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Abstract

Convolutional neural networks benefit from translation001
equivariance, achieving tremendous success. Equivariant002
networks further extend this property to other transforma-003
tion groups. However, most existing methods require dis-004
cretization or sampling of groups, leading to increased005
model sizes for larger groups, such as the affine group.006
In this paper, we build affine equivariant networks based007
on differential invariants from the viewpoint of symmetric008
PDEs, without discretizing or sampling the group. To ad-009
dress the division-by-zero issue arising from fractional dif-010
ferential invariants of the affine group, we construct a new011
kind of affine invariants by normalizing polynomial rela-012
tive differential invariants to replace classical differential013
invariants. For further flexibility, we design an equivariant014
layer, which can be directly integrated into convolutional015
networks of various architectures. Moreover, our frame-016
work for the affine group is also applicable to its continu-017
ous subgroups. We implement equivariant networks for the018
scale group, the rotation-scale group, and the affine group.019
Numerical experiments demonstrate the outstanding perfor-020
mance of our framework across classification tasks involv-021
ing transformations of these groups. Remarkably, under the022
out-of-distribution setting, our model achieves a 3.37% im-023
provement in accuracy over the main counterpart affConv024
on the affNIST dataset.025

1. Introduction026

The success of convolutional neural networks (CNNs)027
can be attributed to their utilization of translation symme-028
try. This profound insight emphasizes the significance of029
incorporating symmetry priors into the design of models.030
With this insight, equivariant networks extend the exploita-031
tion of more symmetries, leading to great improvement032
on performance and efficiency. Development of equivari-033
ant networks begins with the approach of group convolu-034
tions, which views feature maps as functions defined on a035
group and conducts convolution operation over the group036
[3, 63]. Further advancements in equivariant networks ef-037

fectively achieve equivariance on the Euclidean group and 038
its subgroups [4, 11, 12, 61, 62, 67, 68]. However, ex- 039
isting methods have certain limitations when dealing with 040
more complicated groups. One representative group is the 041
affine group. While group convolutions typically require 042
discretization of continuous groups, it becomes impracti- 043
cal for the affine group due to its high dimension. Finzi 044
et al. [16] conduct group convolutions by sampling from 045
Haar measure on the group. But it relies on easy access 046
to Haar measure, which is unsuitable for the affine group. 047
Recently, MacDonald et al. [37] overcome the limitation 048
by computing the integral on the Lie algebra, thereby ob- 049
taining the affine equivariant model, affConv. Nevertheless, 050
this approach still requires sampling from the group and en- 051
counters an exponential growth in memory requirements as 052
the number of convolutional layers increases. 053

In another branch, some works adopt partial differential 054
operators (PDOs) to design equivariant networks [25, 27, 055
49]. They achieve equivariance on Euclidean groups by im- 056
posing constraints on the weights of PDOs. In fact, spe- 057
cific functional combinations of partial derivatives remain 058
constant under group actions — a concept known as “dif- 059
ferential invariants.” Under the guidance of the differential 060
invariant theory, Liu et al. [33, 34] design a shift and rota- 061
tionally equivariant system of learnable partial differential 062
equations (PDEs) with linear combinations of differential 063
invariants. The evolution process of PDEs can be used to 064
solve multiple vision problems. Subsequent works extend 065
the approach to more tasks and further develop the models 066
[14, 46, 48, 77]. However, these efforts also concentrate on 067
equivariance of Euclidean groups, and the full potential of 068
differential invariants in handling more general groups has 069
yet to be explored. 070

In this paper, we construct affine equivariant networks 071
based on differential invariants from the viewpoint of sym- 072
metric PDEs, without discretizing or sampling the group. 073
Inspired by learnable PDEs [33, 34], we regard image data 074
as smooth functions on the 2D plane and model the equiv- 075
ariant inference process of feature extraction as an evolv- 076
ing system governed by symmetric PDEs. The differential 077
invariant theory reveals that, given a group G, a PDE ad- 078
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Figure 1. InvarPDEs-Net consists of iterative processes of multiple symmetric PDEs constructed with invariants. We link them by linearly
combining the output of one PDE to match the dimension of the subsequent one, which can be implemented with 1× 1 convolutions.

mits G as a symmetry group if and only if the PDE consists079
of fundamental differential invariants of the group G [41].080
To construct learnable symmetric PDEs, we can precom-081
pute a complete set of fundamental differential invariants082
of the given group, and then employ multilayer perceptrons083
(MLPs) to combine them into equations, leveraging the uni-084
versal approximation capability of neural networks. How-085
ever, differential invariants of the affine group may take the086
form of fractional polynomials, potentially leading to the087
division-by-zero issue in practice. Nonetheless, we notice088
that affine differential invariants can be represented by poly-089
nomial relative differential invariants. Building on this ob-090
servation, we propose a technique to construct a new kind091
of affine invariants by normalizing polynomial relative dif-092
ferential invariants with a special norm, thus replacing the093
fundamental differential invariants. These new invariants094
not only avoid the division-by-zero issue but also retain095
more information. To discretize the symmetric PDE (not096
the affine group), we approximate the temporal derivatives097
by forward difference and approximate the spatial deriva-098
tives by Gaussian derivatives, resulting in an iterative pro-099
cess that can be viewed as a feed-forward deep equivariant100
network.101

