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Abstract—To reveal the mystery behind deep neural networks (DNNs), optimization may offer a good perspective. There are already

some clues showing the strong connection between DNNs and optimization problems, e.g., under a mild condition, DNN’s activation

function is indeed a proximal operator. In this paper, we are committed to providing a unified optimization induced interpretability for a

special class of networks—equilibrium models, i.e., neural networks defined by fixed point equations, which have become increasingly

attractive recently. To this end, we first decompose DNNs into a new class of unit layer that is the proximal operator of an implicit convex

function while keeping its output unchanged. Then, the equilibrium model of the unit layer can be derived, we name it Optimization

Induced Equilibrium Networks (OptEq). The equilibrium point of OptEq can be theoretically connected to the solution of a convex

optimization problem with explicit objectives. Based on this, we can flexibly introduce prior properties to the equilibrium points: 1)

modifying the underlying convex problems explicitly so as to change the architectures of OptEq; and 2) merging the information into the

fixed point iteration, which guarantees to choose the desired equilibrium point when the fixed point set is non-singleton. We show that

OptEq outperforms previous implicit models even with fewer parameters.

Index Terms—Equilibrium models, DEQ, optimization induced models, interpretability

Ç

1 INTRODUCTION

FOR a long time, DNNs have been regarded as powerful
“black boxes” but lacking interpretability. Roughly, all

we know is that different DNNs contain some specific
inductive biases, such as convolutional structures aiming to
extract local features, while Transformers can model global
semantics more easily. However, a more detailed way to
quantify this different bias remains missing. The implicit
models have recently gained significant attention due to

their comparable performance and much less memory-con-
suming. Instead of specifying the explicit forward proce-
dure, the implicit model specifies some conditions held at
its output. For Neural ODE [1], the neural network is
replaced by an ordinary differential equation (ODE) flow,
which can be seen as a continuous version of ResNets [2].
Another instance of such models is Deep Equilibrium
Model (DEQ) [3], [4], which observed that, in the weight-
tying case (share the weights in each layer), neural
network’s forward propagation is equivalent to the proce-
dure of power iteration, and its output approaches the fixed
point of a single layer. Thus the equilibrium model’s output
is created by finding a solution to the fixed point equation.
Although having a simpler formulation, equilibrium model
still lacks interpretability in some sense. Because the under-
lying meaning of the fixed point equation is unclear, there-
fore we still cannot analyze its properties and understand
the intrinsic mechanisms.

It is interesting to provide interpretability for neural net-
works from the optimization perspective. In fact, there are
already some clues showing that DNNs’ components are
strongly related to some underlying optimization problems.
[5] shows that DNN’s activation function is indeed a proxi-
mal operator if it is non-decreasing. [6] investigates the
potential energy function of the self-attention operators. [7]
reformulates the single layer of feed-forward NNs as an
argument minimum operator, therefore performing for-
ward propagation becomes solving several constrained con-
vex problems. On the other hand, there is limited work to
show the optimization connection for equilibrium models.
Previous work [8], [9] proved that equilibrium model with
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the form z� ¼ sðWz� þUxþ bÞ is equivalent to an opera-
tor splitting problem, but the operator splitting formula-
tion does not have good physical interpretation and it
can only be associated with an optimization problem
under restricted conditions (e.g., ReLU activation and
p.s.d. weight [9]).

Suppose that the equilibrium model can connect with an
underlying optimization problem and the explicit objective
exists. We may further understand the mechanism of the
equilibrium model and the reasons for its empirical success.
For example, we can introduce the customized property
into the equilibrium model architectures by adding some
regularization terms to the underlying optimization objec-
tive, which may help to inspire more equilibrium model
architectures. Moreover, when finding the model’s output
is equivalent to minimizing a convex objective, we can uti-
lize any optimization algorithm, especially the accelerated
ones, to obtain the equilibrium point rather than the fixed-
point iteration and the root find methods, which are heavily
used in the previous equilibrium models.

To understand the equilibriummodels from the optimiza-
tion perspective, this paper investigates a new equilibrium
model— Optimization Induced Equilibrium Networks
(OptEq), which can be well interpreted from the optimiza-
tion perspective: solving OptEq’s fixed point equation is
equivalent to getting the minimizer of an underlying optimi-
zation problem. We first show that OptEq’s structure can be
naturally extracted from any feed-forward NN in Lemma 1.
Specially, we reformulate the general feed-forward NN and
decompose it into the composition of a new class of unit
layers while keeping the output unchanged. We then reveal
that OptEq’s layer is the proximal operator of an underlying
implicit convex function in Theorem 1. Our main contribu-
tion comes from two aspects: (1) we discover the intrinsic
optimization-induced structure hidden in general feed-for-
ward NNs; (2) the proposed new equilibrium model can be
well understood from the optimization perspective. In princi-
ple, we can customize the equilibrium model by modifying the
underlying optimization problem. For example, OptEq natu-
rally produces the commonly used skip connection architec-
ture by replacing the convex objective with its Moreau
envelope, which keeps the equilibrium point unchanged. To
strengthen the representation ability, we propose a deep ver-
sion of OptEq, which includes the general feed-forward
DNN as a special case, whose underlying convex objective is
the sum of single ones of its contained layers. Finally, we uti-
lize OptEq’s optimization induced property to improve the
equilibrium model further. We offer two methods to intro-
duce any customized prior information to the equilibrium of
OptEq. The first way is to modify the underlying optimiza-
tion problem directly, which leads to the changes of OptEq’s
architecture. Another way is to use a modified SAM [10] iter-
ation for selecting the fixed point with the minimal regulari-
zation values when the fixed point set is non-singleton. In
summary, our contributions include:

� By decomposing the general DNN, we discover the
intrinsic optimization-induced layer hidden in
general feed-forward NNs, which is the proximal
operator of a convex function. Then we extract the
layer to make it an equilibrium model called

OptEq, and further propose its deep version. With-
out further reparameterization, the equilibrium
point of OptEq is a solution to an underlying con-
vex problem. So OptEq’s property can be well-
studied by investigating the underlying optimiza-
tion problem.

� We propose two methods to introduce customized
properties to the model’s equilibrium points. One is
inspired by the underlying optimization, and the
other is induced by a modified SAM [11] iteration.
This is the first time that we can customize equilib-
rium models in a principled way.

� We conduct experiments on CIFAR-10 and Image-
Net for image classification and Cityscapes for
semantic segmentation. Deep OptEq significantly
outperforms baseline equilibrium models. Moreover,
we also provide several feature regularizations that
can significantly improve the generalization.

2 RELATED WORK

2.1 Deep Equilibrium Models

Bai et al. [3] pioneered the DEQ, an entirely implicit neural
network, by replacing the DNN’s forward propagation with
a fixed point equation, which can be regarded as a weight-
tied DNN with infinite layers. DEQ solves its fixed point
equation by the quasi-Newton method and back-propagates
itself with implicit differentiation. Many works have inves-
tigated DEQs from different perspectives. For example, pre-
vious work [8], [9] was devoted to ensuring the stability of
DEQ, i.e., the existence and uniqueness of fixed point, and
proved that DEQ is equivalent to an operator splitting prob-
lem under some reparameterization. There is also some
work considering the training strategies [12], [13], and train-
ing dynamics [14] for DEQs.

The most relevant work is [9], which associates DEQwith
an optimization problem under very restricted conditions
(ReLU activation and p.s.d. weight matrix). By contrast, in
this work, we try to understand equilibrium models from
the optimization perspective, and hence propose our OptEq,
which naturally has an underlying optimization objective
function under quite mild conditions. Based on this, we sug-
gest principled ways to incorporate prior information into
OptEq.

