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Abstract

Despite the connection established by optimization-induced deep equilibrium1

models (OptEqs) between their output and the underlying hidden optimization2

problems, the performance of it along with its related works is still not good enough3

especially when compared to deep networks. One key factor responsible for this4

performance limitation is the use of linear kernels to extract features in these5

models. To address this issue, we propose a novel approach by replacing linear6

kernels with a new function that can readily capture nonlinear feature dependencies7

in the input data. Drawing inspiration from classical machine learning algorithms,8

we introduce Gaussian kernels as the alternative function and then propose our new9

equilibrium model, which we refer to as GEQ. By leveraging Gaussian kernels,10

GEQ can effectively extract the nonlinear information embedded within the input11

features, surpassing the performance of the original OptEqs. Moreover, GEQ12

can be perceived as a weight-tied neural network with infinite width and depth.13

GEQ also enjoys a tighter generalization bound and improved overall performance.14

Additionally, our GEQ exhibits enhanced stability when confronted with various15

samples. We further substantiate the effectiveness and stability of GEQ through a16

series of comprehensive experiments.17

1 Introduction18

Deep Neural Networks (DNNs) show impressive performance in many real-world tasks on various19

data like graphs [40], images [38, 20], sequences [8], and others. However, most neural networks20

structure are constructed by experience or searching on the surrogate datasets [28, 54]. Therefore,21

these architectures cannot be interpretable and such a phenomenon hinders further development.22

Apart from the current neural network models, traditional machine learning methods like dictionary23

learning [43, 30], subspace clustering [51] and other methods [26, 53, 52, 27] can design their whole24

procedure by designing optimization problems with specific regularizers customized from their25

mathematical modeling and requirements. Thus, these models are easily interpreted. However, the26

traditional machine learning algorithms’ whole procedures do not consider the hidden properties of27

features and labels. Therefore, they usually perform worse on tasks with more data.28

To link two types of models, OptEqs [50] tries to recover the model’s hidden optimization problem29

to make their model “mathematically explainable”. They claim that the output features z̃∗ (we also30

called the equilibrium state) with respect to input x, which are obtained by solving the fixed-point31

equation in Eqn (1), is the optimal solution for its hidden optimization problem defined in Eqn (2).32

z̃∗ = W̃⊤σ(W̃z̃∗ +Ux+ b), ŷ = W̃cz̃
∗ + bc, (1)

min
z̃

G(z̃;x) = min
z̃

[
1⊤f(W̃−1⊤z̃)−

〈
Ux+ b,W̃−1⊤z̃

〉
+

1

2
∥W̃−1⊤z̃∥22 −

1

2
∥z̃∥22

]
, (2)

where σ is the ReLU activation function, U,W̃,b,W̃c,bc are learnable parameters. They are trained33

by optimizing loss functions, such as cross-entropy loss, which are calculated based on the final34
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prediction ŷ derived from z̃∗ as shown in Eqn (1). W̃−1 represents an invertible or pseudo-invertible35

matrix for W̃, and the function f is a positive indicator function that induces to commonly used36

ReLU activation. The equivalence between z∗ and the optimal solution for the hidden optimization37

problem (2) enables researchers to not only gain insights into OptEqs’ behavior by understanding38

the underlying hidden optimization problem but also innovate by designing new models based on39

different problem formulations tailored to specific tasks. For instance, OptEqs introduces a module40

that promotes output sparsity, and Multi-branch OptEqs (MOptEqs) incorporates fusion modules41

to enhance the diversity among its branches. Despite these advancements and the incorporation of42

various modules inspired by different vision tasks, the performance of OptEqs and related models43

still falls short when compared to deep neural networks in image classification. This discrepancy44

suggests the existence of crucial components that limits the performance of equilibrium models.45

To identify such a component, we delve into the hidden optimization problem of OptEqs and observe46

that it can be decomposed into two distinct parts: the regularizer term for the output features and47

the feature extraction term. While the feature extraction term is crucial as it depends on the input48

and determines the patterns extracted from the input features, the exploration of the regularizer term49

has been largely overlooked, with linear kernel functions being the predominant choice for feature50

extraction. Thereby, we believe that the limitations of previous equilibrium models stem from their51

feature extraction parts, as linear kernels struggle to capture complex features effectively. Building52

upon these insights, we take a step forward by leveraging the widely adopted Gaussian kernel for53

feature extraction in the hidden optimization problem.54

Then by calculating the stationary condition for above new hidden optimization problem, we propose55

our new type of OptEqs, the Gaussian kernels inspired equilibrium models (GEQ). The model56

involves a new attentive module induced by its hidden optimization problem and enjoys much better57

performances on classification tasks even compared with deep models. Furthermore, we also prove58

that the new model’s outputs are equivalent to the outputs for OptEqs with weight-tied “infinite wide”59

mappings. Therefore, an interesting finding is that our model can be regarded as a “double-infinite”60

model because the original OptEqs can be regarded as a weight-tied “infinite deep” model. Apart61

from the above findings, the utilization of Gaussian kernels also makes our proposed model enjoys62

tighter generalization bounds. Besides the generalization abilities, we also analyze the stability of our63

GEQ and find its stability is better on various inputs. We summarize our contributions as follows:64

• We first reformulate the OptEqs’ hidden optimization problem with Gaussian kernels and65

propose a new equilibrium model called GEQ. It contains a new attention module induced66

by its hidden optimization problem and performs better on real-world datasets.67

• We find that our GEQ can be regarded as a weight-tied neural network with both infinite68

width and depth, and the generalization bound for our GEQ is also tighter through our69

analysis. Empirical results also confirm the superiority of our GEQ.70

• We theoretically demonstrate the advantages on the stability of our GEQ compared with71

former OptEqs on various inputs. We also conduct experiments to validate such advantages.72

2 Related Works73

2.1 Implicit Models74

Most modern deep learning approaches provide explicit computation graphs for forward propagations75

and we call these models “explicit models”. Contrary to these models, recent researchers proposed76

some neural architecture with dynamic computation graphs and we call them “implicit models”. A77

notable example of an implicit model is Neural ODEs [7], its architecture is encoded as a differential78

system and the implicit ODE solvers they used are equivalent to continuous ResNets that take79

infinitesimal steps. By representing the entire structure using differential systems, implicit models tap80

into the black box of traditional neural networks while offering increased flexibility and interpretability.81

Because of the flexibility and the interpretability of implicit models, the design of implicit models [15,82