To equip our network with adaptability to varying chan-102
nel numbers, similar to other modern networks, we sequen-103
tially stack iterative processes of multiple learnable sym-104
metric PDEs with different dimensions. We connect them105
by linearly combining the output channels of one PDE to106
match channel numbers of the subsequent PDE. Thus, the107
output of one PDE can serve as the input of the subse-108
quent one. This approach allows us to create an equivariant109
network with varying channel numbers, which consists of110
multiple symmetric PDEs constructed with invariants. We111
name it InvarPDEs-Net (see Figure 1). For further flexibil-112
ity, we extract a block from the iterative process and modify113
it into an equivariant layer, offering the freedom to specify114
input and output channel numbers. The layer can serve as115
a drop-in replacement for convolutional networks of vari-116
ous architectures. We name it InvarLayer. Our framework117

for constructing equivariant networks of the affine group is 118
also applicable to its continuous subgroups. We implement 119
equivariant networks for the scale group, the rotation-scale 120
group and the affine group. Empirical experiments on clas- 121
sification tasks involving transformations of these groups 122
demonstrate the outstanding performance of our method. 123

We summarize our main contributions as follows: 124
• From the viewpoint of symmetric PDEs, we construct 125

affine equivariant networks based on differential invari- 126
ants. It is the first time that affine equivariance for net- 127
works is achieved without discretizing or sampling the 128
group. Consequently, we overcome the limitation on net- 129
work depth encountered by affConv [37]. 130

• We propose a technique to construct a new kind of affine 131
invariants by normalizing polynomial relative differential 132
invariants with a special norm, which can be incorporated 133
into our networks and enhance numerical stability. 134

• For further flexibility, we also design an equivariant layer, 135
InvarLayer, which serves as a drop-in replacement for 136
convolutional networks of various architectures. 137

• Our framework for constructing affine equivariant net- 138
works is also applicable to its continuous subgroups. We 139
implement equivariant networks for three non-Euclidean 140
groups: the scale group, the rotation-scale group and the 141
affine group. Extensive experiments demonstrate the out- 142
standing performance of our framework. Particularly, we 143
achieve a 3.37% improvement in accuracy compared with 144
affConv [37] on the public affNIST1 dataset under the 145
out-of-distribution setting.2 146

2. Related works 147

Currently there are two mainstream methods for con- 148
structing group equivariant networks. One approach stems 149
from Cohen and Welling [3], which treats feature maps as 150
functions defined on a group. Some works extend this ap- 151
proach to subgroups of Euclidean groups on various do- 152

1https://www.cs.toronto.edu/ tijmen/affNIST/
2Our code will be publicly available upon acceptance.
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mains, such as rotation on the 2D plane [1, 24, 31, 32],153
rotation over the 3D space [11, 12, 67, 68], symmetries154
on spheres [5, 9, 10] and surfaces [6, 7]. Besides, with155
some proper approximations, some works utilize this ap-156
proach to handle non-compact groups, such as the scale157
group [47, 53, 66, 69, 78] and Lie groups [16, 37]. The other158
approach follows the steerable CNNs framework [4, 61–159
63], which views feature maps as vector fields. This ap-160
proach has also been further applied to subgroups of Eu-161
clidean groups on the 2D plane [20, 57, 58, 70, 75], the 3D162
space [17, 62], and spheres [13, 64]. In addition, similar163
to the first approach, this approach has also been extended164
to the scale group [19, 40, 52] and the rotation-scale group165
[18, 55, 74].166

Besides the above approaches, some works utilize PDOs167
with learnable coefficients to design equivariant neural net-168
works on 2D plane [25, 27, 49]. Besides, PDOs can also169
be applied to spheres [28, 50], volumetric data [51] and sur-170
faces [65]. Differential invariants, as a specialized form of171
partial differential operators, hold a distinctive role in the172
field of image processing [22, 39, 44, 56, 59]. The equiv-173
ariant method of moving frames offers an elegant tool to174
derive differential invariants of a given group [15, 42, 43].175
Wang et al. [59] provide a practical and simplified approach176
for deriving relative affine differential invariants. Theoret-177
ical links reveal that differential invariants are closely in-178
tertwined with symmetric PDEs [41]. Building upon this179
connection, Liu et al. [33, 34] design a shift and rotationally180
equivariant system comprised of learnable PDEs with linear181
combinations of fundamental differential invariants. Subse-182
quently, some works apply learnable PDEs to feature learn-183
ing and extensive vision tasks [14, 77]. Some works further184
develop the approach and create equivariant networks on185
Euclidean groups [46, 48]. Additionally, some researchers186
draw inspiration from PDEs to design deep convolutional187
networks [35, 36].188

