
Task-Robust Pre-Training for Worst-Case
Downstream Adaptation

Jianghui Wang∗, Yang Chen∗, Xingyu Xie, Cong Fang†, Zhouchen Lin†

School of Intelligence Science and Technology, Peking University

jianghuiwang.ai@gmail.com, {yangchen, xyxie, fangcong, zlin}@pku.edu.cn

Abstract

Pre-training has achieved remarkable success when transferred to downstream
tasks. In machine learning, we care about not only the good performance of
a model but also its behavior under reasonable shifts of condition. The same
philosophy holds when pre-training a foundation model. However, the foundation
model may not uniformly behave well for a series of related downstream tasks.
This happens, for example, when conducting mask recovery regression where the
recovery ability or the training instances diverge like pattern features are extracted
dominantly on pre-training, but semantic features are also required on a downstream
task. This paper considers pre-training a model that guarantees a uniformly good
performance over the downstream tasks. We call this goal as downstream-task
robustness. Our method first separates the upstream task into several representative
ones and applies a simple minimax loss for pre-training. We then design an efficient
algorithm to solve the minimax loss and prove its convergence in the convex setting.
In the experiments, we show both on large-scale natural language processing
and computer vision datasets our method increases the metrics on worse-case
downstream tasks. Additionally, some theoretical explanations for why our loss
is beneficial are provided. Specifically, we show fewer samples are inherently
required for the most challenging downstream task in some cases.

1 Introduction

The rapid development of machine learning is promoting a shift in the learning paradigm, where one
first trains a very large model, often called a foundation model, with massive data, and then adapts it
to desired tasks using much less data. The hope is to obtain a model that serves as an infrastructure
and is transferable to a wide range of tasks. Pre-training plays the role of an engine to acquire the
foundation model. Typical pre-training methods are to minimize the average expected risks of the
upstream tasks. Such pre-trained models can achieve good performance for a lot of downstream
tasks but may fail in some hard cases. For example, a vision pre-trained model for animal and plant
recognition may work well for typical characteristics species but fail when identifying mimicry
animals and plants; a common green mantis can be correctly recognized as a mantis, while an orchid
mantis might be falsely classified as an orchid.

In machine learning, one cares about not only the good performance of a model but also its behavior
under reasonable shifts of conditions. The same philosophy holds for pre-training a foundation model.
To guarantee a uniformly good performance over a series of tasks, one has to consider the robustness
of pre-training. We call this downstream-task robustness. The aim is to develop a pre-training method
to train the foundation model that admits a good adaptation performance over a series of downstream
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tasks. It is crucial to achieving the downstream-task robustness for pre-training: (i) safety is critical
for some applications, such as deep learning systems in medicine and finance; (ii) our goal of the
foundation model requires reliably good performance on all downstream tasks.

In recent times, popular large-scale models like ChatGPT [46] have also faced safety issues, sparking
discussions among various stakeholders [8]. The concerns largely stem from the potential misuse or
unintended behavior of the model in real-world applications. Some argue that the vast and diverse
knowledge base of these models, coupled with their ability to generate human-like text, could
be leveraged for malicious purposes. Others worry about the potential of the model to generate
inappropriate or harmful content [47].

Addressing these safety concerns is crucial, particularly in the context of pre-training foundation
models that are intended for downstream tasks. An initial way to mitigate these safety issues is to
consider downstream-task robustness. By focusing on downstream-task robustness, we expect that
the models are resilient to perturbations in the input data, thereby reducing their susceptibility to
adversarial attacks or misuse. This approach can help in maintaining consistent performance across a
range of tasks and so enhance the safety and reliability of the model.

In recent years, the concept of Distributionally Robust Optimization (DRO) [6, 44, 36] has attracted
wide attention among theorists and practitioners. Most DRO frameworks [55, 23, 22] consider
training a parameterized model that minimizes the worst-case expectation loss over the data from a
family of probability distributions. Downstream-task robustness can be considered a generalization
of DRO. The destination of downstream-task robustness is to guarantee good worst-case performance
for a series of downstream adaptations.

This paper proposes a pre-training method as a starting point for downstream-task robustness. To
take a step forward, our method considers learning several upstream tasks. The choice of how to
design the upstream tasks allows us to incorporate prior knowledge of the domain and problems. For
example, in language models, we can design upstream tasks by masking different types of words;
how we generate such upstream tasks by grouping samples reflects our prior knowledge of the natural
language. Then instead of minimizing the average expected risk of the upstream tasks, we minimize
the worst-case expected risk. We also introduce a simple but practical algorithm called softmax
weighted gradient descent to pre-train the model. We prove the algorithm’s convergence in the ideal
convex setting and show its effectiveness in our empirical study.

We consider the application of the framework in two experiments — Part-of-Speech masked language
models in section 4.1 and multi-modal masked image models in section 4.2. We first pre-train a
foundation model with the proposed task-robust pre-training method on multiple upstream tasks
generated by different masks and adapt the foundation model for downstream tasks. Compared with
the average expected risk minimization, our method achieves better worst-case performance and
comparable average performance on all downstream tasks.

We also explain why our framework can benefit downstream-task robustness. Specifically, by simpli-
fying the model-task relationship, we show fewer samples are needed for the hardest downstream
task. The key intuition is that proper worse-case training for upstream tasks leads to an initiation
close to the solution for the worst-case downstream tasks, thus reducing the downstream burden.

The contributions of our study can be primarily encapsulated within three key areas: (i) The introduc-
tion of the concept of task-robust pretraining, a novel theoretical framework that holds significant
potential for future research. (ii) The provision of a simple yet efficacious method for task-robust
pretraining, accompanied by a comprehensive exposition of its theoretical feasibility. (iii) A series of
empirical validations across multiple domains, substantiating the effectiveness of our methodology.

2 Setup and Methodology

Consider a traditional machine learning task where the data z ∈ Z follows an underlying distribution
P . Given a model, a parameter space Θ ⊂ Rd, a loss function ℓ : Θ × Z 7→ R+, the goal is to
find the optimal parameter θ∗ for the model such that θ∗ = argminθ∈Θ Ez∼P [ℓ (θ, z)]. The classic
empirical risk minimization (ERM) tackles the problem by first collecting i.i.d. training data {zi}Ni=1
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from P and then finding a parameter θ̂ERM via minimizing the empirical risk:

θ̂ERM := argmin
θ∈Θ

1

n

N∑
i=1

ℓ (θ, zi) . (1)

In statistical learning theory, it is well-known that under mild conditions (such as the VC dimension
of the model is bounded above), θ̂ERM is a good approximation of θ∗ in the sense that with high
probability at least 1− δ ( 0 < δ ≪ 1),

Ez∼P

[
ℓ
(
θ̂ERM, z

)]
−min

θ∈Θ
Ez∼P [ℓ (θ, z)] ≤ ϵ, (2)

when the number of training samples N is sufficiently large. We simply denote the training data
requirement by N(ϵ, δ).

