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A Related Work14

Minimax Optimization in Deep Learning. Minimax optimization has wide application in deep15

learning, e.g., adversarial robustness [6, 9], distributional robustness [12, 20, 27], adversarial16

generative models [15], imitation learning [35, 17]. In the field of pre-training, previous work has17

employed minimax optimization for adversarial robustness [8, 19]. Our work proposes a minimax18

optimization procedure for pre-training but with a different formulation. While the previous works19

aims at adversarial robustness, our work focus on the worst-case generalization of downstream tasks.20

Masked language modeling. Masked language modeling (MLM) was first proposed by [28] as21

a Cloze task. Adapted as a novel pre-training task, MLM and its autoregressive counterpart ,e.g.,22

BERT [10], GPT [23, 24, 5], and T5 [25], are highly successful methods to deal with NLP problems.23

MLM first masks out some tokens from the input sentences and then trains the model to retrieve24

the missing context from the rest of the tokens. These methods have been demonstrated to scale25

excellently so that various downstream tasks can utilize the pre-trained representations. In particular,26
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BERT is constructed based on the transformer [30] model. After preparing the input samples, an27

embedding layer and a stack of Transformer layers are followed to conduct the bi-directional semantic28

modeling. We exploit BERT, the most typical masked language model, as the backbone model to29

process our ablation experiments.30

Masked image modeling. Encouraged by transformers, which have gradually become a primary31

architecture for generic language understanding, ViT [11] later illusion the potential of adopting a32

pure transformer in image tasks. To generalize better for vision tasks and motivated by the success33

of BERT [10] in NLP, many recent works propose various masked image prediction methods for34

pre-training vision models in a self-supervised way. These methods reconstruct the target such as35

pixels [1, 7, 11, 13, 16, 33], discrete tokens [4, 34], and (deep) features [3, 32]. Notably, the masked36

autoencoder (MAE) [16] adopts an asymmetric design to allow the large encoder to operate only on37

unmasked patches and is followed by a lightweight decoder to reconstruct the complete signal from38

the latent representation along with mask tokens. MultiMAE [2] leverages the efficiency of the MAE39

approach and extends it to multi-modal and multitask settings. Based on MultiMAE, we apply our40

approach to increase the transfer capability for downstream tasks.41

B Proofs42

B.1 Convergence Rate of Algorithm 143

B.1.1 Proof of Theorem 3.144

For notation simplicity, we define that45

ft(θ) := Ez∼P [ℓt (θ, z)] ,

Fk(θ) :=

T∑
t=1

wα,t (θk)Ez∼P [ℓt (θ, z)] ,

F (θ) := max
t∈[T ]

ft(θ),

where wα,t (θ) =
exp(αEz∼P [ℓt(θ,z)])∑T

t′=1
exp(αEz∼P [ℓt′ (θ,z)])

.46

Our proof consists of two parts. The first part is to show how well Fk(θk) approximates F (θk) with47

our choice of the softmax hyperparameter α. The second part is to analyze the dynamics of the48

algorithm and the total convergence rate.49

We first show that Fk(θk) ≥ F (θk) +
R0L

′

2
√
k+1

for αk ≥ 4
√
k+1

R0L′ log 4TB
√
k+1

R0L′ . Define Tk,ϵ(θ) =50

{t ∈ [T ] | ft (θk) ≥ F (θk)− ϵ}. If αk ≥ 1
ϵk

log TB
ϵk

for an ϵk > 0 , we have51

Fk(θk) =

T∑
t=1

wαk,t (θk) ft(θk)

≥
∑

t∈Tk,ϵk
(θk)

wαk,t (θk) ft(θk)

(A)

≥

∑
t∈Tk,ϵk

(θk)
exp (αkft(θk))∑T

t′=1 exp (αkft′(θk))
(F (θk)− ϵk)

=

[
1 +

∑
t̸∈Tk,ϵk

(θk)
exp (αkft(θk))∑

t′∈Tk,ϵk
(θk)

exp (αkft′(θk))

]−1

(F (θk)− ϵk)

(B)

≥
[
1 +

T exp (αk (F (θk)− ϵk))

exp (αkF (θk))

]−1

(F (θk)− ϵk)