3. Theoretical framework189

In this section, we propose a new framework based on190
differential invariants to achieve equivariance of the affine191
group. We also describe some extensions of the framework192
and how they can be implemented.193

3.1. Basic concepts and notations194

To explicitly present the proposed method and theoreti-195
cal derivation in the following, we first give a preliminary196
introduction to concepts involved and notations used.197

Inputs and intermediate feature maps of neural networks198
can be modeled as vector functions defined on a continuous199
domain, e.g. the 2D plane for image data. Each layer of the200
network thereby can be regarded as an operator. In this pa-201
per, we study F = {u

∣∣u : X → Rn} as the set of bounded202
smooth functions defined on X = R2. Given a group G203

acting on X , it naturally induces a group action on F , i.e. 204
(g · u)(x) = u(g−1 · x), where g ∈ G,x ∈ X,u ∈ F . 205

Equivariance indicates that the output of a mapping 206
transforms in accordance with transformation of the input. 207

Definition 1 Let G be a group acting on function sets F 208
and F ′. An operator Ψ : F → F ′ is said to be equivariant 209
with respect to G, if Ψ[g · u] = g ·Ψ[u],∀g ∈ G,u ∈ F . 210

Transitivity is an important property of equivariance. As a 211
result, when equivariant operators are composed together, 212
they still possess equivariance. 213

The concept of invariants is crucial and widely applied 214
in various fields. Invariants extract some symmetric infor- 215
mation and remain constant on the orbits of group actions. 216
Here we give the definition of invariants below. 217

Definition 2 Let G be a group acting on X , and F = 218
{u

∣∣u : X → Rn} be a function set defined on X . An 219
invariant of G is a map I : X × F → R such that 220
∀u ∈ F ,x ∈ X, g ∈ G, 221

I(g · x, g · u) = I(x,u). (1) 222

We call I ≜ (I1, ..., Ik)⊤ a k-dimensional invariant of G, 223
if I1, ..., Ik are invariants of G. 224

Invariants under operation of postcomposition maintain the 225
property of invariance, which can be formulated as follows: 226

Proposition 3 Let I : X × F → Rk be a k-dimensional 227
invariant, and h : Rk → Rk′

be a k′-dimensional vector 228
function. Then h ◦ I is a k′-dimensional invariant. 229

Intuitively, invariants and equivariant operators some- 230
how both imply symmetry of group G. In fact, we can con- 231
struct an equivariant operator with an invariant. 232

Proposition 4 Let I : X × F → Rk be a k-dimensional 233
invariant of G, where F = {u

∣∣u : X → Rn}. View I(·,u) 234

as a k-dimensional function in F ′ = {v
∣∣v : X → Rk}, 235

and define an operator Î : F → F ′ such that 236

Î[u] ≜ I(·,u). (2) 237

Then Î is equivariant. 238

Proof. ∀u ∈ F , g ∈ G, x ∈ X , we have 239

Î[g · u](x) = I(x, g · u) 240

= I(g−1 · x,u) 241

= Î[u](g−1 · x) 242

= (g · Î[u])(x). 243

Therefore, Î[g · u] = g · Î[u]. □ 244

It is worth noting that the equivariant operator Î composed 245
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with a function h remains equivariant. Specifically, the op-246
erator u 7→ h ◦ Î[u] is actually equivalent to u 7→ Îh[u],247
where Ih ≜ h ◦ I is still an invariant according to Propo-248
sition 3.249

As a special type of invariants, a differential invariant is a250
quantity involving the derivatives of functions that remains251
unchanged under the prolongation of group actions.252

Definition 5 Let f be a smooth function and I(x,u) ≜253
f(x,u(x),∇u(x), ...,∇du(x))). If I is an invariant, we254
call I a d-th order differential invariant.255

As we always require translation invariance by default, it256
is sufficient to consider differential invariants in the form257
I(x,u) ≜ f(u(x),∇u(x), ...,∇du(x))), omitting the258
term x [34, 60]. According to the differential invariant the-259
ory [41], there are finite independent differential invariants260
up to the d-th order such that any d-th order differential in-261
variant can be expressed by these differential invariants. We262
call them fundamental differential invariants.263

In this paper, we focus on the affine group, which is264
ubiquitous in computer vision. The affine group consists265
of translation and invertible linear transformations. Denote266
the affine group as G, and any element g ∈ G can be rep-267
resented as g = (A,b), where A ∈ R2×2 is invertible and268
b ∈ R2. Then g ∈ G acts on R2 via the following way:269
g · x = Ax+ b,∀x ∈ R2.270

3.2. From symmetric PDE to equivariant network271

Inspired by learnable PDEs, we model the process of fea-272
ture extraction as the evolution process governed by PDEs273
[14, 33–36, 77]. If the utilized PDE exhibits symmetry, the274
resultant feature extraction process will inherently possess275
equivariance [14, 33, 34, 77].276

