
A Additional Experiment: Adversarial Examples (in Adversarial Training)440

Contain Adversarial Non-robust Features441

In Section 3, we collect misclassified adversarial examples on an early checkpoint A and evaluate them442

on a later checkpoint B with their correct labels to examine the memorization of those adversarial443

non-robust features. This is because adversarial examples used for AT consist of robust features from444

the original label y and non-robust features from the misclassified label ŷ, so B must have memorized445

those features (non-robust on A) to correctly classify them. In this section, we further provide a446

rigorous discussion on the non-robust features contained in the adversarial examples through an447

additional experiment.448

Experiment Design. Recall that Ilyas et al. [15] leverage targeted PGD attack [22] to craft adversarial449

examples on a standard (non-robust) classifier and relabel them with their target labels to build a450

non-robust dataset. Finding standard training on it yields good accuracy on clean test data, they451

prove that those adversarial examples contain non-robust features corresponding to the target labels452

(Section 3.2 of their paper).453

Figure 7: Mining non-robust features from adversarial examples in adversarial training. 1) Craft
adversarial examples x̂i using untargeted PGD attack on a AT checkpoint. 2) Relabel them (only
misclassified ones) with misclassified label ŷi to build a non-robust dataset {(x̂i, ŷi)}. 3) Perform
standard training from the checkpoint. 4) Achieve good natural accuracy (> 55%).

However, different from their settings where we know the target labels of the adversarial examples454

and they are generated on a non-robust classifier, we lay emphasis on mining non-robust features455

from adversarial examples generated on-the-fly in AT. To this end, we first craft adversarial examples456

on the AT checkpoint at some epoch using untargeted PGD attack [22] following the real setting of457

AT, then relabel the misclassified ones x̂i (e.g., a dog) with their misclassified labels ŷi ̸= yi (e.g., cat)458

to build a non-robust dataset {(x̂i, ŷi)}. In order to capture non-robust features at exactly the training459

epoch these adversarial examples are used, we continue to perform standard training directly from460

the AT checkpoint on the non-robust dataset, and finally evaluate natural accuracy. See Figure 7 for461

an illustration of our experiment.462

In details, we select the AT models at epoch 60 (before LR decay) and epoch 1,000 (after LR decay)463

to conduct the above experiment. We use untargeted PGD-20 with perturbation norm ε∞ = 16/255464

to craft adversarial examples on those checkpoints from the training data of CIFAR-10 [17]. The465

attack we adopt is a little bit stronger than the attack of PGD-10 with ε∞ = 8/255 that is commonly466

used to generate adversarial examples in baseline adversarial training, because the training robust467

accuracy rises to as high as 94.67% at epoch 1,000 (Figure 1a) and gives less than 2,700 misclassified468

examples, which is significantly insufficient for further training. Using the stronger attack, we obtain a469

success rate of 78.38% on the checkpoint at epoch 60 and a success rate of 34.86% on the checkpoint470

at epoch 1,000. Since the attack success rates are different, we randomly select a same number of471

misclassified adversarial examples for standard training for a fair comparison. The learning rate is472

initially set to 0.1 and decays to 0.01 after 20 epochs for another 10 epochs of fine-tuning. Given that473

the original checkpoints already have non-trivial natural accuracy, we also add two control groups474

that train with random labels instead of ŷ to exclude the influence that may brought by the original475

accuracy.476

Results. As shown in Figure 8, we find that standard training on the non-robust dataset {(x̂i, ŷi)}477

successfully converges to fairly good accuracy (> 55%) on natural test images, i.e., predicting cats as478

cats, no matter from which AT checkpoints (either epoch 60 or epoch 1,000) the adversarial examples479

are crafted. Also, we can see that the non-trivial natural accuracy has nothing to do with the original480

accuracy of the AT checkpoints, as the accuracy plummets to around 10% (random guessing) as481

soon as the standard training starts with random labels. This proves that adversarial examples in482

