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Abstract

In this paper, we propose a novel extra-gradient difference acceleration algorithm
for solving constrained nonconvex-nonconcave (NC-NC) minimax problems. In
particular, we design a new extra-gradient difference step to obtain an important
quasi-cocoercivity property, which plays a key role to significantly improve the
convergence rate in the constrained NC-NC setting without additional structural
assumption. Then momentum acceleration is also introduced into our dual ac-
celerating update step. Moreover, we prove that, to find an e-stationary point of
the function f, our algorithm attains the complexity O(¢~2) in the constrained

NC-NC setting, while the best-known complexity bound is O(e %), where O()
hides logarithmic factors compared to O(-). As the special cases of the constrained
NC-NC setting, our algorithm can also obtain the same complexity O(e¢~?) for
both the nonconvex-concave (NC-C) and convex-nonconcave (C-NO) cases,~while
the best-known complexity bounds are O(e~2-%) for the NC-C case and O(e~*)
for the C-NC case. For fair comparison with existing algorithms, we also analyze
the complexity bound to find e-stationary point of the primal function ¢ for the
constrained NC-C problem, which shows that our algorithm can improve the com-
plexity bound from O(e~?) to O(e~2). To the best of our knowledge, this is the
first time that the proposed algorithm improves the best-known complexity bounds

from O(e*) and O(e3) to O(e~2) in both the NC-NC and NC-C settings.

1 Introduction

This paper considers the following smooth minimax optimization problem,

min max f(z,y), €]
where X C R and ) C R" are nonempty closed and convex feasible sets, and f : R™ X
R™ — R is a smooth function. In recent years, this problem has drawn considerable interest from
machine learning and other engineering communities such as generative adversarial networks [[14],
adversarial machine learning [15} 28], game theory [3]], reinforcement learning [12} |41]], empirical
risk minimization [54} 39], and robust optimization [36, 13 5]. While there is an extensive body
of literature on minimax optimization, most prior works such as [54, 39} 42 33| |50] focus on the
convex-concave setting, where f(z,y) is convex in x and concave in y. However, in many nonconvex
minimax machine learning problems as in [3516], f(«, y) is nonconvex in 2 and (strongly) concave
in y, or f(z,y) is (strongly) convex in  and nonconcave in y. For nonconvex-strongly-concave
(NC-SC) minimax problems, a number of efficient algorithms such as [34} 25| [27]] were proposed,

and their complexity can be 6(%56_2) for achieving an e-stationary point Z (e.g., || Vo(Z)|| <€) of



Table 1: Comparison of complexities of the minimax algorithms to find an e-stationary point of f(-, )
in the NC-C, C-NC and NC-NC settings. Note that Smoothed-GDA [351]] can find an e-stationary
point for a special problem of (1)) with O(e~2).

| Optimality Criteria | References | NC-C [ C-NC [ NC-NC [ Simplicity |
Lu et al. [27] O(e™) - - Single-Loop
Stationarity of f Nouiched et al. [31] | O(e~35) - - Multi-Loop
with smoothness Lin et al. [24] O(e25) - - Multi-Loop
and compact sets Zhang et al. [51]] O(e™*) - - Single-Loop
assumptions Xu et al. [44] O(e™) | O(e™?) - Single-Loop
This work (Theorem O(e72) | O(e72) | O(e7?) | Single-Loop

the primal function ¢(-) := maxyecy f(-,y), where x, is the condition number for f(z,-), and o
hides logarithmic factors. More recently, [24]] proposed an accelerated algorithm, which improves the

gradient complexity to (5(1 /Fye2), which exactly matches the lower complexity bound in [52} 23]).
Therefore, we mainly consider the problem @) in nonconvex-nonconcave (NC-NC), nonconvex-
concave (NC-C) and convex-nonconcave (C-NC) settings.

Algorithms in NC-C and C-NC Settings: For nonconvex-concave (NC-C, but not strongly con-
cave) and convex-nonconcave (C-NC) problems, there are two types of algorithms (i.e., multi-loop
(including double-loop and triple-loop) and single-loop algorithms), and most of them are multi-loop
algorithms such as [[18, 31} 40, 24]]. [31]] proposed a multi-step framework that finds an e-first

order Nash equilibrium of f(z,y) with the complexity O(e=3-%). [40] designed a proximal dual
implicit accelerated algorithm and proved that their algorithm finds an e-stationary point of ¢ with
the complexity O(e~3). More recently, [24] proposed an accelerated algorithm, which achieves
the complexity O(e~2?) to find an e-stationary point of f. These multi-loop algorithms require
at least O(e~2) outer iterations, and thus their complexities are more than O(e~2). Even though
single-loop methods are more popular in practice due to their simplicity, few single-loop algorithms
have been proposed for NC-C setting. The most natural approach is the gradient descent-ascent
(GDA) method, which performs a gradient descent step on x and a gradient ascent step on y at
each iteration. However, GDA fails to converge even for simple bilinear zero-sum games [22].
Subsequently, several improved GDA algorithms such as [8}, 25} 127, 144] were proposed. For instance,
[25] proved that the complexity of their two-time-scale GDA to find an e-stationary point of ¢ is
O(e~%) for NC-C problems. Moreover, [27] presented an efficient algorithm, which obtains an
e-stationary point of f with the complexity O(e~*). In fact, the complexity only counts the number
of times the maximization subproblem is solved, and does not consider the complexity of solving this
subproblem. [44] proposed a unified algorithm, and proved that the complexity of their algorithm to
find an e-stationary point of f is O(e~*) for both NC-C and C-NC problems. More recently, [51]
presented a smoothed-GDA algorithm and proved that the complexity can be improved to O(e~2)
for optimizing a special case of NC-C problems (i.e., minimizing the pointwise maximum of a finite
collection of nonconvex functions). However, its complexity is still O(¢~*) for both NC-C and
C-NC problems. One natural question is: can we design a single-loop accelerated algorithm with the
optimal complexity bound O(e~2) for both NC-C and C-NC problems?

Algorithms in NC-NC Settings: This paper mainly considers constrained NC-NC minimax prob-
lems, i.e., f(x,y) is nonconvex in z and nonconcave in y in the constrained setting (we called
constrained NC-NC). In recent years, some works such as [7, 31} 146, 38}, 20] focus on structured
NC-NC problems. That is, the saddle gradient operator of such minimax problems or their objectives
must satisfy one of the structured assumptions: the minty variational inequality (MVI) condition,
the weak M VI condition, or negative comonotone condition and the Polyak-F.ojasiewicz condition.
However, structured NC-NC problems have limited practical applications because they are required
to satisfy strong structural assumptions. For more practical constrained NC-NC problems or more
general NC-NC problems, the convergence guarantee of the algorithms is still a challenge. In this
paper, we also focus on convergence analysis for solving more practical constrained NC-NC problems.
Another natural question is: can we design a single-loop accelerated algorithm to further improve
the bound in the constrained NC-NC setting?