Let F̃ = {ũ
∣∣ũ : [0, T ] × R2 → Rn} be a set of277

bounded smooth functions involving a temporal variable278
t ∈ [0, T ] and a spatial variable x ∈ R2. We focus on279
high-dimensional evolutionary PDEs in the following form:280

∂ũ

∂t
= F

(
t,x, ũ,∇xũ, ...,∇d

xũ
)
, (3)281

where F is a smooth function. We can view u(t) ≜ ũ(t, ·)282
as a function in F = {u

∣∣u : R2 → Rn}, and consider the283

group action of G on ũ ∈ F̃ following the same way of the284
group action on u(t) ∈ F , i.e. (g · ũ)(t,x) = ũ(t, g−1 · x).285
For a given symmetry group G, a PDE in the form (3) is286
called G-symmetric as long as if ũ is a solution, then g · ũ287
is also a solution, for any g ∈ G.288

According to the differential invariant theory [41], the289
PDE (3) is G-symmetric if and only if the right side of (3)290
is a function of differential invariants. Additionally, any dif-291
ferential invariant can be expressed as a function of funda-292
mental differential invariants. Therefore, any G-symmetric293

Compute 

Hidden Layer

Figure 2. Each iteration of the evolutionary PDE can be viewed as
a layer of the network.

PDE in the form (3) can be written as: 294

∂ũ

∂t
(t,x) = H

(
t, I1(x,u(t)), ..., Ik(x,u(t))

)
, (4) 295

where H is a smooth function and Ii(i = 1, 2, ..., k) form a 296
complete set of fundamental differential invariants. Denote 297
IFDI as the concatenation of fundamental differential in- 298
variants, i.e. IFDI ≜ (I1, ..., Ik)⊤. We can present (4) in 299
a more compact form: 300

∂ũ

∂t
= H(t) ◦ ÎFDI [u

(t)], (5) 301

where H(t) ≜ H(t, ·) is a smooth function indexed by t 302
with input dimension k and output dimension n, and the 303
definition of the operator ÎFDI is given in (2). 304

Consider a PDE system consisting of a G-symmetric 305
PDE in the form (5) with an initial condition, 306{

∂ũ
∂t = H(t) ◦ ÎFDI [u

(t)],
ũ(0,x) = u0(x).

(6) 307

We approximate the temporal derivative by forward differ- 308
ence to discretize the PDE and formally solve the PDE sys- 309
tem (6) by iteration. Let 0 = t0 < t1 < ... < tN = T be 310
a partition of the interval [0, T ], and the forward scheme is 311
shown as follows: 312

u(t0) = u0, (7) 313

u(ti+1) = u(ti) +∆ti ·H(ti) ◦ ÎFDI [u
(ti)], (8) 314

where ∆ti ≜ ti+1 − ti, u(ti) ≜ ũ(ti, ·). As is well known, 315
neural networks have universal approximation capabilities. 316
Theoretically, if we choose H(t) to be a neural network, 317
we can represent any differential invariant. In practice, we 318
introduce a series of parameterized multilayer perceptrons 319
(MLPs), {hθi , 0 ≤ i ≤ N − 1}, whose input dimension 320
matches IFDI and output dimension matches u0. Conse- 321
quently, we have the iterative process: 322

u(ti+1) = u(ti) +∆ti · hθi ◦ ÎFDI [u
(ti)]. (9) 323

We regard each iteration as an operator Ψi : u
(ti) 7→ u(ti+1) 324

(see Figure 2), which is equivariant. Note that equivariance 325
of Ψi does not rely on the existence and uniqueness of the 326
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solution to the original PDE system (6). Furthermore, if327
we replace IFDI with general invariants, the operator Ψi is328
still equivariant.329

Utilizing transitivity of equivariance, we stack these330
equivariant operators together to get a feed-forward deep331
equivariant network, i.e. Ψ ≜ ΨN−1 ◦ · · · ◦ Ψ1 ◦ Ψ0. The332
number of layers corresponds to the number N of iterations,333
and the number of channels corresponds to the dimension of334
ũ in the PDE. The network takes u(t0) = u0 as inputs, and335
produces u(tN ) as the output features. Inference of the net-336
work aligns with the evolution process of the PDE. Further-337
more, the network naturally incorporates the skip connec-338
tion structure [23], which is renowned for its advantageous339
impact on network optimization. Inspired by PDEs based340
on invariants, we call the network InvarPDE-Net.341

3.3. SupNorm normalized differential invariants342

The basic version of InvarPDE-Net provides an approach343
to create equivariant networks without discretizing or sam-344
pling groups. However, for the affine group, its fundamental345
differential invariants are in the form of fractional polyno-346
mials, potentially leading to the division-by-zero issue in347
practice.348

We notice that differential invariants of the affine group349
can be expressed by polynomial relative differential invari-350
ants. Building upon the observation, we propose a tech-351
nique to construct a new type of affine invariants by nor-352
malizing polynomial relative differential invariants with a353
special norm, which not only avoid the division-by-zero is-354
sue but also exhibit better expressive power than classical355
differential invariants. To start with, we give a definition of356
polynomial relative differential invariants.357