= [1 + T exp (−αkϵk)]
−1

(F (θk)− ϵk)

(C)

≥ F (θk)− 2ϵk.
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The inequality A is due to the definition of Tk,ϵ(θ). The inequality B is because52 ∑
t ̸∈Tk,ϵk

(θk)
exp (αkft(θk)) ≤ T exp (αk (F (θk)− ϵk)) by the definition of Tk,ϵ(θ) and there53

exists t∗k ∈ Tk,ϵk(θ) such that ft∗k = F (θk), which further implies
∑

t′∈Tk,ϵk
(θk)

exp (αkft′(θk)) ≥54

exp (αkF (θk)). The inequality C is because the hyperparameter αk ≥ 1
ϵk

log TB
ϵk

. Specifically, let55

ϵk = R0L
′

4
√
k+1

and αk ≥ 4
√
k+1

R0L′ log 4TB
√
k+1

R0L′ correspondingly, we have Fk(θk) ≥ F (θk) +
R0L

′

2
√
k+1

56

for all k = 0, . . . ,K − 1.57

We then analyze the dynamics of the algorithm and give the total convergence rate. For k =58

0, . . . ,K − 1, it holds that59

Fk(θk)
(A)

≤ Fk(θ
∗) + ⟨∇Fk(θk), θk − θ∗⟩

(B)
= Fk(θ

∗) +
1

2η

(
∥θk+1 − θk∥2 + ∥θk − θ∗∥2 − ∥θk+1 − θ∗∥2

)
,

(1)

where θ∗ ∈ argmaxθ∈Θ F (θ). The inequality A is due to the convexity of Fk(θ). The equal-60

ity B is due to the update steps θk+1 = θk − η∇Fk(θk) in Algorithm 1 and the fact ⟨a, b⟩ =61
1
2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
.62

Plugging the approximation error Fk(θk) ≥ F (θk) +
R0L

′

2
√
k+1

and the inequality Fk(θ) ≤ F (θ) for63

k = 0, . . . ,K − 1 and all θ ∈ Θ into (1), we have64

F (θk) ≤ F (θ∗) +
1

2η

(
∥θk+1 − θk∥2 + ∥θk − θ∗∥2 − ∥θk+1 − θ∗∥2

)
+

R0L
′

2
√
k + 1

. (2)

Taking the average over k = 0, . . . ,K − 1, we further have65

1

K

K−1∑
k=0

F (θk) ≤ F (θ∗) +
1

2η

(
K−1∑
k=0

∥θk+1 − θk∥2 + ∥θ0 − θ∗∥2 − ∥θK − θ∗∥2
)

+
1

K

K−1∑
k=0

R0L
′

2
√
k + 1

≤ F (θ∗) +
1

2η

(
K−1∑
k=0

∥θk+1 − θk∥2 + ∥θ0 − θ∗∥2
)

+
1

K

K−1∑
k=0

R0L
′

2
√
k + 1

(A)

≤ F (θ∗) +
1

2η

(
K−1∑
k=0

∥θk+1 − θk∥2 + ∥θ0 − θ∗∥2
)

+
R0L

′
√
K

(B)

≤ F (θ∗) +
KL′2η

2
+

R2
0

2η
+

R0L
′

√
K

(C)
= F (θ∗) +

2R0L
′

√
K

.

(3)
The inequality A is due to the fact

∑K
k=1

1√
k

< 2
√
K. The inequality B is because for66

k = 0, . . . ,K − 1, the function Fk(θ) is L′-Lipschitz continuous, which implies ∥θk+1 − θk∥2 =67

η2 ∥∇Fk(θk)∥2 ≤ η2L′2. The equality C is due to our choice for the step sizes, i.e., ηk = η = R0

L′
√
K

68

for all k = 0, . . . ,K − 1.69

By the convexity of F (θ), we have F (θ̄K) ≤ 1
K

∑K−1
k=0 F (θk). Combined with (3), we attain the70

desired result.71

B.2 Analysis for the Minimax Pre-training Method72

B.2.1 Proof of Proposition 5.173

By the assumption on the downstream task losses ℓλ and the task space Λ, the equation74

max
λ∈Λ

Ez∼P [ℓλ (θ, z)] = max
t∈[T ]

