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Equilibrium Image Denoising With
Implicit Differentiation
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Abstract— Recent efforts on learning-based image denoising
approaches use unrolled architectures with a fixed number of
repeatedly stacked blocks. However, due to difficulties in training
networks corresponding to deeper layers, simply stacking blocks
may cause performance degradation, and the number of unrolled
blocks needs to be manually tuned to find an appropriate value.
To circumvent these problems, this paper describes an alternative
approach with implicit models. To our best knowledge, our
approach is the first attempt to model iterative image denoising
through an implicit scheme. The model employs implicit differen-
tiation to calculate gradients in the backward pass, thus avoiding
the training difficulties of explicit models and elaborate selection
of the iteration number. Our model is parameter-efficient and has
only one implicit layer, which is a fixed-point equation that casts
the desired noise feature as its solution. By simulating infinite
iterations of the model, the final denoising result is given by
the equilibrium that is achieved through accelerated black-box
solvers. The implicit layer not only captures the non-local self-
similarity prior for image denoising, but also facilitates training
stability and thereby boosts the denoising performance. Extensive
experiments show that our model leads to better performances
than state-of-the-art explicit denoisers with enhanced qualitative
and quantitative results.

Index Terms— Image denoising, deep equilibrium models.

I. INTRODUCTION

ALTHOUGH the number of digital images taken every
day is rapidly increasing, noise corruption is inevitable

irrespective of the acquisition method, making it challenging
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to acquire high quality images. Therefore, image denoising
is required to recover a clean image from its noise-corrupted
observation. As a classical and fundamental problem in low
level vision, image denoising has been extensively studied for
many years; however, it is still a research hotspot because
denoising can be adopted by many other image restoration
problems as a building block [1], [2], [3], [4], which further
broadens its applicability.

Many well-known classical image denoising approaches
[5], [6], [7] are implemented by iterative algorithms that
decompose the task into successive subtasks. As the iteration
progresses, we expect to have an image sequence, whose
restoration qualities get better as the iterations progress.
Instead of making a clean image estimate only based on
the noisy observation, taking previous estimates into con-
sideration can provide valuable information for recovering
the high-quality clean image. Despite numerous architec-
tures proposed [6], [7], [8], it remains an open task about
how to effectively design an iterative denoiser. Traditional
model-based denoisers perform noise removal with manually
designed iteration maps and termination conditions. Although
such approaches can yield desirable theoretical guarantees,
they have limited effectiveness in recovering signals due to
their inability to leverage large amounts of available data.
As an alternative, one popular learning-based approach that
involves augmenting standard iterative denoisers with learned
deep networks, has achieved a significant boost in performance
by learning from a training set of degraded and ground-truth
image pairs [9]. The basic idea is to unroll a fixed number
of neural network blocks, where each block corresponds to an
iteration, and then the parameters are optimized end-to-end by
gradient methods. However, training deep neural networks is
a challenging task. First, backpropagation via the chain rule
necessitates that the intermediate values of these layers be
stored. As a result, the number of iterations are constrained
by memory and computation consumption. Second, training
deep models faces optimization problems such as gradient
exploding and gradient saturation as the number of iteration
steps increases. Consequently, after a few numbers of blocks,
simply increasing the unrolling steps cannot improve the
performance further, therefore they have to manually tune the
iteration number to find an appropriate value. This is quite
different from traditional variational denoisers which iterate
until convergence to produce the final prediction. With only
limited iterations, the dynamic of existing iterative approaches
is non-convergent, which means that the output of each layer
may vary a lot. As a result, when we increase (or decrease)
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Fig. 1. An example showing that an inappropriate number of iterations in existing denoising methods, e.g., NLRN [10], may result in inferior performance.
As a comparison, our model gives reliable denoised results with a limited number of solver iterations, and at the same time we do not face a performance
degradation as the iteration number grows. From left to right: i) Monarch, an image in the Set12 dataset corrupted with the noise level of 25, ii)-v) the
denoised results with different number of iterations, vi) the ground truth clean image. The PSNR and SSIM values are given below the corresponding image.

the iteration number, the performance will degrade a lot,
as the model will perform differently from how it was trained.
In other words, these models have to go through the same
computation graph in inference as they did in training, as Fig. 1
shows.

In this work, we take an implicit scheme for image denois-
ing. Ideally, we hope to design a denoiser, which will not
face performance degradation as the iteration grows, thus we
can have a better performance with infinite iterations than
existing iterative approaches with finite iterations. In order
to achieve the goal, we develop a novel implicit denoising
neural network. The core of the network is a fixed-point
equation, whose solution (i.e., “equilibrium”) is the desired
representation to restore the noise. We name the model Noise
Equilibrium Reaching Denoiser (NERD), since we cast the
noise feature as the equilibrium, and can reach the noise equi-
librium when making denoised image predictions. Compared
to previous iterative approaches, our method has the following
advantages: (i) It largely mitigates the training problems of
iterative scheme by employing implicit differentiation as a
powerful tool to calculate gradients. (i i) It is totally learnable
and does not have to manually select the iteration number by
simulating models with “infinite” iterations. (i i i) The model
allows us to flexibly adopt different numbers of iterations for
training and inference, thus giving us the ability to navigate
a trade-off between computation time and accuracy during
inference. As shown in Fig. 1, we have a reliable equilibrium
approximate with very limited iterations, and at the same time
we do not face a performance degradation as the iteration
progresses.

To summarize, this paper has three key contributions:
• To our best knowledge, the proposed method is the

first attempt to model iterative image denoising using an
implicit scheme. Benefiting from the scheme, we do not
have to manually tune the iteration number.

• We propose a novel model design for NERD, which not
only takes advantage of the self-similarity property, but

also can be explained by traditional variational denoisers.
In addition, we introduce useful techniques that further
help training of implicit models.

• Experiments show that our model yields a consis-
tent improvement in performance above state-of-the-art
approaches, both visually and quantitatively. Moreover,
the parameter amount is significantly reduced, which
indicates the high efficiency of our model.

We structure the paper as follows. First, we provide back-
ground materials on related iterative denoising approaches and
implicit neural networks in Sec. II. Next, we introduce the
overall proposed method in Sec. III, and describe the implicit
denoising module in detail in Sec. IV. Then we introduce the
model training in Sec. V and describe the relationships to prior
works in Sec. VI. We show empirical understanding of the
proposed method and experimentally compare it with state-of-
the-art approaches in Sec. VII. Finally, we draw conclusions
in Sec. VIII.