In machine learning, a foundation model is trained and then adapted for each downstream task. The
adaptation process involves initializing a downstream model with the pre-trained foundation model’s
parameters and then training on the downstream task. Denote the parameter of the foundation model
by θfoundation. Let Λ be the downstream task space. The goal is to find an initial parameter θfoundation
that enables fast adaptations for each downstream task λ ∈ Λ. Different downstream tasks are
characterized by different loss functions with a shared data distribution 3. We use the foundation
model’s parameters θfoundation as initialization to find an approximately optimal parameter θ̂λ,ERM by
ERM. We study the sample complexity required to guarantee a good approximate solution with high
probability while considering the effect of initialization. For the task λ and the model initialized by
θfoundation, denote the number of samples required to find an ϵ-approximately optimal parameter by
ERM with probability at least 1−δ as Nλ (θfoundation, ϵ, δ). The aim is to find the optimal initialization
that minimizes the worst-case sample complexity required to find an approximately optimal parameter
for all tasks, i.e.,

θ∗foundation := argmin
θfoundation∈Θ

max
λ∈Λ

Nλ (θfoundation, ϵ, δ) . (3)

Directly training for the optimal worst-case initialization is generally infeasible or computationally
expensive. Pre-training provides a feasible alternative θ∗pre-train for θ∗foundation by training for available
surrogate upstream tasks. When the upstream tasks are related to the downstream tasks, the pre-
trained parameter can lead to lower initial expected risks and accelerate downstream training. For
example, if we pre-train a model on generated upstream tasks of reconstructing images corrupted by
different masks, the pre-trained model can learn some prior knowledge for general vision tasks; with
the pre-trained parameter as the initialization, we can accelerate the training process of downstream
vision tasks such as image classification and object detection [13]. Consider there are T representative
upstream tasks. Denote the loss function of the task t as ℓt. A typical choice of the pre-trained
parameter is the minimizer of the average expected risk over the T upstream tasks [43, 18, 29], i.e.,

θ∗average := argmin
θ∈Θ

1

T

T∑
t=1

Ez∼P [ℓt (θ, z)] . (4)

However, minimizing the average expected risk over upstream tasks may neglect extreme cases and
lead to limited benefit for some downstream tasks.

To alleviate the aforementioned issue of the average expected risk minimization, we propose to use
the minimizer of the worst-case expected risks over the upstream tasks, i.e.,

θ∗max := argmin
θ∈Θ

max
t∈[T ]

Ez∼P [ℓt (θ, z)] , (5)

as the initial parameter, where [m] denotes the set {1, . . . ,m}. We show that θ∗max is a better choice
than θ∗average in terms of downstream-task robustness.

3Data distributions vary for different tasks can be modelled by incorporating weighting functions from the
data distributions to the loss functions. Consider a task where the data distribution is Pt and dPt

dP
(z) > 0 for all

z ∈ supp(Pt), the expected loss is Ez∼Pt [ℓ(θ, z)]. The expected loss can still be rewritten as Ez∼P [ℓt(θ, z)],
where ℓt(θ, z) =

dPt
dP

(z)ℓ(θ, z).
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3 Algorithm

Recall that our minimax pre-training method is to minimize the worst-case expected risks over the
upstream tasks, i.e.,

min
θ∈Θ

max
t∈[T ]

Ez∼P [ℓt (θ, z)] (6)

There is extensive literature on minimax optimization. The minimax optimization algo-
rithms can be generally classified into two types: (i) minimization for the maximum function
maxt∈[T ] Ez∼P [ℓt (θ, z)] [12, 4, 60, 28], and (ii) direct minimax optimization for the objective
[35, 59, 45, 37, 38]. We introduce a new simple optimization algorithm called softmax weighted
gradient descent (Algorithm 1) that we find is very practical to pre-train the model. The algorithm can
be roughly seen as the first type. It is an adaptation of the classic subgradient descent for minimizing
the maximum function to enable its practical use in pre-training. Concretely, in one update, we take
a descent step at the current point θ along the direction of the gradient weighted by softmax-type
weights, i.e.,

∑T
t=1 wα,t (θ)∇θEz∼P [ℓt (θ, z)], where

wα,t (θ) :=
exp (αEz∼P [ℓt (θ, z)])∑T

t′=1 exp (αEz∼P [ℓt′ (θ, z)])
, (7)

and α > 0 is a hyperparameter. (In practice, we use estimations for the expected risks and the
gradients on minibatch samples.)

The motivation behind softmax weighted gradient descent is to use the softmax weighted gradient
to approximate the subgradient in the classic subgradient descent for the minimax optimization of
(6). As the softmax weighted gradient descent algorithm optimizes for the minimax loss directly, it
can achieve better worst-case loss than other pre-training methods. One advantage of the softmax
approximation is that it avoids the non-differentiability caused by the maximum operator via the
softmax approximation, making the algorithm easily implementable for pre-training applications.
Also, as the softmax weighted gradient descent includes only single weighted gradient step in each
update, it has computational efficiency comparable to gradient descent in deep learning. In contrast,
standard minimax algorithms often cost several times gradient oracles in single step. Moreover, our
algorithm can be directly combined with commonly-used optimization tricks in deep learning, such
as momentum and adaptive learning rates. In our experiments, we observe that the algorithm with a
simple implementation achieves better worst-case errors in various real-world tasks than a number of
benchmark pre-training algorithms.

Algorithm 1 Softmax Weighted Gradient Descent

Input: Step sizes {ηk}K−1
k=1 , softmax hyperparameters {αk}K−1

k=0 and an initial parameter θ0;
for k = 1, . . . ,K − 1 do

Compute the softmax weights {wαk,t (θk−1)}Tt=1 as in (7);
Update the parameter as θk ← θk−1 − ηk

∑T
t=1 wαk,t (θk−1)∇θEz∼P [ℓt (θk−1, z)];

end for

For completeness, we also provide some convergence analysis for our proposed algorithm. We
consider a relatively basic setting where for all t ∈ [T ], the loss function ℓ(·, z) is convex and
L′-Lipschitz continuous for any fixed z ∈ Z Intuitively, when the hyperparameter αk is sufficiently
large, the function

∑T
t=1 wαk,t (θk)Ez∼P [ℓt (θ, z)] is a good differentiable approximation for the

objective Ez∼P [ℓt (θ, z)] Softmax weighted gradient descent can be roughly seen as a remedy for
non-differentiability in subgradient descent, at the expense of controllable approximation errors. We
show in Theorem 3.1 that Algorithm 1 can achieve a convergence rate O

(
1√
K

)
if the hyperparameter

αk is as large as Õ(
√
k). This result is comparable to the standard convergence rate O

(
1√
K

)
of

subgradient descent [10, Chapter 3].