Ez∼P [ℓt (θ, z)]

holds for all θ ∈ Θ.75
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By the definition of θ∗max, we have76

max
λ∈Λ

Ez∼P [ℓλ (θ
∗
max, z)] = max

t∈[T ]
Ez∼P [ℓt (θ

∗
max, z)]

≤ max
t∈[T ]

Ez∼P

[
ℓt
(
θ∗average, z

)]
= max

λ∈Λ
Ez∼P

[
ℓλ
(
θ∗average, z

)]
,

which is the result to prove.77

B.2.2 Proof of Proposition 5.378

Proposition 5.3 is a standard result of gradient descent for strongly-convex and smooth functions. We79

include the proof here for completeness. By the convexity of f(x) and the choice of the step size η80

we have81

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
Lf

2
∥xk+1 − xk∥2

= f(xk)−
(
1

η
− L

2

)
∥xk+1 − xk∥2

≤ f(xk),

which means the objective values are nonincreasing and implies f(xk) ≤ f(x0) for all k ∈ [K].82

By the µf -strongly convexity at the point x∗, it holds for all x ∈ Rd that83

∥x− x∗∥2 ≤ 2

µf
(f(x)− f(x∗)) . (4)

Combining (4) and the sequence {f(xk)}Kk=0 decreasing, we obtain84

∥xk − x∗∥2 ≤ 2

µf
(f(x0)− f(x∗)) , for all k = 0, 1, . . . ,K − 1,

as desired.85

B.2.3 Proof of Theorem 5.486

The following proposition characterizes the sample complexity to find an ϵ-approximately optimal87

parameter by ERM for a downstream task λ within the parameter space Θλ(θ0). Theorem 5.4 follows88

directly from Proposition B.1 by considering the worst-case downstream task λ ∈ Λ. The remaining89

is to prove Proposition B.1.90

Proposition B.1. For a given task λ ∈ Λ and a parameter space Θλ(θ0), let the parameter91

θ̂∗λ ∈ Θλ(θ0) be the minimizer in of the empirical risk for Nλ i.i.d. samples {zi}Ni=1 from a distribution92

P , i.e., θ̂∗λ = argminθ∈Θλ(θ0)
= 1

Nλ

∑Nλ

i=1 ℓλ(θ, zi). The parameter θ̂∗λ is ϵ-approximately optimal93

with probability at least 1− δ if94

Nλ ≥ 8dB2

ϵ2
log

(
1 +

16L′

ϵ

√
2

µ
E∗
)
+

8B2

ϵ2
log

2

δ
, (5)

where E∗ = Ez∼P [ℓλ (θ0, z)].95

Denote Ez∼P [ℓλ (θ, z)] as fλ(θ) and 1
N

∑N
i=1 ℓλ(θ, zi) as f̂λ(θ). First, we note96

Pr
(
fλ

(
θ̂∗λ

)
− fλ (θ

∗
λ) ≥ ϵ

)
=Pr

([
fλ

(
θ̂∗λ

)
− f̂λ

(
θ̂∗λ

)]
+
[
f̂λ

(
θ̂∗λ

)
− f̂λ (θ

∗
λ)
]
+
[
f̂λ (θ

∗
λ)− fλ (θ

∗
λ)
]
≥ ϵ
)

(A)

≤ Pr
([

fλ

(
θ̂∗λ

)
− f̂λ

(
θ̂∗λ

)]
+
[
f̂λ (θ

∗
λ)− fλ (θ

∗
λ)
]
≥ ϵ
)

≤Pr

(
2 sup
θ∈Θλ(θ0)

∣∣∣fλ (θ)− f̂λ (θ)
∣∣∣ ≥ ϵ

)

=Pr

(
sup

θ∈Θλ(θ0)

∣∣∣fλ (θ)− f̂λ (θ)
∣∣∣ ≥ ϵ

2

)
.