II. RELATED WORK

A. Image Denoising

Problem Setup. The problem of image denoising aims to
reconstruct the original image x from its noisy observation

y = x − n. (1)

In this setting, x, y, n ∈ RNC are the vectorized versions of the
latent clean image, the observed noisy image and the noise,
respectively. Here N is the number of pixels, and C is the
number of image channels.

Numerous successful iterative algorithms have been
developed for image denoising over the years. We can
broadly divide the methods into two categories: model-based
approaches and learning-based approaches. Since the image
denoising task is inherently ill-posed, traditional model-based
approaches focus on incorporating manually designed priors,
such as the low-rankness [5] and the non-local self-similarity
[11]. The variational approach is one of the most popular
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model-based strategies. It casts image denoising as a min-
imization problem of an objective function, called “energy
function”, where the minimizer corresponds to the recovered
latent image. Since we usually cannot derive a closed-form
minimizer of the energy function, iterative methods are
adopted to solve the problem. For example, Vogel et al. [12]
adopt total-variation [13] as a regularizer and propose a
fixed point algorithm to minimize the energy function, and
WNNM [7] uses weighted nuclear norm as a regularizer and
proposes a new iterative method to solve the problem under
different weighting conditions. Though robust and simple,
these model-based methods are hand-crafted and cannot be
optimized end-to-end by discriminant training. Consequently,
they are limited in capacity and expressiveness, and unable to
characterize complex image textures.

To circumvent this problem, subsequent learning-based neu-
ral network algorithms use training data to learn a model for
image denoising and have achieved remarkable performance.
Given an iterative model-based denoiser, a general idea is to
first unfold the iterations into a layer-based structure, and then
untie the model parameters across layers to obtain a neural
network architecture that can easily be trained via gradient-
based methods. A notable work is TNRD [14] that proposes a
trainable diffusion model with learnable filters and truncated
iterations, then its parameters are learned from training data in
a supervised way. Later, NLNet [15], UNLNet [16] and Deep
K-SVD [17] all utilize the proximal gradient method as an
unrolled iteration to build model architectures. Also, DeamNet
[18] propose an adaptive consistency prior to construct a
learnable optimization objective for image denoising, and then
unroll the iterative optimization steps. These models are all
truncated after less than 10 iterations, despite the fact that each
iteration corresponds to a gradient descent step to minimize an
objective function, which usually takes much more iterations
to converge.

Many works are also built by unfolding layers, although
they may not state the relation to the iterative scheme. N3Net
[19] proposes a neural network with 3 stacked blocks, where
each block is a continuous relaxation of the k-nearest neigh-
bors (KNN). NLRN [10] stacks weight-tied non-local blocks to
enable parameter efficiency. GCDN [20] and DAGL [21] stack
graph convolutional blocks for image denoising. They only
consider non-local correlations between several neighbors.
GCDN construct the long-range correlations based on pixels,
while DAGL focus on patches.

There are deeper models like RED [22] with up to 30 layers,
and MemNet [23] with up to 80 layers. However, deep
models trained using backpropagation have much computation
and memory consumption. Moreover, simply stacking layers
cannot improve the performance further after a few stages and
even brings performance degradation due to the well-known
training issues of deep models [24].

B. Implicit Deep Learning

Implicit models are emerging architectures in deep learn-
ing, where the layer defines an analytical condition for its
output to satisfy [25]. One example is Neural ODE [26] that

employs black-box ODE solvers to model recursive residual
blocks implicitly. The other example is Deep Equilibrium
Models (DEQs) [27] that reduce the forward pass to a root-
solving problem, and directly differentiate through the final
equilibrium by the implicit function theorem [28]. They do
not need to build explicit computation graphs for forward
propagation, and are able to simulate models with “infinite”
iterations within a constant memory footprint. To guarantee
the existence of a unique equilibrium point, subsequent works
develop a new class of implicit model based on the theory
of monotone operators [29] or Lipschitz boundedness [30].
However, these structural solutions rely extensively on specific
layer parameterization, thus more inflexible to apply. As a
result, most equilibrium models [27], [31], [32], [33] do not
enforce the well-posedness condition. Instead, they stabilize
the training process in a soft way. For example, Bai et al. [27],
[31] employ a pretraining stage in which the model is unrolled
as a shallow recurrent network for initialization. Bai et al. [34]
explicitly regularize the Jacobian of the fixed-point update
equations. Although effective, the pretraining and regulariza-
tion bring extra hyperparameters, which are cumbersome to
tune. Unlike previous works that calculate exact gradients,
Geng et al. [35] propose an unrolling-based gradient esti-
mate strategy called phantom gradient, which stably provides
an update direction to the model training. Different from
unrolling-based explicit models, their unrolling process is not
a part of the model and only exists in the backward pass for
gradient estimate. Compared to the exact gradient, phantom
gradient demonstrates better robustness and higher tolerance
to numerical errors.

Applications of implicit neural networks are still in its
early stages. Recently, the DEQ-Transformer model proposed
by Bai et al. [27] demonstrates its performance on language
modeling [27]. The successive works include MDEQ [31],
a convolutional model that applies DEQs to image classifica-
tion and semantic segmentation tasks, and i-FPN [32], another
convolutional model that applies DEQs to object detection.
Only very recently, Gilton et al. [33] apply implicit models for
image restoration tasks, including MRI reconstruction, image
deblurring and compressed sensing. The models construct the
fixed-point equation from classical optimization-based recon-
struction methods, such as the plug-and-play (PNP) framework
[1] and the Regularization by Denoising (RED) framework
[3], which demand a fundamental off-the-shelf denoiser as
the prior. Therefore, these models cannot be applied to image
denoising.

III. PROPOSED NERD: AN OVERVIEW

We propose a model called Noise Equilibrium Reaching
Denoiser (NERD), since it models the noise feature as the
equilibrium of a fixed-point equation, and is able to reach
the equilibrium in the forward pass. As shown in Fig. 2, the
core of our model is an implicit denoising module, which
takes the feature of the input image to construct an input-
dependent fixed-point equation, and gives the equilibrium as
the layer output. An input injection module and a feature
decoding module are used to transform between the feature
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Fig. 2. (a) Overall architecture of our NERD. At first, the noisy image y is passed through finject to get a feature representation, then it is taken by the
implicit layer (Eq. (11)) to solve the equilibrium z∗, which corresponds to the noise feature. Finally, we decode z∗ in the image space by fdecode to produce
the final image prediction x̂. (b) Detailed structure of the implicit layer. It is composed of two sub-layers: a non-local block to learn global correspondences
and a transformation block to capture local patterns.

space and the image space. In general, given a noisy image y,
our model predicts the latent clean image by passing it through
the following modules successively:

1) An input injection module that transforms the noisy
input y into the feature space to obtain a feature s =

finject( y;φ), which represents the input information;
2) An implicit denoising module that parameterizes the

fixed-point equation z = fimplicit(z, s; θ) by the injection
s for denoising, and obtains the corresponding equilib-
rium z∗ as the noise estimate;

3) A feature decoding module that decodes the equilibrium
z∗ in the image space to produce the final image
prediction by x̂ = y + fdecode(z∗

;ψ).
Here, we use φ, θ and ψ to denote the learnable parameters
of finject, fimplicit and fdecode respectively. In the following,
we explain the design of each component in further details.

