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A B S T R A C T

Cross-patient automatic epileptic seizure detection through electroencephalogram (EEG) is significant for
clinical application and research. However, most automatic seizure detection methods are patient-specific and
have poor generalization ability to unseen patients. In this paper, we consider two aspects for solving the
cross-patient generalization problem in deep learning approaches. Firstly, we propose a new data augmentation
method to largely improve generalization. We analyze the statistical distribution of seizure EEG signals and
propose spatio-temporal EEG augmentation (STEA) to generate synthetic training seizure data with spatio-
temporal dependencies in EEG. Secondly, we propose patient-adversarial neural network (PANN) to learn a
patient-invariant representation for better generalization. We add a discriminator to distinguish the identity
of patients and perform adversarial optimization between the feature extractor and identity discriminator, so
that only shared seizure features are maintained. We conduct experiments on both public and clinical EEG
datasets with various settings of different window lengths and divisions of training and testing sets. Our model
significantly improves the performance of cross-patient detection compared with other methods and achieves
state-of-the-art performance. Particularly, our proposed method achieves up to 95% sensitivity on CHB-MIT
under 5 s window length segments, and achieves about 85% AUC and sensitivity even on the clinical dataset.
Our designed methods can enable detection models extended to unseen patients, with performance achieving
the clinical application standards.
1. Introduction

Epilepsy is one of the most common chronic noncommunicable
diseases of the brain which influences people of all ages [1]. Ac-
cording to the World Health Organization Report, epilepsy affects 50
million people around the world [2]. As a worldwide disease, epilepsy
brings pain and inconvenience to patients and their families, which can
even threaten their lives. Thus, the research on epilepsy diagnosis and
treatment techniques is valuable and vital.

One of the indicators for epileptic seizure is the abnormal electroen-
cephalography (EEG) pattern [3]. As shown in Fig. 1, the brain action in
epileptic EEG waves consists of the preictal stage, ictal stage, postictal
stage, and interictal stage. These four stages represent the time nearing
the seizure, the on-time period of the seizure, the interval succeeding
a seizure, and the left-out period, respectively.
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Seizure detection aims to distinguish whether an EEG wave is in the
ictal stage. However, this is really difficult since the raw EEG signal has
much noise as shown in Fig. 2, hence it invariably takes much time for
manual diagnoses. Therefore, the automated methods to deal with EEG
signals are important to ease and speed up the detection, which is the
main focus of most research [3–12]. These methods formulate the EEG
detection problem as a classification task by segmenting EEG signals
in short time intervals and classifying whether each part is in the ictal
stage, and the mainstream works apply deep neural networks to solve
this problem [4–8,13–16].

However, most previous works do not consider the cross-patient
generalization problem, which limits their practical utility. Specifically,
the traditional setting of previous work only considers the training and
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Fig. 1. Illustration of four stages of the epileptic EEG.
Fig. 2. The waveform graph sampled from the CHB-MIT dataset [17]. Figure (a) is the normal period and Figure (b) is the epileptic seizure period. In the figures, 𝑥 axis represents
the time dimension, and 𝑦 axis represents 23 electrode channels.
Fig. 3. Two kinds of epileptic seizure detection settings. The blue block represents the training set and the red block represents the testing set.
testing of the model on the same group of patients and fails to gen-
eralize to unseen ones. Differently, the cross-patient setting separates
patient identities in the training and testing sets, which aims to train
models with several individuals’ data and generalize to unseen patients.
The illustration of the differences between these two settings is shown
in Fig. 3.

In reality, the cross-patient setting is much closer to the real-world
setting and is essential for medical treatment, because the clinical
applications usually prefer a universal model for different patients and
require the generalization ability to adapt to fresh samples. With these
advantages, cross-patient epilepsy seizure detection methods are more
convenient to be promoted and valuable for both reducing the efforts
of well-experienced doctors and improving the diagnosis precision of
junior doctors with inadequate training.

Nevertheless, the cross-patient setting is more difficult and there
is still much room for improvement. This is because the seizure form
of epilepsy varies a lot among patients and is difficult to generalize.
Additionally, since there are much more non-seizure periods than
seizure periods for EEG signals, such a class-imbalance problem will
cause performance degradation and poorer detection generalization
2

ability, which is more severe in the cross-patient setting. Most previous
automatic detection methods perform poorly under the cross-patient
setting. For example, the performance of the state-of-the-art model [4],
which achieves 99% sensitivity in the traditional epileptic detection
setting on the CHB-MIT dataset, drops to below 60% in the cross-patient
setting. How to improve the generalization ability under the inter-
patient EEG pattern variation is a key problem for practical applications
of epileptic seizure detection.

In this paper, we improve the performance of cross-patient seizure
detection in two aspects: data augmentation and adversarial optimiza-
tion. Firstly, we propose the spatio-temporal EEG augmentation method
to effectively increase the sample diversity, by incorporating more
spatial information from different channels. In this way, the imbal-
ance problem is alleviated and the generalization ability is improved.
Secondly, we design a patient-adversarial neural network (PANN) that
adds a discriminator for identity classification during training. With
adversarial optimization between the epileptic feature extractor and
identity discriminator, PANN is effective in eliminating patient-specific
features and learning patient-invariant representations. Experiments
show that our methods are successful in cross-patient seizure detection.
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Compared with other methods, we achieve state-of-the-art results on
both the public CHB-MIT dataset and the clinical Peking University
Hospital dataset. Our method demonstrates high performances of up
to 95% sensitivity on CHB-MIT under 5s window length segments,
and about 85% AUC and sensitivity even on the clinical dataset. Our
contributions are listed below:

∙ We propose a new data augmentation method for EEG signals
based on the newly discovered property of their distributions. The
new data augmentation method can capture both temporal and
spatial correlativity to better increase the sample diversity and
significantly improve generalization.

∙ We propose a new adversarial optimization method with a patient-
adversarial neural network to learn patient-invariant representa-
tions of EEG signals. It can eliminate patient-specific features to
improve cross-patient generalization.

∙ We conduct various experiments on both public and clinical
datasets under different settings. Compared with other methods,
our model achieves state-of-the-art results in cross-patient seizure
detection and provides great potential for clinical applications in
practice.

We organize the paper as follows: Section 2 discusses the back-
ground and related work of epileptic seizure detection. In Section 3,
we introduce the problem setup of cross-patient seizure detection.
Section 4 elaborates on our proposed methods. Section 5 shows exper-
imental results and the model performance. Section 6 is the summary
and discussion.

