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Figure 1. (a) Illustration of key issues of ML task. The network structure is plotted based on AlexNet 
( https://en.wikipedia.org/wiki/AlexNet ), the set of images are sampled from COCO dataset ( https: 
//cocodataset.org/), and the energy surface is generated using the peaks function from MATLAB. 
(b) Formulation of AutoML paradigm from the perspective of bilevel optimization. 

design effective neural network architec- 
tures [5 ] and HO assists us in finding op- 
timal hyperparameters for the model [6 ]. 
By automating these key aspects of the 
ML pipeline, AutoML frees up valuable 
time and resources for practitioners to 
focus on other critical tasks. Overall, 
the techniques of MFL, NAS and HO 

play crucial roles in enabling AutoML 

to efficiently and effectively handle ML 

tasks. Very recently, Shu et al. [7 ] pro- 
vided a simulating learning methodol- 
ogy (SLeM), a general paradigm with 
solid theoretical guarantees for predict- 
ing proper hyperparameter configura- 
tions for various AutoML applications. 

Bilevel optimization (BLO) refers to 
a category of mathematical tools for hi- 
erarchical optimization with two levels of 
problems: an upper-level problem and a 
lower-level problem [8 ]. In the context 
of AutoML, we can actually utilize BLO 

to uniformly formulate different kinds of 
AutoML tasks, such as MFL, NAS and 
HO. 

Specifically, we can observe in 
Fig. 1 (b) that in the upper-level problem, 
the goal is to find the best ‘methodology’ 
that optimizes the performance of the 
machine learning model (e.g. meta fea- 
tures, network architectures and tuned 
hyperparameters). This can be formu- 
lated as an optimization problem where 
the objective function F is the perfor- 
mance of the model on a validation set 
Dval , and the variables x ∈ X are some 
‘meta-parameters’ (e.g. corresponding 
to feature extraction, the network archi- 
tecture and the learning strategy). The 
constraints can include factors such as 
computational resources and time limits. 
In the lower-level problem, the objec- 
tive is to optimize the machine learning 
model itself, g , given the meta-parameters 
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achine learning (ML) has witnessed an 
nprecedented evolution in recent years, 
ecoming a key driver of building arti- 
cial intelligence systems. With cutting- 
dge technologies such as AlphaGo [1 ] 
nd ChatGPT [2 ], the power and ver- 
atility of ML have been demonstrated 
cross diverse applications. However, de- 
igning effective ML solutions in real- 
orld application scenarios can be chal- 
enging and time-consuming, thus paving 
he way for the emergence of auto- 
ated machine learning (AutoML). Au- 
oML refers to a set of technologies that 
treamline the entire process of applying 
L to complex problems by automating 
any of the traditionally manual tasks in- 
olved in ML. By doing so, AutoML en- 
bles the generation of more powerful 
L solutions and extends their scope of 
pplicability [3 ]. 
In this perspective, we investigate the 

ntrinsic mechanisms and (re)formulate 
hese different AutoML tasks from a uni- 
ed optimization perspective. Figure 1 (a) 
 l lustrates how we can view the process of 
utoML as addressing the three key is- 
ues of ML tasks: how to extract the learn- 
ng feature, how to construct the learn- 
ng model and how to design the learning 
trategy. These three issues correspond to 
he main techniques of AutoML, namely, 
eta feature learning (MFL), neural ar- 
hitecture search (NAS) and hyperpa- 
ameter optimization (HO), respectively. 
In essence, MFL enables us to au- 

omatically extract relevant features for 
nseen new tasks [4 ], NAS helps us to 
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hosen in the upper-level problem. It 
an be formulated as an optimization 
roblem where the objective f is the 
erformance of the model on a training 
et Dtr , and the variables y ∈ Y are 
arameters of the learning model. 
herefore, BLO provides a powerful 
ramework for AutoML, enabling au- 
omatic selection and optimization 
f ML models, and making it possible 
o build high-performing models with 
inimal manual intervention. 
In the field of ML/AutoML, there 

as been a recent surge in developing 
radient-based techniques for BLOs. Two 
ain categories of such algorithms have 
merged in recent years: gradient with 
xplicit differentiation and implicit dif- 
erentiation. The key difference between 
hese two categories lies in the way they 
ompute the coupled gradients for BLOs. 
ery recently, a series of single-loop tech- 
iques have also been proposed to reduce 
he complexity of computing the coupled 
radients [9 ]. For further information on 
hese recent developments in gradient- 
ased BLOs, see [8 ]. 
Despite the substantial amount of 

iterature in the field, fundamental issues 
ti l l exist in the current algorithms. One 
f the major challenges is that many of 
hese studies, including both algorith- 
ic design and theoretical investigations, 
eavily rely on restrictive conditions such 
s the lower-level singleton and convexity. 
lthough there have been a few attempts 
o address this issue [10 ], it remains a 
ignificant obstacle. Another challenge 
s the difficulty in providing strict con- 
ergence analysis on the approximated 
chemes used in practical applications, 
ithout exact calculation of coupled 
radients [5 ]. 
Ultimately, the best approach to solv- 

ng a specific BLO problem wi l l depend 
n the problem structure, the complex- 
ty of the objective functions and con- 
traints, and the computational resources 
vailable. Thus, it is important to care- 
ully consider the problem formulation 
nd choose an appropriate algorithm or 
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ombination of algorithms to efficiently 
nd accurately solve the problem. 
Last but not least, it is necessary to 

rovide some discussions on the chal- 
enging and promising directions of 
LOs for AutoML in the future. 
� Computational acceleration. As the 
size and complexity of datasets/tasks 
continue to increase, there is a pressing 
need for acceleration techniques to 
BLO algorithms in extremely large- 
scale and high-dimensional AutoML 

applications. This includes designing 
AutoML algorithms that can effi- 
ciently search through a large space 
of architectures, as well as extracting 
high-dimensional features and opti- 
mizing complex training processes. 
One promising direction is to explore 
parallel/distributed computing tech- 
niques to accelerate the training and 
evaluation of models. 

� Theoretical breakthrough. Existing theo- 
ries of gradient-based BLOs mostly rely 
on strong assumptions (e.g. lower-level 
singleton and convexity [8 ]), which 
limit their applications in real-world 
scenarios. Thus, it is necessary to estab- 
lish new analyzing tool that can system- 
atically analyze the properties of the 
BLO landscape and design efficient al- 
gorithms for challenging AutoML tasks 
(e.g. tackling non-convex and discrete 
learning). 

� Optimization-inspired AutoML. Cur- 
rently, BLOs are predominantly recog- 
nized as solution strategies for practical 
AutoML applications. Indeed, by delv- 
ing into the underlying structure of 
the AutoML paradigm from the per- 
spective of BLO, we can better capture 
the complex dependencies between 
different components of the model 
and thus have the ability to design 
more efficient and effective AutoML 

strategies. For example, integrating the 
SLeM mechanism and prompt learning 
techniques within the BLO framework 
to improve the generalization capa- 
bility of fundamental vision-language 
models. 
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