12

Figure 8: Natural accuracy during standard training. Standard training on the non-robust dataset built
from the checkpoint at either epoch 60 or epoch 1,000 converges to fairly good natural accuracy
(> 55%). The failure of training with random labels proves that the good accuracy has nothing to do
with the original natural accuracy of the AT checkpoint.

adversarial training do contain non-robust features w.r.t. the classes to which they are misclassified,483

which strongly corroborates the validity of the experiments in Section 3.484

Discussion on the Influence Brought by Robust Features During Standard Training. Since485

untargeted PGD attack cannot be assigned with a target label, we cannot guarantee that the misclassi-486

fied labels ŷ to be uniformly distributed regardless of the original labels (especially for real-world487

datasets). This implies that the non-robust features are not completely decoupled from robust features,488

i.e., training on {(x̂i, ŷi)} may take advantage of x̂i’s robust features from yi through the correlation489

between yi and ŷi. However, we argue that robust features from yi mingling with non-robust features490

from ŷi only increases the difficulty of obtaining a good natural accuracy. This is because learning491

through the shortcut will only wrongly map the robust features from yi to ŷi that never equals to yi,492

but during the evaluation, each clean test example xi will always have robust and non-robust features493

from yi, and such wrong mapping will induce xi to be misclassified to some ŷi due to the label of its494

robust features. As a result, despite the negative influence brought by robust features, we still achieve495

good natural accuracy at last, which further solidifies our conclusion.496

B Experiment Details497

In this section, we provide more experiment details that are omitted before due to the page limit.498

B.1 Baseline Adversarial Training499

In this paper, we mainly consider classification task on CIFAR-10 [17]. The dataset contains 60,000500

32× 32 RGB images from 10 classes. For each class, there are 5,000 images for training and 1,000501

images for evaluation. Since we mainly aim to track the training dynamic to verify our understandings502

in RO instead of formally evaluating an algorithm’s performance, we do not hold a validation set in503

most of our verification experiments and directly train on the full training set.504

For baseline adversarial training, We use PreActResNet-18 [12] model as the classifier. We use505

PGD-10 attack [22] with step size α = 2/255 and perturbation norm ε∞ = 8/255 to craft adversarial506

examples on-the-fly. Following the settings in Madry et al. [22], we use SGD optimizer with507

momentum 0.9, weight decay 5× 10−4 and batch size 128 to train the model for as many as 1,000508

epochs. The learning rate (LR) is initially set to be 0.1 and decays to 0.01 at epoch 100 and further509

decays to 0.001 at epoch 150. For the version without LR decay used for comparison in our paper,510

we simply keep the LR to be 0.1 during the whole training process.511

Each model included in this paper is trained on a single NVIDIA GeForce RTX 3090 GPU. For512

PGD-AT, it takes about 3d 14h to finish 1,000 epochs of training.513

13

Figure 9: More test-time confusion matrices during the first 200 epochs of the training. After LR
decays (the second row), the confusion matrix A immediately becomes symmetric, as the spectral
norm ∥A−AT ∥2 w.r.t. the matrix decreases from ≥ 350 before epoch 100 to ≤ 150 after epoch 200.

(a) train (b) test

Figure 10: Confusion matrices of the training and the test data at an epoch before robust overfitting
starts. They show nearly a same pattern of attacking preference among classes.

B.2 Verification Experiments for Our Minimax Game Perspective on Robust Overfitting514

Memorization of Adversarial Non-robust Features After LR Decay. We craft adversarial examples515

on a checkpoint before LR decay (60th epoch) and evaluate the misclassified ones on a checkpoint516

after LR decay (≥ 150th epoch) with their correct labels to evaluate the memorization of non-robust517

features in the training adversarial examples (see Appendix A for detailed discussions) in Section518

3.1 and 3.2. Following Appendix A, we adopt PGD-20 attack with perturbation norm ε∞ = 16/255519

to craft adversarial examples which is stronger than the common attack setting we use in PGD-AT.520