2. Related work

2.1. Patient-specific epileptic seizure detection

EEG-based epileptic detection has been a hot research topic re-
cently. Some early works on seizure detection focus on feature engi-
neering. For example, discrete Fourier transform (DFT) and discrete
wavelet transform (DWT) have found popularity in seizure detection
and prediction applications [18]. Similarly, empirical mode decompo-
sition (EMD) [19], the local mean decomposition (LMD) [20], and local
binary patterns(LBP) [21] have also found a role in these applications.

Recently, the mainstream method of seizure detection is using deep
neural networks. Specifically, most methods leverage neural network
models to integrate the feature extraction and classification proce-
dure in an end-to-end way. For example, Song et al. [22] utilizes a
neural mass model driven method with dynamic features for seizure
detection, Wei et al. [5] uses a 12-layer convolutional neural network
(CNN), Abdelhameed et al. [6] combines a one-dimensional CNN with
a long short-term memory (LSTM), Ke et al. [4] introduces convolution
structure and explicitly models the multi-channel characteristics of con-
volutional features, and many other works [5,7,8,15,23] also use CNN
for seizure detection. Another common approach for seizure detection
is recurrent neural networks (RNN). Abdelhameed et al. [6],Hu et al.
[24] adopt the deep bidirectional long short-term memory (Bi-LSTM)
network. Most recently, graph representations have also been applied
to EEG signal mining. Wang et al. [25] employs graph representation to
characterize EEG signals and uses a novel deep model called Sequential
Graph Convolutional Network (SGCN). He et al. [16],Tang et al. [26]
represent the spatio-temporal dependencies in EEGs using a graph
neural network and propose EEG graph structures that capture the
electrode geometry or dynamic brain correlativity. And Jia et al. [27]
propose an attention-based graph residual network.

However, all these methods do not consider the challenging cross-
patient generalization problem and perform poorly in the cross-patient
setting.
3

2.2. Cross-patient seizure detection

In real medical treatment, the cross-patient setting is the actual
mode. There are some existing cross-patient studies, but their perfor-
mance still has much room for improvement.

Some works have used data augmentation methods to improve the
accuracy of cross-patient detection. Wei et al. [5] first merge any two
adjoining clutters or incomplete waves and then use Wasserstein Gen-
erative Adversarial Network (WGAN) for data augmentation. Gómez
et al. [28] utilize overlapping data augmentation strategies with time-
shift for cross-patient detection. Peng et al. [9] propose temporal
information enhancement for feature augmentation to improve cross-
patient behavior. However, their augmentation methods mainly focus
on the temporal dimension and do not consider the spatial information
as in this work, thus their performance, especially sensitivity, has much
room to improve.

Another effective cross-patient epilepsy detection method is to use
feature disentanglement to separate patient-specific features and com-
mon epilepsy features. Zhang et al. [29] propose a so-called ‘‘ad-
versarial’’ method to decompose seizure and patient representation
with two branches of neural networks for classification of seizure
and patients as well as reconstruction. However, different from this
work, they do not actually perform adversarial optimization to ensure
that patient-specific features are eliminated in the seizure features for
seizure classification. Meanwhile, they require double models to extract
decomposed features, while our proposed adversarial optimization of
one model is more lightweight and efficient. Zhao et al. [30] manu-
ally extract multi-view frequency domain and time–frequency domain
features, and use two generators and two discriminators for feature
generation and classification of seizure and patients. Similar to Zhang
et al. [29], they also do not perform real adversarial optimization with
opposite objectives for feature elimination as in this work, and require
more computation with two branch of models.

Some other methods applied meta learning for the cross-patient
problem, such as MUPS (Meta Update Strategy) [31] and MLCL (meta
learning on constrained transfer learning) [32], which divide training
data into multiple meta tasks to construct effective cross-patient repre-
sentations. This kind of methods involves alternating learning between
two neural networks(meta nets and the main network), and both net-
works acquire knowledge from each other to improve themselves. The
limitation of meta learning methods is that the training process cannot
guarantee effective representation, and the number of models is twice
that of other methods, resulting in higher training difficulty.

Some works try to improve cross-patient settings mainly from the
perspective of using effective network structures. For example, Dist-
DCRNN [26] applies a graph diffusion convolutional recurrent neural
network which can model the spatiotemporal dependencies in EEGs,
ConvLSTM [33] uses the convolutional long short-term memory net-
work for cross-patient seizure detection, Dense CNN [34] exploits
densely connected inception network trained by imperfect but plentiful
archived annotations, neural memory networks (NMNs) [35] uses ex-
ternal memory modules with trainable neural plasticity, etc. The above
works are orthogonal to our methods, as those works are basically from
the perspective of network structure, while our methods are from the
perspective of data and strategy. The above methods and our methods
can be used together.

Some works have also used domain adaption [36–38] or domain
generalization [39] with multiple datasets to improve the model’s
generalization ability. However, domain generalization without the re-
quirement of testing or additional data is preferred for transfer learning,
as utilizing both training and testing data (domain adaption) is severely

inconsistent with actual medical treatment.
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Fig. 4. The visualization of the statistical characteristics of EEG signals.(a) The t-SNE visualization of EEG signals from positive seizure class (blue) and multi-Gaussian distribution
samples (black) examples. The (X,Y,Z) labels are the corresponding coordinates in the 3D embedding space. (b) The quantile–quantile plot between seizure distribution (blue) and
multivariate normal distribution (black). We consider each flattened 2-s seizure segment as a data point, where the flattened 2-s seizure segment is a column vector 𝐱𝑖 ∈ R𝑇𝐶 .
3. Problem setup

Seizure detection aims to distinguish whether a wave in a short time
interval is in the ictal stage and it is formulated as a binary classification
task. After splitting the whole EEG signals into short segments with
same window size (𝑡 seconds), we get the EEG segments and denote
the available data as (𝐱𝑖, 𝐲𝑖), 𝑖 = 1,… , 𝑁 , where 𝑁 is the number of
segments, 𝐲𝑖 ∈ {0, 1} is a class label, with 𝐲𝑖 = 1 corresponding to
a seizure period, and 𝐲𝑖 = 0 corresponding to a non-seizure period.
The EEG signal of the 𝑖th sample is denoted as 𝐱𝑖 ∈ R𝑇×𝐶 where 𝐶 is
the channel dimension and 𝑇 is the product of time window size 𝑡 and
data frequency 𝑓 . The research goal is to design a classifier to correctly
distinguish whether the patient is on seizure according to 𝑡-second EEG
signal duration.

Specifically, we focus on cross-patient seizure detection in this
paper. Under the basic problem of seizure detection, the cross-patient
setting has a sample of 𝑀 patients, where 𝑀𝐷 patients are for model
training and other 𝑀𝑇 patients are for model testing, with 𝑀𝐷 +
𝑀𝑇 = 𝑀 . Cross-patient settings are the data pattern of actual medical
treatment. Besides, cross-patient seizure detection can be reproducible,
and generalizable to future patients.