17] draws much attention these days. Many kinds of implicit models have been proposed, including83

optimization layers [11, 1], differentiable physics engines [37, 9], logical structure learning [47],84

differential programming [49, 40, 6, 4, 3].85

Among the various implicit models, OptEqs [50] and its multi-branch version MOptEqs [25] stand out86

as they not only exhibit superior performance compared to other implicit models but also explicitly87
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establish the relationship between their structure and a well-defined optimization problem. Therefore,88

exploring better equilibrium models is a promising direction to achieve more interpretable neural89

architectures. However, it is worth noting that while OptEqs and its variants have shown promising90

results, their performance is still not entirely satisfactory, particularly when compared to the deep91

explicit models. Recent work [46] who adopts a DEQ layer as a middle module in deep declarative92

networks [17] and also utilizes kernel functions in its construction. The main differences between their93

model is that we use gaussian kernel function to construct the optimzation problem for the equilibrium94

state z∗ and our models can be used in any models as the feature extraction layer. Besides these95

models, other works [48, 39] also show the connection between their architectures and optimizaiton96

problems, but their performance are also not satisfying.97

2.2 Infinite Wide Models and Kernel Methods in Deep Learning98

By employing kernel methods to estimate the outputs of single-layer networks for various samples,99

researchers discover that such networks can exhibit characteristics of a Gaussian process (GP) when100

their parameters are randomly initialized with a large width limit [32]. Building upon this idea, recent101

researchers have extended these findings to neural networks with multiple layers [24, 10] and other102

architectures [34, 13]. These studies primarily focus on weakly-trained models, where the network103

parameters are randomly initialized and kept fixed throughout the training process except for the last104

classification layer [2]. Despite their "weakly-trained" nature, these models still provide valuable105

insights applicable to current neural networks. For instance, mean-field theory [5, 16, 19] explains106

phenomena such as gradient vanishing and exploding during back-propagation, which are relevant not107

only to single-layer networks but also to other structures like convolutional neural networks (CNNs)108

and recurrent neural networks (RNNs). Other researchers explore stationary kernels to enhance the109

interpretability of neural networks by designing different activation functions [31].110

In addition to weakly trained models, recent studies [22, 2] introduce the concept of Neural Tangent111

Kernel (NTK) and its variants. These works have demonstrated that the sample kernel of infinitely112

wide networks, with appropriate initialization, can converge to a fixed neural tangent kernel when113

trained using gradient descent with infinitesimal steps (gradient flow). The NTK model is a theoretical114

construct with strict constraints, and its weights are not learned. It is important to note that although115

our model can also be seen as an infinitely wide model, there are several key differences between116

our approach and the aforementioned models. Firstly, our model utilizes kernel methods to operate117

on input features and output features, while the NTK models employ the kernel method on samples.118

Secondly, our GEQ model can be viewed as employing a "weight-tied infinite wide" projection that119

is parameterized by learnable parameters, allowing for updates during the training process. This120

contrasts with NTKs and NTK-DEQ [12](an equilibrium model constructed with vanilla NTK layers),121

where the weights are fixed and not learned. Therefore, despite the potential overlap in terminologies122

used in our paper and NTK-related works, our GEQ model differs significantly.123

3 Gaussian kernel nspired Equilibrium models124

3.1 Formulation and Structure of GEQ125

Before starting our analysis, we need to reformulate the original formulations of OptEqs’ equilibrium126

equation (1) and hidden optimization problem (2) for convenience. We replace W̃cW̃
⊤ with Wc,127

W := W̃⊤, and replace z with W̃−1⊤z̃. Then the original OptEqs’ optimization problem can be128

reformulated as:129

min
z

G(z;x) =min
z

[
1⊤f(z) +

1

2
∥z∥22 − ⟨Ux+ b, z⟩ − 1

2
∥Wz∥22

]
. (3)

With the new formulation, we can rewrite the equilibrium equation for OptEqs with input x by130

calculating Eqn (3)’s first order stationary condition ∇G = 0 and then reformulate it as follows:131

z∗ = σ
(
W⊤Wz∗ +Ux+ b

)
, (4)

where σ is the ReLU activation function, U,W,b are learnable parameters trained by optimizing132

loss functions (like cross entropy loss). From problem Eqn (3), one can see that the GEQ’s outputs133

try to extract features by minimizing the similarity term with the input feature Ux+ b through a134
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linear kernel function with some constraints defined in its regulation terms to prevent the trivial135

outputs. Such an explanation can also extend to other DEQs [3, 48] under the symemtric weight136

constraints. However, linear kernel functions cannot perform well when processing complex inputs137

as other traditional machine learning mechanisms show. We deem that this term will also restrict the138

performance in equilirium models. We note that the symmetric constraints won’t influence the final139

performance much as many works [29, 21] show.140

A natural consideration arises as to whether we can utilize alternative kernel functions to extract141

input features for the equilibrium state. However, we find that other equilibrium models employing142

different kernels with inner products, like the polynomial kernel and sigmoid kernel, lead to similar143

structure to OptEqs with appropriate weight re-parameterization and lead to similar empirical results.144

We provide a detailed discussion of the related models in Appendix A.1. Thereby, we decide to use145

the Gaussian kernels and our new hidden optimization equation is formulated as follows:146

min
z

G(z;x) = min
z

[
1⊤f(z) +

1

2
∥z∥22 −

1

2γ
e−γ∥Ux+b−Wz∥2

2

]
, (5)

where γ is the hyperparameter denoting the reciprocal of Gaussian kernels’ variance for scaling.147

Calculating ∇G = 0 for new G, we can get the Gaussian kernel inspired Equilibrium models (GEQ)148

as the following fixed-point equation:149

z∗ = σ
[
e−γ∥Ux+b−Wz∗∥2

2W⊤(−Wz∗ +Ux+ b)
]
. (6)

Compared with linear kernels, Gaussian kernels can easily extract the non-linear relations from150

the input features and shows more stable and powerful performance in SVM and other machine151

learning methods [21, 41]. We also find that the formulation of our GEQ is similar to adding a new152

attention module to the original equilibrium models. Therefore, our GEQ is supposed to enjoy more153

representative abilities than the original OptEqs. In the following parts of this section, we will analyze154

the theoretical advantages of our GEQ against the vanilla OptEqs. And we also empirically evaluate155

GEQ’s performance in the following sections.156

3.2 GEQ equals to the OptEqs with infinite width157

Like other Gaussian related models, our GEQ model can also be regarded as computing similarities158

by mapping them to an infinite-dimensional space. This allows GEQ to extract input features at159

the infinite-dimensional level, enabling the capture of non-linear dependencies in the input space.160

Essentially, our GEQ can be seen as a specialized version of OptEqs operating within the infinite-161

dimensional space after mapping input features x and output embedding z to this expanded domain.162

Proposition 1. The output of our GEQ (Eqn (6)) is the same as a special OptEqs’ output whose163

hidden optimization problem is defined as follows:164

min
z

G(z;x) =min
z

[
1⊤f(z) +

1

2
∥z∥22 − λ

〈
ΦU(x+U−1b),ΦW(z)