We note that test adversarial examples crafted by a stronger attack indicates stronger extraction of521

the non-robust features, so they are more indicative of non-robust feature memorization when still522

correctly classified.523

Verification I: More Non-robust Features, Worse Robustness. At the beginning of Section 3.2,524

we create synthetic datasets to demonstrate that memorizing the non-robust training features indeed525

harms test-time model robustness. To instill non-robust features into the training dataset, we minimize526

the adversarial loss w.r.t. the training data in a way that just like PGD attack, with the only difference527

that we minimize the adversarial loss instead of maximizing it. Since we only use a very small528

perturbation norm ε∞ ≤ 4/255, the added features are bound to be non-robust. For a fair comparison,529

we also perturb the training set with random uniform noise of the same perturbation norm to exclude530

the influence brought by (slight) data distribution shifts. We continue training from the 100-th baseline531

AT checkpoint (before LR decay) on each synthetic dataset for 10 epochs, and then evaluate model532

robustness with clean test data.533

Verification II: Vanishing Target-class Features in Test Adversarial Examples. This is to say that534

when RO happens, we expect that test adversarial examples become less informative of the classes to535

14

which they are misclassified according to our theory. To verify this, we first craft adversarial examples536

on a checkpoint T after RO begins, then evaluate the misclassified ones with their misclassified labels537

ŷ on the checkpoint saved at epoch 60. As a result, the accuracy reflects how much information538

(non-robust features) from ŷ the adversarial examples have to contain to be misclassified to ŷ on T .539

All adversarial examples evaluated in the experiments in Section 3.2.2 are crafted using PGD-10540

attack with perturbation norm ε∞ = 8/255.541

Verification III: Bilateral Class Correlation. To quantitatively analyze the correlation strength of542

bilateral misclassification described in Section 3.2.2, we first summarize all yi → yj misclassification543

rates into two confusion matrices P train, P test ∈ RC×C for the training and test data, respectively.544

Because we are mainly interested in the effect of the LR decay, we focus on the relative change on545

the test confusion matrix before and after LR decay, i.e., ∆P test = P test
after − P test

before. According546

to our theory, for each class pair (i, j), there should be a strong correlation between the training547

misclassification of i→ j before LR decay, i.e., (P train
before)ij , and the increase in test misclassification548

of j → i, i.e., ∆P test
ji , as i→ j training misclassification (may due to intrinsic class bias, as will be549

further discussed below in details) induces i → j false mappings and creates j → i shortcuts. To550

examine their relationship, we plot the two variables ((P train
before)ij ,∆P test

ji) and compute their Pearson551

correlation coefficient ρ.552

Verification IV: Symmetrized Confusion Matrix. In Section 3.2.2, we mention the growing553

symmetry of the test-time confusion matrix after LR decay as an evidence of the strengthening554

y → y′ and y′ → y correlation. Here we present more confusion matrices during the 200 epochs555

of the training in Figure 9, and it is very clear that the confusion matrices soon become symmetric556

after LR decay and RO starts. For a deeper comprehension of this phenomenon, we first visualize the557

confusion matrices of the training and the test data at an epoch before RO starts in Figure 10. They558

exhibit nearly a same pattern of attacking preference among classes (e.g., y → y′) due to the bias559

rooted in the dataset, e.g., class 6 is intrinsically vulnerable in this case. For the test data, this intrinsic560

bias wouldn’t be wiped out through learning due to the non-generalizability of the memorization of561

non-robust features in the training data, as discussed at the beginning of Section 3.2 (i.e., y → y′562

bias still holds); and for the training data, this biased feature memorization will open shortcuts for563

test-time adversarial attack as discussed in Section 3.2 (i.e., y′ → y begins). Combining both y → y′564

and y′ → y, we arrive at the symmetry of test-time confusion matrix.565

Additional Results: Changing LR Decay Schedule. Our discussion above is based on the piecewise566

LR decay schedule, in which the sudden decay of LR most obviously reflects our understandings.567

Besides, we also explore other LR decay schedules, including Cosine/Linear LR decay, to check568

whether different LR decay schedules will affect the observations and claims we made in this paper.569