The clinical application of cross-patient seizure detection is to pro-
vide assistant judgments of seizure and give references of the start/end
time of seizure to help the doctors cure epilepsy. Specifically, we use
the pretrained cross-patient seizure model for orderly 𝑡-second EEG
segments of one epilepsy patient. The period of the first EEG segment
detected to be ictal is marked as the start of the seizure, while the last
detected EEG segment is marked as the end of the seizure, with the
error range of 𝑡 seconds.

4. Methodology

In this section, we elaborate on the two aspects of our method
to solve the cross-patient problem: data augmentation and adver-
sarial optimization. Data augmentation deals with the generalization
problem mainly from the class-wise aspect, i.e. how to handle the
class-imbalance problem; while adversarial optimization considers the
patient-wise aspect, i.e. how to learn patient-invariant representations.

4.1. Spatio-Temporal EEG Augmentation (STEA)

As introduced in Introduction, the seizure data are few and the
class-imbalance problem exists in the EEG signal. Compared to non-
seizure periods, the number of seizure periods is fairly small. Such
4

an imbalance problem will cause performance degradation and poorer
generalization, which is more severe for cross-patient generalization.

One key solution to this problem is data augmentation. However,
existing few data augmentation methods of EEG signal do not work
well in practice as they are mostly limited to simple linear transfor-
mation [14]. A possible reason is that they only consider to add small
perturbations but ignore the statistical characteristics, for example, the
temporary and spatial correlativity over EEG signals from different time
and EEG electrode channels.

To this end, we first analyze the temporal and spatial correlation
of EEG signals. Specifically, given the data 𝐱 ∈ R𝑇×𝐶 , where 𝑇 and
𝐶 correspond to the temporal and channel dimensions, respectively
(different channels correspond to electronics at different spatial posi-
tions), we flatten the data of different channels into one vector with
𝑇 × 𝐶 elements and make augmentations with correlations among all
dimensions. By analyzing the 3-D embedding mapping of the data
with the t-distributed stochastic neighbor embedding (t-SNE) [40], as
shown in Fig. 4(a), we find that the EEG data may follow a distribution
similar to the multidimensional Gaussian distribution. Then, we make
the quantitative verification of the relation between seizure distribution
and multidimensional Gaussian distribution. As shown in the quantile–
quantile plot in Fig. 4(b), the two probability distributions’ quantiles
against each other are plotted in blue, and the best-fit linear regression
for the data is plotted in red which is close to the ideal 45◦ line 𝑦 = 𝑥.
The coefficient of determination 𝐑2 = 0.654, which means a good fit
when 𝐑2 > 0.5. 𝐑2 is the larger the better, and 0 ≤ 𝐑2 ≤ 1. The 𝐑2 is
calculated from all 2-second seizure segments (total number 3372) from
18 patients in the PKU1st dataset. Through the quantile–quantile plot,
it can be seen that the population of EEG signals has close connectivity
with multidimensional Gaussian distribution. This result demonstrates
that the Gaussian distribution can account for a large part of the variety
of seizure EEG signals, and therefore it can be an effective surrogate
distribution for data augmentation.

Owing to the above analyses, we propose the spatio-temporal EEG
augmentation (STEA) method to generate additional training data
through the statistics of training data as shown in Algorithm 1.

It is important to note that the covariance matrix in Step 2 calculates
the connectivity between any two channels in any two moments. This
enables our STEA method to generate reasonable training samples con-
sidering both temporal and spatial correlation among existing training
data. In practice, the augmentation is conducted after preprocessing of
the raw data (the preprocessing details can be found in Section 5.1).
An illustration of the data augmentation method is presented in Fig. 5.
As the EEG signals are measured by electrodes placed in a manifold,
they have non-Euclidean structures. We can treat the EEG signal as a



Biomedical Signal Processing and Control 89 (2024) 105664Z. Zhang et al.
Fig. 5. Illustration of the process of STEA. We first pre-compute the statistical information, i.e. the mean and covariance matrix, of the flattened training data. Then during
training, we generate additional training data from the multivariant Gaussian distribution.
Algorithm 1 Spatio-Temporal EEG Augmentation (STEA)
Input: EEG seizure segments {𝐗𝑖} in training set,

the channel number 𝐶, time window size 𝑡,
data frequency 𝑓 , time dimension 𝑇 = 𝑡 × 𝑓

Procedure:
#Stage 1. reshape

Flatten each segment to 1-D vector 𝐱𝑖 ∈ R𝑇𝐶 .
#Stage 2. calculate the statistical information

calculate the mean 𝜇 and covariance matrix 𝚺, where
𝜇 = 1

N
∑𝑁

𝑖=1 𝐱
𝑖, 𝚺 =

(

𝚺𝑝𝑞
)

𝑇𝐶×𝑇𝐶 ,
𝚺𝑝𝑞 =

1
𝑁

∑𝑁
𝑖=1(𝐱

𝑖
𝑝 − 𝜇𝑝)(𝐱𝑖𝑞 − 𝜇𝑞).

#Stage 3. generate new data
generate the additional training data for seizure class by sam-

pling �̂� ∼  (𝜇,𝚺). Then reshape the vector to �̂� ∈ R𝑇×𝐶 for new
data in the training set.
return �̂�

graph flow. Then the covariance matrix in our method can be viewed
as calculating the correlation between two vertices in the graph. Some
previous works try to model the spatial correlation of EEG signals
with graph neural networks [25–27], which calculates correlations only
between adjacent vertices. In contrast, our method considers more
spatial correlations between nonadjacent verticles and also takes tem-
poral dimensions into consideration. Additionally, our method can be
viewed as introducing some randomness based on correlations, which
can improve the robustness to uncertainty and the generalization ability
of the model.

There are several advantages of our data augmentation method.
STEA can not only alleviate the class-imbalance problem but also en-
large the sample diversity to cover more potential distributions so that
the generalization ability to a different data distribution is improved.
Therefore, it can largely improve performance under the cross-patient
setting. Besides, our STEA method is simple but highly effective, and
can be combined with existing augmentation methods together.

As a comparison, we also consider some simple data augmentation
(SDA) methods for EEG signals, e.g. add or subtract a constant value
at every time point, orderly add and subtract computation, add ran-
dom noise, scale the EEG signal, etc. And we also compare with the
multivariate independent Gaussian generation (MIGG), which assumes
that the signal from different channels is independent. Experiments in
Section 5 will show the superiority of our method over them.

We illustrate the synthetic data of the seizure periods on CHB-MIT
by STEA in Fig. 6. It shows that the generated signal is similar to the
real signal, which verifies the effectiveness of our data augmentation.
5

Besides, the generated data can well learn the representation of seizure
EEG signals.