〉]
, (7)

where f is the positive indicator function and (1 + ∂f)−1 is the ReLU activation function, λ =165

e−γ∥Ux+b∥2
2e−γ∥Wz∥2 , and ΦW(z) = [1,

√
2γΦ

(1)
W (z), ...,

√
(2γ)i/i!Φ

(i)
W(z), ...] ∈ R1×∞ which166

maps the inputs to the infinite-dimensional space with Φ
(i)
W : Rn → Rini

defined as follows:167

Φ
(i)
W =

 i︷ ︸︸ ︷
(Wx)0(Wx)0...(Wx)0,

i︷ ︸︸ ︷
(Wx)0(Wx)0...(Wx)1, ...,

i︷ ︸︸ ︷
(Wx)j(Wx)k...(Wx)m, ...︸ ︷︷ ︸

ini

 , (8)

where (Wx)j denotes the j-th element of vector Wx.168

Based on the analysis provided above, it becomes evident that the hidden optimization problem169

of our GEQ exhibits a similar formulation to a specific OptEqs, whose inputs x and outputs z are170

mapped to an infinite-dimensional space using the weight-tied infinite wide mapping ΦW and ΦU.171

Given that both GEQ and OptEqs are derived from their respective hidden optimization problems,172

the equivalence in these problems implies the existence of the same equilibrium states for both173

models. Consequently, our GEQ can be considered an extension of the "infinite-depth" OptEqs to the174

"infinite-width" domain. Since wider neural networks are generally expected to perform better on175

classification tasks, we can infer that our GEQ outperforms vanilla equilibrium models like OptEqs.176

We further support this claim with theoretical analysis illustrated in the subsequent sections.177
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3.3 GEQ enjoys tighter generalization bound178

Apart from the above empirical intuition, we are going to prove our GEQ’s generalization advan-179

tages over OptEqs using the generalization bound under the PAC-Bayesian framework [33]. For180

convenience, we use fgeq(x) denotes the equilibrium state z∗ for input x. Then we use the expected181

margin loss Lη(f
c
geq) at margin η of our GEQ on the data distribution D for classification, which is182

defined as follows,183

Lη(f
c
geq) = P(x,y)∼D

[
f c
geq(x)y ≤ η +max

j ̸=y
f c
geq(x)j

]
, (9)

where f c
geq(x) = Wcfgeq(x) + bc stands for GEQ’s final prediction at input x with learnable184

parameters Wc and bc, and the index j, y here denote the prediction score for certain class. Then we185

can analyze the generalization bound for our GEQ following the former work’s settings [35].186

Proposition 2. If input ∥x∥2 is bounded by B, µ := max {∥U∥2, ∥W∥2, ∥Wc∥2, ∥b∥2} < 1, then187

we have following results for GEQ and OptEqs with ReLU activations. For ∀δ, η > 0, with probability188

at least 1− δ over the training set of size M, we have:189

L0(f
c
geq) ≤ L̂η(f

c
geq) +

√
16hln(24h) [βmaxµ4B + (2µβmax + 1)(1− βmaxm)µB + (1− βmaxm)2]

2 BW

η2(1− βmaxm)4M
+

ln(M
√
M

δ )

M
,

L0(f
c
opteq) ≤L̂η(f

c
opteq) +

√
16hln(24h) [µ3B + (1−m)µB + (1−m)2]

2 BW

η2(1−m)4M
+

ln(M
√
M

δ )

M
,

(10)190

where L̂η(f
c
geq) denotes the empirical margin loss on the training set, the maximum scaling number is191

defined by βmax := max
x∈D

e−γ∥Ux+b−Wz∥2
2 , BW := ∥W⊤W∥2F +∥U∥2F +∥b∥22+∥Wc∥2F +∥bc∥22,192

and m = ∥W⊤W∥2 is less than 1 to ensure the convergence of equilibrium models.193

Remark 1. If βmax < 0.8 and µ,m > 0.9, we can get βmaxµ
1−βmaxm

< 1
1−m and 2µβmax+1

1−βmaxm
≤ 1

1−m . In194

the meanwhile, our GEQ’s generalization bound is tighter than the original OptEq.195

In practical experiments, we find that the above conditions for βmax and µ,m are satisfied in most196

cases. Thereby, our GEQ’s generalization bound is tighter than the original OptEqs in practical.197

Therefore, our GEQ can show better classification performance on the test set.198

3.4 GEQ enjoys More Stable Performance199

Apart from better performance, Gaussian kernel stands out as one of the most extensively employed200

kernels in machine learning tasks owing to its stability across various input scenarios. Motivated by201

this, we aim to investigate whether incorporating Gaussian kernels into our equilibrium models can202

enhance the model’s stability across diverse inputs. Firstly, we are going to estimate output changes203

with respect to the input perturbations.204

Proposition 3. If norms for the inputs and outputs are bounded by B, the spectral norm for the205

weight parameter W,U of equilibrium models with ReLU activation are bounded by µ < 1 to ensure206

convergence, then we have the conclusions as below:207

∥fgeq(x1)− fgeq(x1)∥2 ≤ Lgeq∥x1 − x2∥2 =
βmaxµ

2 +
√
γBµ3

1− βmaxµ2 −√
γBµ3

∥x1 − x2∥2, (11)

∥fopteq(x1)− fopteq(x2)∥2 ≤ Lopteq∥x1 − x2∥2 =
µ

1− µ2
∥x1 − x2∥2, (12)

where x1 and x2 are input samples, fgeq(x·) and fopteq(x·) denotes the equilibrium states for GEQ208

and OptEqs given input x·, and βmax := maxx∈D e−γ∥Ux−Wz∥2
2 < 1.209

Remark 2. If βmax < 0.8, B < 1, and
√
γ < 0.2, then Lgeq < Lopteq .210

In practical experiments, we choose different γ to reach the above condition for βmax and the211

condition for input B can also be achieved by normalization layers. Therefore, we can conclude that212

our GEQ’s outputs are more stable under perturbations.213

Besides having stable outputs under perturbations, a stable model should also show large output214

differences for different classes to make classification easier. However, the above Lipschitz term can215
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not constrain outputs’ similarity when samples are far apart, then we need a new metric for analysis.216

In line with previous works [18, 31, 10], we assume all weight parameters go to infinite dimensions217

and analyze the expected output similarity κ for a model f for inputs x1 and x2 defined below:218

κ(x1,x2) = E
[
f(x1)

⊤f(x2)
]
=

∫
R
fu(x1)

⊤fu(x2)p(u)du, (13)

with p(u) is the distribution of weight U’s vectorization. If κ is smaller for samples x1 and x2 when219

they belong to different classes, which means they are far away, then the classifier can easily classify220

these two samples with different labels. The margin for the classification will also be large and easy221

for the classification of difficult samples. The κ’s upper bound for GEQ and OptEqs are listed below:222

Proposition 4. If norms for the inputs and outputs are bounded by B, the spectral norm for the223

weight parameter W of equilibrium models with ReLU activation are bounded by µ < 1 to ensure224

the convergence, and each row in U obeys the spherical Gaussian distributions N (0,E[U2
i ]I). Then225

we have the following conclusions for the expectation of the output similarity for GEQ and OptEqs226

with respect to input x1,x2 as follows,227

κgeq(x1,x2) ≤ κgeq =
µ2De−

γ
4 (σmin(U)2∥x1−x2∥2

2)E[U2
i ]∥x1∥2∥x2∥2 (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2
,

(14)