For each schedule, we train the model for 200 epochs following the settings in Rice et al. [26]. As570

demonstrated in Figure 11a, we arrive at the same finding as Rice et al. [26] that with Cosine/Linear571

LR decay schedule, the training still suffers from severe RO after epoch 130. Then, we rerun572

the empirical verification experiments in Section 3.2.2 and find that under both the two LR decay573

schedules 1) the test adversarial examples indeed contain less and less target-class non-robust features574

as the training goes and RO becomes severer and severer (Figure 11b), 2) the bilateral class correlation575

becomes increasingly strong (Figure 11c) and 3) the confusion matrix indeed becomes symmetric576

(Figure 12). The results are almost the same as the results achieved when we adopt piecewise LR577

decay schedule because even though these LR decay schedules are mild, the LR eventually becomes578

small and makes the trainer T overly strong to memorize the harmful non-robust features, indicating579

that our understandings in the cause of RO is fundamental and regardless of whatever LR decay580

schedule is used.581

Table 3: Training with stronger attack and evaluating model robustness on CIFAR-10 under the
perturbation norm ε∞ = 8/255 based on the PreActResNet-18 architecture.

Attack Strength Natural PGD-20 AutoAttack
best final diff best final diff best final diff

ε = 8/255, PGD-10 (baseline) 83.50 84.94 -1.44 55.05 47.60 7.45 49.89 43.83 6.06
ε = 10/255, PGD-12 80.66 82.48 -1.82 56.63 50.63 6.00 50.89 46.13 4.76
ε = 12/255, PGD-15 78.17 80.25 -2.08 57.09 53.13 3.96 50.99 47.66 3.33
ε = 14/255, PGD-17 73.92 76.70 -2.78 56.42 54.04 2.38 50.28 48.53 1.75
ε = 16/255, PGD-20 69.51 73.11 -3.60 55.09 54.27 0.82 49.58 48.53 1.05

15

(a) test robust accuracy during train-
ing

(b) target-class non-robust features (c) bilateral class correlation

Figure 11: Empirical verification of our explanation for robust overfitting when Cosine/Linear LR
decay schedule is applied. (a) With Cosine/Linear LR decay schedule, the training still suffers
from severe RO. (b) After RO begins, non-robust features in the test data become less and less
informative of the classes to which they are misclassified. (c) Increasingly strong correlation between
training-time y → y′ misclassification and test-time y′ → y misclassification increase.

Figure 12: Test-time confusion matrix also becomes symmetric and implies that the bilateral correla-
tion also exists when Cosine/Linear LR decay schedule is applied.

B.3 Experiments on the Effect of Stronger Training Attacker582

In Section 4.2, we point out that using a stronger attacker in AT is able to mitigate RO to some extent583

by neutralizing the trainer T ’s fitting power when it is overly strong. To achieve the results reported584

in Figure 5d, we craft adversarial examples on-the-fly with more PGD iteration steps when ε is larger585

(see Table 3), and further evaluate the best and last robustness of the WA models against PGD-20586

and AA. Although RO is only partially mitigated and natural accuracy decreases when a stronger587

attacker is applied as summarized in Addepalli et al. [1], it may be surprising to find from Table 3588

that an attacker of appropriate strength may significantly boost the best WA robustness. This suggests589

using a stronger attack could potentially be an interesting new path to stronger adversarial defense,590

and we leave it for future work591

B.4 Detailed Experiment Setup of ReBAT for Mitigating Robust Overfitting592

Datasets. Beside CIFAR-10, we also include CIFAR-100 [17] and Tiny-ImageNet [6] for evaluation593

of the effectiveness of ReBAT. CIFAR-100 shares the same training and test images with CIFAR-10,594

but it classifies them into 100 categories, i.e., 500 training images and 100 test images for each595

class. Tiny-ImageNet is a subset of ImageNet [6] which contains labeled 64× 64 RGB images from596

200 classes. For each class, it includes 500 and 50 images for training and evaluation respectively.597

Following Rice et al. [26], we hold out 1,000 images from the original CIFAR-10/100 training set,598

and similarly 2,000 images from the original Tiny-ImageNet training set as validation sets.599