Theorem 3.1. Suppose that for all t ∈ [T ] the loss function ℓt(·, z) is convex, L′-Lipschitz continuous
and bounded by B for all θ ∈ Θ and any fixed z ∈ Z. Denote the optimal solution of (6) as θ∗ and
the distance ∥θ0 − θ∗∥ as R0. If the step size ηk = η = R0

L′
√
K

and the softmax hyperparameter

αk ≥ 4
√
k+1

R0L′ log 4TB
√
k+1

R0L′ for all k = 0, . . . ,K − 1, the average θ̄K of the iteration points in
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Figure 1: Part-of-Speech Mask BERT. We first sample the datasets from the task space and group
them according to different Part-of-Speech types, and then recover the predicted sentence by a BERT
encoder. The optimizer selects the most challenging task and then updates the model’s weight through
a minimax layer.

Algorithm 1, i.e., θ̄K = 1
K

∑K−1
k=0 θk, satisfies

max
t∈[T ]

Ez∼P [ℓ1]−min
θ∈Θ

max
t∈[T ]

Ez∼P [ℓ2] ≤
2R0L

′
√
K

, (8)

where ℓ1 = ℓt
(
θ̄K , z

)
and ℓ2 = ℓt (θ, z).

Remark 3.2. The convexity assumption on the loss functions is an oversimplification in deep learning.
However, for some cases such as the neural tangent kernel [32], the deep neural networks exhibit
properties similar to convexity. In our experiments with non-convex models, we also observe that the
algorithm behaves well.
Remark 3.3. The above analysis requires increasing softmax hyperparameters {αk}K−1

k=0 , i.e., αk=

Õ
(√

k
)

to guarantee the convergence rate. In our experiments, however, we find that constant
softmax hyperparameters, or more concretely αk = 1 for all k = 0, . . . ,K − 1, work well for most
problems. We attribute these phenomena to some properties of deep neural networks, which are left
for future exploration.

4 Experiments

In this section, we subject our methods to rigorous testing through two experiments, each encompass-
ing tasks germane to the fields of Natural Language Processing (NLP) and Computer Vision (CV).
A minimalist design approach was adopted for both the models and the tasks to demonstrate the
universality of our design across a broad spectrum of model tasks. We extended the functionalities of
BERT and MAE, thereby constructing Part-of-Speech Mask BERT (PoS-BERT) and Multi-Modal
Mask MAE (MM-MAE), respectively.

4.1 NLP Scenario: Part-of-Speech Mask BERT

4.1.1 Model and Settings

Architectures An overview of the Part-of-Speech Mask BERT model is shown in Figure 1. PoS-
BERT model first samples the datasets from the task space and groups them according to different
Part-of-Speech types. The loss function term is calculated separately for each data group entering
the BERT encoder. The loss term with the highest weight is selected to enter the optimizer through
a minimax layer. Finally, we run experiments on downstream tasks to compare our minimax task

5



Table 1: Results on GLUE. The "Averages" are obtained from GLUE leaderboard. F1 scores are
reported for QQP and MRPC. , spearman correlations are reported for STS-B, Matthews correlations
are reported for CoLA, and accuracy scores are reported for the other tasks.

Model Task-Balancing MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg.
BERT - 84.6 71.2 90.5 93.5 52.2 85.8 88.9 66.4 79.6

PoS-BERT None 84.9 72.6 89.1 90.8 54.4 83.6 88.1 68.2 79.3
Minimax (Ours) 85.6 76.9 88.6 91.3 61.4 84.2 88.2 70.7 81.4 (+1.8)
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Figure 2: Multi-Modal Mask MAE: Randomly sampled patches from multiple modalities are
projected to tokens. Task-specific decoders reconstruct the masked-out patches by first performing a
cross-attention step from queries to the encoded tokens.

balancing learning algorithm with other methods to verify our theory. We follow the common practice
to design the feature representations for masked language modeling and next-sentence prediction.

Tasks and Datasets During pre-training, Part-of-Speech Mask BERT has two objectives: masked
language modeling and next-sentence prediction. We define 9 task categories that recover different
parts of speech-type words on masked language modeling: (1)verb, (2) noun, (3) adjective, (4)
determiner, (5) adverb, (6) pronoun, (7) preposition, (8) conjunction, (9) interjection. Following
previous work [18, 48, 40] , we evaluate our pre-trained models on downstream tasks using the
GLUE [64] benchmarks. Downstream tasks we fine-tuned include MNLI, QQP, QNLI, SST-2, CoLA,
STS-B, MRPC, and RTE. By swapping out the appropriate inputs and outputs, Part-of-Speech Mask
BERT can model many downstream tasks and has a unified way to handle the tasks that involve single
text and text pairs. After setting the masks, we utilize Natural Language Toolkitannotate (NLTK) [7]
to pseudo-label the words with POS annotations.

4.1.2 Quantitative Result

Quantitative results are presented in Table 1. Our model obtains comparable results on GLUE tasks.
PoS-BERT with minimax task-balancing outperforms on half tasks by a substantial margin and
obtains a 1.8% average score improvement over BERT. As for the most challenging training task,
CoLA, which has the lowest accuracy on BERT, our method gets a 9.2% improvement which is a
significant boost among downstream tasks. Benefiting from task-robust grouping, on QQP and RTE
tasks, our method outperforms the original BERT by 5.7 F1-score and 4.3% accuracy, respectively.
Our method also shows superiority on the challenging downstream task, MNLI, by achieving a 1.1%
higher matched accuracy. As compensation for working better on the more challenging tasks, our
method loses little correctness on some downstream tasks that already transfer well. On QNLI, SST-2,
STS-B, and MRPC, our results are lower than that of the original BERT model by a margin of 1%
accuracy, 1.9% accuracy, 1.6 spearson correlation, and 0.7 F1-score. The empirical result shows that,
with our task-robust pre-training strategy, the downstream tasks perform on the whole, especially
those tricky tasks. We expect future work to further improve these results by incorporating more
sophisticated multi-task and grouping procedures.
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Table 2: Comparison between task-robust method and other task-balancing methods on ImageNet1K
and ImageNetS50 pre-training. Our methodology demonstrates superior performance across the
majority of downstream tasks, particularly excelling in the most challenging among them.