κopteq(x1,x2) ≤ κopteq =
E[U2

i ]∥x1∥2∥x2∥2 (sin θ0 + (π − θ0) cos θ0)

2π(1− µ2)2
, (15)

where x1 and x2 are input samples, D = eγB∥W∥2
2 , βmax := maxx∈D e−γ∥Ux−Wz∥2

2 , σmin(U) is228

U’s minimal singular term, and θ0 = cos−1( ⟨x1,x2⟩
∥x1∥∥x2∥ ) is the angle between the samples.229

Remark 3. If ∥x1 − x2∥2 ≥ 2
√
−log(1/D)/σmin(U), then κgeq ≤ κgeq .230

Based on the aforementioned analysis, it is evident that our GEQ exhibits a smaller output similarity231

for dissimilar samples. As a result, the predictions made by GEQ are primarily based on the most232

similar samples, enabling it to successfully classify challenging instances. This claim is further233

supported by the results obtained from our carefully designed experiments.234

3.5 Patch Splitting in GEQ235
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Figure 1: The sketch map of one layer GEQ’s n-th fixed point iteration. x is the input and z(n−1), z(n)

are the output of (n− 1)-th, n-th iteration, and m̃ is a middle state.

Since different parts of images have different impacts on the image classification, calculating the236

whole similarity using Gaussian kernels for GEQ is not enough. Inspired by former works [44], we237

also split the feature map Ux into patches, and then our optimization problem becomes:238

min
z

G(z;x) = min
z

[
1⊤f(z) +

1

2
∥z∥22 −

1

2γ

N∑
i=1

e−γ∥(x̃i−z̃i)Wh∥2
2

]
, (16)

where x̃i ∈ Rcsp
2

is the i-th patch of Ux+ b while z̃i ∈ Rcsp
2

is the i-th patch of Wz and239

Wh ∈ Rcsp
2×chid is a linear layer to project patches with different size to the constant dimension. cs240

denotes the channel splitting number, p denotes the patch size, and chid denotes the hidden dimension241
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of patches after projection. We note that the patch-splitting approach is a GEQ’s unique feature,242

as incorporating this technique makes no difference in OptEqs due to its linear kernel. Figure 1243

provides a sketch for GEQ’s i-th fixed-point iteration. From the figure, it is evident that our GEQ can244

be viewed as a special OptEqs with additional attention mechanisms to capture the most important245

regions. Thereby, it can achieve enhanced performance. For a more detailed understanding of the246

forward procedure in our GEQ, please refer to Appendix A.2.247

4 Empirical Results248

4.1 Experiment Settings249

In our experiments, we employed parallel GEQs with different input scales like MOptEqs and250

averaged the output of each branch after average pooling or nearest up-sampling to fuse the branches.251

We use weight normalizations to ensure the convergence as MOptEqs and MDEQ, and set γ to252

0.2/M , where M is the minimum ∥x̃· − z̃·Wh∥22 among all patches. For the equilibrium calculation,253

we used the Anderson algorithm in the forward procedure, similar to other implicit models [25], and254

applied Phantom gradients [14] for back-propagation. All models were trained using SGD with a255

step learning rate schedule. We implemented our experiments on the PyTorch platform [36] using256

RTX-3090. Further details can be found in the Appendix A.7. To compare the performance of257

our GEQ, we used MOptEqs and MDEQ as benchmark implicit models, which have demonstrated258

superior performance over OptEqs on image classification tasks. Additionally, we used ResNet-18259

and ResNet-50 as benchmark explicit models for comparison.260

4.2 Results for Image Classification261

Firstly, we finish the experiments on CIFAR-10 and CIFAR-100. They are widely used datasets for262

image classification on small images. In the experiment, we parallel 6 branches GEQ with the input263

scale is 32, 16, 8, 8, 4, 4 and MOptEqs’ architecture setting is also the same. The details can be found264

in the Appendix. As for the comparison, we also conduct experiments of the same training procedure265

for MDEQ, MOptEqs, and ResNet. The results are listed in Table 1.266

Model Size Accuracy
ResNet-18 10M 93.5± 0.2%
ResNet-50 23M 95.2± 0.2

MDEQ 10M 94.2± 0.3%
MOptEqs 8M 94.6± 0.2%

GEQ 5M 94.8± 0.1%
GEQ 8M 95.6± 0.2%

(a) CIFAR-10.

Model Size Accuracy
ResNet-18 10M 74.5± 0.2%
ResNet-50 23M 77.9± 0.1%

MDEQ 10M 74.7± 0.3%
MOptEqs 8M 75.6± 0.2%

GEQ 5M 76.4± 0.3%
GEQ 8M 78.2± 0.2%

(b) CIFAR-100.
Table 1: The Empirical results for image classification on CIFAR-10 and CIFAR-100.

From the results, one can see that our GEQ enjoys clear advantages on CIFAR datasets, which267

demonstrates the powerful generalization ability of other models.268

Model Size Accuracy
ResNet-18 11M 92.3± 0.1%
ResNet-50 23M 93.0± 0.2%

MDEQ 10M 91.5± 0.2%
MOptEqs 10M 92.4± 0.2%

GEQ 6M 92.9± 0.2%
GEQ 13M 93.2± 0.1%

(a) ImageNette.

Model Size Accuracy
ResNet-18 11M 80.9± 0.3%
ResNet-50 23M 81.7± 0.2%

MDEQ 10M 81.3± 0, 2%
MOptEqs 13M 81.5± 0.4%

GEQ 6M 82.2± 0.2%
GEQ 13M 83.9± 0.3%

(b) ImageNet-100.
Table 2: The Empirical results for image classification on ImageNette and ImageNet-100.

Besides small datasets, we also conducted experiments on large-scale image datasets, as presented in269

Table 2. The results clearly demonstrate the consistent superiority of our GEQ over other models,270

highlighting its clear advantages. Particularly noteworthy is our GEQ achieves a 2% improvement on271

ImageNet-100 agaginst deep model ResNet-50 while consuming approximately half the number of272

parameters, which emphasizes the effectiveness and efficiency of GEQ on large-scale inputs.273
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4.3 Validations on the models’ stability274

Evaluation on Unseen difficult samples. In order to assess the stability of our GEQ model on275

difficult examples, we conducted experiments using CIFAR-100 super-class classification. CIFAR-276

100 consists of 20 super classes, each containing five sub-classes 1. We trained our GEQ and MOptEqs277

models to predict the super-classes using the first four sub-classes from each super-class for training.278

We evaluated the models using both the test set, which includes the first four sub-classes from each279

super-class (referred to as "Known Accuracy"), and a separate set of samples from unseen sub-classes280

(referred to as "Unknown Accuracy"). The classification of the unseen samples is more difficult as281

they are different from the training set. The results of our GEQ and MOptEqs models are presented282

in Table 3.283

Known Accuracy Unknown Accuracy
MOptEqs 80.1± 0.3% 77.4± 0.5%

GEQ 80.9± 0.2% 80.1± 0.6%
Table 3: Empirical rsults on CIFAR-100’s super-class classification.