Training Strategy. For CIFAR-10 and CIFAR-100, we follow exactly the same training strategy600

as introduced in Appendix B.1, except that for ReBAT[strong] we adopt PGD-12 with perturbation601

norm ε∞ = 10/255 for training after LR decay. For Tiny-ImageNet, we follow the learning schedule602

of Chen et al. [4], in which the model is trained for a total of 100 epochs and the LR decays twice (by603

0.1) at epoch 50 and 80.604

Choices of Hyperparameters. For KD+SWA [4], PGD-AT+TE [8], AWP [33] and WA+CutMix605

[25], we strictly follow their original settings of hyperparameters. For MLCATWP [34], we simply606

16

report the test results reported in their paper. Following Chen et al. [4], SWA/WA as well as the607

ReBAT regularization purposed in Section 4.1 start at epoch 105 (5 epochs later than the first LR608

decay where robust overfitting often begins), and following Rebuffi et al. [25] we choose the EMA609

decay rate of WA to be γ = 0.999. Please refer to Table 4 for our choices of the decay factor d and610

regularization strength λ. We notice that since CutMix improves the difficulty of learning, the model611

demands a relatively larger decay factor to better fit the augmented data. For Tiny-ImageNet, we also612

apply a larger λ after the second LR decay to better maintain the flatness of adversarial loss landscape613

and control robust overfitting. We provide more discussions on the choice of hyperparameters in614

Appendix C.1.615

Table 4: Choices of hyperparameters when training models on different datasets using different
network architectures with ReBAT.

Network Architecture Method CIFAR-10/CIFAR-100 Tiny-ImageNet

PreActResNet-18
ReBAT d = 1.5, λ = 1.0 d = 4.0, λ1 = 2.0, λ2 = 10.0
ReBAT[strong] d = 1.7, λ = 1.0 d = 4.0, λ1 = 2.0, λ2 = 10.0
ReBAT+CutMix d = 4.0, λ = 2.0 d = 6.0, λ = 1.5

WideResNet-34-10
ReBAT d = 1.3, λ = 0.5 -
ReBAT[strong] d = 1.3, λ = 0.5 -
ReBAT+CutMix d = 4.0, λ = 2.0 -

B.5 Training Robust Accuracy616

Figure 13 shows the robust accuracy change on the training data during the training. Compared617

with vanilla PGD-AT that yields training robust accuracy over 80% at epoch 200, ReBAT manages618

to suppress it to only 65%. It successfully prevents the trainer T from learning the non-robust619

features w.r.t. the training data too fast and too well, and therefore significantly reduces the robust620

generalization gap (from ∼ 35% to ∼ 9%) and mitigates RO.621

Figure 13: Training robust accuracy of PGD-AT and ReBAT on CIFAR-10 under the perturbation
norm ε∞ = 8/255 based on the PreActResNet-18 architecture.

B.6 Training Efficiency622

We also test and report the training time (per epoch) of several methods evaluated in this paper. For a623

fair comparison, all the compared methods are integrated into a universal training framework and624

each test runs on a single NVIDIA GeForce RTX 3090 GPU.625

From Table 5, we can see that ReBAT requires nearly no extra computational cost compared with626

vanilla PGD-AT (136.2s v.s. 131.6s per epoch), implying that it is an efficient training method in627

practical. We also remark that KD+SWA, one of the most competitive methods that aims to address628

the RO issue, is not really computationally efficient as it requires to pretrain a robust classifier and a629

non-robust one as AT teacher and ST teacher respectively.630

17

Table 5: Combining training time per epoch on CIFAR-10 under the perturbation norm ε∞ = 8/255
based on the PreActResNet-18 architecture.