Pre-training Downstream
Data Epoch Task-Balancing Cls. (Top-1 Acc. %) Semseg. (mIoU) Depth. (δ1 Acc. %)

ImageNetS50 800

None 92.2 51.9 52.1
Uncertainty [34] 92.6 54.5 70.2
GradNorm [16] 93.0 56.5 65.8
DWA [39] 93.4 52.7 65.7
Minimax(Ours) 91.8 61.5 74.1

ImageNet1K
400 Uncertainty 82.6 48.9 85.2

Minimax(Ours) 82.3 50.1 85.3

1600 Uncertainty 83.3 52.0 86.4
Minimax(Ours) 83.0 53.2 86.8

Table 3: A qualitative comparison between task balancing techniques. T representing the computation
cost when no additional task-balancing techniques are employed.

Method Balance
Magnitude

Balance
Learning

Grads
Required

No Extra
Tuning FLOPs Motivation

None ✓ ✓ T /
Uncertainty ✓ ✓ 2T Homoscedastic uncertainty
Gradnorm ✓ ✓ ✓ ✓ 4T Balance learning and magnitudes
DWA ✓ 3T Balance learning
Minimax (Ours) ✓ ✓ 2T Task robust

4.2 CV Scenario: Multi-Modal Mask MAE

4.2.1 Model and Settings

Architectures An overview of MM-MAE is shown in Figure 4.1.2. Multi-Modal Mask MAE
contains three encoders, each of which processes different modalities of one image. During pre-
training, we try to recover each modality from its masked tokens. Each modality is divided into
16×16 patches and then tokenize the patches with modality-dependent linear projections. Projected
patches are concatenated into a sequence of tokens and given as input to the same transformer encoder.
We also add a global token with 2D sine-cosine positional embeddings. Each task owns a specialized
decoder, and the computational cost of decoders scales linearly with the number of tasks.

Tasks and Datasets We select two datasets with different scales, ImageNet1K [53] and Ima-
geNetS50 [25], to conduct unsupervised training upstream to see whether the minimax pre-training
method can help the downstream tasks with poor performance. The classification task is evaluated on
the validation part of the original dataset, while the semantic segmentation and depth estimation tasks
are validated on the NYUv2 dataset [56] by fine-tuning. Due to the absence of a sizeable multi-task
dataset with aligned task images [19, 2] we generate pseudo-labels on ImageNet and ImageNetS50
with GPT-3 and Mask2Former.

4.2.2 Quantitative Result

Classification tasks The quantitative results are presented in Table 2. We evaluate our models and
baseline by fine-tuning them on the supervised ImageNetS50 and ImageNet1K. We fine-tune our
models for 100 epochs and report the top-1 validation accuracy. The result shows a tiny gap between
our method and the average method in the classification task. Classification tasks are regarded as
the least challenging task category of the three. Cause different downstream tasks have different
optimal parameter requirements, this gap is unavoidable. After the pre-training of the model reaches
a specific step, the training weight of the classification tasks will continue to decrease.

Semantic segmentation tasks We further evaluate our models on semantic segmentation tasks
on the NYUv2 dataset. We report the mean intersection over the union (mIoU) metric. Notice that
semantic segmentation is the most challenging task of these downstream transfers. Our method
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(a) Input (b) None (c) Uncertainty (d) Gradnorm (e) DWA (f) Minimax(Ours) (g) Ground truth

Figure 3: Comparative intermediate results. The first and final columns represent the image input
and ground truth, respectively, while the intermediary images depict the intermediate results yielded
by various task-balancing methodologies. Distinct colors correspond to the prediction of different
objects. Our approach ensures robustness in downstream tasks.

benefits more than the average loss model from pseudo-labeled modalities as input. In particular,
the correctness is improved by 9.6% on ImageNetS50 pre-training. With the progress of model
training, our task-robust loss forces the model to improve poorly trained semantic segmentation tasks
by increasing the training weight. The following section 5 will explain why a simple strategy can
significantly help worst-case downstream tasks.

Depth evaluate tasks For depth estimation, we use NYUv2 . We report δ1 on the NUYv2 test set,
showing the percentage of pixels p with error max { ŷp

yp
, yp

ŷp
} less than 1.25 [20]. According to Table 2,

the accuracy is improved by 3.9% on ImageNetS50 pre-training with the help of the downstream-task
robustness loss function. The depth estimation task in the same data volume has a higher tolerance for
prediction errors per pixel than semantic segmentation. However, it is still more complicated than the
classification task, which only predicts the image once. After the classification task is well-trained,
the depth estimation task will benefit from our strategy in the subsequent training.

4.3 Qualitative Comparison

Table 2 delineates several strategies designed to equilibrate the contribution of each task during the
training of a multi-task network. For a qualitative comparison of these methods, refer to Table 3. We
appraise these strategies based on several criteria [61]. An overview of our examination suggests that
our approach achieves a synergistic blend of simplicity, efficiency, and effectiveness.

To facilitate a more intuitive comparison of the differences in results throughout the training process,
we undertook downstream tasks in semantic segmentation, comparing the performance of various
approaches midway through pre-training (400 epoch, ImageNetS50). As depicted in Figure 3, our
methodology exhibits superior performance, even under conditions of insufficient training.

5 Explanation

We show why the proposed minimax pre-training method can be more effective than the average
expected risk minimization in some cases. We consider a simplification of the model and the task
relationship. Such a simplification makes our analysis convenient and intuitive. We assume that for
all t ∈ [T ], the function ℓt(·, z) is µ-strongly-convex, L-smooth, and L′-Lipschitz continuous for
any fixed z ∈ Z and the function ℓt(·, ·) ≤ B for all θ ∈ Θ and z ∈ Z4. Note that pre-training on

4In fact, it is sufficient to assume that the expectation Ez[ℓt(·, z)] is µ-strongly-convex, L-smooth, and
L′-Lipschitz continuous.
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irrelevant upstream tasks does little help to the downstream tasks in general. Here, we only discuss
the case where the upstream tasks and the downstream tasks are closed related. We ideally assume
that the loss functions of the downstream tasks are convex combinations of the loss functions of the
upstream tasks, i.e.,

ℓλ =

T∑
t=1

λtℓt, for allλ ∈ Λ = ∆T , (9)

where ∆T is the (T − 1)-dimensional probability simplex. We further assume that for each task there
exists a parameter such that the expected risk of the task is zero, i.e., minθ∈Θ Ez∼P [ℓt (θ, z)] = 0
for all t ∈ [T ].

