βN
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)
· · ·

)
, g

) 
+

1
V b
u

( 1
t + 1

1
Vu

(M1W1)⊤g t
1

(
· · · g t

N−1

(
βN
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)
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21
+

1
t

1
Vu

(M1W1)⊤g t−1
1

(
· · · g t−1

N−1

(
βN
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· · · ,u1B
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+X + Y +
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t


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, (B.1)

where X =

 1
Vu
(M1W1)⊤

(
g t
1

(
· · · g t

N−1

(
βN

[t],uN−1B
[t]

)
. . . ,

u1B
[t]

)
− g1

(
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(
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[t]
)
· · ·

)) , and Y =

 1
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(
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(
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· · · ,u1B

[t − 1]
)

−g1
(
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(
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)
· · ·

)) .
For the term X and Y , they are bounded by:

X ≤
1
V b
u

( 1
Vu

(M1W1)⊤
1
Vu

(MNFN )⊤

×
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[t]

)
· · · ,u2B
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(
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(
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 1
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u1B

[t]
t


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≤ · · · · · ·

≤
1
V b
u

 1
Vu

(M1W1)⊤
u1B

[t]
t

 + · · ·

+
1

V b
u
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 1
Vu
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1W1)⊤(MNFN )⊤ · · · (M3F3)⊤
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t

 ,

(B.2)

and Y has the same form as X by substituting t with t − 1.
Since ∥(M1W1)⊤∥2∥(MNFN )⊤∥2 · · · ∥(M2F2)⊤∥2 ≤ γVN

u V b
u
N , we

have:gN (
g1

(
· · · gN−1

(
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)
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≤ · · · · · ·
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[t − 1]
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≤ γ

βN
[t] − βN
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 .

(B.3)

And since ul
i
B
[t] is bounded, then ∀ϵ > 0, ∃T1 such that when

t > T1, we have:βN
[t + 1] − βN

[t]
 ≤ γ

βN
[t] − βN

[t − 1]
 +

ϵ(1 − γ )
2

. (B.4)

Then ∥βN
[t+1]−βN

[t]∥ < γ t−T1∥βN
[T1+1]−βN

[T1]∥+
ϵ
2 , and

there exists T2 such that when t > T1+T2, ∥βN
[t+1]−βN

[t]∥ < ϵ.
ccording to Cauchy’s convergence test, βN

[t] converges to βN∗
,

which satisfies βN∗
= gN

(
g1 ◦ · · · ◦ gN−1(βN∗

), g
)
. Considering

the limit, βl
[t] converges to βl∗, which satisfies βl∗

= g (βl+1∗
).
l
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When V b
th − ub

reset = 1, and there exists λ < 1 such that
∥(M1W1)⊤∥∞ ≤ λ(Vth − ureset ), ∥(MlFl)⊤∥∞ ≤ λ(Vth − ureset ), l =

2, . . . ,N and ∥g∥∞ ≤ 1 − λN , we have:βN∗


∞

=

gN (
g1 ◦ · · · ◦ gN−1(βN∗

), g
)

∞

≤

 1
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(M1W1)⊤g1 ◦ · · · ◦ gN−1(βN∗
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
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≤ λ
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≤ · · · · · · ≤ λN
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Therefore,
βN∗


∞

≤
∥g∥∞

1−λN
≤ 1, and

g̃N−1(βN∗
)


∞

≤

λ

βN∗


∞

≤ λ, . . . ,

g̃1 ◦ · · · ◦ g̃N−1(βN∗
)


∞

≤ λN−1,g̃N (
g̃1 ◦ · · · ◦ g̃N−1(βN∗

), g
)

∞

≤ λN
+ (1 − λN ) = 1, where

g̃N (β, g) =
1
Vu
(M1W1)⊤β + g, g̃l(β) =

1
Vu
(Ml+1Fl+1)⊤β, l =

, . . . ,N −1, (i.e. g̃l is gl without the function φ). It means βN∗
=

N

(
g1 ◦ · · · ◦ gN−1(βN∗

), g
)