2.2 Bilevel Optimization

Bilevel optimization is a popular research area in optimiza-
tion and has awide range of applications inmachine learning,
like Hyperparameter Optimization [15], Meta-Learning [16],
and Neural Architecture Search [17]. Equilibrium models
training hasmany similaritieswith solving a bilevel optimiza-
tion problem [18]. For the proposed OptEq, whose output is
the minimizer of a convex function exactly, model training is
equivalent to solving a bilevel optimization problem. In spe-
cific, for trainingOpteq, we have

minuu lossðz�ðx; uuÞ; yÞ;
s:t: z� 2 FixðT ðz; uuÞÞ; , minuu lossðz�ðx; uuÞ; yÞ;

s:t: z� 2 argminz Fðz; uuÞ:

Note that, for genetal DEQ, this transformation is ill-defined,
since the lower-level optimization objective function Fð�Þ
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does not exist in most cases. Inspired by the well-known
SAM algorithm [11] in the bilevel optimization community,
we propose the unrolling SAM method to perform OptEq
training in Section 5.2.

Note that in Section 5.3, we discuss the difference
between the implicit differentiation method and the unroll-
ing algorithm method, which are two important methods
for solving bilevel optimization problems [16], [19]. A more
detailed discussion of the advantages and disadvantages of
these two types of methods can be found in the survey [20].
In practice, the appropriate algorithm should be chosen
based on the trade-off between memory and speed.

2.3 Optimization-Inspired Neural Networks

In general, Optimization-inspiredNNs designDNNs follow-
ing the optimization algorithms and can be divided into two
categories. One to unroll classical optimization or numerical
iterative algorithms and introduce learnable parameters, so
as to obtain learnable DNNs [21], [22], [23]. The other type
replaces one NN’s layer with an optimization solver, e.g.,
[24], [25] consider the solver of quadratic programming (QP)
problem as a layer of DNN.

OptEq is relevant but not comparable to the optimiza-
tion-inspired network. Given the optimization problem, dif-
ferent optimization algorithms may inspire various DNN
architectures. However, conversely, given a DNN, it is
much harder to identify the underlying optimization prob-
lem. Such an ”inverse” problem is the focus of OptEq. By
Lemma 1, we can easily conclude that finding the underly-
ing optimization problem for OptEq is an important step
towards understanding general DNNs.

3 THE PROPOSED OPTIMIZATION INDUCED
EQUILIBRIUM NETWORKS

3.1 Preliminaries and Notations

We provide some definitions that are frequently used
throughout the paper. A function f : H ! R [ fþ1g is
proper if the set fx : fðxÞ < þ1g is non-empty, where H is
the euclidean space. We write l.s.c for short of lower semi-
continuous. The subdifferential, proximal operator andMor-
eau envelope of a proper convex function f are defined as

@fðxÞ :¼g2H : fðyÞ � fðxÞ þ y�x; gh i; 8y 2 H;

proxm�fðxÞ :¼z2H : z¼argminu
1
2m u�xk k2þfðuÞ;

Mm
f ðxÞ :¼ minu

1
2m u� xk k2þfðuÞ;

8><>:
respectively, where �; �h i is the inner product and k � k is the
induced norm. The conjugate f� of a proper convex function
f is defined as: f�ðyÞ :¼ sup y; xh i � fðxÞ : x 2 H. For the
matrix W, kWk2 is the operator norm. While for the vector
‘2-norm, we write k � k for simplicity. Given the map T :
Rm ! Rm, the fixed points set is denoted by FixðT Þ ¼
z 2 Rm : T ðzÞ ¼ z;whose cardinality is jFixðT Þj:

DEQ is inspired by the observation on the feed-forward
DNN (with an input-skip connection): for k ¼ 1; . . . ; L� 1;

zkþ1 ¼ sðWkzk þUkxþ bkÞ; y ¼ WLþ1zL; (1)

where sð�Þ is a non-linear activation function, Wk 2 Rnk�nk�1

and Uk 2 Rnk�d are learnable weights and bk 2 Rnk is a bias

term. A direct way to obtain the equilibrium point of this
system is to consider the fixed point equation: z� ¼ sðWz� þ
Uxþ bÞ. And we can utilize any root-finding algorithm to
solve this equation. Although DEQ may achieve good per-
formance with a smaller number of parameters than DNNs,
its superiority heavily relies on the careful initialization and
regularization due to the instability issue of the fixed point
problems. Some recent work [8] is devoted to solving the
instability issue by using a tricky re-parametrization of the
weight matrix W. However, this may greatly weaken the
expressive power of DEQ, see Prop. 8 in [9]. Most impor-
tantly, in the present equation form, we have difficulty in
getting further properties of the equilibrium point.

3.2 One Layer OptEq

Here, we consider an alternative form of the system in
Eq. (1).

Lemma 1 (Universal Hidden Unit). Given the parameters
fðWk;Uk;bkÞgLk¼1 of a general DNN in Eq. (1), there exists a
set of weights fWk 2 Rnk�mgLk¼0 with m � maxfnk þ nkþ1;
k ¼ 1; . . . ; L� 1g, such that the system in Eq. (1) can be re-
written as the following network: for k ¼ 1; . . . ; L� 1;

zkþ1 ¼ W
>
k sðWkzk þUkxþ bkÞ; y ¼ WLþ1zL: (2)

Notably, without changing the output y, any feed-forward
DNN has the reformulation in Eq. (2). The formal proof can
be found in appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2022.3181425, we present the main idea
here

y ¼WLs WL�1sð� � �W2sðW1z0 þU1xþ b1Þ � � �Þð Þ

¼WL W
>
L�1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

WL

s WL�1 W
>
L�2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

WL�1

s � � �W2 W
>
1|fflfflfflffl{zfflfflfflffl}

W2

� � �

0B@
1CA

0B@
1CA:

In the sense of weight-tying (i.e., all the layers share the
same weights), the DNN’s output y is a linear transforma-
tion of zL, where zL is a good approximation of the follow-
ing fixed point equation under some mild assumptions:

z� ¼ W>sðWz� þUxþ bÞ: (3)

Hence, the feed-forward DNN also inspires an interesting
and different equilibriummodel Eq. (3). We call it Optimiza-
tion Induced Equilibrium Networks (OptEq) since it is
tightly associated with an underlying optimization problem.
As shown in Theorem 1 that follows, the equilibrium point
z� is a solution of a convex problem that has an explicit for-
mulation. From the perspective of optimization, we can eas-
ily solve the existence and the uniqueness problems of the
fixed point equation, rather than resorting to the reparamete-
rization trick. Most importantly, by studying the underlying
optimization problem, we can investigate the properties of
the equilibrium point of OptEq. The following theorem for-
mally shows the relation betweenOptEq and optimization.

Assumption 1. The activation function s : R ! R is monotone
and ~Ls-Lipschitz, i.e.,
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0 � sðaÞ � sðbÞ
a� b

� ~Ls ; 8a; b 2 R; a 6¼ b:

Theorem 1. If Assumption 1 holds, for one NN layer f : Rm !
Rm given by

fðzÞ :¼ 1

m
W>sðWzþUxþ bÞ; m � ~Ls Wk k22;

the solution to the fixed point equation z ¼ fðzÞ is the mini-
mizer of the convex function ’ð�Þ, where,

’ðzÞ ¼ c�ðzÞ � 1

2
zk k2; cðzÞ ¼ 1

m
1>~sðWzþUxþ bÞ;

in which 8a 2 R; ~sðaÞ ¼
R a

0 sðtÞ dt, applied element-wisely to
vectors, and 1 is the all one vector. Furthermore, we have
fðzÞ ¼ prox’ðzÞ, i.e., the NN layer is a proximal operator.