We first show that in the above setting, the proposed minimax optimization pre-training method can
guarantee a better worst-case initial expected risk than the minimization method.

Proposition 5.1. Let θ∗max and θ∗average be the pre-trained parameters obtained by minimizing the
maximal expected risk and the average expected risk, respectively. Then for the worst-case expected
risks of the downstream tasks, we have

max
λ∈Λ

Ez∼P [ℓλ(θ
∗
max, z)]≤max

λ∈Λ
Ez∼P

[
ℓλ
(
θ∗average, z

)]
. (10)

Remark 5.2. The gap between maxλ∈Λ Ez∼P [ℓλ (θ
∗
max, z)] and maxλ∈Λ Ez∼P

[
ℓλ
(
θ∗average, z

)]
can be large. We provide an example in the appendix, where the ratio between
maxλ∈Λ Ez∼P

[
ℓλ
(
θ∗average, z

)]
and maxλ∈Λ Ez∼P [ℓλ (θ

∗
max, z)] is as large as O(T ).

We then illustrate that a good initialization can serve as an implicit regularization. We suppose that the
downstream tasks are trained with gradient descent. (For stochastic gradients with bounded variances,
the analysis below also holds for sufficiently small step sizes, within neglectable approximation
errors.) For the downstream task λ, with certain step sizes, the parameters will always be in a subset

Θλ(θ0)=

{
θ∈Θ | ∥θ−θ∗λ∥

2≤ 2

µ
Ez∼P [ℓλ (θ0, z)]

}
, (11)

where θ0 is the initial parameter and θ∗λ = argminθ∈Θ Ez∼P [ℓλ (θ, z)].

Proposition 5.3. Suppose that a function f : Rd 7→ R is µf -strongly-convex and Lf -smooth for all
x ∈ Rd and x∗ ∈ argminx∈Rd f(x). Let {xk}K−1

k=0 be the sequence generated by gradient descent
with a step size η > 0, i.e., xk = xk−1 − η∇f(xk−1) for all k ∈ [K − 1]. If the step size η ≤ 1

Lf
,

then we have

∥xk − x∗∥2 ≤ 2

µf
(f(x0)− f(x∗)) , (12)

for all k = 0, 1, . . . ,K − 1.

By Proposition 5.3, we can deem that the downstream task’s parameter space is the subset Θλ(θ0).

Consider the worst sample complexity to find an ϵ-approximately optimal parameter by ERM within
the parameter space Θλ(θ0) for a downstream task λ ∈ Λ.

Theorem 5.4. The worst-case sample complexity maxλ∈Λ Nλ (θ0, ϵ, δ) with initialization θ0 satisfies

max
λ∈Λ

Nλ (θ0, ϵ, δ) ≤
8dB2

ϵ2
log

(
1 +

16L′

ϵ

√
2

µ
max
λ∈Λ

Ez∼P [ℓλ (θ0, z)]

)
+

8B2

ϵ2
log

2

δ
. (13)

Theorem 5.4 characterizes the upper bound of the worst-case sample complexity of downstream tasks.
If we regard ϵ and δ as constants, the worst-case sample complexity with respect to the initializa-
tion θ0 is O (logmaxλ∈Λ Ez∼P [ℓλ (θ0, z)]). Combined with (10), Theorem 5.4 demonstrates that
the proposed minimax pre-training procedure implies tighter sample complexity than the average
minimization pre-training procedure in the worst case. Though the dependency on the worst-case
initial expected risk is logarithmic in the upper bound analysis, we find that the initialization can have
an evident effect on the generalization of the downstream tasks in practice. We claim that the upper
bound for general cases may not be tight for our deep learning applications. Special structures in
applications might lead to tighter bounds for generalization errors, which remains for further study.
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6 Conclusion

This paper introduces the concept of downstream-task robustness for pre-training, aiming to improve
the performance of foundation models across various downstream tasks. As models such as ChatGPT
become more prevalent, safety and consistent performance are increasingly important. Our proposed
minimax loss for pre-training, validated through extensive experiments, offers a potential solution
to enhance the robustness and safety of such models. In the future, we will explore grouping the
upstream tasks adaptively. We would say though still in its early stages, the study of downstream-task
robustness holds significant promise for the reliable and safe deployment of AI infrastructure.
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Supplementary Materials

A Related Work

Minimax Optimization in Deep Learning. Minimax optimization has wide application in deep
learning, e.g., adversarial robustness [11, 17], distributional robustness [22, 36, 54], adversarial
generative models [27], imitation learning [68, 30]. In the field of pre-training, previous work has
employed minimax optimization for adversarial robustness [15, 33]. Our work proposes a minimax
optimization procedure for pre-training but with a different formulation. While the previous works
aims at adversarial robustness, our work focus on the worst-case generalization of downstream tasks.

Masked language modeling. Masked language modeling (MLM) was first proposed by [57] as
a Cloze task. Adapted as a novel pre-training task, MLM and its autoregressive counterpart ,e.g.,
BERT [18], GPT [49, 50, 9], and T5 [51], are highly successful methods to deal with NLP problems.
MLM first masks out some tokens from the input sentences and then trains the model to retrieve
the missing context from the rest of the tokens. These methods have been demonstrated to scale
excellently so that various downstream tasks can utilize the pre-trained representations. In particular,
BERT is constructed based on the transformer [62] model. After preparing the input samples, an
embedding layer and a stack of Transformer layers are followed to conduct the bi-directional semantic
modeling. We exploit BERT, the most typical masked language model, as the backbone model to
process our ablation experiments.

Masked image modeling. Encouraged by transformers, which have gradually become a primary
architecture for generic language understanding, ViT [21] later illusion the potential of adopting a
pure transformer in image tasks. To generalize better for vision tasks and motivated by the success
of BERT [18] in NLP, many recent works propose various masked image prediction methods for
pre-training vision models in a self-supervised way. These methods reconstruct the target such as
pixels [1, 14, 21, 24, 29, 66], discrete tokens [5, 67], and (deep) features [3, 65]. Notably, the
masked autoencoder (MAE) [29] adopts an asymmetric design to allow the large encoder to operate
only on unmasked patches and is followed by a lightweight decoder to reconstruct the complete
signal from the latent representation along with mask tokens. MultiMAE [2] leverages the efficiency
of the MAE approach and extends it to multi-modal and multitask settings. Based on MultiMAE, we
apply our approach to increase the transfer capability for downstream tasks.