The above table clearly demonstrates that our GEQ model surpasses MOptEqs in achieving superior284

performance on the challenging task at hand and demonstrates GEQ’s stability. Such advantages285

can be attributed to the fact that GEQ exhibits smaller output similarities compared to OptEqs when286

input samples are far apart (e.g., samples from different classes). This characteristic can lead to287

larger margins between different classes, enabling the classifier to be more easily optimized during288

training. Consequently, our GEQ model excels in accurately classifying difficult unseen samples,289

further highlighting its stability and superiority over former equilibrium models.290

Ablation Studies on corrupted datasets. Apart from difficult samples, we are going to compare the291

robustness of our GEQ, MOptEqs, and ResNet on the CIFAR-10 corruption dataset, which contains292

19 common corruptions including image transformation, image blurring, weather, and digital noises293

on CIFAR’s test datasets. The average results on 5 degrees CIFAR-10 corruption datasets are drawn294

in Figure 2.295

contrast elastic_trans jpeg_comp pixelate brightness fog frost saturate snow defocus_blur gaussian_blur motion_blur zoom_blur gaussian_noise impulse_noise shot_noise spatter speckle_noise
60

65

70

75

80

85

90

95

Ac
cu
ra
cy

Accuracy on different corrupted datasets

MOptEq
GEQ
ResNet

Figure 2: The results for different models under different corruptions.

From the result, one can see that our GEQ based on Gaussian kernels is more robust than MOptEqs296

and ResNet. Especially, our GEQ can show better performance against structured noise and some297

image transformation. The above results also demonstrate the stability of our GEQ structure.298

4.4 Ablation Studies on Saliency Map299

The saliency maps generated by GradCAM [42] offer valuable insights into the visual attention of300

both MOptEqs and GEQ models. These maps highlight the regions of the image that are crucial for301

the model’s predictions. Figure 3 presents the saliency maps obtained for an image from the ImageNet302

dataset using both models. Upon observation, it becomes evident that GEQ exhibits a higher degree303

of focus on the significant regions directly associated with the predicted label "manta". In contrast,304

MOptEqs tends to allocate attention to unrelated regions such as the shells. This discrepancy indicates305

that the attention-like module induced by the Gaussian kernel in GEQ enhances the concentration of306

the model’s attention, resulting in improved performance compared to MOptEqs.307

1For example, super class “people” contains five sub classes:“baby”,“girl”,“man”,“man”,“woman”
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(a) Original Image. (b) MOptEqs’s saliency map. (c) GEQ’s saliency map.

Figure 3: Saliency map for GEQ and MOptEqs on the ImageNet image.

4.5 Ablation Studies on Patch splitting308

The performance of our GEQ model is influenced by the channel splitting parameter and the patch size.309

Choosing large values for these parameters causes the kernel to focus mainly on global information310

while selecting small values makes the kernel concentrate on local features. To understand the impact311

of these choices on model performance, we conducted experiments, the results of which are presented312

in Figure 4. This figure illustrates the relationship between the channel splitting parameter, patch size,313

and the model’s performance. By analyzing these results, we gain insights into the optimal values for314

these parameters that yield the best performance for our GEQ model.315

4 8 16 32 64
channel split

76

76.4

76.8

77.2

77.6

78

A
cc

(a) Influence of the channel splitting parameter.

1 2 4 8
patch size

76

76.4

76.8

77.2

77.6

78

A
cc

(b) Influence of the patch size parameter.

Figure 4: The influence on the patch size and the channel splitting parameter for our GEQ on
CIFAR-100 datasets.

The accuracy trend depicted in the figure shows an initial increase followed by a decrease as the316

channel split and patch size increase. Based on these empirical results, we select a patch size of 2317

and a channel split of 8 for both the CIFAR and ImageNet experiments. These parameter choices are318

made to optimize the performance of our models on the respective datasets.319

5 Conclusions320

In this paper, we introduce a novel optimization induced equilibrium model called GEQ, which321

utilizes Gaussian kernels in its optimization-induced framework. Our model incorporates a new322

attentive module that arises from its novel hidden optimization problem formulation. Notably, GEQ323

exhibits significantly improved performance in classification tasks, outperforming deep models as324

well. Moreover, GEQ can be interpreted as a weight-tied model with infinite width and depth,325

highlighting its expressive power. We also provide theoretical analysis demonstrating the superiority326

of our models in terms of generalization ability and stability compared to previous OptEqs. Empirical327

results further validate the effectiveness of our proposed approach.328
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A Appendix471

A.1 Comparison with other kernel functions472

Firstly, we introduce different commonly used kernels, such as polynomial, sigmoid, and Gaussian473

kernels, to reformulate the hidden optimization problem for equilibrium models. Table A.1 illustrates474

the equilibrium models induced by these kernels. It can be observed that equilibrium models with475

polynomial and sigmoid kernels also incorporate new attentive modules. However, their attentive476

kernels only constrain the input features Ux+ b and do not directly affect the activation of the477

output z∗. As a result, their performance may be inferior to our GEQ model. To validate these478

claims, we evaluate the performance of different models on the CIFAR-100 dataset. Since the fusion479

module is the primary difference between MOptEqs and OptEqs, we can easily modify the structure480

of MOptEqs to include different kernel-induced attentive modules using the equations in Table A.1,481

resulting in MOptEqs (Polynomial) and MOptEqs (Sigmoid). The results are presented in Table A.1,482

which clearly demonstrates the superior performance of our GEQ model. For a more in-depth analysis483

of GEQ, we refer readers to the main paper.

Kernel Hidden Optimization Problem Equilibrium Model
Linear minz

[
1⊤f(z) + 1

2∥z∥
2
2 − ⟨Ux+ b, z⟩ − 1

2∥Wz∥22
]

z∗ = σ
(
W⊤Wz∗ +Ux+ b

)
Polynomial minz

[
1⊤f(z) + 1

2∥z∥
2
2 − (⟨Ux+ b, z⟩)d − 1

2∥Wz∥22
]

z∗ = σ
(
W⊤Wz∗ + d (⟨Ux+ b, z⟩)d−1

(Ux+ b)
)

Sigmoid minz
[
1⊤f(z) + 1

2∥z∥
2
2 − tanh (⟨Ux+ b, z⟩)− 1

2∥Wz∥22
]

z∗ = σ
(
W⊤Wz∗ +

(
1− tanh2 (⟨Ux+ b, z⟩)

)
(Ux+ b)

)
Gaussian minz

[
1⊤f(z) + 1

2∥z∥
2
2 − 1

2γ e
−γ∥Ux+b−Wz∥2

2

]
z∗ = σ

[
e−γ∥Ux+b−Wz∗∥2

2W⊤(−Wz∗ +Ux+ b)
]

Table 4: The hidden optimization problems and their related equilibrium models. d > 1 is an integer
denoting the polynomial order.

484

Model Size Accuracy
MOptEqs 8M 75.6± 0.2%

MOptEqs (Polynomial) 8M 75.1± 0.4%
MOptEqs (Sigmoid) 8M 76.1± 0.3%

GEQ 8M 78.2± 0.2%
Table 5: Comparison of equilibrium models with different kernel functions on CIFAR-100.