Theorem 1 shows that OptEq’s layer given in Eq. (3) is a
proximal operator of an underlying convex function given
by a conjugate function, and the equilibrium point of OptEq
happens to be the minimizer of this function.1 In the rest
part of this paper, for ease of discussion, we focus on the
case that m ¼ 1 for OptEq, which may correspond to the
assumption ~Ls ¼ 1 and kWk2 � 1.

In some cases, we can write down the closed form of the
optimization objection ’ð�Þ. For example, when the weight
matrix W is invertible, and the activation sð�Þ is ReLU, i.e.,
sðxÞ ¼ maxx; 0; 8x 2 R, we have

’ðzÞ ¼ 1>~s�ðW�>zÞ � Uxþ b;W�>z
� �

� 1

2
kzk2; (4)

where ~s�ðxÞ ¼
�

1
2x

2; x > 0;
1; x � 0

, applied element-wise to

vectors. In the ReLU activation case, OptEq is equivalent

to solving a QP problem. As a convex optimization layer,

QP’s powerfulness and effectiveness have been verified
in [24], [25].

By Theorem 1, we can quickly obtain the well-posedness
of OptEq. In general, any W that makes the underlying
objective ’ to be strictly convex will ensure the existence

and uniqueness of OptEq’s equilibrium. For example, when
kWk2 < 1, the operator: z 7! W>sðWzþUxþ bÞ is contrac-
tive, therefore the fixed point equation Eq. (3) has a unique
solution, i.e., it exists and is unique. What’s more, we show
a training strategy that can actually deal with a much more
general case — jFixðT Þj � 1. Please see Section 5.2 for more
details.

OptEq’s most attractive aspect is that, by modifying the
underlying convex problem, it can inspire many different
equilibrium model architectures. For example, we can
introduce the commonly used skip connection structure
only by replacing ’ðzÞ with its Moreau envelope aM1�a

’ ðzÞ,
which does not change the equilibrium point but make
OptEq’s layer strongly monotone and invertible, and
hence can stabilize the iteration. We provide more exam-
ples in Table 1. Moreover, we can introduce customized
properties of equilibrium point into the model in this way,
please see Section. 5.1.

3.3 Deep OptEq

Some work claims that one layer implicit equilibrium is
enough [3] and improves the model expressive ability by
stacking small DEQs to obtain a wide one-layer DEQ, i.e.,
considering a fixed point problem in a higher dimension.
However, in practice, solving a high-dimensional fixed-point
equation is very time-consuming. Therefore, to improve the
efficiency of OptEq, we choose to concatenate OptEq and
propose deep OptEq, which is a good extension of the one-
layer wide one since it improves the model capability with-
out changing the problem scale. Indeed, as we will show in
the next section, wide single-layer Opteqs are special cases of
deepOpteqs in the asymptotic sense.

In this subsection, we propose a multi-layer version of
OptEq, which is also associated to an underlying optimiza-
tion problem.We consider a multi-layer OptEq, where x0 2
Rdx denotes the input, z 2 Rm denotes the hidden unit, and
y 2 Rdy denotes the output. Namely, deep OptEq follows
the implicit equation:

x ¼ gðx0;W0Þ;
z ¼ T ðz; x; uuÞ :¼ fL 	 fL�1 � � � 	 f1ðz; x; uuÞ
y ¼ WLþ1z;

8<: (5)

where for all l 2 ½1; L
 and a 2 ð0; 1
,

flðz; xÞ ¼ aW>
l sðWlzþUlxþ blÞ þ ð1� aÞz: (6)

TABLE 1
Examples to Modify the Underlying Optimization Problem

Underlying Convex Function OptEq Layer Illustration

’ðzÞ ¼ c�ðzÞ � 1
2 kzk

2 W>sðWzþUxþ bÞ original OptEq

aM1�a
’ ðzÞ aW>sðWzþUxþ bÞ þ ð1� aÞz introduce skip connection

c�ðAðzÞÞ � 1
2 kAðzÞk2 A�1ðW>sðWAðzÞ þUxþ bÞÞ Að�Þ is an invariable affine operator, including translation,

rotation and scaling

1>~s�ðW�>zÞ ! 1
2 z

>W�1S�1W�>z W>SðWzþUxþ bÞ for ReLU case in Eq. (4), multivariate activation function

ð’þ gRzÞðzÞ W>sðWðz� � g
@Rzðz�Þ

@z Þ þUxþ bÞ minimizer of ð’þ gRzÞð�Þ, see Theorem 4 for more details

1. Besides the forms we show, one may expect a common rule to
determine whether a general mapping is a proximal operator or not,
which can help to create the new equilibrium models from the optimi-
zation perspective. We provide the sufficient and necessary conditions
in Lemma 5 (see appendix, available in the online supplemental
material).
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Here, given the set of learnable parameters W0; gð�;W0Þ :
Rdx ! Rd is a continuous function which we usually
choose as the feature extractor, e.g., shallow NNs. uu ¼
fðWl;Ul;blÞgLl¼1 is the set of all learnable parameters for
our equilibrium network, where Wl 2 Rnl�m, U 2 Rnl�d,
bl 2 Rnl are the learnable weight matrices and bias term,
respectively. Note that WLþ1 2 Rdy�m is also learnable. s :
R ! R is the activation function, when the input is multi-
dimensional, we apply the function sð�Þ element-wise. The
hidden unit z is the equilibrium point of the fixed point
equation z ¼ T ðz; x; uuÞ when x and uu are given. Without
loss of generality, we assume that the feature extractor sat-
isfies a Lipschitz continuity assumption w.r.t. the learnable
weight, i.e., kgðx0;W1Þ � gðx0;W2Þk � LgkW1 �W2k2.

At the first glance, deep OptEq seems very different from
the traditional DNNs. Some negative results on DEQ are
shown in previous work [9]: with improper weight re-parame-
terization, DEQ does not contain any feed-forward networks.
By contrast, without weight re-parameterization, deep OptEq
can include the general feed-forwardDNNas its special case.

Lemma 2. If Assumption 1 holds, the deep OptEqs contain all
feed-forward DNNs. More precisely, given a feed-forward
DNN in the form

zkþ1 ¼ sðAkzk þ ckÞ; k ¼ 1; . . . ; L� 1; y ¼ ALþ1zL;

where z1 ¼ x is the input and sð�Þ is the activation give by
Assumption 1. Then there exists fðWl;Ul;blÞgLl¼1 such that y
is also the output of the corresponding deep OptEq in Eq. (5).

4 RECOVER UNDERLYING OPTIMIZATION

This section provides our main results on the connection
between convex optimization problem and our deepOptEq. In
the previous section, we have shown that one layer of DNN is
a proximal operator under a mild assumption. However, the
composition of multiple proximal operators is not a proximal
operator in most cases. Fortunately, we can still recover the
underlying optimization problem of deepOptEq, and find that
its equilibrium point is a zero point of a convex function’s sub-
differential with an additional permutation constraint. In addi-
tion, we can explicitly provide the optimization objectives
corresponding to deep OptEq in some cases. Before providing
the main results, we first show the connection between our
deepOptEq given in Eq. (5) and amulti-block one-layerOptEq.

Lemma 3 (Deep OptEq and Multi-block OptEq). Let z�0
be the hidden unit of deep OptEq. Namely z�0 is an equilibrium
point of the equation z ¼ fL 	 fL�1 � � � 	 f1ðz; x; uuÞ, set z�1 :¼
f1ðz�0; x; uuÞ; z�2 :¼ f2 	 f1ðz�0; x; uuÞ; . . . ; z�L�1 :¼ fL�1 � � � 	 f2	
f1ðz�0; x; uuÞ, then ez� :¼ ½z�1; . . . ; z�L�1; z

�
0

> 2 RmL is an equilib-

rium point of the equation

ez ¼ afW>s fWPezþ eUxþ eb� �
þ ð1� aÞPez; (7)

wherefW is block diagonal and P is a permutation matrix,

fW :¼
W1

. .
.