(6)
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The inequality A is because f̂λ

(
θ̂∗λ

)
− f̂λ (θ

∗
λ) ≤ 0 by the definition of θ̂∗λ.97

We derive the upper bound by covering numbers. We only consider Euclidean space for simplicity.98

Definition B.2 (Covering numbers [31, Chapter 4]). Consider a subset S ⊂ Rd and let ϵ > 0. A99

subset N ⊂ S is called an ϵ-net of S if every point in S is within distance ϵ of some points of N , i.e.,100

for all x ∈ S, there exists x0 ∈ N such that ∥x− x0∥ ≤ ϵ. The smallest possible cardinality of an101

ϵ-net of S is called the covering number of S and is denoted C(S, ϵ), i.e.,102

C(S, ϵ) := min {|N | | N is an ϵ-net ofS} .

Consider an ϵ′-net N (Θλ(θ0), ϵ
′) of Θλ(θ0) where ϵ′ = ϵ

8L′ . By the definition of ϵ′-net, we have103

sup
θ∈Θλ(θ0)

∣∣∣fλ (θ)− f̂λ (θ)
∣∣∣ ≤ sup

θ∈N (Θλ(θ0),ϵ′)

∣∣∣fλ (θ)− f̂λ (θ)
∣∣∣+ ϵ

4
. (7)

Combining (6) and (7), we obtain104

Pr
(
fλ

(
θ̂∗λ

)
− fλ (θ

∗
λ) ≥ ϵ

)
≤Pr

(
sup

θ∈N (Θλ(θ0),ϵ′)

∣∣∣fλ (θ)− f̂λ (θ)
∣∣∣ ≥ ϵ

4

)
≤C (Θλ(θ0), ϵ

′) sup
θ∈N (Θλ(θ0),ϵ′)

Pr
(∣∣∣fλ (θ)− f̂λ (θ)

∣∣∣ ≥ ϵ

4

) (8)

We leverage the upper bounds of covering numbers of balls [31, Chapter 4].105

Lemma B.3. The covering number of a ball of radius R, denoted as BR, in Rd satisfies106

C(BR, ϵ) ≤
(
2R

ϵ
+ 1

)d

.

By Lemma B.3, we have107

C (Θλ(θ0), ϵ
′) ≤

(
2Rλ

ϵ′
+ 1

)d

, (9)

where Rλ =
√

2
µEz∼P [ℓλ (θ0, z)].108

By Hoeffording’s inequality, for each θ ∈ N (Θλ(θ0), ϵ
′), we have109

Pr
(∣∣∣fλ (θ)− f̂λ (θ)

∣∣∣ ≥ ϵ

4

)
≤ 2 exp

(
− nϵ2

8B2

)
(10)

Plugging (9) and (10) into (8), we have110

Pr
(
fλ

(
θ̂∗λ

)
− fλ (θ

∗
λ) ≥ ϵ

)
≤ 2

(
2Rλ

ϵ′
+ 1

)d

exp

(
−Nλϵ

2

8B2

)
. (11)

By (11), when the number of samples Nλ satisfies111

Nλ ≥ 8dB2

ϵ2
log

(
1 +

16L′

ϵ

√
2

µ
Ez∼P [ℓλ (θ0, z)]

)
+

8B2

ϵ2
log

2

δ
,

we have Pr
(
fλ

(
θ̂∗λ

)
− fλ (θ

∗
λ) ≥ ϵ

)
≤ δ.112

C Training details113

C.1 Part-of-Speech Mask BERT Training Setting114

In this work, we denote the number of layers (i.e., Transformer blocks) as L, the hidden size as H ,115

and the number of self-attention heads as A. For comparison purposes, we primarily report results116

5



on two models with the same size: PoS-BERTBASE and BERTBASE(L=12, H=768, A=12, Total117

Parameters=110M). The model is trained with AdamW [22] by setting β1 = 0.9, β2 = 0.999, ϵ = 1e-6,118

and L2 weight decay of 0.01. The learning rate is warmed up over the first 10K steps to a peak value119

of 1e-4, then linearly decayed. We duplicate training data ten times to avoid using the same mask120

for each training instance in every epoch so that each sequence is masked in 10 different ways over121

the 40 training epochs. Thus, each training sequence was seen with the same mask four times. The122

hyperparameters for experiments are shown as Table 1 and Table 2.123

Hyperparam Part-of-Speech Mask BERT
Number of Layers 12
Hidden size 768
Attention heads 12
Attention heads size 64
Dropout 0.1
Warmup steps 10K
Peak Learning Rate 2e-4
Batch Size 256
Weight Decay 0.01
Max Steps 1000K
Learning Rate Decay Linear
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 0.0

Table 1: Hyperparameters for pre-training Part-of-Speech
Mask BERT.