= g̃N
(
g̃1 ◦ · · · ◦ g̃N−1(βN∗

), g
)

and
l∗

= gl(βl+1∗
) = g̃l(βl+1∗

).
Taking α1∗

= f1
(
fN ◦ · · · ◦ f2(α1∗), x∗

)
and αl+1∗

= fl+1(αl∗)
(i.e. the fixed-point equation at the equilibrium state as in Sec-
tion 3.2.1) explicitly into Eq. (5), the linear equation turns into
g̃1 ◦ · · · ◦ g̃N−1(β) − β + g = 0. Therefore, βN∗

satisfies this
quation. And since ∥(M1W1)⊤∥2∥(MNFN )⊤∥2 · · · ∥(M2F2)⊤∥2 ≤

γVN
u , γ < 1, the equation has the unique solution βN∗

. Further,

because g̃l(β) =

(
∂hl+1(αN ∗

)
∂hl(αN ∗)

)⊤

β, where hl(αN∗) = fl ◦ · · · ◦

2
(
f1(αN∗

, x∗)
)
, l = N, . . . , 1, we have βl∗

=

(
∂hN (αN ∗

)
∂hl(αN ∗)

)⊤

βN∗
, l =

− 1, . . . , 1. □

ppendix C. Training details

.1. Dropout

Dropout is a commonly used technique to prevent over-fitting,
nd we follow Bai et al. (2019, 2020) and Xiao et al. (2021)
o leverage variational dropout, i.e. the dropout of each layer is
he same at different time steps. Since applying dropout on the
utput of neurons is a linear operation with a mask and scaling
actor, it can be integrated into the weight matrix without af-
ecting the conclusions of convergence. The detailed computation
ith dropout is also illustrated in the pseudocode in Section 4.4.

.2. Restriction on weight norm

As indicated in the theorems, a sufficient condition for the
onvergence to equilibrium states in both forward and back-
ard stages is the restriction on the weight spectral norm. Xiao
t al. (2021) leverages re-parameterization to restrict the spectral
orm, i.e. they re-parameterize W as W = α W

∥W∥2
, where ∥W∥2

s computed as the implementation of Spectral Normalization
nd α is a learnable parameter to be clipped in the range of
−c, c] (c is a constant). However, the computation of spectral
norm and re-parameterization may be unfriendly to neuromor-
phic computation. We adjust it for a more friendly calculation as
follows.

First, the spectral norm is upper-bounded by the Frobenius
orm: ∥W∥2 ≤ ∥W∥F . We can alternatively restrict the Frobenius

norm which is easier to compute. Further, considering that con-
nection weights may not be easy for readout compared with neu-
ron outputs, we can approximate ∥W∥ by ∥W∥ =

√
tr(WW⊤) =
F F

22
√
Eϵ∈N (0,Id)

[
∥ϵ⊤W∥

2
2

]
, according to the Hutchinson estimator

Hutchinson, 1989). It can be viewed as source neurons out-
utting noises and target neurons accumulating signals to esti-
ate the Frobenius norm. We will estimate the norm based on

he Monte-Carlo estimation (we will take 64 samples), which is
imilarly adopted by Bai, Koltun, and Kolter (2021) to estimate
he norm of their Jacobian matrix. Then based on the estimation,
e will restrict W as W = α W

∥W∥F
where α = min(c, ∥W∥F ),

c is a constant for norm range. This estimation and calculation
may correspond to large amounts of noises in our brains, and
a feedback inhibition on connection weights based on neuron
outputs.

Following Xiao et al. (2021), we only restrict the norm of
feedback connection weight W1 for the multi-layer structure,
which works well in practice.