WL

264
375; P :¼

0 I
I 0

. .
. . .

.

I 0

2664
3775;

eU :¼ ½U1; . . . ;UL
> and eb :¼ ½b1; . . . ;bL
> are the
concatenatedmatrix and vector, respectively (see Eq. (15) in appen-
dix for more details), available in the online supplemental material.

By Eq. (7), and the necessary and sufficient condition for
one DNN layer to be a proximal-like operator (Lemma 6 in
appendix), available in the online supplemental material,
we can further reveal the connection between deep OptEq
and optimization under a mild assumption.

Assumption 2. Assumption 1 with ~Ls ¼ 1 and kWik2 �
1; 8i 2 ½1; L
 holds.

Note that we make this assumption just for the ease of
discussion. The assumption is actually unnecessary since
we can introduce an additional constant to re-scale the
whole operator as we did in Theorem 1.

Theorem 2 (Recovering Optimization Problem from
Deep OptEq). If Assumption 2 holds, then any equilibrium
point ez� of Eq. (7) satisfies

0 2 @Fðez�Þ þ ðI� PÞez�; (8)

where I is the identity matrix and Fðez�Þ is given by a
sequence Moreau envelopes of convex functions ’i

L
i¼1 such

that prox’iðzÞ ¼ W>
i sðWizþUixþ biÞ, namely

FðezÞ ¼ XL
i¼1

aM1�a
’i

ðziÞ;

where zi is the ith block of ez� and M1�a
’i

ðzÞ is the ’i’s Moreau
envelope.

When the block size is 1, i.e., L ¼ 1, we can immediately
obtain that 0 2 @Fðez�Þ, namely, the equilibrium point is a
solution of a convex optimization problem. So the results
provided in Theorem 1 is a special case here. Note that one
block does not mean that z is one-dimensional. Moreover,
for two blocks, the deepOptEq is also an optimization solver.

Corollary 1. If the block size L ¼ 2 and Assumption 2 holds,
then the equilibrium point ez� ¼ ½z�1; z�0


> of Eq. (7) is also a
solution to a convex problem

min
z1;z0

aM1�a
’1

ðz1Þ þ aM1�a
’2

ðz0Þ þ
1

2
z1 � z0k k2

� �
:

For general L > 2, we can also write down the monotone
inclusion equation Eq. (8)’s underlying optimization prob-
lem when a ! 0. Interestingly, this result implies the equiv-
alence between the composited deep models and the wide
shallow ones in the asymptotic sense.

Theorem 3 (Connection between Wide and Deep
OptEq). If Assumption 2 holds, and there is at least one
kWik2 < 1. Assume ez�ðaÞ :¼ ½z�1ðaÞ; . . . ; z�L�1ðaÞ; z�0ðaÞ


> 2
RmL is the equilibrium point of Eq. (7). When a ! 0, all z�l ðaÞs
tend to be equal, and the limiting point is y, the last entry of the
minimizer ðx1; . . . ; xL; yÞ of the following optimization problem:

min
x1;...;xL;y

XL
l¼1

’lðxlÞ þ
1

2
kxl � yk2

	 
( )
;

where ’lð�Þ is the same as that in Theorem 2.
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Theorem 3 implies that, when a ! 0, the equilibrium
point of the deep OptEq is the same as the solution of Lz ¼PL

i¼1 W
>
i sðWizþUixþ biÞ, which is a wide one-layer

OptEq with multiple blocks. Given the output dimension
and the same amount of learnable parameters, the wide
multi-block OptEq is actually a special case of deep OptEq
in the asymptotic sense. Hence, deep OptEq is more expres-
sive than wide one-layer OptEq.

In general, we can still loosely treat the equilibrium point
as a minimizer of an implicit optimization problem, since
the only difference between the monotone inclusion equa-
tion 0 2 @Fðez�Þ and Eq. (8) is an additional constraint domi-
nated by the operator ðI� PÞð�Þ, which aims to reduce the
divergence between the multi-blocks. For example, when
L ¼ 2, the results in Corollary 1 show that we need to simul-
taneously consider the sum of convex objective and the dis-
tance kz1 � z0k.

5 INTRODUCING CUSTOMIZED PROPERTIES

By employing the underlying optimization problem, we can
investigate the potential property of the equilibrium points.
A more advanced way to use the connection between
(deep) OptEq and optimization is to introduce some cus-
tomized properties to equilibrium points, i.e., the feature
learned by OptEq. Note that none of the previous DEQs
take into account the regularization of features, which has
been proved to be effective both theoretically [26], [27] and
empirically [28].

5.1 Underlying Optimization Inspired Feature
Regularization

As we mentioned in Section 3.2, if we replace the underly-
ing optimization objective with its Moreau envelope, OptEq
will naturally have a skip-connection structure, which has
been adopted in the construction of deep OptEq. Following
this idea, when we modify the underlying optimization
problem of deep OptEq, it should inspire more network
architectures.

An exciting application of Theorem 2 is introducing cus-
tomized properties by modifying Fð�Þ: appending one layer
after deep OptEq is equivalent to adding one term to the
objective Fð�Þ. Specifically, we have the following theorem.

Theorem 4. With the same setting as in Theorem 1. The fixed
point of the equation z� ¼ f 	 ðI � g @Rz

@z Þðz�Þ, namely

z� ¼ W>s W

	
z� � g

@Rzðz�Þ
@z



þUxþ b

	 

;

is the minimizer of the convex function ð’þ gRzÞð�Þ.

Hence, if We modify FðezÞ to FðezÞ þ RzðzLÞ, then deep
OptEq becomes

z ¼ T ðT RzðzÞ; x; uuÞ;

where T Rz ¼ proxgRz
or T Rz ¼ I � g @Rz

@z when the proximal
is hard to calculate. For the choice of Rz, we give several
examples in Table 2.

In general,Rzð�Þ can be any convex function that contains
the prior information of the feature. In summary, we
introduce feature regularization by modifying the underly-
ing optimization problem, which leads to a change of
network structure. Once again, studying the equilibrium
models from the perspective of optimization shows great
advantages.

5.2 SAM Iteration Induced Feature Regularization

In this subsection, we provide another strategy for feature
regularization. Note that most previous DEQs are devoted
to ensuring a singleton fixed point set, relying on the tricky
weight re-parameterization. Considering the general case
— jFixðT Þj � 1, we can choose the equilibrium with desired
property by solving the following constrained optimization
problem:

z�ðx; uuÞ :¼ argmin
z2FixðT ð�;x;uuÞÞ

RzðzÞ; (9)

where Rzð�Þ is the feature regularization that contains
the prior information of the feature. Given the training
data ðx0; y0Þ 2 Rdx �Rdy , the whole training procedure
becomes2

mineuu ‘ðWLþ1 � z�ðx; uuÞ; y0Þ þ RwðeuuÞ; (10)

where euu :¼ W0; uu;WLþ1, x is given by Eq. (5), Rwð�Þ is the
regularizer on the parameters, e.g., weight decay, and ‘ :
Rdy �Rdy ! Rþ is the loss function.