A. Input Injection Module

The input injection module is a shallow block that contains
two convolutional layers with an intermediate ReLU activa-
tion. We denote it as follows:

s = finject( y;φ) = Conv(BN(ReLU(Conv(BN( y))))), (2)

where we employ batch normalization (BN) [36] before each
convolutional layer. This module aims to project the noisy
input to the feature space. The acquired representation is then
injected into the implicit layer to facilitate the noise estimate.

B. Implicit Denoising Module

As the core of our model, the implicit denoising module is
formulated as a fixed-point equation [27], which is parameter-
ized by the input injection s as:

z = fimplicit(z, s; θ). (3)

The fixed-point iteration fimplicit takes the latent noise esti-
mation z[i] as input and obtains an updated variable z[i+1] as
the output. As shown in Fig. 3, different from feed-forward
denoising neural networks, we model the output as the equi-
librium z∗ of the implicit layer (Eq. (3)), where z appears at
both left and right sides and cannot be obtained by simple feed-
forward computing. Instead, we could adopt black-box root-
finding algorithms, e.g., Broyden’s method [37] or Anderson

Fig. 3. Comparison between the iterative scheme and the implicit scheme.
The iterative scheme loops for finite iterations and stores all the intermediate
variables for backpropagation, while the implicit scheme calculates the
equilibrium through accelerated black-box solvers without the need to store
any intermediate variable.

acceleration [38], to get a root approximate at a desired
precision. Meanwhile, the model performance depends on the
design of the implicit layer (Eq. (3)), which is central to our
proposed denoiser. More details can be found in Sec. IV.

C. Feature Decoding Module

After obtaining the equilibrium feature z∗, we decode it in
the image space through the feature decoding module, which
is also a shallow block composed of a batch normalization,
a ReLU activation, and a convolutional layer successively:

n̂ = fdecode(z∗
;ψ) = Conv(ReLU(BN(z∗))), (4)

where n̂ denotes the final noise estimate. Accordingly, we get
the image estimate by subtracting n̂ from the corrupted
input y:

x̂ = y + n̂. (5)

D. Learning Objective

At last, we adopt the standard MSE loss to learn our implicit
denoiser NERD by minimizing the estimation error of the
ground-truth noise n = x − y,

L = ℓ(x, y; ξ) = ∥n − n̂∥
2

= ∥(x − y)− n̂∥
2, (6)

where ξ = [φ, θ ,ψ] denotes the collection of all learnable
parameters.
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IV. PROPOSED IMPLICIT DENOISING MODULE

Unlike previous deep neural network denoisers that stack
repetitive layers, the implicit function only has one layer,
which is composed of two sub-layers. The first is a non-local
block to employ self-similarities, and the second is a transfor-
mation block to capture local patterns. We show the detailed
architecture of the implicit function in Fig. 2.

A. Building Blocks

1) Non-Local Block: A non-local block can be described
as a composition of a group normalization (GN), a multi-head
self-attention mechanism (MSA) and a skip connection.

An attention layer is a soft selection procedure that uses
scores to choose which pixels to focus on. It can be described
as mapping a query and a set of key-value pairs to an output.
The output is computed as a weighted sum of the values,
where the weight assigned to each value is computed by a
compatibility function of the query with the corresponding
key [39]. Let Y ∈ Rn×d be an input matrix whose rows are
the input vectors y1, . . . , yn ∈ Rd , then the attention layer
computes the query, key, value as Y Wθ ,Y Wψ ∈ Rn×dk and
Y Wg ∈ Rn×dv , respectively. Finally, the overall self-attention
module (SA) returns a matrix whose columns are weighted
averages of the inputs:

Ŷ = SA(Y) = softmax(Y Wθ (Y Wψ )
T /

√
dk)Y Wg. (7)

Instead of performing a single attention function with
dmodel-dimensional keys, queries and values, the multi-head
attention [39] allows the model to jointly attend to information
from different representation subspaces at different positions.
We project the queries, keys and values H times with different
linear projections, respectively. And then we perform the SA in
parallel on each of these projections, yielding H output values.
These values are concatenated and once again projected,
resulting in the final values as follows:

MSA(Y) = (SA1(Y)∥ . . . ∥SAH (Y))WO , (8a)

SAh(Y) = softmax(Y W h
θ (Y W h

ψ )
T /

√
dk)Y W h

g , (8b)

for h = 1, 2, . . . , H , where the ∥ operator denotes concate-
nation, and the projections are parameter matrices W h

θ ,W h
ψ ∈

Rdmodel×dk , W h
g ∈ Rdmodel×dv , and WO ∈ RHdv×dmodel .

Finally, given the input s̃, we have the output of the
non-local block as

s̄ = NL(s̃) = MSA(GN(s̃))+ s̃. (9)

We adopt a skip-connection in the block, since it has been
shown to help gradient backpropagation during training [40]
and is broadly used to improve training convergence in denois-
ing tasks [41].

2) Transformation Block: In addition to the non-local block,
the implicit denoising module contains a transformation block,
which is applied to extract local patterns. It consists of two
convolutional layers with kernel size 3, as well as a ReLU
activation in between and 3 group normalization layers as
follows:

Trans(s̄) = GN(Conv(ReLU(GN(Conv(GN(s̄)))))). (10)

Following previous explicit works [41], we use normal-
ization layers in the transformation block to speed up the
training process as well as boost the denoising performance.
In addition, previous implicit works [27] also point out that
normalization layers that constrain the output ranges help to
make the implicit training process more stable.