Table 2: Comparison of complexities of the minimax algorithms to find an ¢(-) := maxycy f(-,y)

in the nonconvex-concave (NC-C) setting. This table only highlights the dependence €, and O(-)
hides logarithmic factors compared with O(-).

| NC-C Settings | References | Compact set | Complexity [ Simplicity |
Rafique et al. [34], Jin et al. [[17]] XY O(e79) Multi-Loop
NC-C Lin et al. [25]] Xy O(e9) Single-Loop
(Stationarity of ¢) Thekumprampil et al. [40]] XY O(e™3) Multi-Loop
Zhao [55]], Lin et al. [24] XY O(¢=3) | Multi-Loop
This work (Theorem Yy O(e72?) Single-Loop

Motivations: For NC-C minimax problems, can we design a single-loop directly accelerated algorith-
m with the gradient complexity lower than the best-known result O(e~2-%)? Though Smoothed-GDA
[51]] can obtain the complexity O(e~2) for a special case of Problem , it only attains the complex-
ity O(e=*) for NC-C minimax problems. For C-NC minimax problems, for any given z, to solve
the nonconcave maximization subproblem with respect to y is NP-hard. As a result, all existing
multi-loop algorithms will lose their theoretical guarantees as discussed in [44]. Can we propose
a single-loop directly accelerated algorithm with the complexity lower than the best-known result
O(e~*) for C-NC and NC-NC minimax problems?

Our Contributions: This paper proposes a novel single-loop extra-gradient difference acceleration
algorithm to push towards optimal gradient complexities for constrained NC-NC minimax problems
(1), and answer the above-mentioned problems. We summarize the major contributions of this paper.

e We design a new single-loop accelerating algorithm for solving constrained NC-NC problems. In
the proposed algorithm, we design a new extra-gradient difference scheme, and combine the gradient
ascent and momentum acceleration steps for the dual variable update. In our algorithm, we present
an important quasi-cocoercivity property. By leveraging the quasi-cocoercivity property, we can
improve the complexity bound in our theoretical analysis.

e We analyze the convergence properties of the proposed algorithm for constrained NC-NC problems.
Theorem [I| shows that to find an e-stationary point of f, the proposed algorithm can obtain the
gradient complexity O(e~?2), which is the first time to attains the complexity bound in constrained
NC-NC setting. The constrained NC-C and C-NC problems can be viewed as two special cases of
the constrained NC-NC problem, and the proposed algorithm is also applicable to these two special
problems. And its complexity is still O(¢~2) for both NC-C and C-NC problems, which significantly
improves the gradient complexity from O(e~*) of existing single-loop algorithms or O(e=2-5) of
existing multi-loop algorithms to O(e~2). The complexities of some recently proposed algorithms
are listed in Table [Tl

e In order to make a comprehensive comparison with existing algorithms, we also provide the
theoretical analysis of our algorithm in terms of another convergence criteria (i.e., an e-stationary
point of ¢) for constrained NC-C problems. The result shows that our algorithm improves the

best-known result as in [40, 24] [55] from O(¢~3) to O(e~2), as shown in Table

2 Preliminaries and Related Works

Notation: Throughout this paper, we use lower-case letters to denote vectors such as z,y, and
calligraphic upper-case letters to denote sets such as X', . For a differentiable function f, Vf(x) is
the gradient of f at x. For a function f(-, -) of two variables, V, f(z, y) (or V, f(z,y)) is the partial
gradient of f with respect to the first variable (or the second variable) at (x, y). For a vector z, ||z||
denotes its /o-norm. We use Py and Py to denote projections onto the sets X and ).

Assumption 1 (Smoothness). f (-, ) is continuously differentiable, and there exists a positive constant
L such that

[V f (21, y1) =V f(22,92)[| < Lllzi—22ll, [[Vyf(21,91) = Vyf(22,92)ll < Lllys =2

holds for all x1,x9 € R™, y1,y2 € R™.



Definitions of the monotone operators: A operator F(-) : R™ — R™ is monotone, if [F(s) —
Ft)T(s—t) >0, Vs, t € R IF[F(s) — F(t)]T(s — t) <0, F is negative monotone.

A mapping F(-) is co-coercive if there is a positive constant c, such that

[F(s) — F(t)]" (s —t) > a||F(s) — F(t)|]?, Vs, t € R™.

Nonconvex-Concave Minimax Optimization: Due to the nonconvex nature of these minimax
problems, finding the global solution is NP-hard in general. The recently proposed algorithms aim to
find stationary solutions to such problems. For instance, the first-order Nash equilibrium condition
(called game stationary) is used as an optimality condition in [31]]. Besides game stationary, there are
two main optimality criteria (i.e., an e-stationary point of f(-,-) or ¢(-) := maxyecy f(-,y)) for the
convergence analysis of the algorithms such as [4} 144} 24].

For solving NC-C minimax problems, there exist a number of efficient multi-loop and single-loop
algorithms such as [31} 25| 14} 44} 24]. Most of them are multi-loop algorithms, which either employ
an accelerated update rule of = by adding regularization terms to its subproblem, or use multiple
gradient ascent steps for the update of y to solve the subproblem exactly or inexactly. Compared
with multi-loop algorithms, single-loop algorithms are easier to implement. One of the most popular
single-loop algorithms is GDA. However, GDA with a constant stepsize can fail to converge even for
a simple bilinear minimax problem [29]. To address this issue, only a few single-loop algorithms such
as [25, 127, 144] were proposed, and most of them employed a smoothing or proximal point technique.
For instance, Smoothed-GDA [51] introduces a smooth function ¢(x,y, z) = f(x,y) + %[z —z|
for the update of the primal variable x, where z is an auxiliary variable and a is a constant, and its
main update steps are

Ti41 ZPX(xt—nszip(CUm Zt, yt)) y Yt+1 Zpy(il/t +77yvyf($t+17 yt)) y Zt41 =%t +ﬁ(3€t+1 _Zt)>

where 7,77, >0 are two stepsizes, and 0 <3<1. Smoothed-GDA can obtain the gradient complexity,
O(e=%), for nonconvex-concave minimax problems.

Extra-Gradient Methods: There are some extra-gradient methods such as [48] for solving minimax
problems. Let ny > 0 and u; be the ¢-th iterate, the extra-gradient method [53]] has the following
projection-type prediction-correction step:

Prediction : usy1/2 = Po (ur — n:F (uys)) , Correction : w11 = Po (ue — e F (urs1/2)) -

In this paper, we call u;4 1,2 as the prediction point at the ¢-iteration.

3 Single-Loop Extra-Gradient Difference Acceleration Algorithm

In this section, we propose a single-loop Extra-Gradient Difference Acceleration algorithm (EGDA)
for solving constrained NC-NC minimax problems.

3.1 Extra-Gradient Difference Acceleration

In recent years, many algorithms such as [27, 31} 132, 24, 51} 144]] have been proposed for solving
NC-C minimax problems. In essence, most of them are “indirect” acceleration algorithms, which
are used to optimize the surrogate functions with a smoothing or proximal point term instead of the
original function. However, this may hurt the performance of these algorithms both in theory and in
practice [2,[1]. To address this issue, we propose a single-loop directly accelerating algorithm to find
an e-stationary points of f and ¢ with a significantly improved complexity O(e~2). The main update
steps of our EGDA algorithm are designed as follows.

Gradient descent : z;,,,; = arg min UV f (2, 90), ) + |z —2¢||*/(202) )} )
Extra-gradient difference prediction : w1/ =y, 441, [V, f(xt,u4_1/2) = Vy f (ze,ye-1)]. (3)

Gradient ascent correction : u;; =arg max {(Vf (w41, uer1/2), w) — [lu—ye||*/(rnl)}. (4)
ue



Algorithm 1 EGDA for NC-NC minimax problems
1: Initialize: xo, yo, uo, u_1/2,7 > 0.5, Nz, 0}, .