4.2. Patient-Adversarial Neural Networks (PANN)

Another difficulty in cross-patient detection is the different distri-
butions between the training set and testing set. However, the existing
machine learning algorithms need the same distribution of training and
testing. To solve this problem, we propose the adversarial optimization
method combined with the newly designed patient-adversarial neural
network (PANN) to learn patient-invariant representations. Compared
with the common neural network model, PANN adds a discrimina-
tor to distinguish the identity of patients. With alternate adversar-
ial training between the common model and the identity discrimi-
nator, the identity-specific features can be largely restrained and the
learned patient-invariant representation can improve the cross-patient
generalization.

Specifically, the structure of PANN is shown in Fig. 7. PANN is
composed of a feature extractor, a common classifier, and an iden-
tity classifier, whose parameters are represented by 𝜃𝑓 , 𝜃𝑦 and 𝜃𝐼 ,
respectively. Similar to common models, the feature extractor aims to
learn representations of EEG signals, and the common classifier tries
to distinguish the representations between seizure signals and non-
seizure signals. The additional identity classifier plays the role of the
discriminator to distinguish different patients.

Each EEG signal 𝐱 in the training data has two labels, i.e. the seizure
label 𝑦 and the identity label 𝑖𝑑. During training, the feature extractor
maps the input 𝐱 to the embedding space. Then the output of the feature
extractor is fed into two classifiers. One classifier is used for seizure
detection with the prediction vector �̂�, and the other is to classify the
identity with the prediction vector 𝑖𝑑.

The objective function of PANN is composed of two competing
losses: the identity classification loss 𝑖𝑑 and the adversarial identity-
confusion loss 𝑎𝑑𝑣. The specific definitions are shown in Eq. (1).

𝑠𝑒𝑖𝑧
(

𝑦𝑖, �̂�𝑖
)

= −
(

𝑦𝑖 ln(�̂�𝑖) + (1 − 𝑦𝑖) ln(1 − �̂�𝑖)
)

,

𝑖𝑑
(

𝑖𝑑𝑖, 𝑖𝑑𝑖
)

= −
𝑁
∑

𝑗=1
𝑖𝑑𝑖,𝑗 ⋅ ln(𝑖𝑑𝑖,𝑗 ),

𝑎𝑑𝑣 = 𝑠𝑒𝑖𝑧 − 𝜆𝑖𝑑 .

(1)

The 𝑠𝑒𝑖𝑧 uses the binary cross entropy loss for the binary seizure
classification task, and the 𝑖𝑑 uses the cross entropy loss for the
identity classification task, where 𝑁 represents the number of patients
and 𝑖𝑑𝑖,𝑗 represents the prediction probability of 𝑖-th sample’s 𝑖𝑑 being 𝑗.
The total identity-confusion loss 𝑎𝑑𝑣 helps build domain-invariant fea-
tures, where 𝜆 is the hyperparameter to balance seizure detection and
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Fig. 6. The visualization of STEA data augmentation. (a) the raw EEG signal; (b) the generated EEG signal.
Fig. 7. Illustration of the patient-adversarial neural network. The black lines represent the information propagation during the forward procedure. The blue and the green lines
represent the alternate optimization procedure for the common classification model and the identity classifier, respectively, where the dashed lines mean propagating gradients
without updating parameters in the path.
identity confusion, n represents the number of samples, m represents
the number of samples after STEA augmentation.

𝜃𝐼 = arg min
(

1
𝑛

𝑛
∑

𝑖=1
𝑖𝑑

(

𝑖𝑑𝑖, 𝑖𝑑𝑖
)

)

, (2)

(

𝜃𝑓 , 𝜃𝑦
)

= arg min
(

1
𝑚

𝑚
∑

𝑖=1
𝑠𝑒𝑖𝑧

(

𝑦𝑖, 𝑦𝑖
)

− 𝜆
𝑛

𝑛
∑

𝑖=1
𝑖𝑑

(

𝑖𝑑𝑖, 𝑖𝑑𝑖
)

)

. (3)

During training, we alternately minimize two losses 𝑖𝑑 and 𝑎𝑑𝑣 with
different directions for parameters, as illustrated in Algorithm 2. In the
6

first stage of PANN training, we aim at minimizing 𝑖𝑑 , so that the
identity classifier can clearly distinguish different patient identities, as
Eq. (2) shows. Then in the second training stage, the strategy minimizes
𝑎𝑑𝑣 and updates the parameters of the base net and seizure classifier
as shown in Eq. (3). The model has two tasks to accomplish: one is the
normal seizure detection task, and the other is to eliminate the bias of
individualized features.

max
𝜃

min
𝜃

[

1
𝑛
∑

𝑖𝑑
(

𝑖𝑑𝑖, 𝑖𝑑𝑖
)

]

. (4)

𝑓 𝐼 𝑛 𝑖=1
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Table 1
The information of seizure datasets.

Datasets #Subjects EEG channels Place method Sampling frequency Seizure Non seizure Total record

CHB-MIT 23 21 international 10–20 system 256 Hz 3.26 h 964.59 h 967.85 h
PKU1st 19 19 international 10–20 system 500 Hz 0.99 h 72.18 h 73.17 h
Training the PANN network iteratively leads to the key min–max op-
imization problem in Eq. (4). Our specially designed training strategy
akes the feature extractor confused with different patient identities
hile the parameter of the identity classifier is updated in the opposite
irection. Then the PANN model extracts patient-invariant features
nstead of individual features, so that the detection ability can be
eproducible and generalizable to unseen patients. The newly designed
atient individual classifier plays a role in the qualitative analysis of
ndividual identification ability. Besides, Stage 1 of training makes sure
hat the result of the identity classifier is enough reliable and accurate.
tage 2 with the unupdated identity classifier makes sure that the
onfusion of identity classification is the contribution of the feature
xtractor instead of the identity classifier.

After training, the neural network model can extract the common
eatures among different patients, i.e. the identity cannot be distin-
uished based on the feature. Such patient-invariant representation
an better generalize to unseen different patients, and improve the
ross-patient performance.

Algorithm 2 Training procedure of patient-adversarial neural network
Input: EEG signal 𝐱, seizure label 𝑦, identity label 𝑖𝑑,

iteration number 𝐾, patient adversarial neural
network parameters {𝜃𝑓 , 𝜃𝑦, 𝜃𝐼}

for iteration 𝑘 from 0 to 𝐾 do
#Stage 1. min 𝑖𝑑

# Forward through individual branch
𝑖𝑑 = 𝑔𝐼

(

𝑓 (𝐱)
)

.
𝐼 = 𝑖𝑑 (𝑖𝑑, 𝑖𝑑)
# Update identity classifier params
𝜃𝐼 ← 𝜃𝐼 − 𝜂 𝜕𝐼

𝜕𝜃𝐼
.

