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Abstract—In this article, we present a general optimization framework that leverages structured sparsity to achieve superior recovery

results. The traditional method for solving the structured sparse objectives based on ‘2;0-norm is to use the ‘2;1-norm as a convex

surrogate. However, such an approximation often yields a large performance gap. To tackle this issue, we first provide a framework that

allows for a wide range of surrogate functions (including non-convex surrogates), which exhibits better performance in harnessing

structured sparsity. Moreover, we develop a fixed point algorithm that solves a key underlying non-convex structured sparse recovery

optimization problem to global optimality with a guaranteed super-linear convergence rate. Building on this, we consider three specific

applications, i.e., outlier pursuit, supervised feature selection, and structured dictionary learning, which can benefit from the proposed

structured sparsity optimization framework. In each application, how the optimization problem can be formulated and thus be relaxed

under a generic surrogate function is explained in detail. We conduct extensive experiments on both synthetic and real-world data and

demonstrate the effectiveness and efficiency of the proposed framework.

Index Terms—Structured sparsity, non-convex surrogate, fixed-point algorithm

Ç

1 INTRODUCTION

THE massive explosion of available high-dimensional data
has become the modern-day norm for a large number of

scientific and engineering disciplines and presents a daunt-
ing challenge for both computation and learning. Rising to
this challenge, sparse recovery techniques have provided a
mature framework that exploits the blessing of dimension-
ality: natural signals are often sparse or compressible in the
sense that they have low-dimensional representations when
expressed on a proper basis, even though the ambient
dimension is often extremely high. Related developments in

sparse recovery have thus provided state-of-the-art results
in image processing [1], [2], signal processing[3], [4], [5] and
machine learning [6], [7], [8].

There are two prominent sparse structures that have been
extensively explored in this area: 1) vector sparsity [6], [9],
[10], and 2) matric low-rankness [11], [12], [13]. Vector-spar-
sity-based approaches assume that each observation can be
sparsely represented by an over-complete dictionary, and
usually use the ‘1-norm (i.e., kzk1 ¼

P
i jzij) as the convex

relaxation of the ‘0-norm (i.e., kzk0 ¼
P

i jzij
0) to achieve the

sparsity by solving the corresponding relaxed problems,
where zi is the i-th element of vector z. The low-rankness of a
matrix is an extension of the vector sparsity concept, which
is defined as the number of non-zero singular values of the
matrix. A widely adopted approach is to relax the rank func-
tion as the nuclear norm,which is the sumof the singular val-
ues of thematrix (i.e., the ‘1-norm of the singular vector).

Unfortunately, many existing works solve the recovery
problem by using the relaxed ‘1-norm, which frequently
performs less satisfactory in many real-world applications.
Although much existing work has theoretically shown that
the solution of the relaxed ‘1-norm minimization is the
same as the initial ‘0-norm minimization under certain inco-
herence conditions [14], [15], the ‘1-minimization may be
sub-optimal in practice as the incoherence conditions are
often too strong to be satisfied in many real-world applica-
tions. To address this issue, researchers have proposed sev-
eral non-convex surrogate functions of the ‘0-norm, such as
‘p-norm (0 < p < 1) [16], Geman [17], Laplace [18], LOG
norm [19], Logarithm [20], and ETP [21], to bridge the gap
between the ‘0-norm and the ‘1-norm. These non-convex
surrogate functions have achieved better performance than
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the convex models based on ‘1-minimization in signal
recovery [22] and classification tasks [23], [24]. In a similar
vein, non-convex surrogate functions have been used to
improve performance on low-rank recovery problems [22],
[25], [26], [27]. When a non-convex surrogate is applied to
sparse representation or low-rank recovery problems, the
corresponding optimization algorithms have been thor-
oughly investigated [25], [26], [27], [28], [29]. For non-con-
vex surrogates which satisfy certain conditions, Lu et al.
[27] give a generalized solver with an (asymptotic) linear
convergence rate1. Sparsity-based approaches have demon-
strated their effectiveness in many applications, including
image clustering [30], [31], [32], face recognition [33], [34],
[35], and tracking [36], [37], [38].

However, seeking the sparsest representation of each
sample individually may not be the best criterion because it
does not consider the structured relationship hidden in sam-
ples. To overcome this drawback, structured sparsity, as an
important regularizer, which finds jointly sparse representa-
tions, has been proposed and studied in the past decade [8],
[39], [40]. The core idea of structured sparsity is the sharing
mechanism in which samples in the same class should share
some common features, promoting the block clustering of
non-zero coefficients of sparse representations so that the
intrinsic structured information of samples can be fully
explored. At a high level, a typical structured sparsity form
is to impose the mixed ‘2;0-norm regularization on sparse
coefficient matrix Z, i.e., kZk2;0 ¼

P
i kzik

0
2, where zi is the

i-th column vector of matrix Z2. It is easy to see that the
‘2;0-norm is also an extension of the ‘0-norm of a vector. A
key building block which is essential for solving the struc-
tured sparsity problems can be formulated as:

argmin
Z

1

2
kY � Zk2F þ �kZk2;0; (1)

where Y;Z 2 Rm�n. As the ‘2;0-norm is discontinuous and
non-convex, the above problem is NP-hard. Similar to the
way for treating the ‘0-norm, ‘2;0-norm is usually relaxed to
‘2;1-norm, and thus problem (1) becomes

argmin
Z

1

2
kY � Zk2F þ �kZk2;1; (2)

where the ‘2;1-norm is defined as kZk2;1 ¼
Pn

i¼1 kzik2, i.e.,
the ‘1-norm of the vector with elements being the ‘2-norm
of the columns of Z. The closed-form solution of the relaxed
convex problem (2) is studied in [42], [43]. Unfortunately,
the problem (2) suffers from a sub-optimality phenomenon
similar to and sometimes even worse than the big gap
between the ‘0-norm and the ‘1-norm for vector sparsity
problems. The non-convex surrogate ‘2;p-norm, i.e., kZk2;p ¼
ð
P

i kzik
p
2Þ

1
p (0 < p < 1) [41], was proposed to provide an

improved structured sparsity surrogate. Subsequently,
Wang et al. [24] gave a solver for the surrogate ‘2;p-norm.
But the general solver of structured sparsity for other non-
convex surrogate functions is not well studied, and the per-
formance of different surrogate functions remains unclear.

To sum up, there are two major challenges of sparse
recovery: (1) the first is how to select the surrogate functions
for the ‘2;0-norm based structured sparse objectives. There-
fore, in order to investigate the performance of various sur-
rogate functions in structured sparse, a unified algorithmic
framework with a guarantee of convergence for a wide
range of surrogate functions is required. (2) Another issue is
the bottleneck of convergence speed in generalized solvers,
which affects not only structured sparsity but also vector
sparsity and low-rankness. To deal with large-scale data, an
efficient general solver for sparse recovery with non-convex
surrogates is necessary.

The aim of this work is to address the above issues, and
perform both accurate and efficient sparse recovery that can
significantly enhance the performance of subsequent appli-
cations. Our contributions are four-fold as follows:

� First, we present a general optimization framework
(Algorithm 1) that leverages structured sparsity to
achieve superior recovery results. A key feature of
our framework is that we move significantly beyond
the convex and analytically computable ‘2;1-norm
surrogate objective and allow for a wide range of
(possibly non-convex) surrogate functions that serve
as better proxies of the computationally infeasible
‘2;1-norm based objectives.

� Second, we develop a novel iterative scheme (Algo-
rithm 2), with the global optimal solution being the
fixed point of the underlying designed equation3.
We then establish that the designed fixed point itera-
tion has a global contractive property and converges
at an (asymptotic) super-linear rate to a globally opti-
mal solution, despite the fact that the underlying
optimization problem is non-convex4. The theoreti-
cal analysis of the proposed iterative scheme is given
in Sections 3.2 and 3.3. Simulation results in Sec-
tion 5.1 further verify the fast empirical convergence
rate. The proposed iterative scheme helps to give a
high-efficiency generalized solver for sparse recov-
ery with non-convex surrogates. We apply the
iterative scheme to the proposed optimization frame-
work to guarantee the accuracy and efficiency of the
framework.

� Third, to fully illustrate the wide applicability of
structured sparsity and demonstrate the generality
of our framework, in Section 4, we present three con-
crete problems (i.e., outlier pursuit, supervised fea-
ture selection, and structured dictionary learning) in
which structured sparsity can be used to formulate
meaningful objectives and the corresponding relaxed

1. To improve the efficacy of the generalized solver, we present a
novel generalized solver with an (asymptotic) superlinear convergence
rate in this paper. Both theoretically and experimentally, we show that
the proposed solver’s convergence rate is much faster than Lu’s work
[27].

2. In some works [24], [41], ‘2;0-norm is defined on the rows of
matrix Z as kZk2;0 ¼

P
i kzik

0
2, where zi is the i-th row vector of the

matrix Z. This does not affect the main results of this paper because the
two definitions of structured sparsity are the same with the transpose
operator.

3. A basic idea of a fixed-point algorithm is to build an iteration
function J ðxÞ such that the sequence obtained by xnþ1 ¼ J ðxnÞ, n ¼
0; 1; 2; ::: converges to an optimal solution of the optimization problem.

4. If the objective function of an optimization problem is non-con-
vex, or the feasible set of the optimization problem is non-convex, the
optimization problem is a non-convex optimization problem.
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formulations using (possibly non-convex) surrogates
can be solved by the proposed general optimization
framework (Algorithm 1).