Method Training Time per Epoch (s)

PGD-AT 131.6
WA 132.1
KD+SWA 131.6+16.5+141.7
AWP 142.8
MLCATwp 353.3
ReBAT 136.2

WA+CutMix 168.6
ReBAT+CutMix 173.1

C More Experiments on ReBAT631

In this section, we conduct extensional experiments on the proposed ReBAT method to further632

demonstrate its effectiveness, efficiency and flexibility.633

C.1 Additional Results on BoAT Loss634

In Section B.4, we discuss the detailed configurations for the experiments in Figure 5a, where we635

show that BoAT can largely mitigate robust overfitting. Here, we further summarize the performance636

of best and final checkpoints of the original AT+WA method and our BoAT. As shown in Table 6,637

BoAT not only boosts the best robustness by a large margin (0.67% higher against AA) but also638

significantly suppresses RO (1.58% v.s. 6.06% against AA). To achieve the reported robustness, we639

first use λ1 = 10.0 after the first LR decay and then apply λ2 = 60.0 after the second LR decay to640

better maintain the flatness of adversarial loss landscape and control robust overfitting.641

Table 6: Comparing model robustness w/ and w/o BoAT loss on CIFAR-10 under the perturbation
norm ε∞ = 8/255 based on the PreActResNet-18 architecture.

Method Natural PGD-20 AutoAttack
best final diff best final diff best final diff

AT+WA 83.50 84.94 -1.44 55.05 47.60 7.45 49.89 43.83 6.06
ReBAT(d = 10) 81.54 82.42 -0.88 55.29 53.43 1.86 50.56 48.98 1.58

C.2 Additional Results on the Effect of LR decay642

Below we show that when a relatively large decay factor d is applied, i.e., the model has overly strong643

fitting ability that results in robust overfitting, a large regularization coefficient λ should be choosen644

for better performance. Table 7 reveals this relationship between d and λ. When d = 1.3, even a λ645

as small as 1.0 will harm both the best and last robustness as well as natural accuracy, as d = 1.3646

is already too small a decay factor that makes the model suffering from underfitting and naturally647

requiring no more flatness regularization. On the other side, when d is relatively large, even a strong648

regularization of λ = 4.0 is not adequate to fully suppress RO. Besides, comparing the situation of649

λ > 0 and λ = 0 for a fixed d(≥ 1.5), we emphasize that the purposed BoAT loss again exhibits its650

apparent effectiveness in simultaneously boosting the best robustness and mitigating RO.651

C.3 Additional Results on Adopting Stronger Training Time Attacker652

In Section 4.3, we design two versions of ReBAT, and we name the stronger one that also uses a653

stronger training attacker as ReBAT[strong]. Here we fix the hyperparameter used in ReBAT above654

(note that we use a larger LR decay factor d = 1.7 in ReBAT[strong] for CIFAR-10, and now we still655

use d = 1.5 as in ReBAT) and adjust the attacker strength to study its influence when combined with656

ReBAT. According to Figure 14, though a slightly stronger attack (e.g., ε = 9/255) may marginally657

improves the best and last robust accuracy, it heavily degrades natural accuracy, particularly when658

much stronger attack is used. We deem that this is because it breaks the balance from the other side659

18

Table 7: Changing decay factor d and regularization strength λ and evaluating model robustness on
CIFAR-10 under the perturbation norm ε∞ = 8/255 based on the PreActResNet-18 architecture.

Method Natural PGD-20 AutoAttack
best final diff best final diff best final diff

ReBAT(d = 1.3, λ = 0.0) 81.17 81.27 -0.10 56.43 56.23 0.20 50.80 50.75 0.05
ReBAT(d = 1.3, λ = 1.0) 80.67 80.63 0.04 56.27 56.15 0.12 50.74 50.65 0.09
ReBAT(d = 1.3, λ = 4.0) 78.50 78.36 0.14 55.10 55.04 0.06 50.31 50.30 0.01
ReBAT(d = 1.5, λ = 0.0) 81.90 82.39 -0.49 56.21 55.95 0.26 50.81 50.58 0.23
ReBAT(d = 1.5, λ = 1.0) 81.86 81.91 -0.05 56.36 56.12 0.24 51.13 51.22 -0.09
ReBAT(d = 1.5, λ = 4.0) 79.68 79.88 -0.20 55.72 55.65 0.07 50.52 50.50 0.02
ReBAT(d = 4.0, λ = 0.0) 83.05 85.38 -2.33 55.98 50.87 5.11 50.38 46.95 3.43
ReBAT(d = 4.0, λ = 1.0) 82.46 84.84 -2.38 55.86 52.02 3.84 50.87 47.88 2.99
ReBAT(d = 4.0, λ = 4.0) 80.99 84.07 -3.08 56.06 53.58 2.48 51.00 49.02 1.98