A.2 Forward Procedure for GEQ485

The pseudo-code for our GEQ is listed in Algorithm 1.486

Algorithm 1: Calculating one layer GEQ.

Require: initial state z(0), weight parameter W, Ux ∈ Rchw, channel split cs, patch size p, hidden layer
Wh ∈ Rcsp

2×32

Ensure: Get the output z∗ of i-th fixed point iteration.
def g(z(i);x,U,W,b):

Rearrage Wz(i) → z̃, Ux+ b → x̃ ∈ R
chw
csp2

×(csp
2)

m̃ = diag
(
e−γ∥(x̃·−z̃·)Wh∥22

)
(x̃− z̃)WhW

⊤
h

Rearrage m̃ → m ∈ Rc×h×w

return z(i+1) = σ
(
W⊤m

)
with torch.no_grad():

Use anderson algorithm to solve z∗ = g(z∗;x,U,W,b)
# calculate gradient via phantom gradient:
for i in range(5) do

z∗ = 0.2× z∗ + 0.8× g(z∗;x,U,W,b).
end for
return z∗

487
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A.3 Proofs for proposition 1488

Proposition 1. The outputs of GEQ with Gaussian kernels (Eqn (6)) is the same as Optimized489

induced Equilibrium Models’ output whose output is the optimal solution of the hidden optimization490

problems:491

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − λ

〈
ΦU(x+U−1b),ΦW(z)

〉
(17)

where ΦW(z) =

[
1,

√
2γΦ

(1)
W (z), ...,

√
(2γ)i

i Φ
(i)
W(z), ...

]
∈ R1×∞ which projects the features to492

the infinite-dimensional space. And Φ
(i)
W : Rn → Rini

is the k-tuple permutation with repetitions493

formulated as follows:494

Φ
(i)
W =

 i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)1,

i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)2, ...,

i︷ ︸︸ ︷
(Wx)j(Wx)k...(Wx)m, ...︸ ︷︷ ︸

ini

 (18)

where (Wx)j denotes the j-th element of vector Wx. Then the Gaussian kernel can also be regarded495

as calculating the input features after the weight-tied infinite wide projection ΦW and ΦU.496

Proof. We can formulate the OptEqs’ hidden optimization problem with Gaussian kernels as below:497

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − 1

2γ
e−γ∥Ux+b−Wz∥2

2 , (19)

For e−γ∥(Ux+b−Wz)∥2
2 , we have498

e−γ∥Ux+b−Wz∥2
2 = e−γ∥Ux+b∥2

2−γ∥Wz∥2
2+2γ⟨Ux+b,Wz⟩,

= e−γ∥Ux+b∥2
2−γ∥Wz∥2e2γ⟨Ux+b,Wz⟩,

(20)

letting λ = e−γ∥Ux+b∥2
2e−γ∥Wz∥2 and we do the Taylor expansion for e⟨Ux+b,Wz⟩, we have:499

e−γ∥Ux+b−Wz∥2
2 = λ

∞∑
i=0

(
⟨
√
2γ(Ux+ b),

√
2γ(Wz)⟩

)i
i!

. (21)

For any i we have from the permutation theory:500 (
⟨
√
2γ(Ux+ b),

√
2γ(Wz)⟩

)i
i!

= λ
〈
Φ

(i)
U (x+U−1b),Φ

(i)
W(z)

〉
, (22)

where Φ
(i)
W(x) is the i-tuple permutation with the repetition for given (Wx)1, (Wx)2, ..., (Wx)n.501

Each element of Φ(i)
W(x) is one possible permutation. Since there are ni tuples, then Φ

(i)
W can project502

the input features to ini space as follows,503

Φ
(i)
W =

 i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)1,

i︷ ︸︸ ︷
(Wx)1(Wx)1...(Wx)2, ...,

i︷ ︸︸ ︷
(Wx)j(Wx)k...(Wx)m, ...︸ ︷︷ ︸

ini

 . (23)

Thereby, the hidden optimization problem for our GEQ can be reformulate as,504

min
z

G(z;x) =1⊤f(z) +
1

2
∥z∥2 − λ

〈
ΦU(x+U−1b),ΦW(z)

〉
(24)

Then our conclusion are proved.505
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A.4 Proofs for proposition 2506

Proposition 2. If input ∥x∥2 is bounded by B, µ := max {∥U∥2, ∥W∥2, ∥Wc∥2, ∥b∥2} < 1, then507

we have following results for GEQ and OptEqs with ReLU activations. For ∀δ, η > 0, with probability508

at least 1− δ over the training set of size M, we have:509

L0(f
c
geq) ≤ L̂η(f

c
geq) +

√
16hln(24h) [βmaxµ4B + (2µβmax + 1)(1− βmaxm)µB + (1− βmaxm)2]

2 BW

η2(1− βmaxm)4M
+

ln(M
√
M

δ )

M
,

L0(f
c
opteq) ≤L̂η(f

c
opteq) +

√
16hln(24h) [µ3B + (1−m)µB + (1−m)2]

2 BW

η2(1−m)4M
+

ln(M
√
M

δ )

M
,

(25)510

where L̂η(f
c
geq) denotes the empirical margin loss on the training set, the maximum scaling number is511

defined by βmax := max
x∈D

e−γ∥Ux+b−Wz∥2
2 , BW := ∥W⊤W∥2F +∥U∥2F +∥b∥22+∥Wc∥2F +∥bc∥22,512

and m = ∥W⊤W∥2 is less than 1 to ensure the convergence of equilibrium models.513

Before the proof our bounds, we need to introduce a lemma in former work [35] for the perturbation514

bound for GEQs and reformulated OptEqs as follows.515

Lemma 1. Let ∥W∥2 ≤ m and ∥W∥2 ≤ m. Then change in the output of the DEqs z =516

σ(Wz+Ux+ b) on perturbation the weights and biases from W,U,b to W,U,b is bounded as517

follows:518 ∥∥f(Wz+Ux+ b) − f(Wz+Ux+ b)∥2 ≤∥∥W −W
∥∥
2
∥Ux+ b∥2 +

∥∥(U−U)x
∥∥
2
+ ∥b− b∥2

(1−m)2

(26)

Like former works [35], we we also introduce another lemma [33] here:519

Lemma 2. Let fw be any predictor with parameters w, and let P denote any distribution on the520

parameters that are independent of the training data. Then, for any δ, γ > 0, with probability521

≥ 1 − δ over the training data of size M , for any w, and any random perturbation u such that522

P
[
maxx ∥fw+u(x)− fw(x)∥∞ < η

4

]
≥ 1

2 , we have523

L0(fw) ≤ L̂ηfw + 4

√
KL(w + u||P ) + ln 6M

δ

M − 1
(27)

Then we can derive the perturbation bound for the reformulated OptEqs and our GEQ following524

former settings [35]. First, we also incorporate a fully connected layer at the end as we mentioned in525

the paper.526

f c
geq(x) = Wcfgeq(x) + bc, f

c
opteq(x) = Wcfopteq(x) + bc. (28)