� Fourth, to demonstrate the efficacy of our frame-
work, we conduct extensive experiments using both
synthetic and real-world data. In particular, on the
real-world data front, we evaluate our proposed
framework with three applications, including outlier
pursuit, supervised feature selection, and structured
dictionary learning. The empirical performance of
the recovered solutions demonstrates that ‘1-norm
based relaxation usually provides worse recovery
quality compared to the non-convex surrogates. A
second insight is that the best performing non-con-
vex surrogate(s) for different applications are fre-
quently different. Nonetheless, we do not need to
design a specific algorithm for each such surrogate
function from scratch because our framework pro-
vides a unified approach from a computational
standpoint. We consider this computation/optimiza-
tion framework that can simultaneously handle a
wide set of surrogate functions (which have different
strengths in different applications). This is the key
contribution of our work, both from a theoretical
and an applied standpoint.

The rest of this paper is structured as follows. Section 2 is
the problem formulation. Some notations and the main
work of this paper are introduced. The proof related to the
convergence analysis of the proposed algorithms is given in
Section 3. In Section 4, three concrete applications of the
proposed algorithms are discussed in detail. Section 5
presents numerical experiments conducted on synthetic
and real data. We conclude this work in Section 6.

2 PROBLEM FORMULATION

For clarity, we proceed with the following notational con-
ventions: 1) Lowercase letters for scalars (x; y; z � ��); 2) Bold
lowercase letters for vectors (x; y; z � ��); 3) Capital letters for
matrices (X;Y; Z � ��); 4) Calligraphic letters for functions
(X ;Y;Z � ��); 5) Swash letters for sets (X ;Y ;Z � ��). Specifi-
cally, R stands for fields of real numbers, and ; stands for
empty set. More definitions and symbols related to vectors
and matrices are given in Table 1.

In this paper, we study a family of non-convex surrogate
functions of ‘2;0-norm and fill in the gap between the
‘2;0-norm and the ‘2;1-norm. A general non-convex approxi-
mation of problem (1) can be formulated as:

SðY; �Þ ¼ argmin
Z

1

2
kY � Zk2F þ �

Xn
i¼1
Gðkzik2Þ; (3)

where the surrogate function Gð�Þ : ½0;þ1Þ ! ½0;þ1Þ
satisfies:

A1 GðxÞ is strictly concave and increasing, and Gð0Þ ¼ 0;
A2 G0ðxÞ is strictly convex;
A3 G00ðxÞ is continuous on ð0;þ1Þ.
Our assumptions about the surrogate functionGð�Þ are easy

to satisfy and include many non-convex surrogate functions
in the literature. For a sample list, see Table 2. Hence,Pn

i¼1 Gðkzik2Þ can be considered as a general non-convex

surrogate of the ‘2;0-norm, and it is expected to have a better
approximation of the ‘2;0-norm than the convex relaxation
‘2;1-norm. Note that the structured sparsity optimization
problem (3), of course, includes vector sparsity as a simple
special case. But even in this important special case, only indi-
vidual non-convex surrogates have been studied on a case-
by-case basis, and there has not been a framework that deals
with a wide class of (non-convex) surrogate functions simul-
taneouslywith global provable convergence guarantees.

Algorithm 1. Structured Sparsity Optimization Frame-
work for Solving (3)

Input: Y ¼ ½y1; y2; . . . ; yn� 2 Rm�n, a threshold � > 0
Output: SðY; �Þ as defined in (3).
for i ¼ 1; 2; :::n do
if yi ¼ 0 then
A i ¼ f0g.

else
A i ¼ fx� yi

kyik
jx� 2 Big, whereBi ¼ Solveðkyik2; �Þ.

end
end
Let SðY; �Þ ¼ ½x�1; x�2; . . . ; x�n�, where x�i 2 A i for i ¼ 1; 2; . . . ; n.

In the rest of this paper, to solve (3) more accurately and
efficiently, we study the key optimization problem (3) in

TABLE 1
A Summary of the Definitions and Symbols Used in This Paper

Notations Meanings

0 Null vector.
xi The i-th element of vector x.
kxk0 ‘0 norm of vector x, i.e., number of nonzero

entries of x.
kxk1 ‘1 norm of vector x, , i.e., kxk1 ¼

Pm
i¼1 jxij, where

xi is the i-th element of x.
kxkp ‘p norm of vector x, , i.e., kxkp ¼ ð

Pm
i¼1 jxijpÞ

1
p.

x; yh i The inner product of x and y, , i.e., hx; yi ¼Pm
i¼1 xiyi.

xij Each element inX is represented as xij.
xi and xi Each column inX is represented as xi, and each

row inX is represented as xi.
kXk0 ‘0-norm ofX, i.e., number of nonzero entries of

X.

kXkF Frobenius norm ofX, i.e., kXkF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1
Pn

j¼1 x
2
ij

q
.

kXk1 ‘1-norm ofX, i.e., kXk1 ¼
Pm

i¼1
Pn

j¼1 jxijj.
kXkp ‘p-norm ofX, , i.e., kXkp ¼ ð

Pm
i¼1
Pn

j¼1 jxijjpÞ
1
p.

kXk2;0 ‘2;0-norm ofX, , i.e., number of nonzero column
vectors ofX.

kXk2;1 ‘2;1-norm ofX, i.e., kXk2;1 ¼
Pn

j¼1 kxjk2.
kXk2;p ‘2;p-norm ofX, i.e., kXk2;p ¼ ð

Pn
j¼1 kxjk

pÞ
1
p.

sðXÞ The vector composed of singular values of matrix
X.

siðXÞ The i-th singular value of matrixX.
rankðXÞ Rank function of matrixX, i.e., number of

nonzero entries of singular values.
kXk� Nuclear norm ofX, i.e.,

PrankðXÞ
i¼1 siðXÞ.

X;Yh i The inner product ofX and Y , , i.e., X;Yh i ¼Pm
i¼1
Pn

j¼1 xijyij.

DiagðxÞ A diagonal matrix with the i-th diagonal element
being xi.
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depth and design a novel optimization algorithm (Algo-
rithm 1) that solves this problem to global optimality effi-
ciently. More specifically, our algorithm hinges on
developing a novel iterative scheme to (4) (Algorithm 2),
with the global optimal solution being the fixed point of the
underlying designed equation (5).

argmin
x�0
F yðxÞ ¼

1

2
ðy� xÞ2 þ �GðxÞ: (4)

J 1ðxÞ ¼ y� �G0ðxÞ;
J 2ðxÞ ¼ J 1ðxÞ � ðJ 1ðJ 1ðxÞÞ�J 1ðxÞÞðJ 1ðxÞ�xÞ

J 1ðJ 1ðxÞÞ�2J 1ðxÞþx :

(
(5)

By [27], for any lower bounded function G : ½0;þ1Þ !
½0;þ1Þ, the optimal solution to

T ðY; �Þ ¼ argmin
X

1

2
kY �Xk2F þ �

Xminðm;nÞ

i¼1
GðsiðXÞÞ (6)

can be calculated by X� ¼ UDiagðsssssss�ÞV T ; where U and V are
obtained from the SVD of Y 2 Rm�n: Y ¼ UDiagðsðY ÞÞV T ,
and the i-th element of sssssss� is

s�i 2 Prox�GðsiðY ÞÞ ¼ argminx�0
1

2
ðsiðY Þ � xÞ2 þ �GðxÞ:

As a result, we have Algorithm 3 for solving (6) efficiently.
For convenience, we term Algorithms 2 and 3 as General-

ized Accelerating Iterative (GAI) and Generalized Singular
Value Thresholding by GAI (GSVT-GAI) respectively for
the remainder of the paper. We prove the proposed three
algorithms have a global contractive property and converge
at a linear rate to a globally optimal solution. Furthermore,
asymptotically, the proposed algorithms converge even
faster than Lu’s work, at a super-linear rate.

3 A NOVEL OPTIMIZATION FRAMEWORK FOR

STRUCTURED SPARSITY

In the following subsections, a novel optimization frame-
work (Algorithm 1) is proposed to solve the non-convex
optimization problem (3). We first characterize the solu-
tion set of the optimization problem (3) in terms of a
simpler one-dimensional non-convex optimization prob-
lem (4), and then design a novel fixed point iteration
scheme (GAI) to solve (4). Finally, we show that the

proposed algorithm converges to a global optimal solu-
tion at a linear rate. Furthermore, asymptotically, the
algorithm converges to a global optimal solution at a
faster, super-linear rate.

Algorithm 2. Generalized Accelerating Iterative Algo-
rithm (GAI) for Solving (4)

Input: A real number y > 0, a threshold � > 0, and a toler-
ance t > 0.

Output: Solveðy; �Þ ¼ x�G.
a0  maxfxjJ 01ðxÞ ¼ 1 or x ¼ 0g.
Let

F yðxÞ ¼ 1
2 ðy� xÞ2 þ �GðxÞ ;

J 1ðxÞ ¼ y� �G0ðxÞ;
J 2ðxÞ ¼ J 1ðxÞ � ðJ 1ðJ 1ðxÞÞ�J 1ðxÞÞðJ 1ðxÞ�xÞ

J 1ðJ 1ðxÞÞ�2J 1ðxÞþx :

8><
>:

if F0yða0Þ < 0 then
// Find x̂G by fixed point iteration

Initialize x
ð0Þ
G  y

k 0
while jJ 1ðJ 1ðxðkÞG ÞÞ � 2J 1ðxðkÞG Þ þ x

ðkÞ
G j > t do

x
ðkþ1Þ
G ¼ J 2ðxðkÞG Þ

k kþ 1
end
x̂G ¼ J 1ðxðkÞG Þ

else
return x̂G ¼ a0

end
If F yð0Þ > F yðx̂GÞ, return x�G ¼ x̂G; otherwise return x�G ¼ 0.