Definition 6 Let G be the affine group acting on X = R2,358
F = {u

∣∣u : X → Rn} be the set of bounded smooth func-359
tions, w : G → R+ be a positive multiplier, and P be a m-360
degree homogeneous polynomial. Define J : X × F → R361
as follows J (x,u) ≜ P (u(x),∇u(x), ...,∇du(x))). We362
call J a d-th order (polynomial) relative differential in-363
variant of G with weight w and degree m, if ∀u ∈ F ,x ∈364
X, g ∈ G, we have365

J (g · x, g · u) = w(g)J (x,u). (10)366

Low-order relative differential invariants of the affine group367
for scalar functions on R2 are shown in Table 1. Unless the368
weight w ≡ 1, a relative differential invariant is generally369
not an invariant. However, it is not hard to find that the re-370
sult of dividing two relative differential invariants with the371
same weight is a differential invariant. But fractional poly-372
nomials may suffer from the division-by-zero issue and the373
drawback of causing substantial information loss.374

Next, we present a technique to construct invariants375
based on relative differential invariants via normalization.376

Relative Differential Invariants Weight Degree
u 1 1
uxxuyy − u2

xy 1/(detA)2 2
u2
yuxx − 2uxuyuxy + u2

xuyy 1/(detA)2 4

Table 1. We present relative differential invariants of the affine
group for scalar functions up to order 2. Note that any element g
in the affine group can be represented as g = (A,b).

Theorem 7 Let G be the affine group acting on X = R2. 377
Let F = {u

∣∣u : X → Rn} and F ′ = {v
∣∣v : X → Rk} be 378

sets of bounded smooth functions on X . Define a norm on 379
F ′ called SupNorm, ∥v∥sup ≜ supx∈X ∥v(x)∥∞. Given a 380
collection of relative differential invariants of G with weight 381
w, denoted as Ji : X × F → R(i = 1, 2, ..., k). Define 382
J : X ×F → Rk as J ≜ (J1, ...,Jk)

⊤, and J (·,u) can 383
be viewed as an element in F ′. Define I : X ×F → Rk as 384
follows: 385

I(x,u) ≜ 1

∥J (·,u)∥sup
·J (x,u). (11) 386

Then I is a k-dimensional invariant of G. 387

The key to the proof of Theorem 7 is that for any g ∈ G, 388
we have ∥J (·, g · u)∥sup = w(g)∥J (·,u)∥sup. A detailed 389
proof is provided in Supplementary Material. We call the 390
invariant constructed in (11) a SupNorm normalized dif- 391
ferential invariant (SNDI). As the invariant involves global 392
spatial information of derivatives, it is no longer a classical 393
differential invariant. It may contain information beyond 394
fundamental differential invariants. 395

To construct SNDIs, we start from a collection of poly- 396
nomial relative differential invariants. Although the selec- 397
tion of relative differential invariants does not affect in- 398
variance, a recommended practice is to encompass those 399
that sufficiently represent fundamental differential invari- 400
ants, thus capturing adequate information. Next, we can 401
normalize each relative differential invariant individually, as 402
Theorem 7 also holds when k = 1. Alternatively, we can 403
normalize all relative differential invariants with the same 404
weight and the same degree together, which preserves more 405
information between relative differential invariants. An ad- 406
ditional benefit is that SNDIs derived in this way exhibit 407
illumination invariance, i.e. I(x, c · u) = I(x,u),∀c > 0. 408

Here is an example to have a glimpse of the advantage in 409
expressive power of SNDIs compared with that of classical 410
differential invariants. Assuming u a bounded scalar func- 411

tion on R2,
uxxuyy−u2

xy

u2
yuxx−2uxuyuxy+u2

xuyy
is the only fundamental 412

differential invariant of the affine group up to second order 413
apart from the trivial one u itself. Through the newly pro- 414
posed method of normalization, we can obtain two SNDIs 415

uxxuyy−u2
xy

∥uxxuyy−u2
xy∥sup

and
u2
yuxx−2uxuyuxy+u2

xuyy

∥u2
yuxx−2uxuyuxy+u2

xuyy∥sup
. It is not 416
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hard to find that we can express the fundamental differential417
invariant as the quotient of two SNDIs up to a constant mul-418
tiple, but not vice versa. From another perspective, we need419
to discretize functions by sampling on grid points in imple-420
mentation. Given k polynomial relative differential invari-421
ants, each one can be viewed as an M ×M matrix. Obtain-422
ing differential invariants through division would lead to the423
loss of at least M2 degrees of freedom, while normalization424
only sacrifices at most k degrees of freedom.425