that the overly strong attacker A dominates the adversarial game and results in an underfitting state660

that harms both robust and natural accuracy.661

Figure 14: Using different adversarial attack strength in ReBAT.

C.4 Further Improving Natural Accuracy with Knowledge Distillation662

Chen et al. [4] propose to adopt knowledge distillation (KD) [13] to mitigate RO and it is worth663

mentioning that their method achieves relatively good natural accuracy according to Table 1 and 2.664

Since our ReBAT method is orthogonal to KD, we propose to combine our techniques with KD to665

further improve natural accuracy. Specifically, we simplify their method by using only a non-robust666

standard classifier as a teacher (ST teacher) instead of using both a ST teacher and a AT teacher,667

because i) a large sum of computational cost for training the AT teacher will be saved, ii) our main668

goal is to improve natural accuracy so the ST teacher matters more and iii) ReBAT already use the669

WA model as a very good teacher. This gives the final loss function as670

ℓReBAT+KD(x, y; θ) =(1− λST) · ℓBoAT(x, y; θ) + λST ·KL (fθ(x)∥fST(x)) , (4)

where fST indicates the ST teacher and λST is a trade-off parameter.671

Table 8: Combining our methods with knowledge distillation and evaluating model robustness on
CIFAR-10 under the perturbation norm ε∞ = 8/255 based on the PreActResNet-18 architecture.

Method Natural PGD-20 AutoAttack
best final diff best final diff best final diff

ReBAT (λST = 0.0) 81.86 81.91 -0.05 56.36 56.12 0.24 51.13 51.22 -0.09
ReBAT+KD (λST = 0.4) 83.59 83.64 -0.05 54.91 54.77 -0.14 50.70 50.99 -0.29
ReBAT+KD (λST = 0.5) 84.12 84.20 -0.08 55.28 55.39 -0.11 50.47 50.72 -0.25
ReBAT+KD (λST = 0.6) 84.34 84.72 -0.38 53.83 54.30 -0.47 50.15 50.37 -0.22

19

Table 8 compares the performance of ReBAT+KD when different λST is applied, and clearly a large672

λST results in improvement in natural accuracy and decreases robustness (may due to the theoretically673

principled trade-off between natural accuracy and robustness [37]). However, it is still noteworthy674

that when λST = 0.4, a notable increase in natural accuracy (∼ 1.7%) is achieved at the cost of only675

a small slide of∼ 0.2% in final robustness against AA. Also when λST = 0.5, it achieves comparable676

natural accuracy with KD+SWA [4] but has much higher AA robustness. Moreover, we emphasize677

that RO is almost completely eliminated regardless of the trade-off, which is the main concern of678

this paper and demonstrates the superiority of our method against previous ones. An intriguing679

phenomenon is that nearly all the final results are better than the results on the best checkpoints680

selected by the validation set, which implies that in this training scheme AT enjoys the same property681

of “training longer, generalize better” as ST without any need of early stopping.682

C.5 The Effect of Different Learning Rate Schedules683

In the previous experiments we only investigate the piecewise LR decay schedule. However, a natural684

idea would be using mild LR decay schedules, e.g., Cosine and Linear decay schedule, instead of685

suddenly decaying it by a factor of d at some epoch in the piecewise decay schedule. As mentioned in686

Section 5, previous works have shown that changing LR decay schedule fails to effectively suppress687

RO whether with [31] or without WA [26] because the LR finally becomes small and endows the688

trainer with overly strong fitting ability. Therefore, here we continue to experiment with modified689