3.1 Solution Set Characterization

We start by characterizing the solution set of the non-convex
optimization problem (3). Since the original objective func-
tion of problem (3) can be easily decomposed as

argminZ
Xn
i¼1

1

2
kyi � zik22 þ �Gðkzik2Þ

� �
;

it suffices to consider the following subproblem

argmin
z

1

2
ky� zk22 þ �Gðkzk2Þ: (7)

TABLE 2
Examples of Surrogate Functions of ‘0, Where g > 0, and a0 is Defined by Eq. (18)

Name GðxÞ G0ðxÞ G00ðxÞ a0

‘p [16] xp, 0 < p < 1 pxp�1 pðp� 1Þxðp�2Þ maxðð�pð1� pÞÞ
1

2�p; 0Þ
Geman [17] x

xþg
g

ðgþxÞ2
�2g
ðgþxÞ3 maxðð2�gÞ

1
3 � g; 0Þ

Laplace [18] ð1� expð� x
g
ÞÞ 1

g
expð�x

g
Þ � 1

g2
expð�x

g
Þ maxð�glog ðg2� Þ; 0Þ

LOG [19] log ðg þ xÞ 1
gþx � 1

ðgþxÞ2
maxð

ffiffiffi
�
p
� g; 0Þ

Logarithm [20] 1
log ðgþ1Þ log ðgxþ 1Þ g

ðgxþ1Þlog ðgþ1Þ � g2

ðgxþ1Þ2log ðgþ1Þ max

� ffiffiffiffiffiffiffiffiffiffiffiffi
g2�

log ðgþ1Þ

q
�1

g
; 0

�

ETP [21] 1�expð�gxÞ
1�expð�gÞ

gexpð�gxÞ
1�expð�gÞ

�g2expð�gxÞ
1�expð�gÞ max

�
log ð1�expð�gÞ

�g2
Þ

�g ; 0

�
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To this end, we consider the solution set of a more general
formulation as

argmin
z
HðzÞ ¼ 1

p
ky� zkpp þ �GðkzkpÞ; (8)

where p � 1, and kzkp ¼ ð
P

i¼1 jzij
pÞ

1
p.

Note that when y ¼ 0, the unique optimal solution to
problem (8) is 0. Hence, we only need to consider the solu-
tion set of problem (8) when y 6¼ 0. To facilitate the exposi-
tion of the solution set characterization, we define two
functions for a given vector y,

HðzÞ ¼ 1

p
ky� zkpp þ �GðkzkpÞ;

FðxÞ ¼ 1

p
kykp� x
��� ���pþ�GðjxjÞ;

as well as two corresponding sets

A ¼ argminzHðzÞ; B¼ x�
y

kykp

�����x� 2 argminxFðxÞ
( )

:

Note that A is the solution set that we wish to obtain. The
next lemma gives a full characterization of the relationship
between the setsA andB.

Algorithm 3. Generalized Singular Value Thresholding
by GAI (GSVT-GAI) for solving (6)

Input: Y , � and a tolerance t > 0.
Output: T ðY; �Þ.
a0  maxfxj�G00ðxÞ ¼ �1 or x ¼ 0g;
½U; sðY Þ; V � ¼ svdðY Þ; i ¼ 0;
while i 	 lengthðsðY ÞÞ do
i ¼ iþ 1;
if siðY Þ ¼ 0 then
ŝi ¼ 0; Break;

end
if siðY Þ > �G0ða0Þ þ a0 then
// Find x̂G by fixed point iteration

Initialize x
ð0Þ
G  siðY Þ; k 0

Let
J 1ðxÞ ¼ siðY Þ � �G0ðxÞ;
J 2ðxÞ ¼ J 1ðxÞ � ðJ 1ðJ 1ðxÞÞ�J 1ðxÞÞðJ 1ðxÞ�xÞ

J 1ðJ 1ðxÞÞ�2J 1ðxÞþx :

(

while jJ 1ðJ 1ðxðkÞG ÞÞ � 2J 1ðxðkÞG Þ þ x
ðkÞ
G j > t do

x
ðkþ1Þ
G ¼ J 2ðxðkÞG Þ; k kþ 1

end
x̂G ¼ J 1ðxðkÞG Þ

else
x̂G ¼ a0

end
If 0 > 1

2 x̂
2
G � siðY Þx̂G þ �Gðx̂GÞ, ŝi ¼ x̂G; otherwise ŝi ¼ 0;

if ŝi ¼ 0 then
Break;

end
end
Compute T ðY; �Þ ¼ ½u1;u2; :::;ui�DiagðŝÞ½v1; v2; :::; vi�T .

Lemma 1. If p � 1, Gð�Þ is continuous on ½0;þ1Þ, GðjxjÞ � 0
for x 2 R, and GðxÞ ¼ 0 if and only if x ¼ 0, then

A ¼ f0g; if y ¼ 0;
B; if y 6¼ 0:

�

Proof. The proof is broken into three steps.
Step 1: The existence of optimal solution to argminxFðxÞ.

Note that for 8 x < 0, we have

FðxÞ ¼ 1

p
kykp � x
��� ���pþ�GðjxjÞ > 1

p
kykpp þ �Gð0Þ ¼ Fð0Þ;

which is followed from the fact that 1
p jkykp � xjp > 1

p kyk
p
p

for 8 x < 0 and �GðjxjÞ � 0 ¼ �Gð0Þ. For 8 x > 2kykp,
because 1

p jkykp � xjp > 1
p kyk

p
p, we have

FðxÞ > 1

p
kykpp þ �GðjxjÞ � 1

p
kykpp þ �Gð0Þ ¼ Fð0Þ:

Since FðxÞ is lower bounded from FðxÞ � 0, the infimum
of FðxÞ (denoted by infx FðxÞÞ) exists. Thus, we obtain

inf
x
FðxÞ ¼ inf

x2 0;2kykp½ �
FðxÞ:

As Gð�Þ is continuous on ½0;þ1Þ, resulting FðxÞ is contin-
uous on ½0; 2kykp�. Thus FðxÞ has a minimum on
½0; 2kykp�. Mark the minimum of FðxÞ for x 2 ½0; 2kykp� as
vF . By intermediate value theorem, there exists x� 2
½0; 2kykp� such that Fðx�Þ ¼ vF , i.e.,

inf
x
FðxÞ ¼ Fðx�Þ:

Therefore, x� is a minimizer of FðxÞ, andB 6¼ ;.
Step 2: Identification of infima.SinceHðzÞ � 0 for any z 2

Rm, infzHðzÞ exists. The infimum of HðzÞ for z 2 Rm is
denoted by vH, i.e., vH ¼ infzHðzÞ. We prove vH ¼ vF for
8 y 6¼ 0 in this step. Based on the results of Step 1, for 8
z 2 Rm, we have

vF ¼ Fðx�Þ 	 FðkzkpÞ ¼
1

p
jkykp � kzkpj

p þ �GðkzkpÞ

	 1

p
ky� zkpp þ �GðkzkpÞ ¼ HðzÞ; (9)

where the forth inequality is derived from the Minkow-
ski inequality.5 Taking the infimum over all z for the
function HðzÞ, we conclude from (9) that vF 	 vH. On the
other hand,

vH	H x�
y

kykp

 !

¼ 1

p
y�x� y

kykp

�����
�����
p

p

þ�G x�
y

kykp

�����
�����
p

0
@

1
A

¼ 1

p
ðkykp � x�Þ y

kykp

�����
�����
p

p

þ�Gðjx�jÞ

¼ 1

p
jkykp � x�jp þ �Gðjx�jÞ ¼ vF :

5. By Minkowski inequality, jkykp � kz�kpj ¼ ky� z�kp holds if and
only if there exists a � 0 such that y ¼ az� or z� ¼ ay. If y ¼ az�, since y 6
¼ 0 and a 6¼ 0, we set c0 as

kykp
a . If z� ¼ ay, we set c0 as akykp.
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Thus, there holds

vF ¼ vH ¼ H x�
y

kykp

 !
; (10)

from which we know that x� y
kykp

is a minimizer of HðzÞ
and A 6¼ ;.

Step 3: Identification of the solution set. It is clear that
A ¼ B ¼ f0g when y ¼ 0. Therefore, we only need to
prove that A ¼ B when y 6¼ 0 in the following. On one
hand, for 8 x� y

kykp
2 B, it can be easily concluded from

(10) that x� y
kykp
2 A . Hence,B 
 A .

On the other hand, let z� 2 A . The following must be
observed

vH ¼ vF 	
1

p
jkykp � kz�kpj

p þ �Gðkz�kpÞ

	 1

p
ky� z�kpp þ �Gðkz�kpÞ ¼ vH;

which indicates that

kykp � kz�kp
��� ��� ¼ ky� z�kp; (11)

vF ¼
1

p
jkykp � kz�kpj

p þ �Gðkz�kpÞ : (12)

According to (11), it can be concluded that z� ¼ c0
y
kykp

for
some c0 � 0 by Minkowski inequality. Combining this
with (12), we know that c0 is a minimizer of FðxÞ. Thus,
z� ¼ c0

y
kykp
2 B. The proof for the identification of the

solution set is complete. tu

Algorithm 4. Lu’s Work [27]

Input: A real number y > 0, a number of iterations k > 0
and a tolerance t > 0.