B Proofs

B.1 Convergence Rate of Algorithm 1

B.1.1 Proof of Theorem 3.1

For notation simplicity, we define that

ft(θ) := Ez∼P [ℓt (θ, z)] ,

Fk(θ) :=

T∑
t=1

wα,t (θk)Ez∼P [ℓt (θ, z)] ,

F (θ) := max
t∈[T ]

ft(θ),

where wα,t (θ) =
exp(αEz∼P [ℓt(θ,z)])∑T

t′=1
exp(αEz∼P [ℓt′ (θ,z)])

.

Our proof consists of two parts. The first part is to show how well Fk(θk) approximates F (θk) with
our choice of the softmax hyperparameter α. The second part is to analyze the dynamics of the
algorithm and the total convergence rate.
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We first show that Fk(θk) ≥ F (θk) +
R0L

′

2
√
k+1

for αk ≥ 4
√
k+1

R0L′ log 4TB
√
k+1

R0L′ . Define Tk,ϵ(θ) =

{t ∈ [T ] | ft (θk) ≥ F (θk)− ϵ}. If αk ≥ 1
ϵk

log TB
ϵk

for an ϵk > 0 , we have

Fk(θk) =

T∑
t=1

wαk,t (θk) ft(θk)

≥
∑

t∈Tk,ϵk
(θk)

wαk,t (θk) ft(θk)

(A)

≥

∑
t∈Tk,ϵk

(θk)
exp (αkft(θk))∑T

t′=1 exp (αkft′(θk))
(F (θk)− ϵk)

=

[
1 +

∑
t̸∈Tk,ϵk

(θk)
exp (αkft(θk))∑

t′∈Tk,ϵk
(θk)

exp (αkft′(θk))

]−1

(F (θk)− ϵk)

(B)

≥
[
1 +

T exp (αk (F (θk)− ϵk))

exp (αkF (θk))

]−1

(F (θk)− ϵk)

= [1 + T exp (−αkϵk)]
−1

(F (θk)− ϵk)

(C)

≥ F (θk)− 2ϵk.

The inequality A is due to the definition of Tk,ϵ(θ). The inequality B is because∑
t ̸∈Tk,ϵk

(θk)
exp (αkft(θk)) ≤ T exp (αk (F (θk)− ϵk)) by the definition of Tk,ϵ(θ) and there

exists t∗k ∈ Tk,ϵk(θ) such that ft∗k = F (θk), which further implies
∑

t′∈Tk,ϵk
(θk)

exp (αkft′(θk)) ≥
exp (αkF (θk)). The inequality C is because the hyperparameter αk ≥ 1

ϵk
log TB

ϵk
. Specifically, let

ϵk = R0L
′

4
√
k+1

and αk ≥ 4
√
k+1

R0L′ log 4TB
√
k+1

R0L′ correspondingly, we have Fk(θk) ≥ F (θk) +
R0L

′

2
√
k+1

for all k = 0, . . . ,K − 1.

We then analyze the dynamics of the algorithm and give the total convergence rate. For k =
0, . . . ,K − 1, it holds that

Fk(θk)
(A)

≤ Fk(θ
∗) + ⟨∇Fk(θk), θk − θ∗⟩

(B)
= Fk(θ

∗) +
1

2η

(
∥θk+1 − θk∥2 + ∥θk − θ∗∥2 − ∥θk+1 − θ∗∥2

)
,

(14)

where θ∗ ∈ argmaxθ∈Θ F (θ). The inequality A is due to the convexity of Fk(θ). The equal-
ity B is due to the update steps θk+1 = θk − η∇Fk(θk) in Algorithm 1 and the fact ⟨a, b⟩ =
1
2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
.

Plugging the approximation error Fk(θk) ≥ F (θk) +
R0L

′

2
√
k+1

and the inequality Fk(θ) ≤ F (θ) for
k = 0, . . . ,K − 1 and all θ ∈ Θ into (14), we have

F (θk) ≤ F (θ∗) +
1

2η

(
∥θk+1 − θk∥2 + ∥θk − θ∗∥2 − ∥θk+1 − θ∗∥2

)
+

R0L
′

2
√
k + 1

. (15)
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Taking the average over k = 0, . . . ,K − 1, we further have

1

K

K−1∑
k=0

F (θk) ≤ F (θ∗) +
1

2η

(
K−1∑
k=0

∥θk+1 − θk∥2 + ∥θ0 − θ∗∥2 − ∥θK − θ∗∥2
)

+
1

K

K−1∑
k=0

R0L
′

2
√
k + 1

≤ F (θ∗) +
1

2η

(
K−1∑
k=0

∥θk+1 − θk∥2 + ∥θ0 − θ∗∥2
)

+
1

K

K−1∑
k=0

R0L
′

2
√
k + 1

(A)

≤ F (θ∗) +
1

2η

(
K−1∑
k=0

∥θk+1 − θk∥2 + ∥θ0 − θ∗∥2
)

+
R0L

′
√
K

(B)

≤ F (θ∗) +
KL′2η

2
+

R2
0

2η
+

R0L
′

√
K

(C)
= F (θ∗) +

2R0L
′

√
K

.

(16)
The inequality A is due to the fact

∑K
k=1

1√
k

< 2
√
K. The inequality B is because for

k = 0, . . . ,K − 1, the function Fk(θ) is L′-Lipschitz continuous, which implies ∥θk+1 − θk∥2 =

η2 ∥∇Fk(θk)∥2 ≤ η2L′2. The equality C is due to our choice for the step sizes, i.e., ηk = η = R0

L′
√
K

for all k = 0, . . . ,K − 1.

By the convexity of F (θ), we have F (θ̄K) ≤ 1
K

∑K−1
k=0 F (θk). Combined with (16), we attain the

desired result.

B.2 Analysis for the Minimax Pre-training Method

B.2.1 Proof of Proposition 5.1

By the assumption on the downstream task losses ℓλ and the task space Λ, the equation

max
λ∈Λ

Ez∼P [ℓλ (θ, z)] = max
t∈[T ]

Ez∼P [ℓt (θ, z)]

holds for all θ ∈ Θ.