TABLE 2
Some Choices forRz and the Corresponding T Rz

Rz Operator Form Prior Information

kzk2
2 proxgRz

z
1þg

re-scale, feature decay

kzk1 proxgRz
ðjzj � gÞþ � sgnðzÞ shrinkage operator, surrogate of sparsity

2
kzk2þ2�

I � g @Rz
@z

�
1� 4g

ðkzk2þ2�Þ2

�
z feature incay, feature expansion

1
2

P
i 6¼j

�
z>
i
zj

kzikkzjk

�2

I � g @Rz
@zi

zi � ðI þ ProjðziÞÞ 	
P

Projðzj 6¼iÞ
�

zi
kzik2

�
feature decorrelation, improve independence,

please see Eq. (13), where ProjðzjÞ :¼
zjz

>
j

kzjk2

2. For the sake of clarity, we utilize one training pair for discussion.
In general, all the discussed results hold when we replace the single
data point with the whole data set.
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We adopt the Sequential Averaging Method (SAM) [10]
to solve the problem Eq. (9). Starting from any z0 2 Rm, we
consider the following sequence zkk2N:

zk ¼ bkS�kðz
k�1Þ þ ð1� bkÞT ðzk�1; x; uuÞ; (11)

where fbkgk2N and f�kgk2N are sequences of real numbers in

(0,1], S�ðzÞ ¼ ð1� g�Þz� g
@RzðzÞ

@z , where g 2 ½0; 1
 is a hyper-
parameter. Then we choose the Kth iteration zKðx; uuÞ as an
approximate of z�ðx; uuÞ and put it in the final loss term

mineuu ‘ WLþ1 � zKðx; uuÞ; y0
� �

þRwðeuuÞ: (12)

The unrolling term zKðx; uuÞ aggregates information from

both RzðzÞ and T , making the prior information of feature

being an inductive bias during training. And our model can

be easily trained by any first-order optimization algorithms,

e.g., GD, SGD, Adam, etc.

Remark 1. SAM needs Rzð�Þ to be strongly convex, here we
use a modified version of SAM which only assumes con-
vexity. Given well-chosen fbkgk2N and f�kgk2N, we can
prove that the sequence generated by Eq. (11) converges
to the point z�ðx; uuÞ. Furthermore, we prove that the
whole training dynamic, using the unrolling SAM strat-
egy with backpropagation (BP), converges with a linear
convergence rate.

Remark 2. If we use the method in Section 5.1 to introduce
the prior information, there is no need to use SAM itera-
tion again. Therefore, we can let beta bk ¼ 0; S�kð�Þ ¼ 0,
and use the unrolling fixed point iteration strategy during
training. Note that we can also use the implicit function
theorem (IFT) based training way.

Previous equilibrium models utilize IFT in training to
avoid the storage consumption of forward-propagation.
The cost for that is it needs to solve two large-scale linear
equations (or perform the matrix inversion directly) during
training. Deep OptEqs can be trained both in the unrolling
based and IFT based ways. In the sense of BP, the two train-
ing ways have different merits and limitations. We provide
comparative experiments in Section 7 and detailed discus-
sion in the following subsection.

5.3 Discussion About the Training Methods

The training method is summarised in Algorithm 1.
The IFT based implicit way utilizes the limited memory to

train the model and is insensitive to the equilibrium point
finding algorithms. However, it consumesmuch computation
budget to solve the equation during the inference and BP. On
the other hand, the way that unrolls the fixed point finding
method may induce implicit bias [29], [30] and consumes
much memory during training, but it is faster to infer and
train. Note that implicit bias is a double-edged sword; The
proposed SAM method can aggregate the information from
the prior regularization and the fixed point equation. Hence,
the implicit bias becomes a controllable inductive bias.

The tradeoff between memory and computing efficiency
for the implicit and unrolling training methods is quite com-
mon in the other learning community, such as meta-learning

[31] and hyper-parameter optimization [19]. Similarly, for
DEQ, the two training ways are neither good nor bad. We
should choose them in proper circumstances.

Algorithm 1. Training Algorithm for (Deep) OptEq

Input: training data ðx0;i; yiÞ
n
i¼1, unrolling number K, itera-

tion number T , feature extractor gð�Þ
1: for t ¼ 0 to T do
2: forward: x ¼ gðx0;W0Þ, set z0 ¼ x
3: if IFT-based training then
4: solve the fixed point equation z� ¼ T ðT Rz ðz�Þ; xÞ;
5: else if unrolling with SAM then
6: for k ¼ 1 toK do
7: zk ¼ bkS�kðzk�1Þ þ ð1� bkÞT ðzk�1; xÞ;

/* SAM by Eq.(11)*/

8: end
9: z� ¼ zK ;
10: else /* raw unrolling */

11: for k ¼ 1 toK do
12: zk ¼ T ðT Rzðzk�1Þ; xÞ;
13: end
14: z� ¼ zK ;
15: end
16: backward:
17: evaluate the loss L :¼ ‘ðWz�; yÞ þ RwðeuuÞ;
18: if unrolling-based training then
19: get @L=@euu by automatic differentiation;
20: else if IFT-based training then
21: get @L=@euu by implicit differentiation;
22: update the learnable parameters euu;
23: end

6 CONVERGENCE ANALYSIS

This section offers the convergence results: (i) the sequence
generated by Eq. (11) converges to some point z� 2 FixðT Þ
such that Rzðz�Þ � RzðzÞ; 8z 2 FixðT Þ; (ii) gradient descent
can find a global minimum for the model in Eq. (12).

6.1 Approximation of Equilibrium Point

Note that we approximate the points z�ðx; uuÞ by the iterative
steps in Eq. (11). In fact, we take the iterative step by extend-
ing an existing algorithm, SAM, which was developed
in [10] for solving a certain class of fixed-point problems,
and then was applied to the bilevel optimization prob-
lems [11]. However, the existing SAMmethod can only deal
with strongly convex RzðzÞ. Our method is the first SAM
type algorithm that can solve the general convex problem
restricted to a nonexpansive operator’s fixed point set. The
following theorem provides the formal statement and the
required conditions. Since during the forward-propagation,
ðuu; xÞ is fixed, for the sake of convenience, we simplify
T ðz; x; uuÞ as T ðzÞ.

Theorem 5 (Convergence of Modified SAM Iterates).
Suppose that rRzðzÞ is Lz-Lipschitz, and that for any b 2
½0; 12
; � 2 ½0; Lz

2 
, the fixed point set of equation: z ¼
bðz� gðrRzðzÞ þ �zÞÞ þ ð1� bÞT ðzÞ is uniformly bounded
by B�

1 (in norm k � k) w.r.t. b and �. Suppose that convex func-
tion RzðzÞ has a unique minimizer �z on FixðT Þ. Let bk ¼
h
kr ; �k ¼ h

kc ; g ¼ 1
2Lz

, where r; c > 0, rþ 2c < 1 and h ¼
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minf
ffiffiffiffiffiffiffiffi
2Lz

p
; Lz
2 ; 12g, then the sequence fzkgk2Nþ generated by

Eq. (11) converge to �z.

The formal assumptions of Theorem 5 seem complicated,
however, they can be easily fulfilledwhen T ðzÞ is contractive.
A sufficient condition thatmakes T ðzÞ contractive is to let one
kWik2 � z < 1. More specifically, if some kWik2 � z < 1,
then z 7! bðz� gðrRzðzÞ þ �zÞÞ þ ð1� bÞT ðzÞ is contractive
and has a unique fixed point, which depends continuously on
b and � [32], and thereby have a uniform bound.

6.2 Global Convergence of Implicit Model

Most previous works on DEQs lack the convergence guaran-
tees for their training. However, analyzing the learnable
parameters’ dynamics is crucial since it may weaken many
model constraints and greatly broaden the function class
that the implicit model can represent. For example, the one-
layer DEQ, given in [8], maintains the positive definiteness
of ðI�WÞ for all weight W in Rm�m through a complicated
parameterization technique. However, after analysis, we
find that the learnable weight will stay in a small compact set
during training, thus, we may only need the positive defi-
niteness within a local region instead of global space for the
DEQ [8].