Output: x�L.
// Find x̂L by fixed point iteration

Initialize x
ð0Þ
L ¼ y, x

ð1Þ
L ¼ J 1ðxð0ÞL Þ and k ¼ 1.

while jxðkÞL � x
ðk�1Þ
L j > t & k < k do

x
ðkþ1Þ
L ¼ J 1ðxðkÞL Þ.

if x
ðkþ1Þ
L < 0 then

return x̂L ¼ 0.
else
x̂L ¼ x

ðkþ1Þ
L .

end
Let k ¼ kþ 1.

end
Compare F yð0Þ and F yðx̂LÞ to identify the optimal solution
x�L.

The above lemma then immediately leads to the follow-
ing conclusion:

Corollary 1. Suppose y 6¼ 0. Let p ¼ 2, y ¼ kyk2, and C ¼
argminx�0

1
2 ðy� xÞ2 þ �GðxÞ. ThenA ¼ fc y

kyk2
j c 2 C g.

Proof. It suffices to note that if x� is a solution of

min
x

1

2
ðy� xÞ2 þ �GðjxjÞ (13)

then x� � 0. To see this, assume x� 2 argminx
1
2 ðy� xÞ2 þ

�GðjxjÞ, then

1

2
ðy� x�Þ2 þ �Gðjx�jÞ 	 1

2
ðy� ð�x�ÞÞ2 þ �Gðj � x�jÞ ;

which implies x�y � 0. Therefore, we have x� � 0 due to
the fact that y > 0. tu

3.2 A Fixed Point Algorithm

Corollary 1 gives us a convenient solution set characteriza-
tion for solving the original optimization problem (3), pro-
vided we can solve (4). Note that GðxÞ is non-convex, and
hence the problem (4) is non-convex. In this section, a novel
fixed point iterative scheme using the underlying designed
equation (5) is developed to achieve this goal.

As follows, we first define some notations for the remain-
der of this paper.

J 1ðxÞ ¼ y� �G0ðxÞ; (14)

S ¼ fx j F 0yðxÞ ¼ 0; 0 	 x 	 yg; (15)

�xy ¼ maxfx jx 2 S g; (16)

G00ð0Þ ¼ lim
x!0þ

G00ðxÞ ; J 2ð�xyÞ ¼ lim
x!�xþy

J 2ðxÞ; (17)

a0 ¼ maxfxjJ 01ðxÞ ¼ 1 or x ¼ 0g: (18)

The following simple properties are immediate, and the cor-
responding proofs are given in Appendix, available online.

Property 1. Given G satisfies Assumptions A1-A3, we have:

i) G0ðxÞ is strictly decreasing, and G0ðxÞ > 0 in
ð0;þ1Þ;

ii) G00ðxÞ is strictly increasing, and G00ðxÞ < 0 in
ð0;þ1Þ;

iii) J 1ðxÞ is strictly increasing, and J 01ðxÞ is strictly
decreasing on ð0;þ1Þ;

iv) F yðxÞ is strictly increasing in ð0;þ1Þ ifS ¼ ;.

From Property 1 (iv), we know that the optimal solution
to argminx�0F yðxÞ is 0 when S ¼ ;. Thus, the non-trivial
case S 6¼ ; is considered in the following. We start by pro-
viding some intuition. First, a minimizer x� should either be
0 or satisfy the first-order optimality condition: F0yðx�Þ ¼ 0,
i.e., J 1ðx�Þ ¼ x�, which implies that a non-zero x� is a fixed
point of J 1ðxÞ. At this point, a natural (and crude) algo-
rithm already suggests itself: start at x

ð0Þ
L ¼ y, and follow a

fixed-point update rule x
ðkþ1Þ
L ¼ J 1ðxðkÞL Þ. However, the

above iterate has at most a linear convergence rate, as
shown in Theorem 1 (i). To speed up the convergence rate
for problem (4), we create a novel iterative function J 2ðxÞ
and propose the iterate x

ðkþ1Þ
G ¼ J 2ðxðkÞG Þ with a super-linear

convergence rate, as shown in Theorem 1 (ii).
To be a complete algorithm, we still need to specify a

stopping criterion. The one that we will use here is to check
the condition jJ 1ðJ 1ðxðkÞG ÞÞ � 2J 1ðxðkÞG Þ þ x

ðkÞ
G j > t, where

t > 0 is a pre-specified tolerance threshold. To explain the
intuition behind this specific choice of the stopping crite-
rion, we next characterize some simple properties of the
underlying mathematical objects.

Proposition 1. [27] Given G satisfies Assumptions A1-A3. If
S 6¼ ;, then:
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i) The sequence fxðkÞL g generated by x
ðkþ1Þ
L ¼ J 1ðxðkÞL Þ

with the initialization x
ð0Þ
L ¼ y, converges to �xy;

ii) �xy < J 1ðxÞ < x for 8 x 2 ð�xy; y�;
iii) �xy is a fixed point of J 1ðxÞ, i.e., J 1ð�xyÞ ¼ �xy;
iv) The global optimal solution to the problem (4) is in the

set f0; �xyg.

Property 2. Given G satisfies Assumptions A1-A3. If S 6¼ ;,
then:

i) 0 	 a0 < y;
ii) J 01ða0Þ 	 1, J 01ð�xyÞ 	 1, and 0 < J 01ðxÞ < 1 for 8

x 2 ða0;þ1Þ;
iii) The equation F0yðxÞ ¼ 0 has a unique solution in

ða0; yÞ when F0yða0Þ < 0;
iv) �xy =2 ð0; a0Þ [ ða0; y� when F0yða0Þ � 0;
v) There exists at most one non-zero local minimum to

F yðxÞ in ð0;þ1Þ.

From Property 2 (iv) and (v), we know that the optimal
solution to the problem (4) should either be 0 or a0 when
F0yða0Þ � 0. Thus, we only consider the case for F0yða0Þ < 0
(the iterations in Algorithm 2). From Property 2 (iii) and the
definition (16) of �xy, we have �xy > a0 when F0yða0Þ < 0.
Now, to see the intuition behind the stopping criterion, we
can conclude from the mean value theorem that

J 1ðJ 1ðxðkÞG ÞÞ � 2J 1ðxðkÞG Þ þ x
ðkÞ
G

��� ���
¼ 1

J 01ð�Þ
� 1

� �
J 1ðxðkÞG Þ � J 1ðJ 1ðxðkÞG ÞÞ
��� ���;

where � 2 ðJ 1ðxðkÞG Þ; x
ðkÞ
G Þ, and 1

J 0
1
ð�Þ � 1 > 0 follows from

Proposition 1 (ii) and Property 2 (ii). Since �xy > a0, we
know from Property 2 (ii) that 0 < J 01ð�xyÞ < 1. Let c0 ¼

1
1

J 0
1
ð�xyÞ
�1 , we can obtain from Property 1 (iii) that

c0 J 1ðJ 1ðxðkÞG ÞÞ � 2J 1ðxðkÞG Þ þ x
ðkÞ
G

��� ���
� J 1ðxðkÞG Þ � J 1ðJ 1ðxðkÞG ÞÞ
��� ���:

Therefore, there are two merits to set J 1ðJ 1ðxðkÞG ÞÞ
���

�2J 1ðxðkÞG Þ þ x
ðkÞ
G j < t as a stopping criterion of Algorithm

2 as follows.

� The value of

F0yðx̂GÞ
��� ��� ¼ F0yðJ 1ðxðkÞG ÞÞ

��� ��� ¼ J 1ðxðkÞG Þ � J 1ðJ 1ðxðkÞG ÞÞ
��� ���

can be controlled by c0t.
� The computation of the fixed point iteration in Algo-

rithm 2 cannot get stuck in practical applications
because the iteration will stop when the denominator
of J 2ðxÞ (i.e., jJ 1ðJ 1ðxðkÞG ÞÞ � 2J 1ðxðkÞG Þ þ x

ðkÞ
G j) is

smaller than the given tolerance t.
Putting everything together, Algorithm 1 gives the for-

mal description of the proposed method for solving the
original non-convex optimization problem (3). Note that
Algorithm 1 calls GAI (Algorithm 2) as a subroutine.

Having fully described the algorithm, there are still sev-
eral important questions remaining. Does the GAI algo-
rithm converge at all? If so, at what speed? Can GAI obtain
a global optimal solution (rather than just a stationary point)

to (4)? It turns out that positive answers can be obtained
for all of these questions. We will address them in detail
next.

3.3 Convergence Analysis of the Fixed Point
Algorithm

We are now ready to characterize the convergence speed of
Algorithm 2, which is the computational bottleneck in Algo-
rithm 1 (note that all other steps in Algorithm 1 take only con-
stant time). Further, since Algorithm 2 only takes constant
time if F0yða0Þ >¼ 0, it suffices to look at the non-trivial
case where neither is true. The next theorem formalizes
the result.

Theorem 1. Given G satisfies Assumptions A1-A3. If S 6¼ ;,
and F0yða0Þ < 0, then:

i) The sequence fxðkÞL g generated by x
ðkþ1Þ
L ¼ J 1ðxðkÞL Þ

with the initialization x
ð0Þ
L ¼ y converges to �xy at an

(asymptotic) linear rate;
ii) The sequence fxðkÞG g generated in Algorithm 1, i.e.,

x
ðkþ1Þ
G ¼ J 2ðxðkÞG Þ with the initialization x

ð0Þ
G ¼ y con-

verges to �xy at an (asymptotic) super-linear rate;

iii) For any k > 0, jxðkÞG � �xyj ¼ OðrkÞ, for some 0 <
r < 1.

The proof of Theorem 1 is given in Appendix, available
in the online supplemental material. The key for the proof
of Theorem 1 is to check the following three crucial conver-
gence properties in turn:

1) limx!�xþy
J 2ðxÞ ¼ �xy;

2) 9 0 < r < 1 such that jJ 2ðxÞ � �xyj < rjx� �xyj;
3) limx!�xþy

J 02ðxÞ ¼ 0.
In Theorem 1, we prove the proposed iterative scheme

(GAI) has a global contractive property and converges at an
(asymptotic) super-linear rate to a globally optimal solution
of (4), which is even faster than Lu’s work.