2: fort=0,1,..., 7T —1do

30 @1 = Pz =1V f (@, yr)ls w172 =Y+ [Vy [ (@0, wr—12)=Vy f (@4, ye-1)];
4 u1=Py [yt+777;t,vyf(xt+1a Ut+1/2)]; Yir1 = TYs + (1 =T)usy1;

5: end for

6: Output: (z1,yr).

Momentum acceleration : ;1 = 7y; + (1 — 7)us41. 3)

Here, 1., né > () are two stepsizes, 41,2, Ut+1 are auxiliary variables, u;4 1/ is a prediction point,
and 1/2 <7 <1 is a momentum parameter. Our EGDA algorithm is formally presented in Algorithm
Our EGDA algorithm first performs one proximal gradient descent step on the primal variable x, and
then we design a new dual-accelerating scheme in (3), @) and () for the dual variable y.

3.2 Advantages of Our Algorithm and Comparison to Related Work

We first design a new prediction point w1 /2 in Eq. . Compared with extra-gradient-type methods
such as [7,116, 20], one of the main differences is that the proposed prediction point 41/ in @
is updated by the gradient difference (i.e., V, f(2¢,u;—1/2) — Vi, f(2¢, y¢—1)), while the prediction
point in other extra-gradient-type algorithms is updated only by using the gradient information at
the correction point u;. Then the gradient at the new prediction point u; 1 /o is used in the gradient
ascent step (). And the dual variable y is update by the momentum acceleration step in (3).

e Prediction Point: The monotonicity and co-coercivity properties of gradient operators play a
crucial role for conference analysis. However, the important properties do not hold for nonconvex
problems. Some researchers developed this research in some special nonconvex settings, such as
structured nonconvex and weakly convex, which require a weaker condition such as weakly monotone
[26], pseudo-monotone [[16], and MVI [7]. However, such conditions seriously limit the application
scope of Problem (T). To address this challenge, we design a new prediction point scheme in (3),
which can help us obtain a useful quasi-cocoercivity property. As a result, it does not require any
monotone or structural assumption. Specifically, we find that we only require a weaker property
in our theoretical analysis, that is, the co-coercivity is required at some special points {1 /2,y }
(Vy f(@e, wg1/2)=Vy f (@, Ye)s wgr j2=Ye) > Pl Vy f (26, Uig1 72)=Vy f (24, Yt) |2 with p>0). Thus,
we develop a decoupling idea to construct the prediction point u; 1 /o. That is, we use the gradients
W.I.L. i at Uy_1 /2, Y1 instead of those at the points ;41 /2, y;. We can obtain a property (called the
quasi-co-coercivity) in Section 4.2 below, which plays a key role in our theoretical analysis.

e Gradient Difference: We also briefly discuss the underlying intuition of the proposed gradient
difference in (3). We find that our update in (3) is similar to the forms in [43] (see Eqgs. (12) and
(14) in [43]). [43] proposed a first-order procedure (i.e., difference of gradients) to achieve the
negative curvature of a Hessian matrix. Therefore, our algorithm has a similar procedure, which
contains second-order information. Moreover, we use the difference of gradients in the gradient
ascent procedure for the dual update. But our EGDA algorithm only requires the Lipschitz gradient
assumption for minimax problems to find first-order stationary points, while [43]] requires both the
Lipschitz gradient and Lipschitz Hessian assumptions for solving second-order stationary points of
nonconvex minimization problems.

e Momentum Acceleration: We design a dual-accelerating update rule in @) for the dual variable
y in our EGDA algorithm, which is different from standard momentum acceleration schemes as in
[311140, 24]]. That is, the accelerated rules of existing algorithms are for the primal variable x, while
our accelerated rule is designed for the dual variable y.

Therefore, the proposed new dual-accelerating step (including gradient different prediction step in (3)),
the gradient ascent correction in (4) and momentum acceleration in () is a key accelerated technique
for EGDA, and can help to improve the complexity bound from O(e=%) to O(e~2). In particular, our
EGDA performs both gradient descent and ascent steps to the original function f. In contrast, many
existing algorithms such as [S1},!47, 144, [18] optimize their surrogate functions with smoothing terms



instead of the original function. In particular, their smoothing parameters need to tune by repeatedly
executing the algorithms, which may make them impractical [1]. As in our theoretical guarantees
below, the proposed single-loop algorithm is able to significantly improve the best-known gradient
complexity, O(e~%), of existing single-loop algorithms such as [27, 51, [44] to O(e~2).

4 Convergence Guarantees

In this section, we provide the convergence guarantees of our EGDA algorithm (i.e., Algorithm|I)) for
solving constrained NC-NC and NC-C problems. We first present the definitions of the two optimality
criteria (i.e., an e-stationary point of f or ¢). All the proofs of the lemmas, properties and theorems
below are included in the Appendix.

4.1 Optimality Criteria and Key Property

Since finding a global minimum of a nonconvex optimization problem is NP-hard, finding a global
saddle point (or Nash equilibrium) of a NC-NC function f is intractable [30]. As in the literature
in the NC-NC setting, we introduce the local surrogates (i.e., the stationary point of f) and in
the NC-C setting, we introduce the local surrogates (i.e., the stationary point of f or ¢), whose
gradient mappings are equal to zero. Below we define the following two optimality measures (i.e., an
e-stationary points of f or ¢) for our theoretical analysis.

Definition 1 (An e-stationary point of f [27]). A point (T,7) € X x Y is an e-stationary point of
fC, ) if|m(Z,9)|| < e where 1, and 1, are two constants, and

)@ - P - mVe @ T)
(Z,7) ==

(/1)@ — Py +nyVy f(Z,7)))
If e = 0, then (Z,7) is a stationary point of f.

(6)

For the NC-C setting, we also present another convergence criterion used in [40, 24]. Let ¢(x) :=
maxycy f(z,y), Z is called an e-stationary point of a smooth primal function ¢ : R™ — R, if
IVo(2)|| < e. However, the function ¢ is not necessarily differentiable for minimax problems.
Following [9, 40, 24], we introduce the Moreau envelope of ¢ for the optimality criterion, especially
when ¢ is a weakly convex function, i.e., ¢ is L-weakly convex if the function ¢(-) + Z|| - [|? is
convex. We refer readers to [9,[24]] for the comparison of these two criteria.

Definition 2 (An e-stationary point of L-weakly convex function ¢). Z is an e-stationary point of an
L-weakly convex function ¢ : R™ =R, if [V /21y (Z)|| <€ where ¢1 /21y is the Moreau envelope
of ¢ and is defined as: ¢,(z):=min, ¢(z)+(1/2p)||z—z||>. If € = O, then  is a stationary point.

Then we give the following important property of the proposed algorithm. By leveraging the property,
we can obtain the complexity bound of the proposed algorithm.