Theorem 6 (Global Convergence (informal)). Suppose
that the initialized weight Wl’s singular values are lower
bounded away from zero for all l 2 ½1; Lþ 1
, and the fixed
point set FixðT ð�;X; uuÞÞ is non-empty and uniformly bounded
for any euu in a pre-defined compact set. Assume that the activa-
tion function is Lipschitz smooth, strongly monotone and 1-
Lipschitz. Define constants Q0, Q1 and Q3, which depend on
the bounds for initialization parameters, initial loss value, and
the datasize. Let the learning rate be h < minf 1

Q0
; 1
Q1
g. If for

all l 2 ½1; L
, we have nl ¼ VðpolyðNÞÞ, then the training loss

vanishes at a linear rate as

‘ðeuutÞ � ‘ðeuu0Þð1� hQ0Þt;

where t is the number of iteration. Furthermore, the network

parameters also converge to a global minimizer euu� at a linear

speed

keuut � euu�k � Q3ð1� hQ0Þt=2:

Theorem 6 shows that GD converges to a global optimum
for any initialization satisfying the boundedness assump-
tion. In general, the lower bounded assumption on singular
values is easy to fulfill. With high probability, the weight
matrix’s singular values are lower bounded away from zero
when it is a rectangle and has independent, sub-Gaussian
rows or has independent Gaussian entries, see Thm.4.6.1
and Ex.7.3.4 in [33].

6.2.1 About Boundness and Well-Posedness

Similar to the remark after Theorem 5, the existence and
boundedness assumption on the set FixðT Þ is mild. Suppose
that there exists l 2 ½1; L
, such that Wl � z < 1, then the
fixed point of T exists and is unique, and is continuous w.r.

t. the parameters euu. Moreover, via over-parameterization, a
proper Gaussian initialization followed by gradient descent
produces a sequence of iterates that stay inside a small per-
turbation region centered at the initial weights. In such a
small perturbation region, the largest singular value of each
weight Wl does not change a lot, namely, Wl � 1 holds dur-
ing training. Therefore, throughout the training process, the
fixed points are uniformly upper bounded, and the fixed
point of T exists and is unique.

7 EXPERIMENTS

In this section, we investigate the empirical performance of
deep OptEq from three aspects. First, on the image classifica-
tion problem, we evaluate the performance of deep OptEqs
along with our feature regularization strategies. The results
trained with different as are also reported. Second, we com-
pare deep OptEqs with previous implicit models and tradi-
tional DNNs. Finally, we compare our unrolling-based
methodwith the IFT-basedmethod and investigate the influ-
ence of unrolling iteration numberK. Furthermore, we pres-
ent the results on Cityscapes for semantic segmentation.

Training Strategy of Deep OptEqs. In order to compare the
effect of feature regularization on performance in detail, we
compare three unrolling training ways based on Eq. (12): (1)
Ry

z: strategy in Section 5.2, using the proposed SAM given
in Eq. (11); (2) R�

z : strategy in Section 5.1, and set bk ¼ 0 in
Eq. (11); and (3) no Reg: without feature regularization.
Here we set the iterative number K ¼ 20 for the experi-
ments on CIFAR-10 and let K ¼ 5 for the experiments on
ImageNet. We discuss the influence of different K in
Section 7.4.

7.1 Effects of Different Regularizers

We construct the deep OptEqs with 5 convolutional layers,
using five 3� 3 convolution kernels with the numbers of
channels being 16; 32; 64; 128; 128. During backward propa-
gation, we utilize the commonly used first order optimiza-
tion algorithm — SGD. We set the learning rate as 0.1 at the
beginning and halve it after every 30 epochs. And the total
training epoch is 200.

In this experiment, we compare the performance of two
ways to introduce the feature regularization on the CIFAR-
10 dataset. We adopt the feature decorrelation as the Rz

here. We also use two norm regularizations to show
whether there is a corresponding effect on the learned fea-
ture of deep OptEq. Moreover, we show how the hyper-
parameter a affects the model performance.

The results are shown in Table 3. With the same size of
parameters, deep OptEqs beats the general DNN (given in
Eq. (1)) easily. It turns out that there is no linear relationship
between the performance and the hyperparameter a. The
hyperparameter a serves as a trade-off between the effect of
fixed point equation and the regularization induced by oper-
ator S. In our setting, with a small initialization for fWlgs, all
weights will stay in a small compact set during training (see
proof of Theorem 6). Therefore when a approaches 1, deep
OptEq is an intense contraction (i.e., with a small contractive
coefficient), and the SAM iterations will quickly converge to
the fixed point, in which case regularization induced opera-
tor S has a limited impact.When a approaches 0, deepOptEq
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is to be more like the identity operator, so S dominates the
whole iterations.

The optimization inspired implicit regularization (R�
z)

is also an efficient feature regularization method since it
modifies deep OptEq structure directly. Here we present
two R�

zð�Þ candidates: �k � k1 and �k � k2. The outputs of
the feature show decreases in the corresponding norm,
and a suitable regularization coefficient can lead to a bet-
ter performance.

7.2 Performance of Different Feature Regularizers

On the dataset CIFAR-10, the experiment in this subsec-
tion detailedly shows the effect of different settings on reg-
ularizer Ry

z (for Section 5.2), regularizer R�
z (for

Section 5.1), and a. Note that in this paper, we mainly
focus on feature regularizers. However, another line of
work that considers some special (weight) regularization
techniques for DEQ has also attracted some attention. For
example, [34] suggests a regularization method to stabilize
DEQ training by explicitly regularizing the Jacobian of the
fixed-point iteration equations. [35] shows that state-
dependent inexact gradient brings additional training sta-
bility regarding the Jacobian spectral radius, which can be
understood as a kind of implicit Jacobian regularization.
The reader can refer to [34], [35] and the reference therein
for more details. We first introduce a regularizer—Hilbert-
Schmidt Independence Criterion (HSIC), which is a feature
disentanglement method.

7.2.1 HSIC

HSIC is a statistical method to test independence. Com-
pared with the decorrelation method we will present in the
following, HSIC can better capture the nonlinear depen-
dency between random variables. We apply HSIC to the fea-
ture space. Many works [36], [37] show that when the
features learned by the network are uncorrelated, the model
usually obtains a good generalization performance. For any
pair of random variables X ¼ ðx1; . . . ; xBÞ;Y ¼ ðy1; . . . ; yBÞ,
where B is the batch size, we utilize the biased finite-sample
estimator of HSIC [38]

HSICðX;YÞ :¼ ðB� 1Þ�2 trðKXHKYHÞ;

where KX and KY are the kernel matrices w.r.t. Gaussian
RBF kernel of X and Y, and H is the centering matrix H ¼
I�B�11B1B 2 RB�B. Following [28], we aim to eliminate all
the correlations between feature maps. To this end, our
HSIC regularization is

RzðZÞ ¼
X

1�i < j�m

HSICðZi;:;Zj;:Þ:

Note that HSIC is a nonparametric regularization term, so it
does not increase the parameter size of deep OptEq. The
computing cost of HSIC grows as the batch size and feature
dimension increase. Some tricks, such as Random Fourier
Features approximation [28], can be applied to speed up the
calculation. In addition, Theorem 5 is only guaranteed for
convex regularization, while HSIC regularization is non-
convex. In this paper, we report the great empirical superi-
ority of HSIC and leave the above issues to future work.