In summary, SNDIs not only avoid the division-by-zero426
issue but also exhibit better expressive power than classi-427
cal differential invariants. Given a collection of polyno-428
mial relative differential invariants, we construct SNDIs via429
normalization, and concatenate them together, resulting in430
a higher dimensional invariant ISNDI . With theoretical431
guarantee of invariance, we can directly employ ISNDI432
to replace fundamental differential invariants IFDI in (9).433
Thus, each layer of InvarPDE-Net is adjusted to:434

u(ti+1) = u(ti) +∆ti · hθi ◦ ÎSNDI [u
(ti)]. (12)435

3.4. Extensions of network architecture436

The equivariant network InvarPDE-net derived from a437
symmetric PDE requires the dimension of features, namely438
the number of channels, to be consistent across each layer.439
This is not the case for the majority of conventional net-440
works. Hence, we generalize the network to accommodate441
varying channel numbers while maintaining equivariance.442

Note that we can stack several PDEs of the same dimen-443
sion sequentially, with the output of one PDE serving as444
the input of the subsequent one. Furthermore, when dealing445
with PDEs of different dimensions, we can linearly com-446
bine the output channels of one PDE to match the number447
of channels in the subsequent PDE. Since linear combina-448
tions of invariants remain invariants, the process does not449
affect equivariance. This extension allows us to create an450
equivariant network composed of multiple PDEs with vary-451
ing channel numbers. We name the network InvarPDEs-Net452
(see Figure 1), including InvarPDE-Net as a special case.453

In addition, we aim to design an equivariant layer that454
can be directly integrated into convolutional networks of455
various architectures by replacing convolutional layers.456
Such an equivariant layer will offer enhanced flexibility in457
its applications. A key aspect lies in the ability to freely458
specify input and output channel numbers, similar to a con-459
volutional layer. By observing the iterative process in (12),460
we can adjust the output dimension of hθi , and directly em-461
ploy hθi ◦ ÎSNDI [u

(ti)] as the output of this layer, which is462
still equivariant. Given input and output channel numbers,463
C1 and C2, we formulate the equivariant layer as follows:464

uout = hθ ◦ ÎSNDI [uin], (13)465

where ISNDI is a k-dimensional SNDI, and hθ is an MLP466
with input dimension k and output dimension C2. We name467

Invariants
Hidden
Layer

Compute
Invariants

Figure 3. InvarLayer is an equivariant layer extracted and adapted
from the iterative process of a symmetric PDE, which allows for
free specification of input and output channel numbers.

the equivariant layer InvarLayer (see Figure 3). It has a sim- 468
ilar structure to the PDE iteration process (see Figure 2) but 469
without the skip connection, allowing different input and 470
output channel numbers. 471

3.5. Implementation 472

We establish a theoretical foundation in the continuous 473
setting. When it comes to implementation, in the context of 474
processing image data, discretization on 2D grids becomes 475
necessary. We employ Gaussian derivatives to estimate 476
derivatives by applying derivatives of a Gaussian kernel 477
[25, 27]. For example, fx(x0) ≈

∑N
n=1 ∂xG(xn;σ)f(xn+ 478

x0), where G(x;σ) is a Gaussian kernel with standard devi- 479
ation σ centered around 0, and xn are grid points around 0. 480
In the case of 2D grid points, it can be implemented using 481
convolutions with specific kernels. 482

It is important to highlight that common network com- 483
ponents are compatible with our approach. Proposition 3 484
guarantees that invariants under the operation of post- 485
composition maintain their invariance property. This means 486
BatchNorm [26], pointwise nonlinearities, 1 × 1 Convolu- 487
tion, and DropOut [54] can all be seamlessly integrated into 488
our models without compromising equivariance. Pooling 489
can also be incorporated into the models, though it intro- 490
duces equivariance error to some extent. Specially, when 491
using global pooling, we obtain invariant features. 492

In the following, we will discuss the input and ultimate 493
output in InvarPDEs-Net, with a specific focus on image 494
classification tasks. Currently, we simply replicate the im- 495
age data along the channel dimension multiple times until 496
the given number of channels is reached, which serves as 497
the input of the network, i.e. u(t0) = u0. For the final out- 498
put of equivariant features of the network u(tN ), we perform 499
spatial global pooling to extract a set of invariant features, 500
matching the number of channels. Subsequently, we apply 501
two fully connected layers to acquire the ultimate classifi- 502
cation result. 503

As for MLPs used for combining invariants in our net- 504
works, we apply two layer perceptrons in practice. Since 505
MLPs operate on the vector I(x,u) for each point x and 506
share weights spatially, they can be effectively implemented 507
using 1×1 convolutions with the ReLU activation function. 508
Likewise, connections between PDEs of different dimen- 509
sions in InvarPDEs-Net can also be realized using 1 × 1 510
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convolutions. As for the computation of SupNorm in con-511
structing SNDIs, it can be easily implemented by applying512
global Max-Pooling over the channels corresponding to rel-513
ative differential invariants that are normalized together.514

3.6. Discussion515

Unlike existing methods for designing equivariant net-516
works, our framework does not apply discretization or sam-517
pling to the group. The number of channels is independent518
of the dimension of the group. When the group is larger, the519
number of fundamental differential invariants is bounded by520
the number of derivatives, and the same holds true for poly-521
nomial relative differential invariants. Therefore, the model522
size does not increase as the group becomes larger. That is523
why our framework can handle affine equivariance.524