3.4 Proximal Gradient Algorithm for a Generalized
Problem

In this subsection, a more general framework is considered
as follows.

minX DðXÞ ¼ LðXÞ þ �
Xm
i¼1
Gðkxik2Þ; (19)

where the function G : ½0;þ1Þ ! ½0;þ1Þ satisfies the
assumptions A1-A3, and the function L : Rm�n ! ½0;þ1Þ
has a Lipschitz continuous gradient with the Lipschitz con-
stant being denoted as lðLÞ, i.e., krLðAÞ � rLðBÞkF 	
lðLÞkA�BkF holds for all A;B 2 Rm�n. The proximal gra-
dient (PG) algorithm [44] solves the problem (19) by the fol-
lowing updating rule 6

6. Proximal gradient algorithm is wildly used in the following opti-
mization problem: argminXLðXÞ þWðXÞ, in which Lð�Þ is convex and
differentiable with a Lipschitz continuous gradient, and Wð�Þ is a con-
vex and lower semicontinuous function. For this optimization problem,
we can update X by XðkÞ ¼ prox1

�Wð�Þ
ðXðk�1Þ � 1

�rLðXðk�1ÞÞÞ, in which
prox1

�Wð�Þ
ðOÞ ¼ argminX

1
2 kO�XkF þ 1

�WðXÞ, � > lðLÞ, and lðLÞ is a

Lipschitz constant of the gradient ofrL.
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Xðkþ1Þ ¼ argminXLðXðkÞÞ þ rLðXðkÞÞ; X �XðkÞ
D E

þ �

2
kX �XðkÞk2F þ �

Xm
i¼1
Gðkxik2Þ

¼ argminX
1

2
X �OðkÞ
�� ��2

F
þ�

�

Xm
i¼1
Gðkxik2Þ

¼ SðOðkÞ; �
�
Þ; (20)

where OðkÞ ¼ XðkÞ � rLðX
ðkÞÞ

� , and � > lðLÞ. The convergence
property for the iterate (20) can be guaranteed by the follow-
ing theorem.

Theorem 2. If � > lðLÞ, the sequence fXðkÞg generated by (20)
has the following properties.

i) The objective value sequence fDðXðkÞÞg is monotoni-
cally decreasing. Specifically,

DðXðkÞÞ � DðXðkþ1ÞÞ � � � lðLÞ
2

Xðkþ1Þ �XðkÞ
�� ��2

F
:

ii) limk!þ1 kXðkÞ �Xðkþ1ÞkF ¼ 0.
iii) Suppose limkXkF!þ1 DðXÞ ¼ þ1, then any limit

point of fXðkÞg is a stationary point.

The proof of Theorem 2 is given in Appendix, available
in the online supplemental material.

4 THREE APPLICATIONS OF STRUCTURED

SPARSITY

Structured sparsity has been widely applied in many fields
due to its good performance in studying the structured rela-
tionships hidden in samples, including outlier pursuit[45],
[46], [47], feature selection[48], [49], dictionary learning[41],
[50], background modeling and object detecting[51], [52],
[53], [54], [55], [56], robust orthonormal subspace learning
[57], effective matrix recovery [58], and low rank representa-
tion [59], [60]. In this section, we study three concrete
problems (including outlier pursuit, supervised feature
selection, and dictionary learning) that have wide-spread
applications in computer vision, where structured sparsity
can be leveraged to achieve good recovery results. In each
of the three problems, we first describe the problem formu-
lation and then how the problem can be relaxed by using
surrogate functions. Subsequently, we describe the optimi-
zation algorithm for each problem, and show that the key
computation step boils down to solving the structured spar-
sity optimization problem (3), to which Algorithm 1 readily
applies. In addition, we provide theoretical guarantees for
the overall optimization algorithms.

4.1 Outlier Pursuit

In many visual tasks, samples in multiple classes approxi-
mately lie in multiple low-dimensional subspaces [61], [62].
Thus, a matrix M ¼ ½m1;m2; . . . ;mn� in which each column
is a data sample has a low-rank structure. However, in real
applications, observations are often grossly corrupted or
even suffer from outliers, breaking the low-rank structure

of the data. With the assumption that a small fraction of
observations are outliers (or grossly corrupted data), the
objective for locating the outliers (or recovering the low-
rank data) can be formulated as follows [45].

ðOPÞmin
X;E

rankðXÞ þ �kEk2;0

s.t. X þ E ¼M; (21)

where the matrix M of observations with outliers (or cor-
rupted data) can be decomposed into a low-rank compo-
nent X with no outliers (or noise) and a structured-sparsity
component E with outliers (or noise). Here, ‘2;0-norm regu-
larization is imposed on E to characterize the small number
of outliers (or grossly corrupted samples). The Outliers Pur-
suit (OP) task is the focus of this subsection. It is worth not-
ing that finding the locations of non-zero columns of E is
preferred over exactly recovering E in the OP task. This is
because it is difficult to exactly recover E by optimizing
problem (21) [47]. Determining the locations for the OP task
is adequate since the non-zero columns of E correspond to
the outliers inM.

The optimization problem (21) is not directly tractable
because minimization of the functions of matrix rank and
‘2;0-norm is NP-hard. To make problem (21) solvable, we
replace the ‘0-norm with non-convex surrogate functions G,
and thus yields a relaxed problem

min
X;E

Xr
i¼1
GðsiðXÞÞ þ �

Xn
i¼1
Gðkeik2Þ

s.t. X þE ¼M; (22)

where r ¼ rankðXÞ. The equality constraint in problem (22)
is replaced with a penalty function 1

2 kM �X � Ek2F , and
the following unconstrained optimization is solved instead.

min
X;E
QðX;EÞ ¼ a

Xr
i¼1
GðsiðXÞÞ þ b

Xn
i¼1
Gðkeik2Þ

þ 1

2
kM �X � Ek2F : (23)

Optimizing X and E simultaneously in problem (23) could
be expensive in practice. It is solved iteratively in this work
by combining the coordinate descent algorithm with the
proximal algorithm[44], as detailed below.

Step1 GivenXðkÞ and EðkÞ, updateX by

Xðkþ1Þ ¼ argmin
X

a
Xr
i¼1
GðsiðXÞÞ þ h X �XðkÞ

�� ��2
F

þ 1

2
M �X � EðkÞ
�� ��2

F

¼ argmin
X

a

1þ 2h

Xr
i¼1
GðsiðXÞÞ þ

1

2
X �OðkÞ
�� ��2

F

¼ T
�
OðkÞ;

a

1þ 2h

�
; (24)

where OðkÞ ¼ M�EðkÞþ2hXðkÞ
1þ2h and h > 0.

ZHANG ETAL.: STRUCTURED SPARSITYOPTIMIZATION WITH NON-CONVEX SURROGATES OF ‘2;0-NORM: A UNIFIED... 6393

Authorized licensed use limited to: Peking University. Downloaded on July 24,2023 at 08:07:51 UTC from IEEE Xplore.  Restrictions apply. 



Step2 GivenXðkþ1Þ and EðkÞ, update E by

Eðkþ1Þ ¼ argmin
E

b
Xn
i¼1
Gðkeik2Þ þ h E � EðkÞ

�� ��2
F

þ 1

2
M �Xðkþ1Þ � E
�� ��2

F

¼ argmin
E

b

1þ2h
Xn
i¼1
Gðkeik2Þ þ

1

2
E �QðkÞ
�� ��2

F

¼ S
	
QðkÞ;

b

1þ 2h



; (25)

where QðkÞ ¼ M�Xðkþ1Þþ2hEðkÞ
1þ2h .

The convergence property of the above alternate iterate
can be guaranteed by the following theorem.

Theorem 3. For h > 0, the sequence fðXðkÞ; EðkÞÞg generated
by alternative iterate of (24) and (25) satisfies the following
properties.

i) The objective value sequence fQðXðkÞ; EðkÞÞg is mono-
tonically decreasing. Specifically,

QðXðkÞ; EðkÞÞ � QðXðkþ1Þ; Eðkþ1ÞÞ
� hðkXðkþ1Þ �XðkÞk2F þ kEðkþ1Þ �EðkÞk2F Þ: (26)

ii) limk!þ1 k½XðkÞ; EðkÞ� � ½Xðkþ1Þ; Eðkþ1Þ�kF ¼ 0.

The proof of Theorem 3 is given in Appendix, available
in the online supplemental material.

In outlier pursuit, [46] has proposed a dictionary-based
outlier pursuit method that can be regarded as a generaliza-
tion of (21):

min
X;C

rankðXÞ þ �kCk2;0

s.t. kM �X �DCkF 	 �noise; (27)

where D is a known dictionary, �noise is error and the non-
zero columns of DC are outliers not in the column space of
X. Similar to the idea discussed in the above (optimization
procedure for the non-convex version of (21)), we can solve
the non-convex version of (27) instead, as below.

min
X;C

Xr
i¼1
GðsiðXÞÞ þ �

Xn
i¼1
Gðkcik2Þ

s.t. kM �X �DCkF 	 �noise; (28)

By introducing a penalty function 1
2 kM �X �DCk2F , (28)

becomes

minX;CQDðX;CÞ ¼ a
Xr
i¼1
GðsiðXÞÞ þ b

Xn
i¼1
Gðkcik2Þ

þ 1

2
kM �X �DCk2F : (29)

The optimization procedure for solving (29) can be
described as following two steps:

Step1 GivenXðkÞ and CðkÞ, updateX by

Xðkþ1Þ ¼ argmin
X

a
Xr
i¼1
GðsiðXÞÞ þ h X �XðkÞ

�� ��2
F

þ 1

2
M �X � CðkÞ
�� ��2

F

¼ argmin
X

a

1þ 2h

Xr
i¼1
GðsiðXÞÞ þ

1

2
X �O

ðkÞ
D

��� ���2
F

¼ T
	
O
ðkÞ
D ;

a

1þ 2h



; (30)

where O
ðkÞ
D ¼

M�EðkÞþ2hXðkÞ
1þ2h and h > 0.