Since the entries in the perturbations obeying the distribution os N (0, σ2), we have that all the527

perturbations of weights ∥∆·∥ are bounded by σ
√
2hln(24h) : ω with probability larger than 1/2.528

Since the only difference between OptEqs and monDEQ [48] is the weight parameterization, our529

reformulate OptEqs is parameterized by Ws = W⊤W while the monDEQ’s weight parameter is530

parameterized by a series of weights Wmondeq = I+A+A⊤+B+B⊤. Therefore, the pertubation531

in ∥∆Ws∥ is different from former analysis [35]. We have that:532

∥∆Ws
∥2 = ∥∆⊤

WW +W∆⊤
W∥2 ≤ 2ωµ (29)

Then using the above lemma, we have that for all x with probability at least 1/2.533

∥f c

opteq(x)− f c
opteq(x)∥2 ≤ ∥Wcfopteq(x) + bc −Wcf

c
opteq(x)− b∥2

≤ 2µ2ω(B + 1)

(1−m)2
+

2µω(B + 1)

1−m
+ ω

(30)

Setting σ = η(1−m2)

4
√

2hln(24h)(2µ3(B+1)+2(1−m)µ+(1−m)2)
will make the above perturbation less than η

4 .534

Then we have,535
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KL(W· +∆W· |P ) ≤ BW

2σ2
=

16hln(24h)(2µ3(B + 1) + 2(1−m)µ(B + 1) + (1−m)2)2

η2(1−m)4
BW

(31)
With the same choice of β’s bound like former work [35],536

η(1−m)

2(B + 1)
≤ β ≤ η(1−m)

√
M

2(B + 1)
, (32)

we can finally get the upper bound as our OptEqs bound as our proposition shows.537

The difference between GEQ and OptEqs is that GEQ’s can be viewed as multiplying scaler β =538

e−γ∥Ux+b−Wz∥2
2 with depend on x since z is also depended on x. Setting βmax = maxx∈D β(x) <539

1 and βmin = minx∈D β(x) > c. Assuming β changes a little with respect to the small perturbations540

on weights, we have:541

z∗(W,U,b) = σ(−βWsz
(i) + βW(Ux+ b))

∥z∗(W,U,b)∥2 ≤ βmaxµ∥Ws −Ws∥2∥Ux+ b∥2
(1− βmaxm)2

+
βmax(∥(WU−WU)x∥2 + ∥Wb−Wb∥2)

1− βmaxm
(33)

With the same setting as above OptEqs, we have:542

∥(WU−WU)x∥2 = ∥∆WU−W∆Ux∥2 ≤ 2ωµ∥(Wb−Wb)x∥2 = ∥∆Wb−W∆bx∥2 ≤ 2ωµ
(34)

Then we can obtain that:543

∥f c

geq(x)− f c
kereq(x)∥2 ≤ ∥Wcfopteq(x) + bc −Wcf

c
opteq(x)− b∥2

≤ 2βmaxµ
3ω(B + 1)

(1− βmaxm)2
+

2µ2ωβmax(B + 1)

1− βmaxm
+

µω(B + 1)

1− βmaxm
+ ω

=
(βmaxµ) ∗ (2µ2ω(B + 1))

(1− βmaxm)2
+

(2µβmax + 1) ∗ (µω(B + 1))

1− βmaxm
+ ω

(35)
With the same setting as above, we have:544

KL(W· +∆W· |P ) ≤ BW

2σ2

= TBW ,
(36)

where T is defined as follows:545

T =
16hln(24h)(2(βmaxµ)µ

3(B + 1) + 2(2µβmax + 1)(1− βmaxm)µ(B + 1) + (1− βmaxm)2)2

η2(1− βmaxm)4

(37)
then we can finally we can get the upper bound as our OptEqs bound as our proposition shows.546

A.5 Proofs for proposition 3547

Lipschitz constant is the minimal constant for f and ∀x,y suits the following equation:548

∥f(x)− f(y)∥2 ≤ L∥x− y∥2. (38)

Thereby, our analysis in Proposition 3 can be viewed as propose an upper bound for different models.549

In this section, we are going to prove the Lipschitz upper bounds for our GEQ and OptEqs. First, we550

restate the proposition as follows:551

Proposition 3. If norms for the inputs and outputs are bounded by B, the spectral norm for the552

weight parameter W,U of equilibrium models with ReLU activation are bounded by µ < 1 to ensure553

convergence, then we have the conclusions as below:554

∥fgeq(x1)− fgeq(x1)∥2 ≤ Lgeq∥x1 − x2∥2 =
βmaxµ

2 +
√
γBµ3

1− βmaxµ2 −√
γBµ3

∥x1 − x2∥2, (39)

∥fopteq(x1)− fopteq(x2)∥2 ≤ Lopteq∥x1 − x2∥2 =
µ

1− µ2
∥x1 − x2∥2, (40)
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where x1 and x2 are input samples, fgeq(x·) and fopteq(x·) denotes the equilibrium states for GEQ555

and OptEqs given input x·, and βmax := maxx∈D e−γ∥Ux−Wz∥2
2 < 1.556

Proof. We first proof the inequality for OptEqs:557

∥fopteq(x1)− fopteq(x2)∥2 = ∥zx1
− zx2

∥2 ≤
∥∥σ (

W⊤Wzx1
+Ux1

)
− σ

(
W⊤Wzx2

+Ux2

)∥∥
2

≤
∥∥W⊤W(zx1 − zx2)

∥∥
2
+ ∥U(x1 − x2)∥2

≤ µ2∥zx1 − zx2∥2 + µ∥x1 − x2∥2,
(41)

where zx1
denotes the equilibrium states for OptEq with input x1, which means the following558

equation is satisfied:559

zx1 = σ
(
W⊤Wzx1 +Ux1

)
. (42)

Reformulating the equations, we can get:560

∥fopteq(x1)− fopteq(x2)∥2 ≤ µ

1− µ2
∥x1 − x2∥2. (43)

Then for GEQ, we have:561

∥zx1
− zx2

∥2 ≤
∥∥∥σ (

e−γ∥Wzx1−Ux1∥2

2

(
−W⊤Wzx1

+W⊤Ux1

))
−σ

(
e−γ∥Wzx2

−Ux2∥2

2

(
−W⊤Wzx2

+W⊤Ux2

))∥∥∥
2

≤βmax

∥∥W⊤W(zx1 − zx2)
∥∥
2
+
∥∥W⊤U(x1 − x2)