#Stage 2. min
(

𝑠𝑒𝑖𝑧 − 𝜆𝑖𝑑
)

# Forward through two branches
�̂� = 𝑔𝑦

(

𝑓 (𝑥)
)

, ̂𝑖𝑑 = 𝑔𝐼
(

𝑓 (𝑥)
)

.
𝐼 = 𝑖𝑑 (𝑖𝑑, 𝑖𝑑), 𝑠 = 𝑠𝑒𝑖𝑧(𝑦, �̂�)
# Update feature extractor and seizure classi-

fier
𝜃𝑓 ← 𝜃𝑓 − 𝜂

( 𝜕𝑛
𝜕𝜃𝑓

− 𝜆 𝜕𝐼
𝜕𝜃𝑓

)

.

𝜃𝑦 ← 𝜃𝑦 − 𝜂 𝜕𝑠
𝜕𝜃𝑦

.
end for

4.3. Implementation details

We combine the STEA method with the PANN network together
for cross-patient seizure detection. Firstly, we use the STEA method
to augment enough seizure samples for training. Secondly, the feature
extractor in PANN automatically extracts patient-invariant features
through the training data input. Lastly, the seizure classifier in PANN
uses the extracted feature to output the class-aware probability, and
labels the input as the category with the highest probability. The overall
framework can be found in Appendix A.

As for the specific model structure, we choose successful deep neural
network models as the feature extractor and the seizure classifier.
The Channel-Weighted Squeeze-and-Excitation Network (CW-SRNet)
that was proposed and discussed in our previous research [4] is a
flexible neural network architecture that uses the attention mechanism
to capture the different importance of EEG channels automatically and
7

dynamically. We apply this model as our feature extractor backbone.
A detailed illustration of the architecture is shown in the appendix.
The additional identity classifier of our PANN has two options. One
is a simple fully connected layer. The other is composed of one fully
connected layer with 100 neurons, one batch normalization layer, one
ReLU activation layer, and finally a fully connected classification layer.

We consider the common setting and the new ‘‘finetune’’ setting
together in our experiments. The common cross-patient setting in our
experiments is to train the model on training data from several individ-
uals and test the performance on testing data from different patients, as
illustrated in Fig. 3(a). Additionally, we will consider a further setting
where there are few-shot data from testing patients to slightly finetune
the model for better generalization. This may also correspond to some
real-world conditions that after the first arrival of new patients, we can
collect their data and fine-tune the model so that the model can work
better during their following diagnosis and treatment. This can also
validate the flexibility of our model to adapt to new patients. In the
following experiments, we take both settings into consideration. The
latter is marked as ‘‘finetune’’ in the results and other results belong to
the former setting by default.

5. Experiments

In this section, we first evaluate the proposed methods in various
settings and we denote the combination of STEA and PANN as Aug-
mented Adversarial Network (AAN). Besides, we also conduct a series
of experiments for a comprehensive understanding of our proposed
methods.

5.1. Dataset and preprocessing

In our experiments, we use one public seizure dataset CHB-MIT [17]
and one clinical seizure dataset PKU1st as shown in Table 1. CHB-
MIT dataset was collected by the Children’s Hospital Boston. There
are 23 patients’ EEG signals which were sampled at 256 Hz. It is the
most commonly used public dataset for EEG detection. All electroen-
cephalograms were collected using the international 10–20 system of
EEG electrode positions and nomenclature, and electroencephalograms
were recorded using 23 channels. Note that two seizure datasets are
imbalanced, i.e., the amount of data for each class varies a lot.

The PKU1st dataset was the latest EEG data collected from the De-
partment of Pediatrics of Peking University First Hospital and approved
by the Ethics Committee of the Peking University First Hospital (2021-
225). It is composed of EEG recordings from 19 patients which were
sampled at 500 Hz. And electroencephalograms were collected using
19 channels. The dataset details can be found in the appendix.

For both datasets, we preprocess the raw EEG data before train-
ing with the following procedure. Firstly, the frequency of data was
downsampled from 256 Hz to 64 Hz or from 500 Hz to 50 Hz, which
can reduce data noise and memory costs. Secondly, we split the EEG
recording of patients into many short seconds segments, while we use
a random sampling technique so that the ratio of positive samples to
negative samples is about 1:5. The time window size in experiments is
chosen to be 1 s, 2 s, 4 s or 5 s for a fair comparison with other methods

Then we split a portion of patients for model training, and the rest
patients for testing. For training data, we conduct STEA augmentation
for the seizure class to generate enough samples, so that the ratio of
positive samples to negative samples in training data is about 1:1. There
are two kinds of train test split in our experiments, fixed test set or leave
one out mode. And the number of test patients is chosen to be 1 or 9.
The specific setting keeps consistency with comparison methods.
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𝑆

5.2. Metrics

In our experiments, five statistical indicators are used for the per-
formance evaluation, namely sensitivity, specificity, the area under the
receiver operating curve (AUC), GMean, and RAccuracy. Both AUC and
GMean are common metrics for the model performance on imbalanced
datasets. RAccuracy is the revised accuracy that pays the same attention
to different classes of imbalanced datasets. Given the True Positive
(𝑇𝑃 ), False Positive (𝐹𝑃 ), True Negative (𝑇𝑁), False Negative (𝐹𝑁),
𝑟 = 𝑇𝑁+𝐹𝑃

𝑇𝑃+𝐹𝑁 , some indicators are defined as follows:

𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (5)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

, (6)

𝑅𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑟 ⋅ 𝑇𝑃 + 𝑇𝑁
𝑟 ⋅ (𝑇𝑃 + 𝐹𝑁) + 𝑇𝑁 + 𝐹𝑃

, (7)

𝐺𝑀𝑒𝑎𝑛 =
√

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦. (8)

Besides, we also use ROC and AUC as our metrics. The receiver operat-
ing characteristic (ROC) curve can illustrate the diagnostic ability of a
seizure detection model. AUC stands for the area under the ROC curve.

Sensitivity signifies the rate of correct identification of seizure
events from an EEG recording, which is the most concerned indicator
for cross-patient detection. RAccuracy indicates the inherent ability to
correctly distinguish whether it is on seizure or not. AUC is the average
sensitivity of all possible specificity. The AUC metric can measure the
overall learning ability between positive and negative samples.