Especially, we apply a normalization layer before the output
to further improve training stability. We refer to this as post-
normalization in the rest of the paper. Intuitively, it helps to
limit the feasible set of equilibrium to a bounded area, which
makes the equilibrium easier to be found. It will be explained
in more detail in Sec. VI, where an analogy is drawn between
the post-normalization and a proximal operator [42] that helps
to stabilize the level of the estimated noise.

When it comes to the choice of normalization layers in the
implicit layer, we follow previous works [27], [31] and use
GN rather than BN, since the former one estimates population
statistics only based on layers, thus the Jacobian of our implicit
function would not scale badly as BN to make the equilibrium
significantly harder to solve.

B. Designing the Implicit Layer

In this section, we introduce how we design the implicit
layer. We expect that its equilibrium not only has an informa-
tive representation for image denoising, but also can be found
in a reliable and efficient manner. We will first introduce the
basic formulation of our implicit layer from the perspective
of denoising task, and then explain the design from the
perspective of model training.

1) Layer Formulation: When designing an implicit layer
which is a fixed-point equation, a basic question is: what is
its input? Assuming the well-posedness of the implicit layer
holds, i.e., its solution exists and is unique, the equilibrium
representation is totally decided by the implicit layer itself,
irrespective of the initial point. Consequently, we consider
to “inject” the input information into the implicit layer by
constructing an input-dependent equation. To be concrete,
we take the output of the input injection module s as the
parameter, and formulate our implicit layer as follows:

z = fimplicit(s + z; θ) = Trans(NL(s + z)), (11)

where NL and Trans are the two sub-layers defined in
(Eq. 9) and (Eq. 10), respectively.

To be specific, we model the equilibrium as the noise
estimate. At the i-th solver iteration of fimplicit, we take an
image estimate by subtracting the noise estimate z[i] from
the image representation s, which is s + z, and then make
another noise estimate z[i+1]. This is consistent with the
feature decoding module we introduced in (Eq. 4), where the
equilibrium z∗ is used to restore the noise instead of the image.

2) Noise as the Equilibrium: In the iterative scheme, the
image feature and the noise feature both reach steady states
when the iterations converge. In the implicit scheme, we prefer
the noise feature to the image feature as the equilibrium.
To explain the benefits, we first introduce the relationship
between the training stability and the Lipschitz constant of
fimplicit, and based on which, we explain how casting the noise
as the equilibrium facilitates model training.
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The well-posedness of the implicit layer is closely related to
the Lipschitz constant of fimplicit, which is defined as follows:

Definition 1: Given two metric spaces (X, dX ) and (Y, dY ),
where dX denotes the metric on the set X and dY is the metric
on set Y , a function f : X → Y is called Lipschitz continuous
if there exists a real constant K ≥ 0 such that, for all z1 and
z2 in X , dY ( f (z1) − f (z2)) ≤ K dX (z1 − z2). If 0 ≤ K <

1 and f maps a metric space to itself, the function is called
a contraction.

If fimplicit has a Lipschitz constant that is strictly less
than 1, the unique solution is guaranteed according to the
Banach fixed-point theorem [43]. In our specific layer for-
mulation (Eq. (11)), the input injection s does not affect the
Lipschitz constant, consequently it does not affect the well-
posedness. The Lipschitz constant is also closely related to
the efficiency when we seek the equilibrium. By Lyapunov
linearization theorem, even the simplest fixed-point iteration
solver could converge uniquely and enjoy global asymptotic
stability. However, as previous works [34], [35] point out,
strong contractivity on the dynamical system may significantly
limit the representational capacity of the model in practice.
Therefore, to constrain the Lipschitz constant of fimplicit in a
soft way, we urge the parameters of fimplicit to be small by
design.

To achieve this, we model the noise as the equilibrium. The
point is that we expect the output of fimplicit (the noise) to have
a smaller norm than its input (the image), which is reasonable
and sustains in most real cases. As a result, during the training
process, fimplicit will be optimized to have relatively smaller
parameters θ , which reveals a smaller Lipschitz constant.
Moreover, the setting makes 0 a reasonable initialization for
the equilibrium, not only because smaller values generally
suffice fixed-point equations, but also because it is nearer to
z than s + z.

V. MODEL TRAINING

Given the above implicit layer (Eq. (11)), we now answer
two questions: (i) In the forward pass, given an observation
y and network weights, how do we compute a fixed point
of (Eq. 11) efficiently? (i i) In the backward pass, given a
collection of training samples, how do we directly differentiate
through the equilibrium state?

A. Forward Pass

In the forward pass, we aim to solve the equilibrium of
the implicit layer (Eq. (11)). Conventional iterative denoisers,
if they converge to an equilibrium, can be considered as a
form of fixed-point iterations. While in our work, we can
exploit any black-box root-finding algorithm to solve for the
equilibrium point. We formulate the model solving as the
following root-finding problem [27]:

g(z, s; θ) = fimplicit(s + z; θ)− z,
z∗

= Rootfind(g, z).

Newton’s method is an ideal solver for the problem due to its
efficiency. It has the following formulation:

z[i+1]
= z[i]

−

(
J−1

g |z[i]

)
g(z[i], s; θ),

where J−1
g |z[i] is the inverse Jacobian of g evaluated at

z[i]. However, accurately computing J−1
g |z[i] can be numer-

ically unstable when it is ill-conditioned. To avoid calculating
J−1

g |z[i] directly, Broyden’s method [37] is proposed to use a
low-rank matrix B[i] to approximate it:

z[i+1]
= z[i]

− αB[i]g(z[i], s; θ),

B[i+1]
= B[0]

+

i∑
k=1

u[k]v[k]T
,

where u and v come from the Sherman-Morrison formula
[44]. We initialize the internal state as z[0]

= 0, and
leverage a limited-memory variant of Broyden’s method
[31], where we only keep the latest several low-rank
updates at any step and discard the earlier ones. The
Broyden iterations stop when either the relative residual∥∥g(z[i], s; θ)− g(z[i−1], s; θ)

∥∥ / ∥∥g(z[i−1], s; θ)
∥∥ falls below

a tolerance or when the maximum number of iterations is
reached.