Cosine and Linear decay schedules that follow a similar LR scale of the piecewise LR decay schedule,690

and summarise the results in Table 9. To be specific, the LR still decays to 0.01 at epoch 150 and691

0.001 at epoch 200, though the two decay stages (from epoch 100 to 150 and 150 to 200) are designed692

to be gradual following the Cosine/Linear schedule. We also gradually increase the strength of693

ReBAT regularization from zero as the LR gradually decreases, following the “larger decay factor694

goes with stronger ReBAT regularization” principle that we introduced in Appendix C.2.695

Table 9: Comparing our method with WA on CIFAR-10 under the perturbation norm ε∞ = 8/255
based on PreActResNet-18 architecture, when Cosine/Linear LR decay schedule are applied.

Method
Cosine Linear

Natural PGD-20 AutoAttack Natural PGD-20 AutoAttack
best final best final best final best final best final best final

WA(d=10) 82.32 84.99 55.97 47.84 50.59 44.08 82.21 85.01 56.21 48.10 50.67 44.63
ReBAT(d=10) 82.06 82.22 56.12 54.44 50.98 49.81 81.98 82.13 56.33 54.50 51.08 49.63

It can be concluded from Table 9 that simply changing the LR decay schedule indeed improves the696

best robust accuracy from 49.89% to 50.59% and 50.67% against AA respectively, but it provides no697

help at all in mitigating RO as the final robust accuracy is still below 45% against AA. We also note698

that in this situation, the application of BoAT loss not only significantly mitigates RO but also further699

improves the best model robustness, which also proves its effectiveness.700

C.6 Results on Different Network Architectures701

In previous experiments we compare methods based on PreActResNet-18 and WideResNet-34-702

10 architecture, and here we also adopt VGG-16 [28] and MobileNetV2 [27] architecture. The703

significant improvement against baseline PGD-AT in both best and final robust accuracy and in704

mitigating RO reported in Table 10 further demonstrates that our method works on a wide range of705

network architectures.706

Table 10: Comparing our method with PGD-AT on CIFAR-10 under the perturbation norm ε∞ =
8/255 based on VGG-16 and MobileNetV2 architecture.

Method
VGG-16 MobileNetV2

Natural PGD-20 AutoAttack Natural PGD-20 AutoAttack
best final best final best final best final best final best final

PGD-AT 78.43 81.64 50.56 44.25 44.19 39.66 79.85 80.67 51.56 50.67 46.01 45.27
ReBAT 78.17 78.37 53.13 53.01 47.24 47.13 78.98 80.81 53.18 52.57 47.66 47.35

20

	Introduction
	Preliminaries
	A Minimax Game Perspective on Robust Overfitting
	AT Strikes a Balance when Non-robust Features Cannot be Memorized
	Balance Imbalance: Robust Overfitting as a Result of Imbalanced Minimax Game
	How Imbalance Leads to Robust Overfitting
	Verification

	A Holistic View of Robust Overfitting from the Minimax Game Perspective

	Mitigating Robust Overfitting by Rebalacing the Minimax Game
	Trainer Regularization
	Stronger Training-time Attacker
	Overall Approach

	Revisting Previous Works from the Minimax Game Perspective
	Experiments
	Results on Benchmark Datasets
	Empirical Understandings

	Conclusion
	Additional Experiment: Adversarial Examples (in Adversarial Training) Contain Adversarial Non-robust Features
	Experiment Details
	Baseline Adversarial Training
	Verification Experiments for Our Minimax Game Perspective on Robust Overfitting
	Experiments on the Effect of Stronger Training Attacker
	Detailed Experiment Setup of ReBAT for Mitigating Robust Overfitting
	Training Robust Accuracy
	Training Efficiency

	More Experiments on ReBAT
	Additional Results on BoAT Loss
	Additional Results on the Effect of LR decay
	Additional Results on Adopting Stronger Training Time Attacker
	Further Improving Natural Accuracy with Knowledge Distillation
	The Effect of Different Learning Rate Schedules
	Results on Different Network Architectures