5.3. Baseline models

We use MIDS+WGAN [5], IBA [30], First Seizures model [28],
SDG [39], DCNN [41], CW-SRNet [4], Dist-DCRNN [26], ConvLSTM
[33] and Dense CNN [34] as nine baseline models to compare their
performances with ours. Apart from the nine latest models on cross-
patient seizure detection, we also choose one non-cross-patient model
for comparison. The brief descriptions of the nine baseline models are
as follows:

∙ MIDS+WGAN[5] starts with MIDS (the merger of the increas-
ing and decreasing sequences) data prepossessing and WGAN
(Wasserstein Generative Adversarial Nets) data augmentation,
and then employs a 15-layer CNN architecture for cross-patient
detection.

∙ IBA[30] is a kind of multi-view learning method with feature
disentanglement, and it uses two GAN models for cross-patient
seizure detection.

∙ First Seizures model[28] implements a fully convolutional net-
work (FCN) with a time-shift between consecutive windows of
1/4 s for the seizure period of the dataset.

∙ SDG[39] uses the technique of supervised domain generalization
with additional much more datasets for training. The backbone
model is a CNN architecture for feature extraction, followed by
an LSTM layer for seizure detection.

∙ DCNN[41] applies a 7-layer deep CNN model with cropped train-
ing strategy after using a sliding window of 2 s to crop the EEG
signals.

∙ CW-SRNet[4] exploits a custom CNN architecture composed of
CW-Block with attention mechanism and SE-Block. CW-SRNet is
the non-cross-patient (patient-specific) model with the state-of-
the-art performance.

∙ Dist-DCRNN[26] is a dist diffusion convolutional recurrent neu-
ral network which can model the spatiotemporal dependencies in
EEGs.

∙ ConvLSTM[33] uses the convolutional long short-term memory
network for cross-patient seizure detection.

∙ Dense CNN[34] exploits densely connected inception network
trained by imperfect but plentiful archived annotations.
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The experiment settings of these methods are different in the aspects
of time window size, test patient number, etc., and the details are
shown in Table 2. As there is no standard evaluation in existing
works and model performance depends on the specific setting being
analyzed, we conduct all-round experiments under different settings for
fair comparisons with the above methods.

In experiments, we implement our methods by Python3 and train
our models by the Adam optimizer [42] for 50 epochs. We choose the
batch size as 64 and the learning rate is set as a constant value and
will be specified for different settings. No dropout or weight decay is
applied. The hyper-parameter 𝜆 is set as 10−3, which is determined by
grid search in the range of 10−5 to 10−2 at a log-uniformly interval on
the validation set.

5.4. Comparison of performance

We compare the performance of our AAN model against various
state-of-the-art methods. We compare their performance in terms of
sensitivity, AUC, RAccuracy, GMean, and specificity. And we evaluate
our method on various datasets including CHB-MIT and PKU1st. We
also provide the result combined with the pretrain-finetune strategy
which selects 20% data of the test patient for finetuning.

Table 2 shows the comparisons over MIDS+WGAN [5], IBA [30],
First Seizures model [28], SDG [39], DCNN [41], CW-SRNet [4], Dist-
DCRNN [26], ConvLSTM [33] and Dense CNN [34] with our AAN
method. Compared with other models, our method achieves better
performance with four higher measurements (sensitivity, AUC, GMean,
and RAccuracy) on both public and clinical datasets, due to effective
adversarial optimization and powerful data augmentation. Besides our
method can achieve more than 80% sensitivity and AUC under 5s
window length and cross-patient setting, which can satisfy the need
of the clinical application. It can be also seen that non-cross-patient
models such as CW-SRNet cannot handle the cross-patient setting well.
Our method significantly improves the performance of cross-patient
seizure detection, and it can improve networks with different structures
as well, such as Dist-DCRNN.

We also provide the model performance on the finetune setting,
which is not considered for the above comparisons. It can be seen that
‘‘finetune’’ can help improve the model performance, especially under
much tougher conditions, e.g. 2-second segments with 9 test patients,
while its effect is not obvious under easy settings.

Among different settings, smaller window lengths and more test
patients mean much more difficulty, as it requires more accurate detec-
tion and broader generalization. Besides, compared with CHB-MIT, the
clinical PKU1st dataset has newer EEG data and less recording time,
which is harder for seizure detection. Moreover, the common setting
can be more difficult than the ‘‘finetune’’ setting as it has no knowledge
on test data.

In addition, the leave-one-out result of cross-patient detection on the
CHB-MIT dataset is shown in Fig. 8, where we select each patient alone
as the testing set and other patients for training. Among all patients, we
have an average of 88.04% sensitivity, 90.98% AUC, 84.51% GMean,
and 85.44% RAccuracy under 4 s EEG segments. The single result
of each patient is shown in Fig. 8 after sorting by sensitivity, which
indicates the powerful generalization ability of our method. Besides,
our method also has good leave-one-out performance on the PKU1st
dataset, the detailed result can be found in Appendix D.

5.5. Analysis experiments

5.5.1. Ablation study
For clarity of the effect of each part in our methods, we conduct

the ablation study on two seconds segments of the PKU1st dataset with
9 patients test, as shown in Fig. 9. We derive four model variants as

follows:
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Table 2
Comparison between the proposed method and conventional works for cross-patient seizure detection. ‘‘window’’ means time window size (s). ‘‘test N’’ means the number of test
patients. The italics mean using additional few data for finetuning. AAN leverages CW-SRNet [4] by default, and the results of CW-SRNet are our baselines.

Dataset Method window test N Sensitivity AUC GMean RAccuracy Specificity

CHB-MIT

MIDS+WGAN [5] 5 1 74.08% – 82.76% 83.27% 92.46%
CW-SRNet [4] 5 1 42.67% 96.18% 64.97% 70.08% 98.93%
AAN (ours) 5 1 99.74% 97.56% 93.54% 93.73% 87.72%
AAN+finetune (ours) 5 1 95.83% 94.15% 90.80% 90.94% 86.05%

First Seizures Model [28] 4 1 78.48% – 88.53% 89.18% 99.60%
SDG [39] – – 71.45% – 73.69% 73.73% 76.0%
AAN(ours) 4 1 95.71% 97.98% 94.13% 94.15% 92.59%
AAN+finetune(ours) 4 1 99.37% 98.23% 87.32% 88.05% 76.73%

DCNN [41] 2 1 93.42% – 92.45% 92.47% 91.52%
AAN(ours) 2 1 95.20% 98.77% 95.53% 95.54% 95.88%
AAN+finetune(ours) 2 1 95.43% 92.36% 84.66% 85.27% 75.11%

CW-SRNet [4] 2 9 43.33% 79.55% 64.91% 70.29% 97.24%
AAN (ours) 2 9 61.31% 88.23% 74.58% 76.02% 90.72%
AAN+finetune(ours) 2 9 90.38% 90.95% 81.04% 81.53% 72.67%