∥∥
2
+Bµ2 |βx1 − βx2 | ,

≤βmaxµ
2 ∥zx1 − zx2∥2 + βmaxµ

2 ∥x1 − x2∥2 +Bµ2 |βx1 − βx2 |

(44)

where zx1
denotes the equilibrium states for GEQ with input x1, and βx1

is defined as follows:562

βx1 = e−γ∥Wzx1
−Ux∥2

2 . (45)
Then with the mean value theorem, we have the following equations:563

|βx1
−βx2

| =
∣∣∣e−γ∥Wzx1

−Ux2∥2

2 − e−γ∥Wzx1
−Ux2∥2

2

∣∣∣
≤ √

γ| ∥Wzx1
−Ux2∥2 − ∥Wzxx

−Ux2∥2 | · max
c∈√

γ[∥Wzx1
−Ux1∥

2
,∥Wzx2

−Ux2∥
2
]
ce−c2

≤ √
γ| ∥Wzx2

−Ux2∥2 − ∥Wzx2
−Ux2∥2 |

≤ √
γ ∥W(zx1

− zx2
)∥2 + ∥U(x1 − x2)∥2

≤ √
γµ (∥zx1 − zx2∥2 + ∥x1 − x2∥2)

(46)
Then reformulating Eqn (44), we can finally obtain our proposition as below:564

∥zx1 − zx2∥2 = ∥fgeq(x1)− fgeq(x2)∥2 ≤
βmaxµ

2 +
√
γBµ3

1− βmaxµ2 −√
γBµ3

∥x1 − x2∥2 (47)

565

A.6 Proofs for proposition 4566

In this section, we are going to prove the output similarity bounds for our GEQ and OptEqs. First, we567

restate the proposition as follows:568

Proposition 4. If norms for the inputs and outputs are bounded by B, the spectral norm for the569

weight parameter W of equilibrium models with ReLU activation are bounded by µ < 1 to ensure570

the convergence, and each row in U obeys the spherical Gaussian distributions N (0,E[U2
i ]I). Then571

we have the following conclusions for the expectation of the output similarity for GEQ and OptEqs572

with respect to input x1,x2 as follows,573

κgeq(x1,x2) ≤ κgeq =
µ2De−γ(σmin(U)2∥x1−x2∥2

2)E[U2
i ]∥x1∥∥x2∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2
,

(48)

κopteq(x1,x2) ≤ κopteq =
E[U2

i ]∥x1∥∥x2∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− µ2)2
, (49)
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where x1 and x2 are input samples, D = eγB∥W∥2
2 and βmax := maxx∈D e−γ∥Ux−Wz∥2

2 < 1.574

θ0 = cos−1( ⟨x1,x2⟩
∥x1∥∥x2∥ ) is defined as the angle between the samples.575

Proof. Before the proof, we first introduce the following lemma:576

Lemma 3. [45] If U obeys the spherical Gaussian distributions of variance E[U2
i ] and mean 0, then577

the expectation of the Similarity for the one-layer Neural Network σ(Ux) is:578

κNN (x1,x2) =
E[U2

i ]∥x1∥∥x2∥
2π

(sin θ0 + (π − θ0) cos θ0) (50)

where θ0 = cos−1( ⟨x,y⟩
∥x∥∥y∥ ).579

Letting m := ∥Ws∥2 = ∥W⊤W∥2 < 1 and µ := ∥W∥2 < 1 as our assumptions demonstrate and580

neglecting the bias b for convenience. Then for our reformulated OptEqs, we have:581

z∗⊤x1
zx2

≤ σ(Wszx1
)⊤zx2

+ σ(Ux1)
⊤zx2

≤ µ2σ(zx1)
⊤zx2 + σ(Ux1)

⊤zx2

(51)

And we have582

σ(Ux1)
⊤zx2 ≤ σ(Ux1)

⊤σ(Wzx2) + σ(Ux1)
⊤σ(Ux2)

≤ µ2σ(Ux1)
⊤zx2

+ σ(Ux1)
⊤σ(Ux2)

(52)

Then583

σ(Ux1)
⊤zx2

≤ σ(Ux1)
⊤σ(Ux2)

1− µ2

z∗x1
⊤zx2

≤ σ(Ux1)
⊤σ(Ux2)

(1− µ2)2

(53)

Therefore, we can conclude584

κopteq(x1,x2) ≤
E[U2

i ]∥x1∥∥x2∥ (sin θ0 + (π − θ0) cos θ0)

2π(1− µ2)2
(54)

For GEQ, we set βx = e−γ∥Ux−Wz∥2
2 and βmax := max

x∈D
e−γ∥Ux−Wz∥2

2 < 1585

z∗⊤x1
zx2

≤ βmaxσ(Wszx1
)⊤zx2

+ βx∥W∥2σ(Ux1)
⊤zx2

≤ βmaxµ
2σ(zx1

)⊤zx2
+ βxµσ(Ux1)

⊤zx2

(55)

Like OptEqs, we obtain the following equations for GEQ:586

z∗⊤x1
zx2

≤ µ2βx1
βx2

σ(Ux1)
⊤σ(Ux2)

(1− βmaxµ2)2
(56)

Therefore,587

κgeq(x1,y2) ≤
µ2βx1

βx2
E[U2

i ]∥x1∥2∥x2∥2 (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2
(57)

And we have,588

βx1βx2 = e−γ(∥Wzx1
−Ux1∥2

2+∥Wzx2
−Ux2∥2

2)

≤ e−γ/2(∥W(zx1
−zx2

)−U(x1−x2)∥2
2)

≤ De−
γ
4 (σmin(U)2∥x1−x2∥2

2),

(58)

where D = eγ∥W∥2
2B , the latter two inequality is acquired by Jensen’s inequality. Then we have,589

κgeq(x1,x2) ≤
µ2De−

γ
4 (σmin(U)2∥x1−x2∥2

2)E[U2
i ]∥x1∥2∥x2∥2 (sin θ0 + (π − θ0) cos θ0)

2π(1− βmaxµ2)2
(59)

590
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A.7 Experiment Settings591

A.7.1 Experiments on CIFAR592

For our GEQ, we parallel 6 branches with each branch taking the scale of 32, 16, 8, 8, 4, 4 and using593

the average fusion method for branches’ fusion. The output channels for 6 branches are all 256594

or 320 but the mid-channel number(output channel for weight U and W) for the six branches are595

64, 128, 128, 128, 256, 256 or 80, 160, 160, 160, 320, 320 with patch size 2 and c splitting is 8. And596

the inner MLP inner Wh output 64 hidden dimension for each patch. We use the SGD [23] optimizer597

with momentum and step learning rate schedule for all the models. We also use RandomAug for all598

the models for comparison.599

A.7.2 Experiments on ImageNette and ImageNet-100600

We take the input scale as 256 for all models. For our GEQ, we parallel 6 branches with each601

branch taking the scale of 64, 32, 16, 16, 8, 8 after two downsampling convolutions and using the602

average fusion method for branches’ fusion. The output channels for 6 branches are all 256 or603

384 but the mid-channel number(output channel for weight U and W) for the six branches are604

32, 64, 128, 128, 256, 256 or 48, 96, 192, 192, 384, 384 with patch size 2 and c splitting is 8. And the605

inner MLP inner Wh output 128 hidden dimension for each patch. We use the SGD optimizer with606

momentum and step learning rate schedule for all the models. We also use RandomAug for all the607

models for comparison.608
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