Property 1 (Quasi-Cocoercivity). Let u; /o be updated in Eq. , then
(Vyf (@, ui—1)2) = Vi f (e, ye-1), Ug1ya — y) = MLV f (@, ue—1/2) — Vi f (e, ye-1) |-

4.2 Core Lemma

Our theoretical results rely on Lemma 1 below, which plays a key role in the proofs of Theorems 1
and 2. Let { (@, y¢, us, us—1/2) } be a sequence generated by Algorithm and we define the potential
function Gy := f(z¢,y:) + 12L||us — y;—1]|*. Next, we need to prove that the potential function
can make sufficient decrease at each iteration, i.e., Gy — G471 >0 as in Lemmaﬂ]below. To prove
Lemmal [I] we will derive the following upper bounds.

Proposition 1 (Primal-dual updates upper bound). Suppose Assumption I holds. Let {(x+, y:, ut)}

be a sequence generated by Algorithm|l|and oy = m with 1}, = min{%, 55T e }-

Let Uyy 1/ 1= Upy1/2 + Vi f(2, us—1/2).
~ 1 L

SF(@e1, Usgry2) — [, y0) < — (277£ -3
+<vyf<-75t,ytfl)aut+1/2_yt>_at <vyf(xt7yt71)7 Vyf(wt; Ut71/2)> + 2Lat2||vyf<xt>ut71/2)H2'

Ay

) les1—2e||® + Lllye — ye—1 1> +2L i1 /2 — el




Proposition 2 (Dual update upper bound). Suppose Assumption 1 holds. Let {(x¢,ys,ut)} be a
sequence generated by Algorithm|[I} then

F@ea, yem) = F (@101 72) < T(Vy f(@er1 Up1/2) 9 —Ues1) +a

Az
H(Vy f(@eu—1/2) w1 — w1 /2) +au (Vo f(@ea, Ue), Vi f (Te, wig1/2))s
As
where a; := 2Lz — z141]1* + ILaF||Vy f (@11, w1 y2)|1? + 1ALy — e | + 8L|lugy1 /2 —

2
Laj

Yell® + 9L ue — ye—1[|? + Z5ENV y f (241, ye) |12

Using the optimal condition of Problem (@) and our quasi-cocoercivity in Property 1, we can further
bound A; + As + As. The proof sketch of Lemma 1 is listed as follows:

Giy1—Gy :=12L (||Ut+1—yt ||2 —lut—yea HZ) +f(Te1,y81) _f(xt+17at+1/2)+f(xt+1 »at+1/2) —f(ze,ye)

Proposition 1 Proposition 2
= Al + Ay + Az 4+ Other terms.
~————
Quasi-Cocoercivity in Property 1
Combining the above results and the definition of Gi;, we can get the descent estimate of the potential

function in Lemma 1, which is a main lemma for Theorems 1 and 2 below.

Lemma 1 (Descent estimate of G). Suppose Assumption 1 holds. Let {(x¢, ys, ut)} be a sequence
generated by Algorithm|l| then

T-1
Go — GT = Z (Gt - Gt+1)
t=0
— /1 1 9
> Z ﬁHUtH - yt||2 + [ $t||2 + *77;||Vyf(9€t7ut—1/2) = Vy f(a, yt—1/2)||2
pard 4n}, 21, 5

4.3 Convergence Results

We present the theoretical results in Theorem [I]in constrained NC-NC settings and Theorem [2]in
NC-C settings by using the optimality measure in Definitions[T]and [2] respectively.

Assumption 2. ) is a closed, convex and compact set with diameter Dy, and X is a closed and
convex set.

Furthermore, using Lemma|[I]and the optimality measure in Definition [} we will study the relation
between 7(x, u;) and the difference Gy — Gy to obtain the gradient complexity in Theorem by
computing the number of iterations to achieve an e-stationary point of f.

Theorem 1 (Stationarity of f in constrained NC-NC settings). Suppose Assumptions 1 and 2 hold.

Let the two stepsizes 1, < 8%,77; < min{%, ﬁ, N} and T > 1/2, then the complexity of

Algorithm([I)to find an e-stationary point of f is bounded by

O(GO_Q+2LD§})7

€2

where Gy := G(z9,yo), G := mingecx ¢(x).

Remark 1. For constrained NC-NC problems, the gradient complexity of our EGDA algorithm to
find an e-stationary point of f is O(e=2). That is, our EGDA algorithm is first to obtain the gradient
complexity in constrained NC-NC setting. In addition, our method can achieve the same complexity
as the algorithm with the additional structured assumption for NC-NC problems, O(e=?). However,
different from existing algorithms, our algorithm is more practical. That is, it only requires that
Y is a compact set, while existing algorithms need some stronger structured assumptions in the
structured NC-NC setting. The detailed comparison is shown in Table[I] As two special cases of the
constrained NC-NC problem, this theoretical result in Theorem 1 can be extended to the constrained
NC-C and C-NC settings. For NC-C problems, the gradient complexity of our EGDA algorithm
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to find an e-stationary point of f is O(e~2), while the best-known result of single-loop algorithms
such as [27) 151, 144\] is (9(6_4), and the best-known result of multi-loop algorithms such as [24|] is

O(e=25). That is, our EGDA algorithm improves the best-known gradient complexity from O(e=2?)
to O(e=2). Smoothed-GDA [51|] can also obtain the complexity O(e~2) for a special case of Problem
and O(e=*) for general NC-C minimax problems, while our algorithm attains the optimal result
O(e2) for NC-C minimax problems. Existing algorithms such as HiBSA [27] and AGP [44)] require
the compactness of the domain X in the NC-C setting, while our EGDA algorithm does not, which
significantly extends its applicability. For C-NC minimax problems, the proposed algorithm can
obtain the complexity, O(e~?2), while the best-known complexity as in [44] is O(e=*). In other words,
the proposed algorithm can improve the best-known result from O(e*) to O(e~2).

By using the criterion in Deﬁnitionas the optimality measure, we use the definition of ¢, /57, and
introduce the property of V¢, /57, as in [24]. With a similar setting for varying stepsizes as in [24],
we study the relation between V¢, /57, and the basic descent estimation of the potential function in
Lemma 1 by using the propriety of V¢, 51, and compute the number of iterations to achieve an
e-stationary point of ¢. We provide the following theoretical result and its proof in the Appendix.

Theorem 2 (Stationarity of ¢ for constrained NC-C settings). Using the same notation as in Theorem
1, and f is concave w.rt. y. Let {(x,y,u)} be a sequence generated by Algorithm 1| with the
stepsizes 1, = max{(c; — ay_1)/3,4D} /Lllus—1 — yi—2||*}. Then the gradient complexity of

Algorithm|l|to find an e-stationary point of ¢ is bounded by
O(Dy(Go -G+ 2LD§,))'

€2

This theorem shows that Algorithm [l{can improve the best-known gradient complexity from o (e73)
as in [24] to O(e~2). That is, Algorithmis the first algorithm, which attains the gradient complexity
O(e?) to find an e-stationary point of ¢ for NC-C minimax problems.

S Numerical Results
We conduct the following experiments to illustrate the performance of the proposed algorithm.

NC-NC Problems. We conduct some experiments to illustrate the performance of the proposed
algorithm, EGDA. Moreover, we compare it against existing methods such as GDA [46], EG [10],
EAG [49] and FEG [20].