IBA [30] 1 1 77.78% 93.61% 81.79% 83.31% 88.84%
AAN (ours) 1 1 92.43% 93.80% 85.71% 86.40% 80.37%

PKU1st

CW-SRNet [4] 5 1 2.91% 62.75% 16.58% 48.71% 94.51%
ConvLSTM [33] 5 1 3.9% 36.10% 16.58% 37.2% 70.5%
Dense CNN [34] 5 1 23.3% 79.7% 47.71% 60.5% 97.7%
Dist-DCRNN [26] 5 1 31.1% 72.4% 53.37% 61.35% 91.6%
Dist-DCRNN+AAN (ours) 5 1 67.0% 87.1% 77.18% 77.95% 88.9%
AAN (ours) 5 1 83.50% 86.59% 83.11% 83.11% 82.72%
AAN+finetune (ours) 5 1 81.93% 87.97% 82.43% 82.44% 82.94%

CW-SRNet [4] 2 9 30.62% 76.59% 54.52% 63.85% 97.08%
ConvLSTM [33] 2 9 22.97% 50.66% 42.59% 50.98% 78.98%
Dense CNN [34] 2 9 41.63% 64.98% 58.27% 61.6% 81.57%
Dist-DCRNN [26] 2 9 42.15% 56.65% 52.78% 54.12% 66.09%
Dist-DCRNN+AAN (ours) 2 9 47.8% 70.8% 62.61% 64.9% 82.0%
AAN (ours) 2 9 56.89% 72.91% 66.58% 67.40% 77.91%
AAN+finetune (ours) 2 9 82.24% 84.99% 76.06% 76.29% 70.60%
Fig. 8. The leave-one-out (LOO) result of cross-patient detection on the CHB-MIT dataset. Patients in 𝑋-axis are sorted by sensitivity.
Fig. 9. The ablation study of our method conducted on the PKU1st dataset.
9
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Fig. 10. The comparison experiments between adversarial optimization and common optimization, where the identity accuracy is expected to be low so that features are independent
to specific patients. Adversarial optimization can achieve decreasing identity accuracy which implies that our method can alleviate patient-specific features and improve cross-patient
generalization.
Table 3
Comparisons of different data augmentation strategies on the PKU1st dataset under
2 s segments and 9 test patients without PANN module, where ‘‘W/O DA’’ represents
without data augmentation.

Method sensitivity AUC GMean RAccuracy

W/O DA 37.68% 81.94% 59.49% 65.81%
SDA 67.25% 83.01% 69.54% 69.58%
MIGG 73.91% 85.34% 76.65% 76.70%
STEA 75.90% 86.61% 79.05% 79.12%

(1) Base: Baseline model CW-SRNet [4] without STEA or PANN.
(2) PANN: Baseline model with PANN module.
(3) STEA: Baseline model with STEA method.
(4) PANN+STEA: Baseline model with PANN and STEA together.

From the ablation study, for all four metrics, single PANN or STEA
outperforms the baseline model. Besides, the combination of STEA and
PANN surpasses the single one. So we can draw the following con-
clusions: PANN is beneficial for cross-patient detection and STEA also
contributes to the well-behaved cross-patient performance. Moreover,
our two methods can be used together for performance improvements.
In addition, STEA is more important than PANN as STEA outperforms
PANN. We also conduct the ablation study on the CHB-MIT dataset,
which can be found in Appendix D.

5.5.2. The effectiveness analysis of STEA
We also compare our data augmentation method STEA with several

data augmentation strategies, including SDA, MIGG, and without data
augmentation (W/O DA). It can be seen from Table 3 that STEA
achieves the state-of-the-art performance. Besides, data augmentation
can increase the performance on imbalanced epilepsy datasets which
implies that data augmentation is important for cross-patient models
to detect seizures. Moreover, the introduction of STEA improves the
model performance a lot, i.e., the sensitivity is increased from 37.68%
to 75.9%, and STEA outperforms the other two augmentation methods.
STEA significantly improves the model’s understanding of EEG data.

5.5.3. The effectiveness analysis of PANN
In addition, we conduct experiments to verify the effectiveness

of the PANN structure. We compared the dynamics of the identity
accuracy with and without the adversarial optimization during training
10

to show that our method can effectively eliminate patient-specific
Table 4
The online processing time of seizure datasets.

Seizure datasets Time window size
(second)

Processing time (second)

CHB-MIT 4 0.0072 ± 0.00015
PKU1st 5 0.0073 ± 0.000097

features to enable better cross-patient generalization. As shown in
Fig. 10, the identity accuracy of adversarial optimization (the red line)
gradually decreases with fluctuation, indicating that our model learns
to extract patient-invariant features without identity information. On
the opposite, the identity accuracy of common optimization (the blue
line) continually increases during training, showing that the model may
overfit to patient-specific features which will harm the generalization.
The contrast of the two optimization strategies shows that our PANN
network can effectively learn patient-invariant features to help the
cross-patient generalization.

5.5.4. Online processing time
We record the processing time for the inference of an EEG segment

by our trained model on one NVIDIA GeForce RTX 3090 GPU card. As
shown in Table 4, the processing time is about 0.007 s per segment,
and it can achieve fast online seizure detection.

6. Conclusion

In this paper, we propose spatio-temporal EEG augmentation and
patient-adversarial neural networks to significantly improve cross-
patient automatic epileptic seizure detection. We first identify the
property of the statistical information of seizure EEG signals and
propose a novel data augmentation method that uses both tempo-
ral and spatial information. Also, we propose a patient-adversarial
neural network to eliminate patient-specific features and learn patient-
invariant representations (i.e., shared epilepsy-related features) of EEG
signals which can be generalized to unseen patients and improves
model generalization performance. Experiment results indicate that
PANN and STEA are effective approaches for cross-patient detection,
with significant improvement in terms of different evaluation metrics.
As an automatic cross-patient approach, our method has promising
possibilities for deployment in clinical practice. This work could re-
lieve the workload of neurologists, help improve the diagnostic level
with inadequate experience, and have great potential significance in

auxiliary diagnosis.
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Appendix A. Model details

Our baseline model is CW-SRNet [4] which is the state-of-the-art
model for non-cross-patient seizure detection. The network structure
can be seen in Fig. A.11. It is composed of the channel-weighted
block (CW-Block) that captures the different importance of EEG chan-
nels, and the squeeze-and-excitation Block (SE-Block) that is designed
to explicitly model the interdependencies among the channels of its
convolutional features.

Appendix B. The PKU1st dataset details

The details of each patient in the PKU1st dataset are shown in
Table B.5. The total seizure time is 3558 s (0.99 h) and the total record
time is 263416 s (73.17 h).