B. Backward Pass

In the backward pass, given a loss as (Eq. 6), the gradient
can be calculated by the chain rule:

∂ℓ

∂(·)
=

∂ℓ

∂ z∗

∂ z∗

∂(·)
. (12)

To calculate ∂ z∗/∂(·), we can implicitly differentiate two sides
of (Eq. 3) with respect to (·):

∂ z∗

∂(·)
=
∂ fimplicit(z∗, s; θ)

∂(·)

=
d fimplicit(z∗, s; θ)

d(·)
+
∂ fimplicit(z∗, s; θ)

∂ z∗

∂ z∗

∂(·)
. (13)

Thus, differentiation through the implicit layer can be taken as
solving the above linear Jacobian-based fixed-point equation
about ∂ z∗/∂(·). We can derive its closed-form solution as
follows:

∂ z∗

∂(·)
= −

(
J−1

g |z∗

) d fimplicit(z∗, s; θ)
d(·)

. (14)

Plugging (Eq. 14) into (Eq. 12) gives

∂ℓ

∂(·)
= −

∂ℓ

∂ z∗

(
J−1

g |z∗

) d fimplicit(z∗, s; θ)
d(·)

. (15)

Previous works [27], [31] use Broyden’s method [37] or
Anderson Acceleration [38] to compute the exact gradient as
in the forward pass, while we adopt a gradient estimate method
called phantom gradient [35], which induces moderate gradient
noise as regularization. Its core idea is to approximate J−1

g
with something easier to calculate. Specifically, we consider
a damped variant of the fixed-point iteration without altering
its equilibrium at the equilibrium z∗:

zi = λ fimplicit(zi−1, s; θ)+ (1 − λ)zi−1, i = 1, 2, . . . , T,
(16)

where λ, the damping factor, is a hyperparameter that con-
tributes to maintain a small condition number of the Jacobian
matrix. We use the subscript instead of the superscript to differ
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it from the forward iteration when seeking the equilibrium.
Note that the iterations start from the equilibrium z∗, instead
of 0. By performing backpropagation through the unrolled
steps of (Eq. 16), we have a gradient ∂ zT /∂θ , as the estimate
of the exact gradient ∂ z∗/∂θ . Under mild conditions, the
former gives a descent direction of the loss landscape, and
converges to the latter as T goes to infinity. In case the
root-solver converges poorly, the gradient estimate resembles a
backpropagation through time (BPTT) algorithm and still gives
a descent direction of the loss landscape. Then, as training
progresses, the solver becomes more stable and converges
to the equilibrium better. As illustrated in Fig. 3, compared
with unrolling-based explicit models, we use unrolling only
in the backward pass for gradient estimate. In the forward
pass, we do not need to store any intermediate variable.

VI. RELATIONSHIP TO PRIOR WORKS

Since we use a non-local block to build our model, in this
section, we analyze its relationship with previous approaches
that also incorporate the non-local self-similarity prior for
denoising, showing that our model can be considered as an
extension of the previous non-local module. We also show that
our implicit layer can be considered as a learnable proximal
operator [42] of an indicator function used in a variational
approach, where the post-normalization helps to stabilize the
level of the estimated noise.

A. Relations to Non-Local Operations

The seminal work of non-local means [11] triggers the
wide study of non-local self-similarity (NSS) based methods
for image denoising. NSS refers to the fact that there are
many repeated local patterns across a natural image, and those
non-local similar patches to a given patch can help much
the reconstruction of it. Liu et al. [10] proposed a unified
framework of non-local operations as follows:

Ŷ = diag{F(Y)}−18(Y)G(Y), (17)

where Y ∈ RN×dmodel and Ŷ ∈ RN×dmodel denote the input
and output of the non-local operations, respectively. 8(Y) ∈

RN×N refers to the non-local correlation matrix. Each element
8(Y)i j represents the correspondence relationship between Y i
and Y j , where Y i and Y j refer to the image patch centered at
i and j , respectively. G(Y) ∈ RN×dmodel is the embedding of
Y , and the diagonal matrix diag{F(Y)} ∈ RN×N normalizes
the output.

This framework works with various model-based non-local
methods [6], [7], [11] and learning-based non-local meth-
ods [19], [20]. They differ most from each other on how
to model the correlation matrix 8(Y). Traditional methods
such as BM3D [6] and early-stage neural network models
such as BM3D-Net [45], NLNet [15] and UNLNet [16] use
block matching to exploit non-local image structures. In these
works, 8(Y) is a hard 0-1 mask, where patches except the
most similar ones to the referenced patch are ignored. It is
non-differentiable and hard to optimize, thus restricting the
denoising performance. Subsequent neural network models
[10], [19] adopt soft block matching to learn deep feature

representations. Our non-local module also belongs to this
category. In addition, we extend the previous single-head
framework (Eq. (17)) to a multi-head setting as follows:

Ŷ = (Ŷ 1∥ . . . ∥Ŷ H )WO , (18a)

Ŷ h = diag{Fh(Y)}−18h(Y)Gh(Y), h = 1, 2 . . . H, (18b)

where Ŷ h ∈ RN×dv and WO ∈ RHdv×dmodel . In this framework,
letting 8h(Y) = exp(Y W h

θ (Y W h
ψ )

T ), Gh(Y) = Y W h
g , and

Fh(Y) be a row-sum operator, we can recover the MSA used in
our model (Eq. (8)). Moreover, our non-local module includes
the non-local module in NLRN [10] as a degenerated case
when H equals 1, where the model can only learn one kind of
correspondence relationship and cannot characterize different
image patterns jointly.

B. Relations to Variational Denoisers

We show in this section that our implicit function can
be considered as a learnable proximal operator [42] of an
indicator function used in a variational approach. To verify
this, we return to the inverse problem presented in (Eq. 1).
To mitigate the ill-posed nature of image denoising, variational
approaches [16] attempt to cast it as a minimization problem
as follows:

x̂ = arg min
u

r(u), s.t.∥ y − u∥
2
2 ≤ ε. (19)

The objective is to minimize r(u) within a convex set C =

{u|∥ y − u∥
2
2 ≤ ε}, where r(u) is a regularization term that

encodes prior knowledge for image denoising, and ε is a
parameter that measures the proximity of the solution u to
the noisy observation y. In other word, ε is directly associated
with the noise level. To solve the constrained problem (Eq. 19),
we refer to the following unconstrained minimization problem:

x̂ = arg min
u

r(u). (20)

Suppose that h(·) is an update rule (e.g., a gradient descent
step) to solve (Eq. 20), we can solve (Eq. 19) by first applying
h(·) and then projecting onto C, which gives the updating
scheme as follows [16]:

u[i]
= y + ε

h(u[i−1])− y
max(∥h(u[i−1])− y∥2

2, ε)
. (21)

If we denote f̃implicit as a variant of fimplicit that drops
the post-normalization, i.e., fimplicit(·) = GN( f̃implicit(·)), and
denote s[i]

= s + z[i] as the i-th image estimate, we can
reformulate our implicit layer (Eq. (11)) as follows:

s[i]
= s + GN( f̃implicit(s[i−1]