By the definition of θ∗max, we have

max
λ∈Λ

Ez∼P [ℓλ (θ
∗
max, z)] = max

t∈[T ]
Ez∼P [ℓt (θ

∗
max, z)]

≤ max
t∈[T ]

Ez∼P

[
ℓt
(
θ∗average, z

)]
= max

λ∈Λ
Ez∼P

[
ℓλ
(
θ∗average, z

)]
,

which is the result to prove.

B.2.2 Proof of Proposition 5.3

Proposition 5.3 is a standard result of gradient descent for strongly-convex and smooth functions. We
include the proof here for completeness. By the convexity of f(x) and the choice of the step size η
we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
Lf

2
∥xk+1 − xk∥2

= f(xk)−
(
1

η
− L

2

)
∥xk+1 − xk∥2

≤ f(xk),

which means the objective values are nonincreasing and implies f(xk) ≤ f(x0) for all k ∈ [K].

By the µf -strongly convexity at the point x∗, it holds for all x ∈ Rd that

∥x− x∗∥2 ≤ 2

µf
(f(x)− f(x∗)) . (17)
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Combining (17) and the sequence {f(xk)}Kk=0 decreasing, we obtain

∥xk − x∗∥2 ≤ 2

µf
(f(x0)− f(x∗)) , for all k = 0, 1, . . . ,K − 1,

as desired.

B.2.3 Proof of Theorem 5.4

The following proposition characterizes the sample complexity to find an ϵ-approximately optimal
parameter by ERM for a downstream task λ within the parameter space Θλ(θ0). Theorem 5.4 follows
directly from Proposition B.1 by considering the worst-case downstream task λ ∈ Λ. The remaining
is to prove Proposition B.1.
Proposition B.1. For a given task λ ∈ Λ and a parameter space Θλ(θ0), let the parameter
θ̂∗λ ∈ Θλ(θ0) be the minimizer in of the empirical risk for Nλ i.i.d. samples {zi}Ni=1 from a distribution
P , i.e., θ̂∗λ = argminθ∈Θλ(θ0)

= 1
Nλ

∑Nλ

i=1 ℓλ(θ, zi). The parameter θ̂∗λ is ϵ-approximately optimal
with probability at least 1− δ if

Nλ ≥
8dB2

ϵ2
log

(
1 +

16L′

ϵ

√
2

µ
E∗
)
+

8B2

ϵ2
log

2

δ
, (18)

where E∗ = Ez∼P [ℓλ (θ0, z)].

Denote Ez∼P [ℓλ (θ, z)] as fλ(θ) and 1
N

∑N
i=1 ℓλ(θ, zi) as f̂λ(θ). First, we note

Pr
(
fλ

(
θ̂∗λ

)
− fλ (θ

∗
λ) ≥ ϵ

)
=Pr

([
fλ

(
θ̂∗λ

)
− f̂λ

(
θ̂∗λ

)]
+
[
f̂λ

(
θ̂∗λ

)
− f̂λ (θ

∗
λ)
]
+
[
f̂λ (θ

∗
λ)− fλ (θ

∗
λ)
]
≥ ϵ
)

(A)

≤ Pr
([

fλ

(
θ̂∗λ

)
− f̂λ

(
θ̂∗λ

)]
+
[
f̂λ (θ

∗
λ)− fλ (θ

∗
λ)
]
≥ ϵ
)

≤Pr

(
2 sup
θ∈Θλ(θ0)

∣∣∣fλ (θ)− f̂λ (θ)
∣∣∣ ≥ ϵ

)

=Pr

(
sup

θ∈Θλ(θ0)

∣∣∣fλ (θ)− f̂λ (θ)
∣∣∣ ≥ ϵ

2

)
.

(19)

The inequality A is because f̂λ

(
θ̂∗λ

)
− f̂λ (θ

∗
λ) ≤ 0 by the definition of θ̂∗λ.

We derive the upper bound by covering numbers. We only consider Euclidean space for simplicity.
Definition B.2 (Covering numbers [63, Chapter 4]). Consider a subset S ⊂ Rd and let ϵ > 0. A
subsetN ⊂ S is called an ϵ-net of S if every point in S is within distance ϵ of some points ofN , i.e.,
for all x ∈ S, there exists x0 ∈ N such that ∥x− x0∥ ≤ ϵ. The smallest possible cardinality of an
ϵ-net of S is called the covering number of S and is denoted C(S, ϵ), i.e.,

C(S, ϵ) := min {|N | | N is an ϵ-net ofS} .

Consider an ϵ′-net N (Θλ(θ0), ϵ
′) of Θλ(θ0) where ϵ′ = ϵ

8L′ . By the definition of ϵ′-net, we have

sup
θ∈Θλ(θ0)

∣∣∣fλ (θ)− f̂λ (θ)
∣∣∣ ≤ sup

θ∈N (Θλ(θ0),ϵ′)

∣∣∣fλ (θ)− f̂λ (θ)
∣∣∣+ ϵ

4
. (20)

Combining (19) and (20), we obtain

Pr
(
fλ

(
θ̂∗λ

)
− fλ (θ

∗
λ) ≥ ϵ

)
≤Pr

(
sup

θ∈N (Θλ(θ0),ϵ′)

∣∣∣fλ (θ)− f̂λ (θ)
∣∣∣ ≥ ϵ

4

)
≤C (Θλ(θ0), ϵ

′) sup
θ∈N (Θλ(θ0),ϵ′)

Pr
(∣∣∣fλ (θ)− f̂λ (θ)

∣∣∣ ≥ ϵ

4

) (21)

We leverage the upper bounds of covering numbers of balls [63, Chapter 4].
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Lemma B.3. The covering number of a ball of radius R, denoted as BR, in Rd satisfies

C(BR, ϵ) ≤
(
2R

ϵ
+ 1

)d

.

By Lemma B.3, we have

C (Θλ(θ0), ϵ
′) ≤

(
2Rλ

ϵ′
+ 1

)d

, (22)

where Rλ =
√

2
µEz∼P [ℓλ (θ0, z)].

By Hoeffording’s inequality, for each θ ∈ N (Θλ(θ0), ϵ
′), we have

Pr
(∣∣∣fλ (θ)− f̂λ (θ)

∣∣∣ ≥ ϵ

4

)
≤ 2 exp

(
− nϵ2

8B2

)
(23)

Plugging (22) and (23) into (21), we have

Pr
(
fλ

(
θ̂∗λ

)
− fλ (θ

∗
λ) ≥ ϵ

)
≤ 2

(
2Rλ

ϵ′
+ 1

)d

exp

(
−Nλϵ

2

8B2

)
. (24)

By (24), when the number of samples Nλ satisfies

Nλ ≥
8dB2

ϵ2
log

(
1 +

16L′

ϵ

√
2

µ
Ez∼P [ℓλ (θ0, z)]

)
+

8B2

ϵ2
log

2

δ
,

we have Pr
(
fλ

(
θ̂∗λ

)
− fλ (θ

∗
λ) ≥ ϵ

)
≤ δ.