Moreover, our framework can be extended to continuous525
subgroups of the affine group. Common examples include526
the scale group, the shearing group, the rotation group, the527
rotation-scale group and the equi-affine group. To construct528
equivariant networks for these groups, we simply compute529
corresponding differential invariants and incorporate them530
into InvarPDE-Net. If the differential invariants involve531
fractions, the normalization technique is also applicable.532
The network structures, InvarPDEs-Net and InvarLayer, are533
compatible with these groups, and the implementation pro-534
cess remains the same. Therefore, it is a unified framework535
for the affine group and its continuous subgroups.536

4. Experiments537

For empirical validation, we implement InvarPDEs-Net538
and InvarLayer for three non-Euclidean groups: the scale539
group, the rotation-scale group, and the affine group. We540
conduct classification experiments on image datasets with541
different group transformations, and refrain from using data542
augmentation to emphasize the innate equivariance of net-543
works.544

4.1. Scale equivariance545

Following previous works on scale equivariance [29, 40,546
52, 78], we conduct experiments on datasets with scale vari-547
ations, specifically Scale-MNIST and Scale-Fashion. We548
build Scale-MNIST and Scale-Fashion by rescaling the im-549
ages of the MNIST [30] dataset and the Fashion-MNIST550
[71] dataset with the scaling factor randomly selected from551
[0.3, 1]. Then we reshape them back to the original size552
28 × 28 by zero paddings. For both datasets, we use 10k553
samples for training and 50k for testing. In line with prior554
works [40, 52, 78], we integrate InvarLayer into a CNN with555
three convolution layers and two fully connected layers, and556
ensure that both InvarPDEs-Net and InvarLayer have fewer557
than 500k trainable parameters. For more details on the558
models and experiments, please refer to Supplementary Ma-559
terial.560

Models Scale-MNIST Scale-Fashion

SiCNN [73] 97.53± 0.12 85.32± 0.22
SI-ConvNet [29] 97.56± 0.13 85.16± 0.14
SEVF [38] 97.28± 0.16 84.73± 0.11
DSS [69] 97.34± 0.13 84.50± 0.51
SS-CNN [19] 97.68± 0.15 85.39± 0.32
SESN [52] 97.92± 0.09 85.93± 0.28
ScDCFNet [78] 97.91± 0.08 86.19± 0.15
SE-CNN [40] 97.16 87.48

InvarPDEs-Net (Ours) 98.30 ± 0.06 89.62 ± 0.26
InvarLayer (Ours) 97.75± 0.05 89.50± 0.15

Table 2. Test accuracy (%) on Scale-MNIST and Scale-Fashion.
All models have approximately 500k trainable parameters.

Experiments are repeated for six times using datasets 561
generated with independent seeds. We report the mean ± 562
std of the test accuracy of our models in Table 2. The results 563
of SE-CNN on both datasets and SESN on Scale-MNIST 564
come from the original papers [40, 52], and the others come 565
from [78] under the same settings. On Scale-MNIST, Invar- 566
Layer achieves comparable results with other models and 567
InvarPDEs-Net delivers the best performance. On Scale- 568
Fashion, InvarPDEs-Net and InvarLayer outperform other 569
models significantly. 570

4.2. Rotation-Scale equivariance 571

Models RS-MNIST RS-Fashion

SFCNN [63] 89.69± 0.40 75.80± 0.11
RDCF [2] 90.46± 0.33 73.96± 0.19

SEVF [38] 90.29± 0.37 71.03± 0.31
SESN [52] 90.19± 0.39 72.19± 0.05
ScDCFNet [78] 90.40± 0.09 72.24± 0.23

RST-CNN [18] 93.19± 0.29 78.64± 0.60

InvarPDEs-Net (Ours) 95.80 ± 0.09 79.48 ± 0.31
InvarLayer (Ours) 93.15± 0.21 74.51± 0.71

Table 3. Test accuracy (%) on RS-MNIST and RS-Fashion. All
models have approximately 500k trainable parameters. RST-CNN
is a rotation-scale equivariant network, while other compared
models are only equivariant to rotation (SFCNN and RDCF) or
scaling (SEVF, SESN, and ScDCFNet).