We compare EGDA with GDA, EG and FEG for solving a simple NC-NC minimax problem
(f(z,y)=243 sin?z sin®y-4y%10 siny), which satisfies the Polyak-F.ojasiewicz condition, as shown
in Fig.[T} All the result show that EGDA indeed converges to the global saddle point and is significantly
faster than other methods including GDA and FEG in terms of both ||z, — 2*||% + ||y: — y*||* and
Ve flI? + [V, f||?. Although FEG has a fast theoretical rate O(1/t?) with a negative monotone
assumption, it converges much slower than EGDA in practice.

Convex-Concave Problems. Fig. 2| shows the convergence results of the methods including GDA,
EAG [49] and EGDA for solving the convex-concave problem, f(z,y) = log(1 + €%) + 3zy —
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Figure 2: Comparison of all the methods for solving the convex-concave problem, f(z,y) =
log(14+e*) + 3zy — log(1+¢e¥). Left: Trajectories of the three algorithms; Right: Convergence in
terms of ||z, — 2*||% + |lyz — y*||°.
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Figure 3: Convergence speed of all the algorithms on Fashion MNIST (left) and MNIST (right).

log(1 + e¥). It is clear that EGDA converges much faster than other methods such as EAG. We
also observe empirically when the same step-size is used, even if small, GDA may not converge to
stationary points, and it is proven to always have bounded iterates.

NC-C Problems. We also apply our EGDA algorithm to train robust neural networks against
adversarial attacks on Fashion MNIST and MNIST, and verify our theoretical results. In [[15, 128} 31]],
the robust training procedure can be formulated into a NC-C minimax optimization problem. It is
clear that the minimax problem is nonconvex in w, but concave in z.

FGSM [15] and PGD [19]] are two popular methods for generating adversarial examples. To obtain
the targeted attack &;;, we use the same procedure as in [31}[51]] as follows. The perturbation level &
is chosen from {0.0,0.1,0.2,0.3,0.4}, and the stepsize is 0.01. Note that the number of iterations
is set to 40 for FGSM and 10 for PGD, respectively. We compare our EGDA with GDA [23],
MGDA [31]] and Smoothed-GDA [51]], and illustrate the convergence of all the algorithms on the loss
function in Fig.[3] The results show that Smoothed-GDA and EGDA converge significantly faster
than other algorithms. This verifies that they have a faster convergence rate, O(¢~2). Moreover,
EGDA converges much faster than Smoothed-GDA.

6 Conclusions and Future Work

In this paper, we proposed a new single-loop accelerated algorithm for solving constrained NC-NC
minimax problems. In our algorithm, we designed a new extra-gradient difference scheme for dual
updates. Moreover, we provided the convergence guarantees for our algorithm, and the theoretical
results show that to find an e-stationary point of f, our algorithm obtains the complexity bound
O(e~?) for constrained NC-NC problems. That is, this is the first time that the proposed algorithm
attains the complexity bound O(e~2) in constrained NC-NC settings (including constrained NC-C
and C-NC). For NC-C problems, we provided the theoretical guarantees of our algorithm under the
stationarity of ¢, which show that our algorithm improves the complexity bound from O(¢~3) to
O(e2). Experimental results also verified the theoretical results of our algorithm, which have the
factors of e ! and e 2 faster than existing algorithms, respectively. For further work, we will extend
our directly accelerating algorithm to stochastic, non-smooth, nonconvex-nonconcave and federated
learning settings as in [47, [11} 14} 155} 145, 121} 37]).
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Appendix for “A Single-Loop Accelerated
Extra-Gradient Difference Algorithm with Improved
Complexity Bounds for Constrained Minimax
Optimization”

Appendix A: Basic Properties

Before giving our theoretical analysis, we first present the following basic properties.

Property 2. Given any a, b, ¢, then we have

1
(a=b a—c)=5(lla— BlI* +lla —c|* = [Ib—cl*) -

Property 3. (Theorem 2.1.5 in [42]). If f : R — R is L-smooth, then for all x,y € R?,

F) ~ @) = V@) )| < Sy~ ol

Property 4. [Lemma A.1 in [25]] Let ¢1 /o1, () := ming{¢(z) + L||z — Z||*} ¢(-) + L| - -z

¢1/21 (%) := ming{¢(z) + Ll|z — Z|*} and 2*(Z) = argming{¢(z) + L|jz — 2||*}. If f : R* — Ris
L-smooth, and Y is bounded, then

o 1. ¢12p is L-smooth with V¢, /51 (%) = 2L(Z — 2™(Z)).

o 2. 120 (1) — P1j20(w2) — (z1 — xz)TV¢1/2L(x2) < %Hm — x2||? for any z1,x2 € R™.
Appendix B: Key Property

Property 1. (Quasi-Cocoercivity) Let u, 1 /> be updated in Eq. (E’]) then

(Vyf(@e,ue—1/2) — Vyf(@e,Ye1), usr1y2 — Yo ) = M5||Vy f(@e,ue—1/2) — Vo f(@e,ye-1) > (D)

Proof. By wusing the wupdate rule w,y1/2 in Eq. (E]), that is, uyi1/2 = Yt +
Ay, [Vof (we, ue—1/2) = Vof (@6, yr-1)], we get

(Vyf(ze,ui—1/2) = Vyf(Te,ye-1), vey1/2 — Ye)
=dny (Vy f(@e,u—1/2) — Vo f (@, yi-1), Vof (36, w—1/2) — Vif (T, ye-1))
=4, |V f (@, -1/2) = Vi f (@, ye-1)]|.
This completes the proof. O

Appendix C: Proof of Lemma 1

Before proving Lemma 1, we first present and prove the following two propositions for the upper bounds of the
primal variable and dual variable.

Proof of Proposition 1

Proof. Using the optimality condition for the gradient descent step in Eq. (2) with respect to the primal variable
x € X, we have

<wa(a‘t,yt) + ﬁi(le —Ty), T — $t+1> > 0. (8)

T
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That is,

1
(Vaf(@e,ye), o1 — ) < _77||xt+1 -z )

Since f is L-smooth, and let W11 /2 1= U172 — @t Vy f(2¢, ur—1/2), then

~ L
J(@es1, Uerry2) <f(we,ye) + (Vo f(@e,y0), Tep1 — o) + §||$t+1 — zy|?
L
+ (Vyf(@e,ye), w12 — eV f(Te,u—1/2) — ye) + §Hut+1/2 —y — Vi f(ze,ui-1,2)]

=f(@e,y¢) + (Vaf (T, Y1), Tey1 — 2e) + gllmul —z)?
+ (Vyf (@, ye-1), wgr/2 — ye — Vo f(@e, u1/2))
+ g”ut+l/2 — gt — e Vy f (e, w1 2)|?

+ (Vyf(@e,ye) = Vyf(@e,yi-1), ter1y2 — Yo — eV f (e, us—1/2))

(@, ye) + (Vaf (e, ye), Trpr — 1) + gllxm o
+{Vyf(@e,y-1), 12 — Yo — o Vy f(Tr,u-1/2))

+ Lluer1yz — ye — auVy f(@e, wp—1y2)||°
+ 5 IV o) = VoS o)

L
<o, ye) +(Vaf (e, yt), Tep1 — o) + §||93t+1 — z|?