; θ)). (22)

Then we have an obvious observation that (Eq. 21) coin-
cides with (Eq. 22) in the sense that: (i) s[i] corresponds to
the feature of u[i], and s corresponds to the feature of y;
(ii) f̃implicit(s[i−1]

; θ) corresponds to the feature of h(u[i−1])−

y, which is an update rule to improve the accuracy of the
noise estimate without constraints on the noise level; (iii) The
post-normalization in our model corresponds to the projection
operation in (Eq. 21), where ε is absorbed into θ as a learnable
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TABLE I
NATURAL IMAGE DENOISING RESULTS TRAINED ON BSD. METRICS ARE PNSR (DB) AND SSIM

Fig. 4. Qualitative comparison of image denoising results with the noise level of 25. The zoom-in region in the red bounding box is shown in the upper
right corner. From left to right: i) the ground truth image from Urban100 scene 48, ii) the corresponding noisy image, iii) the BM3D denoising result, iv) the
DnCNN denoising result, v) the NLRN denoising result and vi) the NERD denoising result.

parameter. As a result, our implicit function can be considered
as a learnable variant of the updating rule (Eq. (21)) used to
solve the constrained minimization problem (Eq. (19)) in a
variational approach, and the post-normalization corresponds
to the projection operation which helps to stabilize the level
of the estimated noise.

VII. EXPERIMENTS

In this section, we evaluate our NERD model on benchmark
image denoising datasets, including natural images and depth
maps. In addition, we perform through ablation studies to
validate the design of the proposed architecture, the training
strategy and the selection of the hyperparameters.

A. Training Details

1) Datasets: To make a fair comparison, we adopt two
different training datasets. The first one is selected from the
Berkeley Segmentation Dataset (BSD) [46], which is used by
most previous works [10], [47]. We choose the combination of
200 images from the train set and 200 images from the test set
in the BSD for training. Note that training images are strictly
separated from the validation set of the BSD. The second
one is DIV2K [48] dataset, which contains 800 high-quality
images and is used by some recent works [18], [21]. All the
images are converted to gray-scale in each experiment setup.
Peak-Signal-to-Noise (PSNR) and Structured Similarity Index
Measure (SSIM) [49] are adopted for measuring quantitative
restoration performance.

2) Training: Unless otherwise stated, we adopt the fol-
lowing training protocol. For each epoch, we randomly crop
128 patches of size 64 × 64 from each training image.
We use horizontal and vertical flipping as well as random
rotations as further data augmentation. We add independent
and identically distributed Gaussian noise with zero mean and
variance σ 2 to the original image as the noisy input during
training, where σ ∈ {15, 25, 50} refers to the noise level.
We train for 100 epochs in total with a batch size of 4,
using the AdamW optimizer [50] with default parameters
β1 = 0.9 and β2 = 0.999 to minimize the mean squared
error (MSE) between the denoised patch output x̂ by the
network and the ground truth x. For all experiments, we use
the cosine learning rate schedule and initially set the learning
rate to 10−3. About the model architecture, we use Group-
Norm with 4 groups, and keep learnable affine parameters.
We use 4-head attention for the non-local module. The number
of features used in all convolutional layers is 128, except
for our transformation block, which has a 4× expansion in
its first layer. As we mentioned in Sec. V, to solve the
equilibrium in the forward pass, we use a limited-memory
version of Broyden’s method [31] with maximum step 17,
and to calculate the gradient in the backward pass, we use
the phantom gradient strategy with T = 8 and λ = 0.8 to
approximate the exact value. Our model also adopts some
common techniques beneficial for explicit neural networks in
our implicit layer, such as variational dropout [51] and weight
normalization [52].
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B. Comparison With State of the Art

1) Natural Image Denoising: We compare our method with
state-of-the-art denoising methods for the Gaussian denoising
task of natural grayscale images. The reference methods can
be classified as model-based algorithms such as BM3D [6]
and WNNM [7], and neural network models such as DnCNN
[41], NLRN [10], N3Net [19], GCDN [20], DAGL [21] and
DeamNet [18]. In particular, the two traditional methods are
both non-local iterative approaches. Among the neural network
methods, all learnable models except DnCNN are non-local
methods, and all the models are compared with baselines
trained on the same dataset for a fair comparison, except
DeamNet that adopts a larger dataset. Following them, we test
on three different datasets: a set of twelve commonly used
benchmark images (Set12), the 68 images subset [53] of the
BSD validation set, and the Urban100 [54] dataset, which
contains 100 images of urban scenes with repetitive patterns.
Table I shows the denoising results trained on BSD with three
different noise levels obtained from their papers, except for
N3Net at σ = 15 which is unavailable. It can be seen that the
proposed method achieves state-of-the-art performance on all
datasets, despite that they have different statistics. For exam-
ple, the Urban100 dataset contains higher resolution images
compared with the other two, and it is mainly composed
of photos of buildings and other regular structures, where
exploiting self-similarity is very important, while the Set12
dataset contains images with a jumble of irregular hair and
carpet textures. We also notice that as the noise level increases,
our model degrades less than other methods do. For example,
on the Urban100 dataset with the noise level of 15, 25 and 50,
our PSNR is 0.01, 0.08 and 0.21 dB higher than GCDN, and
0.06, 0.17 and 0.22 dB higher than NLRN, respectively. The
phenomenon shows that our model is more robust to high-
level noise. This can be explained by that iterative methods
whose iteration steps are fixed have more difficulty in learning
pixel relationships from the noisy image at higher noise levels,
while our model can flexibly iterate until reaching a stable state
of the correspondence relationship. In addition, our proposed
method provides a better visual quality, which can be verified
by Fig. 4 that shows denoising results for an image from the
Urban100 dataset. We notice that BM3D and DnCNN have
lots of patch-like artifacts in the sky, and NLRN also has an
obvious gray point artifact. Compared with them, our NERD
produces a denoising result with the least artifacts in uniform
areas, while at the same time preserves the sharpest edges in
structural areas.

Moreover, as we can see in Table II, when trained on
the larger DIV2K dataset, our NERD performs significantly
better on the largest dataset Urban100. To be specific, our
NERD outperforms the other models by more than 0.18 dB
with all the noise levels. The performance is even comparable
to Transformer denoising models. For example, SwinIR [55]
archives 33.70 dB, 31.30 dB and 27.98 dB on Urban100 with
the noise level of 15, 25 and 50, respectively. And our results
are 33.77 dB, 31.22 dB and 27.96 dB, respectively. Note
that SwinIR adopts 8594 images from 4 different datasets to
achieve the results, while our model only adopts 800 images
from one DIV2K dataset. We think the superior performance

TABLE II
NATURAL IMAGE DENOISING RESULTS TRAINED ON DIV2K.