Step2 GivenXðkþ1Þ and CðkÞ, update C by

Cðkþ1Þ ¼ argmin
E

b
Xn
i¼1
Gðkcik2Þ þ h C � CðkÞ

�� ��2
F

þ 1

2
M �Xðkþ1Þ �DC
�� ��2

F
(31)

where (31) can be solved by the proposed proximal gradient
algorithm in Section 3.4.

4.2 Supervised Feature Selection

Feature selection (FS) is a natural application of sparse
representation theory that seeks sparse and representative
features from input data. Structured sparsity based FS
methods [48], [49] have been gaining attention recently.
When compared to traditional FS methods [63], [64], [65],
[66], the joint evaluation mechanism makes it more efficient
to extract representative and discriminative features and
more robust to data noise. Given a dataset fðmi; liÞgni¼1 with
i classes, where mi 2 Rd is the i-th training sample and li 2
Ri is the corresponding one-hot label vector (i.e., if mi is
from the j-th class, then the j-th entry of li is 1, and the rest
of the entries are 0). Let M ¼ ½m1;m2; . . . ;mn�, and L ¼
½l1; l2; . . . ; ln�, then the classical structured sparsity based FS
model can be formulated as

min
W
kWM � Lk2F þ �kWk2;0; (32)

whereW 2 Ri�d is a projection matrix, and kWk2;0 is used to
select the most representative and discriminative features
across all data samples with joint sparsity. Similarly, the
‘2;0-norm regularized problem (32) is NP-hard. To make it
solvable, the ‘2;0-norm is replaced with some suitable non-
convex surrogate functions G, and (32) is relaxed as

min
W

1

2
kWM � Lk2F þ �

Xd
i¼1
Gðkwik2Þ; (33)

wherewi is the i-th column of the matrixW .
Next, we discuss how to solve this problem. To remove the

interdependence ofW in the two terms of the objective, an aux-
iliarymatrixQ is introduced and the problem (33) becomes

min
Q;W

1

2
kWM � Lk2F þ �

Xd
i¼1
Gðkqik2Þ

s.t. W ¼ Q; (34)
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where qi is the i-th column of Q. The problem (34) can be
efficiently solved by the framework of alternating direction
method of multipliers (ADMM). To do so, we write out the
augmented Lagrangian function for problem (34) as follows.

LmðW;Q;�Þ ¼ 1

2
kWM � Lk2F þ �

Xd
i¼1
Gðkqik2Þ

þ �;W �Qh i þ m

2
kW �Qk2F ; (35)

where � is a Lagrange multiplier matrix and m is a positive
scalar. The whole algorithm proceeds as follows.

Step1 Given QðkÞ and �ðkÞ, updateW by

W ðkþ1Þ ¼ argmin
W
LmðW;QðkÞ;�ðkÞÞ

¼ argmin
W

1

2
kWM � Lk2F þ

m

2
W �QðkÞ þ�ðkÞ

m

����
����
2

F

¼ ðmQðkÞ ��ðkÞ þ LMT ÞðmI þMMT Þ�1: (36)

Step2 GivenW ðkþ1Þ and �ðkÞ, update Q by

Qðkþ1Þ ¼ argmin
Q
LmðW ðkþ1Þ; Q;�ðkÞÞ

¼ argmin
Q

�

m

Xm
i¼1
Gðkqik2Þ þ

1

2
Oðkþ1Þ �Q
�� ��2

F

¼ SðOðkþ1Þ; �
m
Þ; (37)

where Oðkþ1Þ ¼W ðkþ1Þ þ 1
m
�ðkÞ. It is easy to see that the

problem (37) can be solved by Algorithm 1.
Step3 Given W ðkþ1Þ, Qðkþ1Þ, and �ðkÞ, update the

Lagrange multiplier matrix � by

�ðkþ1Þ ¼ �ðkÞ þ mðW ðkþ1Þ �Qðkþ1ÞÞ:

Although global convergence of the ADMM can not be
guaranteed because of the non-convexity of the objective,
the ADMM has demonstrated superior performance in solv-
ing non-convex problems in practice [22], [23], [43], [67].

4.3 Structured Dictionary Learning

4.3.1 Structured Dictionary Learning

Structured sparsity has been successfully integrated into the
dictionary learning framework in recent years [41], [50]. In
this subsection, we focus on a general formulation of struc-
tured sparsity based dictionary learning with n samples in i

classes as follows.

min
D2D ;Z

1

2
kM �DZk2F þ �

Xi
i¼1

Xm
j¼1
Gðkzjik2Þ: (38)

Here, M ¼ ½M1;M2; . . . ;Mi� 2 Rd�n is the matrix of data
samples, where Mi is the data matrix of the i-th class; D ¼
½d1;d2; . . . ;dm� 2 Rd�m is the dictionary; Z ¼ ½Z1; Z2; . . . ; Zi�
is the sparse coefficient matrix of data samples over the dic-
tionary D, where Zi is the coefficient matrix of data samples
belonging to the i-th class; zji is the j-th row vector of Zi;
D ¼ fD 2 Rd�m;d>j dj 	 1; 8 j ¼ 1; 2; . . . ;mg; kM �DZk2F is
the reconstruction error term, and the non-convex surrogate

term
Pi

i¼1
Pm

j¼1 Gðkz
j
ik2Þ is to effectively exploit the com-

mon features shared by the same class, and thus increase
the discrimination and robustness of the learned dictionary.

The optimization for the problem (38) can be divided into
two sub-problems: updating Z by fixing D, and updating D
by fixing Z. When D is fixed, the sub-problem with respect
to Z can be formulated as

min
Z

Xi
i¼1

1

2
kMi �DZik2F þ �

Xm
j¼1
Gðkzjik2Þ

( )
; (39)

which can be separated into i independent sub-problems
(i ¼ 1; 2; . . . ; i)

min
Zi

1

2
kMi �DZik2F þ �

Xm
j¼1
Gðkzjik2Þ (40)

because Zi’s in (39) are independent. To remove the interde-
pendency of the terms in the objective (40), an auxiliary var-
iable Ai is introduced and the the problem (40) becomes

min
Zi;Ai

1

2
kMi �DAik2F þ �

Xm
j¼1
Gðkzjik2Þ; s.t. Zi ¼ Ai:

(41)

When Z is fixed, the sub-problem with respect toD is

min
D2D

1

2
kM �DZk2F : (42)

To remove the interdependency between the objective func-
tion and the constraint set D for variable D, we introduce
an auxiliary matrix G and an indicator function

IDðGÞ ¼
0 if G 2 D;
þ1 otherwise;

�
(43)

and thus the problem (42) becomes

min
D;G

1

2
kM �DZk2F þ IDðGÞ; s.t. D ¼ G: (44)

Both problems (41) and (44) can be solved by the frame-
work of ADMM. The major difference is that the conver-
gence for the former can not be guaranteed because of the
non-convexity of the objective, while that for the latter can
be guaranteed because the objective is convex and there are
only two block variables [68].

When the dictionary D is obtained, the atom set of the
i-th class is defined as

D i ¼ fdjj kzjik2 > 0g; i ¼ 1; . . . ; i: (45)

Accordingly, the i-th class-specific dictionary Di 2 Rd�jDij is
constructed by using all dj 2 D i as its columns. Thus, classi-
fying an unlabeled sample mtest is performed by the follow-
ing three steps.

Step 1: Calculate the sparse representation for mtest over
each class-specific dictionaryDi (i ¼ 1; . . . ; i) by

ẑi ¼ argmin
z
kmtest �Dizk22 þ �kzk1: (46)

ZHANG ETAL.: STRUCTURED SPARSITYOPTIMIZATION WITH NON-CONVEX SURROGATES OF ‘2;0-NORM: A UNIFIED... 6395

Authorized licensed use limited to: Peking University. Downloaded on July 24,2023 at 08:07:51 UTC from IEEE Xplore.  Restrictions apply. 



Step 2: Calculate the reconstruction error for mtest with
respect toDiði ¼ 1; . . . ; iÞ by

ei ¼ kmtest �Diẑik2: (47)

Step 3: Predict the class label of samplemtest by

ltest ¼ argminifeig: (48)

4.3.2 Robust Structured Dictionary Learning

As the traditional dictionary learning methods are often
sensitivity to outlier samples, [41] adopts

Pn
k¼1 kmk �Dzkkp2

instead of 1
2 kM �DZk2F in (38) to constrain reconstruction

error in the dictionary learning model (i.e., G is taken as ‘p
norm in

Pm
j¼1 Gðkz

j
ik2Þ), where mk and zk are used to stand

for the k-th column vector in M and Z. Therefore, we con-
sider a more complex case of structured dictionary learning,
i.e., using

Pn
k¼1 Gðkmk �Dzkk2Þ in (38) instead of

1
2 kM �DZk2F ,

min
D2D;Z

Xn
k¼1
Gðkmk �Dzkk2Þ þ �

Xi
i¼1

Xm
j¼1
Gðkzjik2Þ: (49)

To solve (49) effectively, two auxiliary variables, H and G,
are introduced and the problem (49) becomes

min
D;Z

Xn
k¼1
Gðkhik2Þ þ �

Xi
i¼1

Xm
j¼1
Gðkzjik2Þ þ IDðGÞ

s.t. H ¼M �DZ; D ¼ G; (50)

which can be solved by the framework of ADMM.When the
dictionary D is obtained, we can classify the unlabeled sam-
plemtest by the Steps 1-3 in the Section 4.3.1.