7.2.2 Settings and Results

Other Regularizers. Here is the function we utilize to intro-
duce the customized property to the equilibrium point, see
Section 5 for more details. For the regularizer Rzð�Þ (both for
Ry

z and R�
z), we set four different settings: (1) RzðZÞ ¼P

1�i < j�m HSICðZi;:;Zj;:Þ; (2) RzðzÞ ¼ 1
2 kzk

2; (3) RzðzÞ ¼
1=ðkzk2 þ �Þ which is explored in [39]; (4) Decorrelation: for
the B-batch equilibrium points matrix Z 2 Rm�B:

RzðZÞ ¼
1

2
DZZ>D� I

�� ��2
F
:¼ FDzðZÞ; (13)

where D is a diagonal matrix whose non-zero entries are
1

kZi;:k and Zi;: is the ith row of the matrix Z. Note that RzðZÞ
here aims at reducing redundant information between fea-

ture dimensions, which has been discussed in [40].
Settings. In this experiment, we set K ¼ 20 and utilize

weight decay to regularize the learnable parameters, i.e.,
Rwð�Þ ¼ �k � k2, where we choose � ¼ 3e� 4. We utilize the
commonly used SGD to train the model. We set the learning
rate as 0.1 at the beginning and decay it by 0.7 after every 20
epochs. And the total training epoch is 200. The batch size is
125 in this experiment. We construct the deep OptEqs with
5 convolutional layers, using five 3� 3 convolution kernels
with the numbers of channels being 16; 32; 64; 128; 128. The
total number of learnable parameters is 199 k.

Results. The results with different regularizers are pre-
sented in Table 5. We can see that either adopting SAM iter-
ation or changing the underlying convex optimization
problem both improves classification performance. Note
that, given the same type of regularization, modifying the
underlying optimization problem, i.e., using R�

z , usually
make more improvements. Indeed, to modify the underly-
ing optimization problem, we need to change the architec-
ture of deep OptEq, which has a more direct impact on the
model than turning the training loss by Ry

z. When a ¼ 0:01,
deep OptEq is almost equivalent to the one-layer wide
OptEq (see Theorem 3), which is far outperformed by deep
OptEq for a > 0:1. Compared with other results, a ¼ 0:1
gives a poor result, which implies that the performance is

TABLE 3
(a) The Testing Accuracy (Acc.) of Deep OptEq

With Different Settings

a 0.01 0.1 0.4 0.8 1.0

Acc-(no Reg) 58.4% 56.8% 86.9% 87.4% 87.2%
Acc-(Ry

z) 72.7% 61.5% 86.5% 87.0% 87.7%
Acc-(R�

z) 72.6% 60.0% 88.0% 87.6% 87.5%

Acc-DNN. 82.7%

R�
z ¼ �k � k1 0.01 0.15 0.5

mean k � k1 > 5 0.81 0.34
Acc. 86.4% 87.7% 86.9%

R�
z ¼ �k � k2 0.01 1.0 10.0

mean k � k2 > 10 1.56 0.82
Acc. 87.3% 87.6% 86.7%

R�
z and Ry

z represent the regularization given in Section 5.1 and Section 5.2,
respectively. We set different � for R�

z and the mean values are taken on the
whole feature tensor. The total number of parameters is 199 k.
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not monotonic to parameter a. Fortunately, from the table,
setting a > 0:4 is a safe choice. We notice that the overall
performance of feature disentanglement methods (decorre-
lation and HSIC) are better than the other types of regulari-
zation terms whether we utilize it asRy

z orR�
z .

7.3 Comparison With Previous Implicit Models

In this experiment, we compare deep OptEq with other
implicit models MDEQ [4], NODEs [1], Augmented
NODEs [41], single convolutional Monotone DEQs [8]
(short as MON), and classical ResNet-xx [2]. Note that deep
OptEqs do not require the additional re-parameterization
like MONs [8]. Therefore, our OptDeq models cannot guar-
antee the uniqueness of the fixed point. However, the pro-
posed SAM training strategy can select the point with the
minimal regularization value when the fixed point set in
not a singleton.

7.3.1 Results on CIFAR-10

For fair comparisons, we construct the deep OptEqs with 5
convolutional layers. In order to construct deep OptEqs
with a similar number of parameters as baseline methods,
we use five 3� 3 convolution kernels with the numbers of
channels being 16; 32; 64; 64; 128. Moreover, we only use a
single convolutional layer as the feature extractor gð�Þ for
the model with 162 k parameters, which is the same as sin-
gle convolution MONs [8].

The results are shown in Table 4. Notably, even without
feature regularization trick, our deep OptEqs significantly out-
perform baseline methods. We highlight the performance of
deep OptEqs on CIFAR-10 which outperforms Augmented
Neural ODE by 25.1% andMON by 11.6%with fewer parame-
ters. Without adding the number of parameters, feature regu-
larization helps deep OptEq to achieve better performance

easily. Notably, HSIC, a feature disentanglement regulariza-
tion, provides a significant gain for the generalization.

7.3.2 Results on ImageNet

We now consider the ability of OptEq on a large-scale data-
set with higher-resolution images—ImageNet [42].

Extractors. To train OptEq on ImageNet, we choose a
slightly more complex extractor gð�Þ. In this experiment, we
test deep OptEq on two extractors: (1) the first two stages of
ResNet-50, whose model size is 8 M, and maps the images
from the size 224� 224� 3 to a feature map belongs to
R28�28�512; (2) the first two stages of Wide-ResNet-50 [43],
with model size 24 M and also maps the image to the size of
R28�28�512. Note that the parameters in these extractors are
also trained from scratch. We do not utilize any pre-trained
weights here. We also report the vanilla results on these
extractors, i.e., directly append the classification layer after
the extractors (refer as Extr. + Cls.).

Architecture. Given the feature map z 2 Rcin�w�h, differ-
ent from other experiments in this paper, which performs
the linear transformation by a general convolution operator,
namely, Wlz :¼ convðz;WlÞ, where Wl 2 Rcout�cin�3�3 is
the convolutional kernel. For OptEqs on ImageNet, we
choose the depthwise separable convolutions [44], i.e.,
Wlz :¼ convðconvðz;Wl;1Þ;Wl;2ÞÞ, where Wl;1 2 Rcin�1�3�3

and Wl;2 2 Rcout�cin�1�1 are the convolutional kernels. The
architecture details are summarized in Table 6.

Settings. We choose the the decorrelation function
Eq. (13) as the regularizer here and adopt the regularizer
setting given in Section 5.1. For computational and memory
efficiency, we let K ¼ 5 here. The optimizer in this experi-
ment is AdamWwith weight decay being 0.05, learning rate
being 0.001 with cosine decay scheduler and batch size
being 1024. We train OptEqs for 300 epochs.

Results. Table 7 shows the accuracy of two different size
deep OptEqs, i.e., OptEq-small and OptEq-Mid, in compari-
son to well-known reference models in computer vision.
OptEqs outperforms the current SOTA equilibrium models
and are remarkably competitive with some strong explicit
models. For example, the OptEq-small with 18 M parame-
ters outperforms DEQ (classical equilibrium models with
18 M parameters), ResNet-34 (21 M parameters), and even
ResNet-50 (26 M parameters). The larger OptEq-Mid (40 M
parameters) reaches higher level of performance comparing
to ResNet-101 (52 M parameters) and MDEQ-large (SOTA
equilibrium models with 63 M parameters). OptEq’s results
are far beyond the scale and accuracy levels of prior equilib-
rium models.

TABLE 5
The Testing Accuracy of Deep OptEq With Different Settings

a No Reg
�

k�k2
2

�y �
2

k�k2þ2�

�y �
2

k�k2þ2�

��
Fy

Dz F�
Dz HSICy HSIC�

0.01 58.4% 69.4% 75.0% 64.9% 72.7% 72.6% 70.6% 72.2%
0.1 56.8% 61.9% 63.2% 64.7% 61.5% 60.0% 66.1% 64.5%
0.4 86.9% 87.3% 78.4% 87.7% 86.5% 88.0% 85.1% 85.5%
0.8 87.4% 87.3% 87.3% 87.5% 87.0% 87.6% 87.6% 87.5%
1.0 87.2% 87.4% 87.0% 87.6% 87.7% 87.5% 88.1% 87.9%

We denote by “no Reg” the SAM with bk ¼ 0. And the scripts y and � means the regularizer given in Section 5.2 and Section 5.1, respectively.