Appendix C. Discussion of statistical characteristics of non-seizure
EEG signals

It is worth noting that our STEA method is only applied to seizure
signals in order to alleviate the class imbalance problem, because the
number of seizure signals is much fewer than non-seizure ones. There-
fore, we mainly illustrate seizure signals in Fig. 4. We supplement the
visualization of non-seizure signals as shown in Fig. C.12 (total number
15500 from 18 patients in PKU1st dataset). From the quantile–quantile
plot, it can be seen that the non-seizure data is much farther from
the multi-gaussian distribution than seizure data, as the corresponding
blue data points are farther from the diagonal. We also use quantifiable
metric 𝐑2 to calculate similarity with multi-gaussian distribution. It can
be seen that 𝐑2 of the non-seizure data is 0.46, which is much lower
than 𝐑2 value 0.654 of the seizure data. This indicates that seizure
signals are more proper to use our method, supporting our real practice.
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Table B.5
The PKU1st dataset details.

Patient id Seizure time (s) Record Time (s) Seizure number

1 548 11 088 2
2 167 16 041 1
3 219 11 701 2
4 566 11 605 2
5 55 29 333 2
6 429 11 721 3
7 95 12 007 3
8 164 10 193 2
9 104 8745 1
10 47 10 488 2
11 73 16 106 2
12 214 11 680 3
13 26 10 859 2
14 83 10 986 2
15 176 32 853 4
16 205 10 800 2
17 46 11 071 2
18 233 10 732 2
19 108 15 407 1

Total 3558 263 416

Table D.6
The ablation study of our method on the PKU1st dataset.

STEA PANN sensitivity AUC GMean RAccuracy

× × 42.10% 71.49% 63.08% 68.31%
× ✓ 61.62% 80.27% 70.14% 70.73%
✓ × 77.45% 84.55% 73.77% 73.86%
✓ ✓ 82.24% 84.99% 76.06% 76.29%

Table D.7
The ablation study of our method on the CHB-MIT dataset.

STEA PANN sensitivity AUC GMean RAccuracy

× × 49.53% 90.8% 69.64% 73.73%
× ✓ 76.03% 95.23% 84.30% 84.75%
✓ × 96.85% 96.66% 87.32% 88.05%
✓ ✓ 99.37% 99.87% 97.80% 97.83%

Appendix D. More detailed results

As shown in Fig. C.13, the overall framework is composed of
several steps: after preprocessing the raw EEG data, our method uses
the STEA technique to augment enough training positive samples.
Then during training, the deep learning model PANN learns to extract
patient-invariant features and utilizes extracted features for seizure
classification.

The detailed data of our method’s ablation study on the PKU1st
dataset are shown in Table D.6. The experiment is conducted un-
der 2-second segments and 9 test patients with the pretrain-finetune
strategy.

The ablation study is also conducted on the CHB-MIT dataset un-
der 4-second segments and 1 test patient with the pretrain-finetune
strategy. The details can be found in Table D.7 and Fig. C.14. From
the ablation study, for all four metrics, single PANN or STEA outper-
forms the baseline model. Besides, the combination of STEA and PANN
surpasses the single one. The performance result is consistent with the
ablation study in the PKU1st dataset.

The detailed leave-one-out result on the CHB-MIT dataset with 4-
second segments and 1 test patient is presented in Table D.8. The
concrete metrics of each patient for testing are shown in rows.

Under the leave-one-out setting, we also test our method’s perfor-
mance on the PKU1st dataset, and our method can achieve an average
of 77.54% sensitivity, 87.14% AUC, 78.64% GMean and 79.77% RAc-
curacy under 5 s EEG segments. The detailed result can be found in
Fig. C.15 and Table D.9. It shows that our method can perform well in

the leave-one-out setting.
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Fig. A.11. The structure of CW-SRNet [4].

Fig. C.12. The visualization of the statistical characteristics of EEG signals. (a) The t-SNE visualization of EEG signals from negative non-seizure class (green). (b) The
quantile–quantile plot between non-seizure distribution (blue) and multivariate normal distribution (black).
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Fig. C.13. The overall framework of our methods.

Fig. C.14. The ablation study on CHB-MIT dataset.

Fig. C.15. The leave-one-out (LOO) result of cross-patient detection on the PKU1st dataset. Patients in 𝑋-axis are sorted by AUC.
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Table D.8
The leave-one-out result on the CHB-MIT dataset.

Patient sensitivity AUC GMean RAccuracy

Chb01 98.31 98.93 94.11 94.20
Chb02 100.00 92.12 89.14 89.73
Chb03 95.19 97.84 94.33 94.34
Chb04 76.80 88.00 78.97 79.01
Chb05 99.81 97.14 84.54 85.71
Chb06 87.61 75.17 67.42 69.75
Chb07 99.68 98.72 93.63 93.82
Chb08 71.97 78.97 73.69 73.71
Chb09 96.54 78.36 72.47 75.47
Chb10 93.5 97.72 92.39 92.40
Chb11 91.18 86.44 84.49 84.74
Chb13 99.97 99.65 93.02 93.26
Chb14 99.95 99.85 96.91 96.96
Chb15 30.28 69.58 53.20 61.88
Chb16 91.89 82.12 76.12 77.47
Chb18 85.26 91.45 83.74 83.76
Chb19 91.52 97.96 92.81 92.82
Chb20 78.63 90.27 81.88 81.9
Chb21 65.03 92.42 78.57 79.98
Chb22 100.00 99.92 99.17 99.17
Chb23 95.71 97.98 94.13 94.1

Average 88.04 90.98 84.51 85.44

Table D.9
The leave-one-out result on the PKU1st dataset.

Patient sensitivity AUC GMean RAccuracy

1 64.49 78.37 70.70 71
2 58.37 54.25 49.47 50.15
3 72.97 81.67 71.98 71.99
4 62.34 80.85 73.96 75.04
5 92.63 96.30 95.51 95.56
6 86.06 83.67 79.43 79.69
7 72.73 77.39 71.13 71.15
8 79.01 91.52 83.65 83.79
9 93.33 95.29 85.76 86.07
10 93.75 94.87 86.34 86.63
11 58.73 91.21 73.70 75.61
12 18.75 79.17 42.95 58.58
13 90.41 98.49 94.26 94.34
14 91.03 94.45 86.00 86.14
15 88.44 89.78 79.81 80.23
16 83.08 93.68 87.03 87.12
17 94.44 95.40 87.91 88.14
18 89.24 96.22 89.46 89.47
19 83.50 83.11 85.03 85.05

Average 77.54 87.14 78.64 79.77

The effectiveness analysis experiment of PANN is conducted on the
HB-MIT dataset under 4-second segments and 1 test patient without
he pretrain-finetune strategy.

ppendix E. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.bspc.2023.105664.
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