5 EXPERIMENTAL RESULTS

In this section, a variety of simulations and experimental
evaluations are presented to demonstrate the efficiency and
effectiveness of the proposed algorithm in the structured
sparsity framework. We divide the presentation into four
subsections.

In the first subsection, we provide simulation results that
verify the convergence rate of GAI (Algorithm 2). Addition-
ally, we perform some comparisons between the GAI and
Lu’s work [27] described in Algorithm 4, which was also
designed to solve the problem (4) but for a different pur-
pose. As made clear in the simulation results, the proposed
algorithm converges to a global optimal solution signifi-
cantly faster.

The last three subsections present three real-world appli-
cations in which structured sparsity can be harnessed to
achieve good recovery performance. These three applica-
tions are outlier pursuit, feature selection, and structured
dictionary learning. Detailed discussions of their formula-
tions and optimization algorithms have been provided in
the previous section. Note that in each of the three applica-
tions, one can select many surrogate functions since our
framework allows for a general set of such surrogate func-
tions, and we have kept discussions of optimization algo-
rithms generic in the previous section. Here, we will

instantiate a wide variety of surrogate functions and com-
pare their performance. See below for a quick list.

� ‘1: Algorithm 1 is combined with ‘1-norm soft
threshold to solve the problem (2).

� Structural Sparse Preserving via Mixed ‘2;p Norm
(SSP-‘p): Proposition 2 in [24] is combined with gen-
eralized soft-thresholding (GST) [29] to solve the
problem (3) with non-convex surrogate ‘p-norm.

� The methods combining Algorithm 1 with GAI for
non-convex surrogate functions ‘p-norm, Geman
penalty, Laplace penalty, LOG penalty, Logarithm
penalty, and ETP penalty are denoted as ‘p, Geman,
Laplace, LOG, Logarithm, and ETP, respectively.

5.1 Convergence Speed of the Fixed Point
Algorithm

Here we empirically evaluate the convergence speed and
give some comparisons between the proposed fixed point
algorithm and Lu’s work. Lu’s work is given in Algorithm 4.
The following problem is considered.

argmin
X
ZðXÞ ¼ 1

2
kY �Xk2F þ �

Xm
i¼1

Xn
j¼1
GðjxijjÞ; (51)

whereX;Y 2 Rm�n, and xij is the element ofX.
In the simulations, the entries of the matrix Y 2 R100�100

are i.i.d. from the standard normal distribution Nð0; 1Þ, and
the value of parameter � is set to 1. For each non-convex sur-
rogate function, the output of Lu’s work with k ¼ 1000 and
t ¼ 10�20 is taken as the ground truth, which is denoted as
X�. Absolute Error ¼ jZðX�Þ � ZðX̂kÞj is used to evaluate the
performance of Lu’s work and the proposed fixed point
algorithm for solving the problem (51), where X̂k is the out-
put of the k-th iteration. Obviously, for a fixed number k, a
smaller Absolute Error indicates a faster convergence rate.

The simulation results in Fig. 1 provide a clear demon-
stration of the effectiveness of the proposed fixed point
algorithm. The curves of the proposed algorithm show a
sharp decrease during the iteration process, and the corre-
sponding Absolute Errors reach 10�7 within 6 iterations at
most. In contrast, the curves of Lu’s work decrease slowly,
and the number of iterations is even more than 100 for the
surrogate function Laplace when the corresponding Abso-
lute Errors reaches 10�7. All these results validate the theo-
retical characterizations and demonstrate the superiority of
the proposed fixed point algorithm.

5.2 Outlier Pursuit

In this part, we apply the proposed framework to the OP
task on the handwritten digit dataset MNIST and the point
trajectory dataset Hopkins 155. To give numerical compar-
isons, two metrics, including Ham and F1 [69], are chosen to
evaluate the location differences of non-zero columns
between the ground truth E0 (corresponding outliers within
the data) and the recovery E� in (21). The Ham metric is for-
mulated as Ham ¼ 100�h

100 , where h is the Hamming distance
[47] between the column supports of E0 and E�. The F1met-
ric is formulated as F1 ¼ 2�P�R

PþR , where P ¼ TP
TPþFN , R ¼

TN
TNþFP , and TP , FP , TN , and FN are true positive, false posi-
tive, true negative, and false negative for whether one can
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correctly find the locations of non-zero columns, respec-
tively. For each dataset, experiments are repeated 20 times
with randomly chosen outliers, and the average values of
Ham and F1 are reported. Three baseline methods, includ-
ing Robust Principal Component Analysis (RPCA) [13],
Robust Principal Component Analysis via Outlier Pursuit
(RPCA-OP) [45], 7 and SSP-‘p, are used to compare to (22)
with different surrogate functions.

5.2.1 Results on the MNIST Dataset

From digit classes ‘1’-‘9’, c0 images are randomly chosen as
outliers; from digit class ‘0’, the first 100� c0 images are cho-
sen as the intrinsic samples. The observation matrix D in
problem (23) is constructed by these chosen samples. The goal
of this experiment is to compare the capability of different sur-
rogates of ‘2;0-norm for locating the position of outliers.

The values ofHam and F1 for different numbers c0 of out-
liers are recorded in Tables 3 and 4, respectively. It can be
observed that the accuracies of outlier detection decrease as
the number c0 increases. Additionally, most of the non-con-
vex surrogates (especially for Logarithm penalty) are more
effective than the convex surrogate ‘2;1-norm (RPCA-OP).
This also verifies that non-convex surrogates have a supe-
rior approximation of the ‘2;0-norm and thus detect outliers
more precisely than ‘2;1-norm. Compared with all baseline
methods, ‘p and Logarithm outperform the baseline meth-
ods in most cases, where Logarithm achieves the best per-
formance across all cases. These results illustrate the
effectiveness of the proposed method. To provide a clear
intuition of the outlier pursuit, the recovered low-rank part
and the column-sparse noise part of identified outliers with
c0 ¼ 5 by different surrogates are shown in Fig. 2. Due to
the space limit, we only list the results of five methods,

including RPCA, RPCA-OP, SSP-‘p, ‘p and Logarithm (in
which ‘p and Logarithm are chosen because of their good
performance in both metrics of Ham and F1). As illustrated
in Fig. 2, ‘p and Logarithm both find more outliers than ‘1
minimization does. The (22) based methods obtain the clear-
est recovered outliers.

5.2.2 Results on the Hopkins 155 Dataset

Experiments are performed on three video sequences from
the Hopkins 155 dataset, including “1R2RC”, “1R2RCR”,
and “three-cars”. “1R2RC” is the sequence with two objects
rotating for a fixed camera; “1R2RCR” is the sequencewith all
of the two objects and the camera rotating; “three-cars” con-
tains three motions of two toy cars and a box moving on a
table, and the motions are taken by a fixed camera. Some
examples are illustrated in Fig. 3. As stated in [72], if the point
trajectories associated with multiple moving objects lie in
multiple low-dimensional subspaces, then the matrix con-
structed by the point trajectories has a low-rank structure. For
each of the three video sequences, c1 point trajectories with
m0-dimensional features in the first object are randomly

TABLE 3
Comparison of Ham for Anomaly Identification on the MNIST

Dataset

Video Clip c=5 c=10 c=15 c=20

RPCA [13] 0.9660 0.9080 0.8640 0.8400
RPCA-OP [45] 0.9680 0.9460 0.9060 0.8800
SSP-‘p [24] 0.9780 0.9460 0.9160 0.8940
‘p 0.9760 0.9480 0.9220 0.8840
Geman 0.9080 0.8200 0.7420 0.6660
Laplace 0.9680 0.9480 0.8960 0.8620
LOG 0.9100 0.8240 0.7520 0.6720
Logarithm 0.9780 0.9560 0.9180 0.8980
ETP 0.9480 0.9020 0.8560 0.7960

Fig. 1. Comparisons between the proposed algorithm GAI and Lu’s work with the surrogate G being (a) ‘p norm, p ¼ 0:5, (b) Geman penalty, g ¼ 1,
(c) Laplace penalty, g ¼ 1, (d) LOG penalty, g ¼ 1, (e) Logarithm penalty, g ¼ 1, and (f) ETP, g ¼ 1.

7. RPCA-OP can be regarded as the case of taking G ¼ j � j in (22).
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chosen as the intrinsic samples, and c2 point trajectories from
the second object are randomly chosen as outliers. These cho-
sen point trajectories are used as columns of the observation
matrix D in problem (23). In the experiments, ðc1; c2;m0Þ are
set as (89,15,59), (50,35,49), and (30,30,31) for video sequences
“1R2RC”, “1R2RCR”, and “three-cars”, respectively.

The experimental results are presented in Fig. 4. It can be
seen that most non-convex surrogates outperform the
‘1-norm (RPCA-OP). ETP even achieves perfect performance
for both metrics of Ham and F1 on the sequences “1R2RC”
and “1R2RCR”. In the case of the baseline methods versus the
proposed methods (including ‘p, Logarithm, and ETP), the
proposed methods outperform the baseline methods in most
cases. In addition, to further illustrate the efficiency of the pro-
posed algorithm, the running time is shown in Fig. 4c, from
which it can be concluded that the time for solving the prob-
lem (22) with non-convex surrogates (except for ‘p, Geman
and Laplace) is comparable to (or even less than) that with the
‘1-norm (RPCA-OP). In terms of running times, most of the
methods based on our algorithm achieve better results than
the baselinemethods SSP-‘p and RPCA.