Hyperparam GLUE
Learning Rate 2e-5
Batch Size 32
Weight Decay 0.1
Learning Rate Decay Linear
Warmup Ratio 0.06

Table 2: Hyperparameters for fine-
tuning Part-of-Speech Mask BERT
on GLUE.

C.2 Multi-Modal Mask MAE Training Setting124

We use Vit-B [11] with a patch size of 16×16 pixels as the backbone for our MAE experiments, and125

estimate the model’s performance under different pre-training epochs, i.e., 400 and 1,600 epochs on126

ImageNet1K and 800 epochs on ImageNetS50. We choose AdamW as the optimizer with a base127

learning rate of 1e-4 and weight decay of 0.05. We first warm up the learning rate with 40 epochs128

and then decay it with cosine decay [21]. We set the batch size to 2048 and trained the models using129

8×A100 GPUs with automatic mixed precision enabled. Our data augmentations are straightforward.130

We randomly crop the images, setting the random scale between 0.2 and 1.0 and the random aspect131

ratio between 0.75 and 1.33. Afterward, we resize the crops to 224×224 pixels and apply a random132

horizontal flip with a probability of 0.5. The hyperparameters for experiments are shown as Table 3133

and Table 4.134

D Limitation135

Contemporary pre-training models are consistently enlarging in size. However, due to limitations136

associated with computational power and the non-disclosure tendency of large-scale models, we137

were unable to conduct our experimentation directly on ultra-large models such as LLaMA [29],138

GPT3 [5], and V-MoE [26]. Notwithstanding, we have validated our hypothesis on two commonly139

encountered domains and model frameworks, thus illustrating the extensive applicability of our140

proposed methodology.141
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Hyperparam {None, GradNorm, DWA} Uncertainty Minimax
Batch Size 2048 2048 2048
Learning Rate 8e-4 8e-4 8e-4
Min Learning Rate 1e-6 1e-6 1e-6
Weight Decay 0.05 0.05 0.05
Adamw ϵ 1e-8 1e-8 1e-8
Adamw β1 0.9 0.9 0.9
Adamw β2 0.95 0.95 0.95
Epoch {800} {400, 800, 1600} {400, 800, 1600}
Warm up Epoch 40 40 40
Learning Rate Schedule cosine decay cosine decay cosine decay
Non-masked tokens 98 98 98
Input resolution 224×224 224×224 224×224
Augmentation RandomResizeCrop RandomResizeCrop RandomResizeCrop
Dropout 0.0 0.0 0.0
Patch Size 16 16 16

Table 3: Hyperparameters for pre-training Multi-Modal Mask MAE. We only pre-train 800 epochs
on ImageNetS50, and pre-train both 400 and 1600 epochs on ImageNet1K.

Hyperparam Classification Semantic Segmentation Depth
ImageNet1K ImageNetS50 ImageNetS50 NYUv2 NYUv2

Epoch 100 100 100 100 2000
Warm up Epoch 5 5 20 20 100
Batch Size 1024 1024 1024 1024 2048
Learning Rate 4e-3 4e-3 1e-4 1e-4 1e-4
Min Learning Rate 1e-6 1e-6 1e-6 1e-6 0
Weight Decay 0.05 0.05 0.05 0.05 1e-4
Adamw β1 0.9 0.9 0.9 0.9 0.9
Adamw β2 0.999 0.999 0.999 0.999 0.999
Layer Decay 0.65 0.65 0.75 0.75 0.75
Patch Size 16 16 16 16 16
Drop path 0.1 0.1 0.1 0.1 /
LR Schedule cosine decay cosine decay cosine decay cosine decay cosine decay
Input resolution 224×224 224×224 224×224 224×224 256×256
Augmentation Rand(9, 0.5) Rand(9, 0.5) LSJ LSJ LSJ

Table 4: Hyperparameters for fine-tuning Multi-Modal Mask MAE on various downtasks. The
augmentation strategy LSJ is large scale jittering [14]. And we use drop path [18] in classification
and semantic segmentation tasks.
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