METRICS ARE PNSR (DB) AND SSIM

of DeamNet on BSD68 may result from its training dataset,
where BSD68 is drawn from the original BSD500 dataset.
Also, we think the reason for DAGL’s superior performance on
Set12 might be that its patch-wise self-similarity assumption
is well suited to Set12. Also, since Set12 only has 12 images,
we think the performance difference is negligible.

2) Depth Map Denoising: To further verify the effective-
ness and robustness of our NERD when extended to datasets
with piecewise smooth content, we compare with state-of-the-
art methods for denoising of depth maps [56], e.g., images
generated by time-of-flight cameras. We follow GCDN and
report results achieved on a standard set of depth maps.1 Since
each image has disparity maps from two views, we choose
the left view for evaluation, and obtain the results by running
the pretrained models provided by the authors. As shown in
Table III, the proposed NERD outperforms other baselines
significantly on PSNR results. Considering the piece-wise
smoothness property of the depth map dataset as shown in
Fig. 5, we think GCDN’s higher SSIM might result from its
non-local operation, which selects only a few most similar
pixel neighbors for each query pixel. In a piece-wise smooth
image, pixels are easy to find almost identical neighbors.
Consequently, considering a few very similar pixels is enough
for prediction, while considering all neighbors may bring inter-
ruption. Fig. 5 shows fragments of the image Bowling, where
the original fragment and the noisy version, accompanied by
the denoised results, are presented for comparison. We notice
that our NERD is the only model that restores the shape of
the bowling pin. Moreover, our model simultaneously smooths
the flat areas, while GCDN and NLRN have many patch-wise
artifacts on the surface of the ball. Also, note that GCDN has
18M parameters, while our model has only 1.4M parameters,
which is less than 1/10 of GCDN.

C. Ablation Studies on Architecture Design

1) Noise as the Equilibrium: First, to verify that the equi-
librium z∗ in our model corresponds to the noise, and the
injection feature s corresponds to the image, as we claimed in
Sec. IV-B, we visualize them by using the decoding function
fdecode as a visualization tool to transform them into the

1https://vision.middlebury.edu/stereo/data/scenes2006/HalfSize/zip-2views/
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TABLE III
DEPTH MAP DENOISING RESULTS TRAINED ON BSD. METRICS ARE PNSR (DB) AND SSIM

Fig. 5. Qualitative comparison of image denoising results with the noise level of 50. The zoom-in region in the red bounding box is shown in the lower right
corner. From left to right: i) the ground truth image called Bowling from the depth map dataset, ii) the corresponding noisy image, iii) the NLRN denoising
result, iv) the GCDN denoising result, v) the NERD denoising result.

Fig. 6. Visualization of features by transforming them into the image
space through fdecode. Left: the noise equilibrium when processing the image
Monarch; and right: the corresponding input injection.

image space. Fig. 6 shows the visualization results of the
learned equilibrium and injection feature when denoising the
image Monarch, an image in Set12. Its ground truth and
corrupted version are shown in Fig. 1. We can clearly see
that the equilibrium feature z∗ corresponds to a group of
randomly distributed scatter points, which is compatible with
the characteristic of the noise. On the contrary, the injection
feature s contains patterns in the input image. We can clearly
recognize the butterfly wings from its visualization. This
substantiates our claim that the learned implicit layer is a noise
estimator, the input injection module keeps the information of
the corrupted image, and the subsequent updates refine the
noise equilibrium and remove it from the injection, as shown
in Fig. 1.

Second, we demonstrate the effectiveness of stabilizing
the training process by taking the noise as the equilibrium.

TABLE IV
COMPARISON OF MODELS TAKING THE IMAGE VS. THE NOISE AS THE

EQUILIBRIUM ON SET12 WITH DIFFERENT NOISE LEVELS

To construct a baseline where we take the image instead
of the noise as the equilibrium, we decode the equilibrium
as the image, i.e., x̂ = fdecode(z∗) (compared with x̂ =

y + fdecode(z∗)). We compare the two settings with three
different noise levels: 15, 25, and 50. Table IV shows their
best denoising results among the training epochs. As we can
see, models casting the image as the equilibrium achieve much
worse performances than models which cast the noise as the
equilibrium. To visually assess the training process, we plot
the learning curves with the noise level of 50 in Fig. 7.
We observe that taking the image as the equilibrium leads
to severe fluctuations in the early training stage and confines
the final performance.

2) Post-Normalization in the Transformation Block: We
also verify that the post-normalization in the transformation
block, as we claimed in Sec. VI-B, not only stabilizes the train-
ing process, but also facilitates the learned noise level. First,
to verify its effectiveness on stabilizing the training process,
we construct a baseline by discarding the post-normalization
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Fig. 7. The learning curves of models with noise as the equilibrium and
image as the equilibrium. On the vertical axis is the average PSNR on Set12
with the noise level of 50.

TABLE V
COMPARISON OF MODELS W/ VS. W/O POST-NORMALIZATION WHEN

TESTING ON SET12 WITH THE NOISE LEVEL OF 25

and leaving other parts unchanged. In Table V we present the
quantitative denoising results, as well as the Frobenius norm
and variance of the learned equilibrium when testing on the
Set12 dataset. It can be seen that normalizing the equilibrium
reduces the Frobenius norm by one third and the variance
by more than 90%, indicating that the model is more stable.
Meanwhile, it also improves the denoising performance from
30.78 dB to 30.84 dB.

Second, to verify that it stabilizes the level of the estimated
noise, we still take the image Monarch as an example and
print the value at each solver iteration from i = 1 to 17 for
assessment. For each intermediate variable z[i], we transform
it into the image space by fdecode to get the corresponding
noise estimate n[i]. Then we take its standard deviation as
the estimated noise level and plot the changing curves in
Fig. 8. We can clearly see that the post-normalization helps to
stabilize the estimated noise level around the expected value.
In contrast to that, without post-normalization, the estimated
noise level changes drastically at the first few evaluations. Note
that the final denoising result is 30.64 dB/0.9261 without the
post-normalization, compared with 30.67 dB/0.9273 with the
post-normalization.