+{(Vyf(xe,ye-1), uepry2 — i) — o (Vy f (@, y0-1), Vo f(@e,u—1)2))

+ 2L ugs1y2 — yell” + 2003 | Vy f (e, we—1/2)||” + Lllye — ye—1 |,
(10)

where the last inequality holds due to the smoothness of f, i.e., |Vy f(zt,y¢) — Vi f (2, ye—1)|| < Ly —
ye-1]-

With n, < %, and combining @) and , we have
f(@eq1, Upyry2) — fwe, ye)

1 L
< (— - f) leeer — 2ol + 2L 012 — el + Llige — yoor |

Nz 2
+ (Vyf(@e, ye-1), werry2 — ye) —ou (Vyf(@e,ye-1), Vyf (@6, ui—1/2)) + 2007 | Vy f (e, u—1/2)||.
Ay
QY
This completes the proof. O

Proof of Proposition 2

According to the update rule y¢+1 = 7yt + (1 — 7)ut+1, we have

Yer1 — Ut1 = T(Ye — Ut41), Yer1 — Yo = (1 — 7) (w41 — Ye)

(12)
Utt1/2 — Yt = 4W2(Vyf(ft, u—1/2) = Vyf(@e, ye-1)).
Proof. For given x, f is L-smooth with respect to the dual variable y, and then we have
Fxest, yer1) — f(@eg1, Urgry2)
~ ~ L ~
KAV f(@et1,Uig1)2), Yer1 — Uggry2) + 5\|yt+1 — T y2)
= (Vyf(@e41, Urrr/2), Yer1 — Uet1) + (Vy f(De41, Ueg1/2), U1 — Ustr/2)
(13)

~ L -
FAVy f (o1, Uigp1y2), e Vi f (20, us—1/2)) + §||yt+1 — Tpgryall”

< T<Vyf($t+hut+1/2)7 Yt — wrr1) +(Vy f (e, ut71/2), Ut+1 — Ut+1/2>

Ao Asz
+ {Vy f(@er1,Yt), Vo f (Te41, Ueg12)) + ar,
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where the last inequality holds due to a¢ := 2L||x¢ — 241 ||* + ILAF || Vy f(@eg1, wirr/2)]|* + 14L]|y: —

Oéz .
ues1]]® + 8L||ugs1/2 — yel® + L|lur — yer|* + %||Vyf(xt+1,yt)||2 and L-smoothness of f, i.e.,
IVyf(@1,91) = Vyf(@2,y2)ll < Lll@y — z2ll + Lllys — g2l Geqr/2 — uesry2 = Vy (@1, ue—1/2) and

~ L ~
(Vyf(iUHh ut+1/2) - Vyf($t+17 Ut+1/2): Yt+1 — ut+1> + §||yt+1 - ut+1/2H2

+ <Vyf(xt+1:at+l/2) - Vyf(xtyut—1/2)7 Ut+1 — Ut+1/2>

FAVy f (@1, Ur1/2) — Vo f(@er1, ye), eV f (0, ue1/2))

+ 7(Vyf(@er1, er1/2)s Yo — wer1) + (Vy f(@e, ue—1/2), Uir1 — Upy1/2)

+ ae(Vy f (@41, Y1), Vo f(@eg1, wirr/2)) + a(Vy f(@er1,90), Vi f (@0, wi1/2) — Vi f (@41, tey1/2))

L. . L L I
< rs1/2 — werryel® + §||yt+1 —ug]® + §||Z/t+1 — Upr1p2]?

L, . 2, L 2
+ §||ut+l/2 —wp_12]|” + §||Ut+1 — U y1/2]]

La?
LIV f s o)

+ T (Vyf(Ter1,uer1/2), Yo — ver1) + (Vo f(Te, w0 1/2), Utr1 — Upy1/2)

L, . 2
+§”ut+l/2_yt” +

La?
+ ar(Vy f (@11, 9t), Vi f (Teg1, upp1/2)) + 2t IVy f (@1, ye)lI? + Llluerryz — we—1y2l* + Lz —

9La? Lr?
S LV y f (e, w1 y2)||” + THyt — w4+ Lllueray2 — yea |

L
+ L||tgg1/2 — Ut—1/2H2 + §Hut+1 - ut+1/2H2
+ Lllws1y2 — yell® + 7(Vy f(@eg1, werrs2), Y — wer) + (Vo f(@e, w—12), U1 — Upp1)2)

L 2
+ at(Vy f(@e11,9t), Vy f (Te41, Urya/2)) + ;t

IVyf (@i, yo) 1> + Llluerr e — we1gol® + Lllwe — 2
<9, 2 2 2 2 L7? 2
<YL || Vy f (e, ur—172) — Vi f(@er1, uegr2)||” + 9Lt [|[Vy f (@1, wer1y2)||” + THyt — Ul

L
+ Lluer1yz — yesal® 4 2L uegry2 — we—1s2|l* + §||Ut+1 — Ugir el
+ Lllws1y2 — yell® + 7(Vy f(@eg1, wegrs2), Y — wer) + (Vo f(@e, t—1)2), Urs1 — Upp1)2)

La?
+ Oét<vyf(33t+l,yt)» Vyf(xHh Ut+1/2)> + 72t ||Vyf($t+1,yt)“2 + Lth+l — $t||2

Lr?
(L 4+ 18L%af)[|ze — wer1||* + 9LaF |V f(wer, wigayo)l* + 5 llye = et

. L
+ Llfwesry2 — yerr|? + (2L + 18L%a7) ugs 12 — wemrjol” + §Hut+1 — U1y

+ Lllus12 — yell® + 7(Vy f(@es1, werr/2), Ye — wert) + (Vo f(@e, ws—1/2), U1 — Upi1)2)
La?

+ ar(Vy f(@er1,9e), Vi f (Teg1, upp1/2)) + Tt||Vyf(:rt+1,yt)H2

2Lz — wepa||* + 9LAZ||Vy f (g1, werry2)l” + 14L]ye — wepa |

La?
2t IVyf(@err,ye)l?
+ T(Vyf (@1, uer1/2), Yo — ) + (Vo f(@0, U—1/2), U1 — Ugr/2)
+ ar(Vy f (@11, Y1), Vi f (Te41, Ury1/2))

=T(Vy f(Tet1,Up1/2), Yo — uts1) + (Vy f (@, u—1/2), Uts1 — Ugy1/2)
+ ar(Vy f(we11,9t), Vo f (Te41, U y1/2)) + ar,

+ 8L uer1s2 — yell® + 9L|lue — ye—a||* +

(14)

where the last inequality of (14) holds due to 18?7 < 1 and the last equality holds due to the update rules in
(12) and triangle inequality, i.e., |z + y[|* < 2[|z[|* + 2||y||> and the definition of a:.

This completes the proof. O
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Proof of Lemma 1

Proof. We first estimate the bound of A; + As, where A; is given in (TI) and As is given in (T3)

A+ As
= (Vyf(xe,yt-1), wepry2 — Ye)+ (Vo f (@, w—1/2), Utr1 — Uppr/2)
(Vyf (e, ye-1) = Vyf(Te,ue—1/2), wg1y2 — ye) +(Vy f (@6, w—1/2), ver1 — Ye)
— Ay IV f(ze,ue—1/2) — Vi f (@e, Ye1y2) |2+ {Vy f (@, ue—1/2), U1 — Ye)

15)

t
n 1
= — 4, | Vy f(@e, u1/2) — vyf(ﬂfta?Jt—1/2)||2+5y||Vyf(37ta’Mt—l/2)||2 + P llwerr — well?,
Y
where the third equality holds follows from our Quasi-Cocoercivity in Property 1.