C Example for Remark 5.2

Consider an extreme example where Θ = R, Ez∼P [ℓ1(θ, z)] = A(θ − 1)2 where 1 < A < T

and Ez∼P [ℓt(θ, z)] = θ2 for t = 2, . . . , T . Then we have θ∗max =
√
A√

A−1
and θ∗average = A

A+T−1 . It
further implies that

ℓmax := max
λ∈Λ

Ez∼P [ℓλ (θ
∗
max, z)] =

A(√
A− 1

)2 ,
ℓaverage := max

λ∈Λ
Ez∼P

[
ℓλ
(
θ∗average, z

)]
=

A(T − 1)2

(A+ T − 1)2
.

If A = T − 1, we have ℓaverage

ℓmax
≥ 1

4

(√
T − 1− 1

)2
, which is as large as O(T ).

D Training details

D.1 Part-of-Speech Mask BERT Training Setting

In this work, we denote the number of layers (i.e., Transformer blocks) as L, the hidden size as H ,
and the number of self-attention heads as A. For comparison purposes, we primarily report results
on two models with the same size: PoS-BERTBASE and BERTBASE(L=12, H=768, A=12, Total
Parameters=110M). The model is trained with AdamW [42] by setting β1 = 0.9, β2 = 0.999, ϵ = 1e-6,
and L2 weight decay of 0.01. The learning rate is warmed up over the first 10K steps to a peak value
of 1e-4, then linearly decayed. We duplicate training data ten times to avoid using the same mask
for each training instance in every epoch so that each sequence is masked in 10 different ways over
the 40 training epochs. Thus, each training sequence was seen with the same mask four times. The
hyperparameters for experiments are shown as Table 4 and Table 5.
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Hyperparam Part-of-Speech Mask BERT
Number of Layers 12
Hidden size 768
Attention heads 12
Attention heads size 64
Dropout 0.1
Warmup steps 10K
Peak Learning Rate 2e-4
Batch Size 256
Weight Decay 0.01
Max Steps 1000K
Learning Rate Decay Linear
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 0.0

Table 4: Hyperparameters for pre-training Part-of-Speech
Mask BERT.

Hyperparam GLUE
Learning Rate 2e-5
Batch Size 32
Weight Decay 0.1
Learning Rate Decay Linear
Warmup Ratio 0.06

Table 5: Hyperparameters for fine-
tuning Part-of-Speech Mask BERT
on GLUE.

D.2 Multi-Modal Mask MAE Training Setting

We use Vit-B [21] with a patch size of 16×16 pixels as the backbone for our MAE experiments, and
estimate the model’s performance under different pre-training epochs, i.e., 400 and 1,600 epochs on
ImageNet1K and 800 epochs on ImageNetS50. We choose AdamW as the optimizer with a base
learning rate of 1e-4 and weight decay of 0.05. We first warm up the learning rate with 40 epochs
and then decay it with cosine decay [41]. We set the batch size to 2048 and trained the models using
8×A100 GPUs with automatic mixed precision enabled. Our data augmentations are straightforward.
We randomly crop the images, setting the random scale between 0.2 and 1.0 and the random aspect
ratio between 0.75 and 1.33. Afterward, we resize the crops to 224×224 pixels and apply a random
horizontal flip with a probability of 0.5. The hyperparameters for experiments are shown as Table 6
and Table 7.

Hyperparam {None, GradNorm, DWA} Uncertainty Minimax
Batch Size 2048 2048 2048
Learning Rate 8e-4 8e-4 8e-4
Min Learning Rate 1e-6 1e-6 1e-6
Weight Decay 0.05 0.05 0.05
Adamw ϵ 1e-8 1e-8 1e-8
Adamw β1 0.9 0.9 0.9
Adamw β2 0.95 0.95 0.95
Epoch {800} {400, 800, 1600} {400, 800, 1600}
Warm up Epoch 40 40 40
Learning Rate Schedule cosine decay cosine decay cosine decay
Non-masked tokens 98 98 98
Input resolution 224×224 224×224 224×224
Augmentation RandomResizeCrop RandomResizeCrop RandomResizeCrop
Dropout 0.0 0.0 0.0
Patch Size 16 16 16

Table 6: Hyperparameters for pre-training Multi-Modal Mask MAE. We only pre-train 800 epochs
on ImageNetS50, and pre-train both 400 and 1600 epochs on ImageNet1K.
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Hyperparam Classification Semantic Segmentation Depth
ImageNet1K ImageNetS50 ImageNetS50 NYUv2 NYUv2

Epoch 100 100 100 100 2000
Warm up Epoch 5 5 20 20 100
Batch Size 1024 1024 1024 1024 2048
Learning Rate 4e-3 4e-3 1e-4 1e-4 1e-4
Min Learning Rate 1e-6 1e-6 1e-6 1e-6 0
Weight Decay 0.05 0.05 0.05 0.05 1e-4
Adamw β1 0.9 0.9 0.9 0.9 0.9
Adamw β2 0.999 0.999 0.999 0.999 0.999
Layer Decay 0.65 0.65 0.75 0.75 0.75
Patch Size 16 16 16 16 16
Drop path 0.1 0.1 0.1 0.1 /
LR Schedule cosine decay cosine decay cosine decay cosine decay cosine decay
Input resolution 224×224 224×224 224×224 224×224 256×256
Augmentation Rand(9, 0.5) Rand(9, 0.5) LSJ LSJ LSJ

Table 7: Hyperparameters for fine-tuning Multi-Modal Mask MAE on various downtasks. The
augmentation strategy LSJ is large scale jittering [26]. And we use drop path [31] in classification
and semantic segmentation tasks.

E Limitation

Contemporary pre-training models are consistently enlarging in size. However, due to limitations
associated with computational power and the non-disclosure tendency of large-scale models, we
were unable to conduct our experimentation directly on ultra-large models such as LLaMA [58],
GPT3 [9], and V-MoE [52]. Notwithstanding, we have validated our hypothesis on two commonly
encountered domains and model frameworks, thus illustrating the extensive applicability of our
proposed methodology.
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