3) Multi-Head Correlation Maps: In Sec. VI-A, we have
claimed that our model benefits from learning multiple kinds
of non-local correlation maps, thus is more powerful to model
complex correspondence relationships. We experimentally ver-
ify this in Table VI, which investigates the impact of attention
heads on denoising results. As we can see, although the SSIM
metric only changes slightly as the number of the heads
increases, the PSNR metric has a peak performance with
4 heads, 0.05 dB higher than the single head setting. Therefore,

Fig. 8. Changing curves of the estimated noise level when denoising the
image “Monarch” with the noise level of 25. On the vertical axis is the
estimated noise level at each solver iteration when seeking the equilibrium,
which is calculated by averaging the noise standard deviations among image
patches.

TABLE VI
QUANTITATIVE DENOISING RESULTS WITH DIFFERENT NUMBER OF

ATTENTION HEADS ON SET12 CORRUPTED WITH
THE NOISE LEVEL OF 25

it is necessary to choose an appropriate number of attention
heads for image denoising.

Besides the quantitative comparison, we also visualize the
correlation maps computed by a 4-head NERD model. The
correlation map, in this case, corresponds to the attention
map of the MSA in our non-local block (see Sec. IV-A).
We show a patch extracted from the Set12 dataset in Fig. 9,
as well as two red points and their corresponding correlation
maps. One point is in the white flat area (the first row) and
the other is in the black edge area (the second row). It can
be seen that our non-local module learns different kinds of
correspondence relationships. For example, for the red point
located at the white flat area, we can see that its first and
third heads capture relatively local relationships within the
white area, while its second and fourth heads capture relatively
global correspondence over the whole patch. In addition, the
second head captures relationships with the edge patterns,
which complements the other heads that only consider flat
areas, showing that our model can characterize different image
patterns jointly. Moreover, the maps differ in their values,
which reflects the degree the pixels are mixed with each other.

4) Architecture of the Implicit Denoising Module: As we
described in Sec. IV-A, our implicit function contains a
non-local block to employ self-similarities, and a transforma-
tion block to capture local patterns. To see how they contribute
to the final performances, we compare the denoising results
with only one individual block. As shown in Table VII, a single
transformation block works better than a single non-local
block, and neither of them works as well as when combined.
This ablation study verifies the necessity of capturing both
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Fig. 9. Visualization of the multi-head correlation maps. From left to right:
the neighborhood of the red pixel and its corresponding correlation map of
the 4 heads.

TABLE VII
QUANTITATIVE DENOISING RESULTS WITH DIFFERENT IMPLICIT
MODULES ON SET12 CORRUPTED WITH THE NOISE LEVEL OF 25

Fig. 10. NERD finds the equilibrium in a stable and efficient manner (whereas
simply iterating fimplicit could oscillate around the fixed point).

non-local and local patterns, showing that they are both
indispensable.

D. Empirical Studies on Model Training

1) Convergence Analysis: In Sec. V, we introduced that
we adopt a limited-memory variant of Broyden’s method [31]
to calculate the equilibrium of (Eq. 11) in the forward pass.
We verify in experiments that our model can converge to the
equilibrium in practice. Fig. 10 displays the relative residual∥∥z[i+1]

− z[i]
∥∥ / ∥∥z[i]

∥∥ as a function of the number of times
we evaluate fimplicit. Note that i starts from 1 instead of 0,
since z[0] is initialized as 0. We can see that simply iterating
fimplicit cannot reach the equilibrium efficiently, while our
NERD exhibits stable convergence with the Broyden’s method.

2) Memory Footprint and Runtime Consumption: We pro-
vide a memory and runtime analysis here to demonstrate
the efficiency of our model. For conventional deep networks
with L layers, the training memory complexity is O(L) since
all intermediate activations are stored for backpropagation.
In comparison, our NERD have an O(1) memory footprint

Fig. 11. The influence of the hyperparameters λ and T in the phantom
gradient. On the vertical axis is the average denoising results on Set12 with
the noise level of 25.

TABLE VIII
THE INFLUENCE OF THE NEIGHBORHOOD SIZE ON THE DENOISING

PERFORMANCE ON SET12 WITH THE NOISE LEVEL OF 25

for inference due to the root-finding formulation. In backward
pass, although the phantom gradient requires O(T ) memory,
where T corresponds to the unrolling steps we use to estimate
the gradient, it avoids the pretraining stage that is used by the
exact implicit differentiation for initialization. For example,
the MDEQ model [31] employs a 10-layer unrolling for
pretraining, which usually consumes more memory compared
with the phantom gradient estimate. In a word, we trade off
a little consumption for training to optimize the equilibrium
more stably and efficiently.

Compared to the 15-layer NLRN model trained on the
same dataset for the same epochs, our model with T =

8 costs 1.8× runtime due to the root-finding process. However,
we empirically observe that we can decouple the numbers
of solver iterations used for training and inference flexibly
to allow the model to be evaluated faster with only a small
degradation in performance, as Fig. 1 shows.

E. Hyperparameter Analysis

We investigate the influence of varying hyperparameters T
and λ in phantom gradient estimate. As shown in Fig. 11, given
the trade-off between the restoration accuracy and inference
time, we adopt T = 8 and λ = 0.8 for NERD in all other
experiments.

Table VIII investigates the influence of the neighborhood
size q in the non-local module on denoising results. The PSNR
performance peaks at q = 65, while the SSIM performance
peaks at q = 55, showing that limiting the neighborhood helps
concentrate the correlation calculation on relevant features in
the spatial vicinity and enhance correlation estimation. This is
consistent with observations in preceding works [10]. Note that
with our method, it is flexible to use different neighborhood
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sizes for inference if one wants to balance between efficiency
and effectiveness.

VIII. CONCLUSION

In this paper, we propose a novel implicit network for image
denoising, which largely mitigates the training difficulties
of deep neural networks. We construct an implicit layer as
our denoising module, which is an input-dependent fixed-
point equation. Each fixed-point iteration takes an image
estimate as input, and makes a noise estimate by passing
the feature through a non-local block to capture image self-
similarities, and a successive transformation block to capture
local patterns. We adopt a post-normalization mechanism to
stabilize the level of the estimated noise and at the same time
facilitate the model training. In the forward pass, the model
makes prediction by achieving the noise equilibrium through
accelerated black-box solvers. While in the backward pass,
the model employs implicit differentiation, thereby avoids
the training problems of explicit models and benefits from
infinite iterations. Extensive experiments demonstrate that our
model significantly improves both quantitative and qualitative
performances of image denoising even with high noise levels,
while being light-weighted.
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