Gao et al. [18] first presented a rotation-scale equivariant 572
network, RST-CNN. Following [18], we generate datasets 573
RS-MNIST and RS-Fashion for evalutation. With the same 574
procedure, we apply rotation (uniformly in [0, 2π]) and 575
rescaling (uniformly in [0.3, 1]) to the images of MNIST 576
and Fashion-MNIST, and zero-pad them back to the origi- 577
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nal size followed by upsizing images to 56 × 56. For both578
datasets, we use 5k samples for training and 50k for test-579
ing. Consistent with [18], we integrate InvarLayer into a580
CNN with three convolution layers and two fully connected581
layers, and keep the number of trainable parameters below582
500k for both InvarPDEs-Net and InvarLayer.583

The mean ± std of the test accuracy over six indepen-584
dent trials are reported in Table 3. Compared models in-585
clude RST-CNN [18] and other models that are equivariant586
to either rotation (SFCNN [63] and RDCF [2]) or scaling587
(SEVF [38], SESN [52], and ScDCFNet [78]). The results588
of these models are obtained from [18] under the same set-589
tings. On RS-MNIST, InvarPDEs-Net significantly outper-590
forms other models and InvarLayer exhibits comparable re-591
sults with RST-CNN. On RS-Fashion, InvarPDEs-Net re-592
mains the top-performing model, while InvarLayer delivers593
relatively modest results. With minor adjustments of hy-594
perparameters, InvarLayer lifts the accuracy to 93.40% on595
RS-MNIST and to 76.08% on RS-Fashion. More details596
about models and experiments are provided in Supplemen-597
tary Material.598

4.3. Affine equivariance599

Models Accuracy Parameters

CapsNet [45] 79 8.1M
GE CapsNet [31] 89.10 235K
affine CapsNet [21] 93.21 –
RU CapsNet [8] 97.69 > 580K

affConv [37] 95.08± 0.31 373K

InvarPDEs-Net (Ours) 95.72± 0.12 340K
InvarLayer (Ours) 98.45 ± 0.15 365K

Table 4. Test accuracy (%) on affNIST after training on MNIST.
The first four models are Capsule Networks that demonstrate ro-
bustness to affine transformations but admit few rigorous mathe-
matical guarantees, while affConv is an affine equivariant network.

As for affine equivariance, the main counterpart we com-600
pare with is the affine equivariant model, affConv [37]. Fol-601
lowing [37], we evaluate our models on the public dataset602
affNIST under the out-of-distribution setting. Specifically,603
we train our models on 50k non-transformed MNIST im-604
ages (padded to 40 × 40) and test them on 320k affine-605
perturbed MNIST (affNIST) images with size 40 × 40. As606
mentioned before, it is impractical to apply affConv to deep607
networks, while InvarLayer overcomes the limitation. We608
use the structure of ResNet-32 for InvarLayer. For a fair609
comparison, we ensure that InvarPDEs-Net and InvarLayer610
both have fewer parameters than affConv (373k). Addi-611
tional details can be found in Supplementary Material.612

We present the mean ± std of test accuracy over six train-613

ing runs with different random seeds in Table 4. Besides 614
affConv, we also list the results under the same setup from 615
some Capsule Networks [8, 21, 31, 45], which may lack 616
rigorous theoretical guarantees of invariance. Although RU 617
CapsNet performs better than affConv, which could not be 618
well understood according to [37], our InvarLayer beats it 619
by a margin of 0.76%. Moreover, our InvarPDE-net also 620
outperforms affConv. 621

Additionally, we go back to the most common task, train- 622
ing on affNIST and testing on affNIST. The results are 623
shown in Table 5. Compared with results of other models 624
under the same setting, InvarLayer performs the best and 625
achieves state-of-the-art results again. 626

Models Accuracy Parameters

ResNet-32 [23] 95.76 464K
ITN [76] 98.91 –
DE-CNNs [72] 99.08 > 2.5M

InvarPDEs-Net (Ours) 97.13± 0.05 373K
InvarLayer (Ours) 99.25 ± 0.08 365K

Table 5. Test accuracy (%) on affNIST after training on affNIST.

5. Conclusion 627

In this paper, we propose a new framework to achieve 628
affine equivariance, a long-standing challenge in the field 629
of equivariant networks. Within our framework, we con- 630
struct a PDE-inspired equivariant network, InvarPDEs-Net, 631
which showcases strong performance across extensive ex- 632
periments. Furthermore, for more flexibility, we introduce 633
an equivariant layer, InvarLayer, which can serve as a drop- 634
in replacement for convolutional networks of various archi- 635
tectures. When combined with a ResNet structure, Invar- 636
Layer retains state-of-the-art results on the affNIST dataset. 637
While the performance of InvarLayer exhibits some vari- 638
ability in certain setups, we recognize its immense poten- 639
tial. We believe that further refinement of the layer de- 640
sign based on our paradigm will elevate its capabilities to 641
a higher level. 642

Our framework is quite promising and merits further ex- 643
tension. It is known that differential invariants exist for Lie 644
groups satisfying certain regular conditions [41]. We con- 645
centrate on the affine group and make differential invari- 646
ants applicable through the normalization technique, which 647
is also suitable for its subgroups. How to adapt differential 648
invariants of more general Lie groups into equivariant net- 649
works remains a future research. Additionally, besides the 650
2D planes considered in our work, it is worthwhile to study 651
the extension of our framework to other manifolds, such as 652
spheres and 3D spaces. Moreover, while our experiments 653
involve image classification tasks, applications to a broader 654
range of tasks in real world can be further explored. 655
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