The above experimental results illustrate the effective-
ness and efficiency of Algorithm 1 in the application of OP
tasks.

5.3 Supervised Feature Selection

In this subsection, experiments are performed on datasets
ALLAML, Carcinomas, and GLIOMA to study the perfor-
mance of the proposed framework on the feature selection
problem (33). For each dataset, 50% of samples are ran-
domly selected for training, and the rest are for testing. The
performance of feature selection is evaluated by classifica-
tion accuracy via k nearest neighbor (kNN), where k is set
as 1 in the experiments. Here, four baseline methods,
including kNN (k=1), Robust Feature Selection Based on
‘2;1-Norms (RFS) [70], Top-k Supervise Feature Selection
(TK-SFS) [71] and SSP-‘p are used to compare to (33) with
different surrogate functions.

The accuracies of different surrogates with 20 and 80
selected features are reported in Table 5. According to
the results, it can be observed that the non-convex sur-
rogates achieve significantly better performance than
the ‘1-norm. And, regardless of whether the cases are
top 20 or top 80 features, all (33) based methods outper-
form the three baseline methods (including 1NN, RFS,
and TK-SFS). Specifically, ETP almost has the best per-
formance when the number of selected features is 20. In
the case of the top 80 features, both ‘p norm and Lap-
lace perform the best in most cases. This provides addi-
tional evidence of the effectiveness of the proposed
framework for solving feature selection models with
non-convex surrogates.

5.4 Structured Dictionary Learning

5.4.1 Structured Dictionary Learning

In this part, experiments are conducted on eight image data-
sets, including USPS, Extended YaleB, ORL, PIE, UMIST,
COIL-20, SB-Data, and TDT2 for the structured dictionary
learning problem. An overall description of these datasets is
provided in Table 6, in which t and n respectively denote the
numbers of dictionary atoms and the training samples
per class. There are three parameters, �, g and p, in the
experiments. �, g, and p are selected from f0:00001;
0:00005; � � � ; 0:01g, f0:00001; 0:00005; � � � ; 1; 5; 10g, and f0:1;
0:2; � � � ; 0:8; 0:9g, respectively. The experiments are repeated
10 times with different random splits of the datasets, and the
average classification accuracies with the best parameters are
reported. The classification accuracies on the eight benchmark
datasets are recorded in Table 7. As demonstrated by the
results, the best classification accuracy is distributed in non-
convex surrogate functions for each dataset, confirming their
superior performance.

Additionally, the nonparametric post-hoc statistic test
[73], [74] is carried out to further explore the comprehen-
sive capability of these non-convex surrogate functions.
Here, the critical difference (CD) diagram is used to

TABLE 4
Comparison of F1Metric for Anomaly Identification on the

MNIST Dataset

Video Clip c=5 c=10 c=15 c=20

RPCA [13] 0.7000 0.5800 0.5600 0.6200
RPCA-OP [45] 0.7600 0.7200 0.7133 0.7150
SSP-‘p [24] 0.7800 0.7200 0.7133 0.7050
‘p 0.8000 0.7300 0.7200 0.7250
Geman 0.0800 0.1200 0.1467 0.1750
Laplace 0.7800 0.6900 0.6800 0.6600
LOG 0.1000 0.1300 0.1533 0.1850
Logarithm 0.7800 0.7800 0.7267 0.7450
ETP 0.4200 0.5400 0.4800 0.5150

Fig. 2. Identified outliers by different surrogates. The subfigures sur-
rounded by red lines and green lines are the visual representation of the
low rank partX� and sparse part E�, respectively.

Fig. 3. Examples in Hopkins 155: (a) 1R2RC; (b) 1R2RCR; (c) three-
cars.
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intuitively illustrate the overall statistical comparisons of
different non-convex surrogates on the eight datasets.
The post-hoc statistical test results are graphically shown

in Fig. 5, where the right side of the axis refers to the
highest rank (best performance). As illustrated in Fig. 5,
two non-convex surrogates of ETP and Laplace perform
worse than the commonly used ‘1 surrogate, which dem-
onstrates that ‘1 surrogate usually provides a stable per-
formance for sparse representation. However, there are
also four non-convex surrogate functions that achieve
better performance than ‘1 norm, i.e., ‘p, LOG, Geman,
and Logarithm. This is the main focus of this paper,
which is an enlargement of the set of non-convex surro-
gate functions that are superior to ‘1 norm.

5.4.2 Robust Structured Dictionary Learning

In this part, we test four baseline methods, including Sparse
Representation-based Classification (SRC)[6], K-SVD[75],
Discriminative K-SVD (D-K-SVD)[76] and Semi-Supervised
Robust Dictionary Learning (SSR-D) [41], and (49) with
three non-convex surrogate functions (i.e., ‘p, Geman, and

Fig. 4. Comparisons of (a) Ham, (b) F1metric, and (c) Running time (seconds) for anomalies identification on the Hopkins 155 dataset.

TABLE 5
Classification Accuracy on the Task of Feature Selection

Feature selection of top 20 features Feature selection of top 80 features

ALLAML Carcinomas GLIOMA Average ALLAML Carcinomas GLIOMA Average

1NN [69] 83.78 85.39 50.00 73.06 83.78 85.39 50.00 73.06
RFS [70] 83.78 85.39 50.00 73.06 83.78 85.39 50.00 73.06
TK-SFS[71] 67.57 77.53 26.92 57.34 67.57 71.91 50.00 63.16
SSP-‘p[24] 91.89 91.01 73.08 85.33 94.59 95.51 76.92 89.01
‘1 89.19 88.76 53.85 77.27 89.19 93.26 61.54 81.33
‘p 91.89 91.01 73.08 85.33 94.59 95.51 76.92 89.01
Geman 91.89 88.76 69.23 83.29 97.30 92.13 73.08 87.50
Laplace 91.89 91.01 57.69 80.20 100.00 96.63 69.23 88.62
LOG 91.89 88.76 53.85 78.17 91.89 89.89 53.85 78.54
Logarithm 91.89 91.01 57.69 80.20 91.89 94.38 61.54 82.60
ETP 97.30 89.89 88.46 91.88 97.30 95.51 73.08 88.63

TABLE 6
Overall Description of the Datasets

Datasets DIM Data# Class# t n

ORL 1024 400 40 80 7
PIE 1024 2040 12 240 80
TDT2 500 1560 30 210 31
USPS 256 1100 10 200 60
UMIST 750 575 20 100 15
COIL-20 1521 1440 20 200 40
SBData 638 2000 40 200 20
E-YaleB 1024 2414 38 380 20

TABLE 7
Classification Accuracy of Different Datasets

Datasets ORL COIL PIE TDT2 USPS YaleB UMIST SBD

SSP-‘p[24] 73.33 94.55 95.25 88.68 88.04 90.94 83.85 67.12
‘1 76.43 94.71 95.28 88.35 87.87 90.95 83.83 67.11
‘p 77.41 94.71 95.27 88.61 88.18 90.94 83.89 67.12
Geman 73.58 95.69 95.27 88.90 88.02 90.93 83.85 67.03
Laplace 77.65 94.23 95.24 87.01 86.51 90.77 85.68 66.92
LOG 20.43 94.75 95.24 89.17 87.50 90.94 83.85 67.61
Logarithm 76.54 94.62 95.32 88.38 87.95 90.94 83.83 67.11
ETP 77.56 93.15 94.92 87.05 86.52 88.94 85.52 67.59

Fig. 5. Post-hoc statistical tests of different non-convex surrogate func-
tions on overall datasets.
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Laplace) on four datasets that are used in [41], including
AT&T

8, USPS, BinAlpha9, and TDT2).
We conduct standard five-fold cross-validation on each

data set, and report the average classification accuracy by
the seven methods on the four datasets in Table 8. As dem-
onstrated by the results, the best classification accuracy is
distributed in ‘p and Laplace for most datasets. Further-
more, as shown in Fig. 6, two non-convex surrogates of ‘p
and Laplace provide stable performance for sparse repre-
sentation when compared to other methods. These results
also confirm the effectiveness of the proposed approach.

6 CONCLUSION

This paper provided a structured sparsity optimization
framework that effectively harnesses structured sparsity in
real-world problems. We moved beyond ‘1-norm based sur-
rogate functions, and worked with a family of non-convex
surrogate functions that are much more effective. We
achieved this goal by exploring the relation between A and
B in Lamma 1, which was also discussed in conference ver-
sion [77] of this paper. But different from the conference ver-
sion, in this paper, we further developed a novel iterative
scheme (GAI) which solved the key sparsity optimization
problem (4) to global optimality with geometric rate and
helped to give a high-efficiency solver for sparsity and low
rank recovery with non-convex surrogates. Based on GAI,
two resulting algorithms, including structured sparsity opti-
mization framework and GSVT-GAI, were proposed to solve
the critical problems (3) and (6) for structured sparsity and
matric low-rankness, respectively. Besides, to demonstrate
the generality and wide applicability of the proposed algo-
rithms, we presented three concrete problems (i.e., outlier

pursuit, supervised feature selection, and structured dictio-
nary learning), which can be solved by the proposed general
structured sparsity optimization framework and GSVT-GAI
effectively and efficiently. Extensive experiments on both syn-
thetic data and real-world applications in the three concrete
problems have validated the effectiveness and efficacy of the
proposed framework and algorithms.
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