C.3. Other details

Details on MNIST, CIFAR-10, and CIFAR-100. For SNN models with
feedback structure, we set Vth = 1, ureset = −1 in the forward
stage to form an equivalent equilibrium state as Xiao et al. (2021).
The constant for restriction in Appendix C.2 is c = 2. Follow-
ing Xiao et al. (2021), we train models by SGD with momentum
for 100 epochs. The momentum is 0.9, the batch size is 128, and
the initial learning rate is 0.05. For MNIST, the learning rate is
decayed by 0.1 every 30 epochs, while for CIFAR-10 and CIFAR-
100, it is decayed by 0.1 at the 50th and 75th epoch. We apply
linear warmup for the learning rate in the first 400 iterations
for CIFAR-10 and CIFAR-100. We apply the weight decay with
5 × 10−4 and variational dropout with the rate 0.2 for AlexNet-F
and 0.25 for CIFARNet-F. The initialization of weights follows Wu
et al. (2018), i.e. we sample weights from the standard uniform
distribution and normalize them on each output dimension. The
scale for the loss function (as in Section 4.3) is 100 for MNIST, 400
for CIFAR-10, and 500 for CIFAR-100.

For SNN models with degraded feedforward structure, our
hyperparameters mostly follow Thiele et al. (2020), i.e. we set
Vth = 0.5, ureset = −0.5, train models by SGD with momentum
0.9 for 60 epochs, set batch size as 128, and the initial learning
rate as 0.1 which is decayed by 0.1 every 20 epochs, and apply the
variational dropout only on the first fully-connected layer with
rate 0.5.

The notations for our structures mean: ‘64C5’ represents a
convolution operation with 64 output channels and kernel size
5, ‘s’ after ‘64C5’ means convolution with stride 2 (which down-
scales 2×) while ‘u’ after that means a transposed convolution
to upscale 2×, ‘P2’ means average pooling with size 2, and ‘F’
means feedback layers. The network structures for CIFAR-10 and
CIFAR-100 are:

AlexNet (Wu et al., 2019): 96C3-256C3-P2-384C3-P2-384C3-
256C3-1024-1024,

AlexNet-F (Xiao et al., 2021): 96C3s-256C3-384C3s-384C3-
256C3 (F96C3u),

CIFARNet (Wu et al., 2019): 128C3-256C3-P2-512C3-P2-
1024C3-512C3-1024-512,

CIFARNet-F (Xiao et al., 2021): 128C3s-256C3-512C3s-1024C3-
512C3 (F128C3u).

Details on CIFAR10-DVS. The CIFAR10-DVS dataset is the neuro-
morphic version of the CIFAR-10 dataset converted by a Dynamic
Vision Sensor (DVS), which is composed of 10,000 samples, one-
sixth of the original CIFAR-10. It consists of spike trains with two
channels corresponding to ON- and OFF-event spikes. The pixel
dimension is expanded to 128 × 128. Following the common
practice, we split the dataset into 9000 training samples and
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000 testing samples. As for the data pre-processing, we reduce
he time resolution by accumulating the spike events (Fang, Yu,
hen, Masquelier et al., 2021) into 30 time steps, and we reduce
he spatial resolution into 48 × 48 by interpolation. We apply
he same random crop augmentation as CIFAR-10 to the input
ata. We leverage the network structure: 512C9s (F512C5). We
rain the model by SGD with momentum for 70 epochs. The
omentum is 0.9, the batch size is 128, the weight-decay is
× 10−4, and the initial learning rate is 0.05 which is decayed
y 0.1 at the 50th epoch. No dropout is applied. The initialization
f weights follows the widely used Kaiming initialization. The
onstant for restriction in Appendix C.2 is c = 10 due to the
arge channel size, and the scale for the loss function as well
s the firing thresholds and reset potentials are the same as the
IFAR-10 experiment.
We simulate the computation on commonly used computa-

ional units. The code implementation is based on the PyTorch
ramework (Paszke et al., 2019), and experiments are carried out
n one NVIDIA GeForce RTX 3090 GPU.
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