Furthermore, the optimality condition for the update of ;41 in @) implies that Vo € Y and Vk > 1

1
<Tvyf(xt+17ut+1/2) - nT(utJrl —Yt), U — Ut+1> <o. (16)

Y
Next, we first bound Ay in (T3). Using the optimal condition in (T6)), with u = y;, we have

Ag = (TVy f(®ey1,Ue1)2), Yo — Utt1)
1 17)
< = Sllu — el

My

We recall the results of Propositions 1 and 2 as follows:
F(@g1, Upgry2) — fe, ye)

1 L
< - (f] - 5) o1 — 2el” + 2L 0 wes12 — well” + Lllye — ye—a ||
xT

+ (Vo f (@, ye-1), uerryz — ye) —ou {Vy fl@e, ye1), Vyf(@e,w—1/2)) + 2007 |V f (@i, we—1/2)||°-

Ay

and
F(@e1, yer1) — f(@e41, Uegry2)
< Az + Az + a(Vy f(@e41,Yt), Vi [ (Te41, wr1/2)) + ae,

By the above three inequalities with n, < ﬁ and the update rules in , we have

fzegr, yegr) — fxe, ye)
<A+ Ax + As

1 L
- (717 B 5) o1 — @el|® + 2Llwer1/2 — yel* + Lllye — ye—1 1
+ ae(Vy f(@er1,9e), Vi f (a1, tuerry2)) — ae (Vy flae, ye-1), Vi f(e, u—12))
+ 2L} |V f e, w1 )0) | + ar

1 0t
<- nTHut-‘rl —yell® = Any IV f (e, we—1/2) — Vyf(wtyyt71/2)\|2+7y”vyf($tautfl/z)HQ + llwers — yell®
Yy

1
2
1 L 2 2 2

\n 2 lzet1 = ell” + 2L[wita /2 — well™ + Lllye — el

+a(Vy f (@1, 90), Vi f (@1, uerry2)) = ae (Vy fze ye-1), Vi f (@, u-1/2))

+ 2Laf|\vyf(33t, ut—1/2)‘|2 +a

1 nt
= e = yell® = 4ny |V y f (20, we1/2) — Vi f (@2, yt71/2)\|2+§y||vyf(flft, u—1y2)|?

L
1 L
~ (5= ) b =l 2Ll =l + Ll = el

+ (Vo f(@e1,4), Vi f (@es1,ueg1/2)) — @ (Vo f(,ye-1), Vi f(@e,u1/2))

2003 ||V f (@, ue12) % + a.
(18)
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With a¢ = 2L||z: — $t+1|\2 + 9L ||V f (@1, wegry2)|® + 14L|lye — wira||® + 8Ll ue1/2 — yell® +
9L |us — ye—1||* + L%Hvyf(mwhyt)”z and the update rules in (12), we have

frer1,yee1) — f(e, ve)
1 2 77t 2
2
< = gyl = wil® = 40190 s ues2) = Vol (oo ges )P+ 5 190 (@ e )
Y
1
— (— — 4L) HIt+1 — l‘tH2 + 12LH’LL,5+1/2 — yt||2 + 12L||yt71 — ut\|2 + 16L||yt — ut+1|\2 (19)

+ (Vo f(@e11,90), Vo f (Te1, uep1/2)) — e (Vo (@6, y6-1), Vo f (e, u-1)2))

La
Ly f@esn, ye) |

+ 10La ||V f (@1, uer1y2) |1 +

Furthermore, using the definition of G and the update rules in (T2)), we have
1
Gt — Gi1 > (ﬁ - 32L> et = yell* + (4ny, = 192L () * DIV y f (w1, s —172) = Vi f (e, 4-1/2) ||
B9, syl + (= 4L) o — ml?
- Oét( uF(@es1,98), Vo f (@1, wigy2)) + o (Vo f(@e,ye-1), Vi f(Te,ue—1/2))
La
IV f (@er, v

- 10La§||Vyf(act-s-17 ut+1/2)”2 -

_4 t Hut-!—l _ytH +3nyHVUf Tty Ut— 1/2) Vyf(xt,yt—1/2)”2

t

1
- ?y‘|vyf($taut71/2)||2 + %th-ﬁ-l —z?

— ap(Vy f(@e11,9¢), Vo f (o1, trg12)) + e (Vo f(@e,ye-1), Vif (e, u-1/2))

L
— 10LaZ ||y f (w41, wp2) | = O‘t 19y f(@esr, o)
(20)
By the above analysis, we have
T-1
(a(Vyf (@1, 90), Vi f (@er1, wery2)) — o (Vo f (@, y-1), Vi f (@0, ue-1/2)))
t=0
T—1
=ar(Vyf(@ri1,yr), Vy (@141, urs1/2)) — Z(Oét — 1) (Vyf(ze,ye-1), Vyf(ze,u—1/2))
t=0
—ao(Vy f(21,90), Vyf(whul/z»
T—1
< LD = 3 (ar — ar1) (Vo F@e, yemr)s Vif@e,ueay2)

VT =

(21
That is,
T-1
(_at<Vyf(mt+17yt), vyf(xtﬂa ut+1/2)> + ¢ <vyf(xt7yt71), Vyf(xt,ut,1/2)>)
= 22)
T—1
> DY (= o ) (Yl @y 1), Vol (e )

TVT Pt

17



By setting a: = gger—pp My = 5(@¢ — a—1)/12, we have

Qy — Q-1

fi(a -« )-l—l ! - !
T2 Y T 12\ 36(T — )L 36(T —t+ 1)L

5 1
=15 (e — ) +21 (362(T —O(T—t+ 1)L)

5
> (ay —ar_1) +21Laj_,

>ny +20La;_y

By the above analysis with 7}, = 5(cw — a—1)/12, we have

(ar — 1) (Vy f(@e,ye-1), Vyf(@e,um1/2)) + 30y Vy f(@e, wm1/2) — Vy f (e, yeo12)]*

o — g Qe T Qi .
:%HVyf(m,uz—l/Q)\F + %Hvyf(xtuyt—l/Q)”Q + 577;||Vyf(fﬂtaut—1/2) = Vi (@, ye-y2)lI?
t 2 ¢ :
'+ 20La2. N, + 20La;_
> IV f @ o) P+ Vs v )l
9 ¢

+ gﬁyHVyf(fEtautA/z) = Vyf (@i, ye—1y2)?