TABLE 4
Comparisons With Previous Implicit Models

Methods Reg. or Settings # params Acc.

Deep OptEqs Decorrelation (R�z) 1.4 M 91.0%
Decorrelation (Ryz) 162 k 86.0%
HSIC (R�z) 162 k 87.4%
No Reg 162 k 85.7%

ODEs Neural ODE 172 K 53.7%
Aug. Neural ODE 172 k 60.6%

MONs Single conv 172 K 74.1%
Single conv (large) 854 K 82.5%
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Notably, OptEq significantly improves the results in
comparison to the pure extractor in addition to classification
layer (e.g., ResNet-50 (Extr.) and W-ResNet-50 (Extr.)).
Moreover, even with much smaller model size, the perfor-
mance of OptEq early goes beyond the bars given by the
original ResNet-50 and W-ResNet-50. Hence, we can con-
clude that the superiority mainly comes from our OptEqs
rather than extractors.

We also set different a’s for different layers. In general, it
is hard to tune the parameters manually. Hence we let the
model learn a by itself. We initiate them to 0.8 and update
them by BP. The result in Table 7 shows that the learned
alpha can obtain a comparable performance with the fixed
one. Although intuitively learnable a’s are more reasonable
for model design, it increases the difficulty ofmodel training.
Hence, wemay not always get better results in this case. How
to overcome the unstable behaviors of univariate variables
during DNN training is still an open problem. Note that, the
learnable a’s converge near [0.63,0.72,0.86,0.9,0.87] finally.

7.4 Efficiency and Approximation Error

We train deep OptEqs by the IFT based way given in [3] and
compare the results with the unrolling way. The time for
inference and BP is provided, and it is the total time for 80 iter-
ation steps with the batch size being 125 on GPU NVIDIA

GTX 1070. The relative residual is averaged over all test
batches: kzK � T ðzK; x; uuÞk2=kzKk2. For fair comparison, we
do not utilize any feature regularization in this experiment.
We set a ¼ 0:8 and let “thd” represent the residual threshold.
In order to accelerate convergence speed of the iteration and
stabilize OptEq, it is crucial to make sure that the operator
norms of the initial weight matrices are small. Therefore, we
use initialization schemeswith small values (around 0).More-
over, experimental results indicate that initialization schemes
with small values do not affect the performance ofOptEqs.

The results are given in Table 8, although IFT based
methods consume much less memory, given the compara-
ble relative residual, the unrolling methods achieve better
performance with much less inference and BP time. Note
that a loose residual threshold may destroy the IFT based
method significantly. We should choose the appropriate
training method according to practice. For IFT, the inference
time is longer than the BP one since the fixed point equation
needed to solve during inference is non-linear, which is
more challenging than the linear one during BP.

A more practice comparison of the efficiency on the large
vision dataset is given in Table 9. We only consider the meth-
ods that release the codes on this dataset. We align all the
hyper-parameters that may affect the FPS, such as fixed-point
algorithms (Broyden methods), batch size (768), number of
GPUs (8) and workers (8), etc. This experiment is performed
in the distributed data-parallelmodel on 8 Tesla A100.

In general, at the cost of model size, the training speed for
explicit models is much faster than the implicit models.When
only considering the equilibrium methods, we can find that
unrolling-based ways are much more efficient. The main rea-
son is that the fixed point is hard to obtain when the forward
function of the equilibrium model is complicated. On the
other hand, without proper temporary results of computation
graph, we may pay a lot of computing load to carry out BP.
However, the IFT-based way is a good choice if the memory
of GPUs is limited. By the way, in the case of utilizing depth-
wise separable convolution, our method is inefficient. If use
raw convolution, our efficiency is comparable to MDEQ (we
adjust some hidden layers to align the size of model). There-
fore, we choose the unrollingway to train the large Opteqs.

7.5 Cityscapes Semantic Segmentation

In this experiment, we evaluate the empirical performance of
our deep OptEq on a large-scale computer vision task: seman-
tic segmentation on the Cityscapes dataset. We construct a
deep OptEq with only three weighted layers and channels of
256, 512 and 512. The deep OptEq is used as the “backbone”

TABLE 6
The Detailed Archit. of OptEqs

Extractor (size) Archit. of OptEq Archit. of cls. layer Model Size

OptEq-Small ResNet-50 (8 M)
3� 3� 1; 512
1� 1� 512; 512

� �
� 5

1� 1� cin; cout
ReLU

MaxPool

24 35� 2 + AvgPool 18 M (8M+7M+3 M)

OptEq-Midddle Wide-ResNet-50 (24 M)

5� 5� 1; 1024
1� 1� 1024; 512
3� 3� 1; 512
1� 1� 512; 512

2664
3775� 3

1� 1� cin; cout
ReLU

MaxPool

24 35� 2 + AvgPool 40 M (24M+13M+3 M)

The cin; cout’s for the final class layer are 512 ! 1024 ! 2048. The learnable parameters for each OptEq blocks are two depthwise separable convolution kernels.

TABLE 7
Evaluation Results on ImageNet Classification

With Top-1 and Top-5 Accuracies

Models top1 Acc. top5 Acc. Size

Explicit

ResNet-18 70.2% 89.9% 13 M
ResNet-34 74.8% 91.1% 21 M
Inception-V2 74.8% 92.2% 12 M
ResNet-50 75.1% 92.5% 26 M
Res-Extr. + Cls. 71.2% 89.5% 11 M
HRNet-W18 76.8% 93.4% 21 M

Implicit

MDEQ-single branch 72.9% 91.0% 18 M
MDEQ-small 75.5% 92.7% 18 M
OptEq (learnable a’s) 76.7% 93.1% 18 M
OptEq-small 76.9% 93.1% 18 M

Explicit
ResNet-101 77.1% 93.5% 52 M
W-ResNet-50 78.1% 93.9% 69 M
W-Res-Extr. + Cls. 73.4% 90.9% 27 M

Implicit
MDEQ-large 77.5% 93.6% 63 M
MDEQ (Unrolled) 75.9% 93.0% 63 M
OptEq-Mid. 78.3% 94.0% 40 M

3614 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 3, MARCH 2023

Authorized licensed use limited to: Peking University. Downloaded on May 19,2023 at 23:35:24 UTC from IEEE Xplore.  Restrictions apply. 



of the segmentation network. We compare our method
with FCN [45] on the Cityscapes test set. We employ the poly
learning rate policy to adjust the learning rate, where the initial
learning rate is multiplied by ð1� iter=total iterÞ0:9 after each
iteration. The initial learning rate is set to be 0.01 for both net-
works. Moreover, momentum and weight decay are set to 0.9
and 0.001, respectively. Note that we only train on finely anno-
tated data. We train the model for 40 K iterations, with mini-
batch size set as 8. The results on the validation set are shown
in Table 10.Notably, our deepOptEq significantly outperforms
FCN with a similar number of parameters. Note that in this
experiment, we have not introduced any customized property
of the feature, so the performance improvement is entirely due
to the superiority of the implicit structure of deepOptEq.

8 CONCLUSION

In this paper,we decompose the feed-forwardDNNandfind a
more reasonable basic unit layer, which shows a close relation-
ship with the proximal operator. Based on it, we propose new
equilibrium models, OptEqs, and explore their underlying
optimization problems thoroughly. We provide two strategies
to introduce customized regularizations to the equilibrium
points, and achieve significant performance improvement in
experiments. We highlight that by modifying the underlying
optimization problems, we can create more effective network
architectures. Our work may inspire more interpretable equi-
libriummodels from the optimization perspective.
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