Laf,l
2

t
z%uvyf(xhut—l/Q)HZ + IOLaf,1|\Vyf(xt, Ut—1/2)\|2 + IV f (2, yt—1/2)||2~

9
+ gﬁé”vyf(l’uut—l/z) — Vyf(@e,yeo2)|*

(23)
By the above analysis, we have
T—1
Go— Gr = Z (Gt — Gi41)
t=0
T—1

2 1 1 9
> - ﬁLDy + ; (%Huﬂrl — el + %thﬂ -z + 57];||Vyf($t7ut—1/2) - Vyf(l’t7yt—1/2)||2)

(24)

This completes the proof. O

Appendix D: Proofs of Theorems 1 and 2

Proof of Theorem 1

Proof. Using the definition of the convergence criterion and the update rules in Algorithm 1, we define 7, as
my := (¢, yt ), where 7(x¢, y¢) is defined in (6) in Definition 1. Using the update rules of the primal variable
x and dual variable y in Algorithm 1, non-expensive property of Px and smoothness in Assumption 1, we have

1
Ime)all = = llwe = Px (26 = 1o Vo f (@, yo)|

(25)

1
— ||zt — Tt
N

On the other hand, using the update rule of u:1 in Algorithm 1, non-expensive property of Py and smoothness

in Assumption 1, and let v = X

=3
()l = |lye — Py (ye + 105V f (e, 30)) ||
=Jys = urr1 + Py (ye + 0y Vo (o1, t41/2)) — Py (ye + 70, Vo [, 90)) |
<y llye — e | + ||V f (@err, wigry2) — Vo f (e, y0) |
<A llye = wesr | + Ljuegryz — e || + L llzeys — 2 -

(26)
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Using the above two results, then
2 2 2
eI = [[(7e)I™ + 1 (o) I

N

1
b e — zeall® + 297 lye — wesa||* + AL? [Juesr sz — vel|* + AL w01 — 2

1
(nj + 4L2> e — zeall® + 292 lye — wert|* + 4L2 |ursaye — wel|”
xT

1
- (n— n 4L2) e — 2ol + 292 e — wesn |* + 64L2 (0002 | Vo f @er e s2) — Vi f (e very2) |

@7
The result in (23) can be rewritten as follows:
T-1
Go—Gr =Y (Gi—Gi1)
t=0
2 — /1 1 9
> - ﬁLDy + ; (%HUH—I — el + %”%H —a|® + 577;||Vyf(fﬂt»ut—1/2) - Vyf(xt,yt71/2)||2>
(28)
Similar to HiBSA [27] and APG [44], the first iteration index T" = T such that ||7(z¢, y¢)|| < € is defined as:
T. := min {t|||w(x¢, y¢)|| < €}. Summing up the above inequality for all the iterations t = 0,1, - -+ ,Tc — 1,

we obtain

Go— Gr.

T.—1

> Gy = Gyl

T.—1
1 c 1 2 1 2 9 4 2
2 ﬁLDy + ; (%Hutﬂ —yell” + RH%H —xel|” + gny”vyf($taut71/2) = Vyf(xe, yi—1/2)|l ) :
(29)
Thus,
Te—1
> IImell” < 64L[Go = G, + lyo = will” = llyr.—1 — ur, | (30)
t=0
Using the definition of G4, the following result holds
Go — Gr. = Go — f(zr.,yr.) — 12L|lyr, — ur. 1|
< Go — f(zr,yr.)
= Go — f(wr., ur, 1) + f(rr, ur.—1) — f(zr, yr.) 31)
L, .
< Go — flere, ure—1) + S llyr, — yr.|*
< Go—G+2LD3,.
Using the two inequalities, and the definition of ¢; in Theorem 1, we get
T.—1
> lImll* < 64L (Go — G, +2LD3) . (32)
t=0
Thus,
T.—1
1< o _ 64L 2
T ; [[e]|” < TE(GO - G+2LDy),
2 2
which implies that € > 64L% or equivalently, 7. > 64L%. That is, the gradient
complexity of Algorithm 1 to find an e-stationary point of f is
Go — 2L D3
0 (—0 G+ y) .
€
This completes the proof. O
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Proof of Theorem 2

Proof. Let 2”(7) = argmingex{¢(z) + Lllz — Z*}, ¢(z) = maxyey f(z,y) and ¢1/2(7) =
mingex{¢(z) + L||z — Z||*}. Using the definitions of ¢ and ¢1 />r,, and using Property@ we have

V6120 (@)]° = 4L* [|2*(2) — 7. (33)

Following Property 3 and Lemma 19 in [24], the following result holds with the definition of ¢(x)
max f(Z,y) — max f(z" (%), y) — Lll2" (&) — z|*

yeY
= ¢(@) — ¢(z"(@)) — Ll|2"(@) — 2| (34)
L N o~
> Lo @) - a2,
Let Q" be the solution set of the problem maxyey f(Z,y), and Q™" be the solution set of the problem
maxyey f(z"(Z),y). Andlet y*(Z) € Q" and y* (z* (T) € Q™" respectively, we get

max /@, y) — max f(a" (2),y) — Llla" @) - 3]

=[G @) - @),y (@ @) ~ Ll (3) —
=[G @)~ S@0) + FG.5) ~ [ @),5) + " @).9) ~ [ @)y @ @) - Ll (3) — 7
<V J@9), v (@)~ 5 + (Vo @), B 2" @) - 2@ -7,

(35

where the last inequality holds due to the concavity of f w.r.t. y (i.e..f(Z,y") < f(Z,7) + <Vy Z,9), v —79))
; the smoothness of f (ie., f(z*(Z),9) < f(Z,9) + (V. f(Z,9), =" (T) — T) + H;t*( ) — Z||*) and
fl@*(@),y) — f(z"(@),y" (=*(Z)) <0G .e.,y"(z"(T)) is a solution of maxyey f(z* ( ), ).

~

With Z = x4, ¥ = us, y* (Z) = y* (x¢), we have

L R
0w @I = Lo @) - 2P
< max f(we,y) —max f(a” (z2),y) - Lll2"(2e) - z)?

<AV f(@e,ue), Y™ (we) —ue) + (Vo f (Te—1,y0-1), o0 — 2" (21)) — g“iﬂ*(xt) —
+ (Vaf (e, ut) = Ve f(@e-1,y0-1), 2t — 2" (24))
<AV f(@e, ui1/2), Y (ze) —we) + (Ve f(xe1,yi-1), & —x" (21)) — %Hx*(xt) - »’L’tH2
+ (Vyf(ze,w) = Vyf(@,ue—12), ¥ (@) — ue) + (Vo f(@e, ue—1/2) — Vo f (@e-1,ye-1), Tt — x" (x1))

* 1 . L, .
(ut = ye—1, ¥ (Tt) — ue) + — (Tt — Tt—1, T (T4) — Tt) — ZHHS () — z|?

a
<

&=

t
1 .
+ @HVyf(u’Ut’Ut) — Vyf(@e,ue 1)l + 7,5”1/ (0) — wel|® + 4Ll|lwe — w1 ||* + 4L|Jw—1/2 — ye—a|)®

INe
&
—_

llur = ye1]® +*|th—m’t U+ oz (@) — 2 —*Hw (@) —a|?

321,

t
'!J
Lny

T e T o L
Yy

1 8
< L lue— g + (7 + 4L) ot — 2o |2 + AL o1 /2 — yoos |
2ny, Na

Ly

M

Hut - Ut—1/2||2 + L||Ut—1 - yt—2||2,

(36)
where inequality (a) holds due to optimization condition in the optimal condition, inequality (b) the Cauchy-
Schwarz inequality and smoothness in Assumption 1, and the last inequality holds due to n% lly™ (@) — ue|? <

Y

Llfue—1 = ye—2||* with 7y, = max{(ar — ap—1)/4,4Dy /Lllus—1 — ye—2*}.
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Using Lemma 1 and by the similar derivation with Theorem 1, the complexity of Algorithm 1 to find an

e-stationary point of ¢ is
Dy (Go — G +2LD3)
(@) 2 .

This completes the proof.
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