
CVPR
#2786

CVPR
#2786

CVPR 2024 Submission #2786. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Affine Equivariant Networks Based on Differential Invariants

Supplementary Material

A. Proof of Theorem 7944

Proof. Since F 0 is a set of bounded functions, the norm945

k · ksup is well-defined. 8u 2 F , g 2 G, we have946

kJ (·, g · u)ksup = sup
x2X

kJ (x, g · u)k1947

= sup
x2X

kw(g)J (g�1 · x,u)k1948

= w(g) sup
x2X

kJ (g�1 · x,u)k1 (14)949

= w(g) sup
x2X

kJ (x,u)k1950

= w(g)kJ (·,u)ksup.951

Then we apply the above property of the norm k · ksup to952

complete the proof. 8u 2 F , g 2 G,x 2 X , we have953

I(g · x, g · u) = 1

kJ (·, g · u)ksup
J (g · x, g · u)954

=
1

w(g)kJ (·,u)ksup
w(g)J (x,u) (15)955

=
1

kJ (·,u)ksup
J (x,u)956

= I(x,u).957

Therefore, I is a k-dimensional invariant of G. ⇤958

B. Polynomial relative differential invariants959

In this work, we implement equivariant networks for960

three non-Euclidean groups: the scale group, the rotation-961

scale group, and the affine group. Targeting each group, we962

first derive its polynomial relative differential invariants up963

to order 2, and then compute SupNorm normalized differen-964

tial invariants to build the equivariant models. Elements in965

the affine group and its subgroups can be represented as g =966

(A,b), where A 2 R2⇥2 is invertible and b 2 R2. For the967

scale group, A =

✓
CS 0
0 CS

◆
, CS > 0; for the rotation-968

scale group, A = CRS ·
✓

cos ✓ � sin ✓
sin ✓ cos ✓

◆
, CRS >969

0, ✓ 2 [0, 2⇡); for the affine group, we consider A =970

CA · Ã, CA > 0, det(Ã) = 1. Polynomial relative dif-971

ferential invariants involved in our models for these groups972

are shown in Table 6.973

C. Implementation details of models974

In this section, we give a detailed description of imple-975

mentation of InvarPDEs and InvarLayer.976

Estimate
derivatives

Element-wise
addition and

multiplication

Relative
Differential
Invariants

Normalization
Invariants

Figure 4. The implementation process of computing SupNorm
normalized differential invariants (SNDI).

To start with, we introduce the implementation process 977

of computing SupNorm normalized differential invariants 978

(SNDI) (see Figure 4). Firstly, we estimate derivatives 979

by applying derivatives of a Gaussian kernel. We choose 980

the kernel size 7. Secondly, we compute polynomial rel- 981

ative differential invariants through element-wise addition 982

and multiplication of the derivatives. Finally, we normal- 983

ize polynomial relative differential invariants with the same 984

weight and degree together to obtain SNDIs, where the 985

computation of SupNorm is implemented by applying Max- 986

Pooling over those channels that are to be normalized to- 987

gether.

Conv ConvInvariants
ReLUReLU

Figure 5. The architecture for each layer of InvarPDEs-Net.

988

InvarPDEs-Net consists of iterative processes of multiple 989

symmetric PDEs. Each iteration of one evolutionary PDE 990

can be viewed as a layer of the network, shown in Figure 5. 991

In each layer, we first compute invariants of the input u(ti) 992

of this layer, and then perform Conv-ReLU-Conv (denoting 993

1 ⇥ 1 convolutions as “Conv”). The result is multiplied by 994

�ti and added to u
(ti). After passing through ReLU, we 995

obtain the output u(ti+1) of this layer. The iterations of the 996

same PDE are stacked together, and we connect iterations of 997

different PDEs through Conv-ReLU, where the input and 998

output dimensions of Conv are determined by the dimen- 999

sions of the previous and next PDEs, respectively. In our 1000

implementation, we use hyperparameter channel to specify 1001

the dimension of the first PDE, and the dimension of each 1002

subsequent PDE is twice that of the previous one. We use 1003

the hyperparameter iteration to specify the total number of 1004

iterations of all PDEs, namely the network depth. In each 1005

layer, the input dimension of the first Conv is the same as 1006

the number of invariants, and the output dimension is spec- 1007

ified by the hyperparameter hidden channel. The input 1008

1

CVPR
#2786

CVPR
#2786

CVPR 2024 Submission #2786. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Relative differential invariants of the scale group Weight Degree
u[k], (1 k n) 1 1
u[k]
x , (1 k n) 1/CS 1

u[k]
y , (1 k n) 1/CS 1

u[k]
xx, (1 k n) 1/C2

S 1
u[k]
yy , (1 k n) 1/C2

S 1
u[k]
xy , (1 k n) 1/C2

S 1
Relative differential invariants of the rotation-scale group Weight Degree
u[k], (1 k n) 1 1
(u[k]

x)2 + (u[k]
y)2, (1 k n) 1/C2

RS 2
u[k+1]
x u[k]

x + u[k+1]
y u[k]

y , (1 k n� 1) 1/C2
RS 2

(u[k]
x)2u[k]

xx + 2u[k]
x u[k]

y u[k]
xy + (u[k]

y)2u[k]
yy , (1 k n) 1/C4

RS 3
(u[k]

y)2u[k]
xx � 2u[k]

x u[k]
y u[k]

xy + (u[k]
x)2u[k]

yy , (1 k n) 1/C4
RS 3

u[k]
x u[k]

y (u[k]
yy � u[k]

xx) + u[k]
xy

⇣
(u[k]

x)2 � (u[k]
y)2

⌘
(1 k n) 1/C4

RS 3
Relative differential invariants of the affine group Weight Degree
u[k], (1 k n) 1 1
u[k+1]
x u[k]

y � u[k]
x u[k+1]

y , (1 k n� 1) 1/C2
A 2

u[k]
xxu

[k]
yy � (u[k]

xy)2, (1 k n) 1/C4
A 2

(u[k]
y)2u[k]

xx � 2u[k]
x u[k]

y u[k]
xy + (u[k]

x)2u[k]
yy , (1 k n) 1/C4

A 3
u[k+1]
y u[k]

y u[k]
xx � (u[k]

x u[k+1]
y + u[k+1]

x u[k]
y)u[k]

xy + u[k+1]
x u[k]

x u[k]
yy , (1 k n� 1) 1/C4

A 3
u[k+1]
y u[k]

y u[k+1]
xx � (u[k]

x u[k+1]
y + u[k+1]

x u[k]
y)u[k+1]

xy + u[k+1]
x u[k]

x u[k+1]
yy , (1 k n� 1) 1/C4

A 3

Table 6. We present relative differential invariants of the scale group, the rotation-scale group and the affine group for vector functions
u , (u[1], u[2], ..., u[n])> involved in our models.

dimension of the second Conv is hidden channel, and the1009

output dimension is the same as the dimension of the PDE.1010

Batch normalization (BN) is applied after each Conv. For1011

the final output feature u
(tN), we perform MP-FC-ReLU-1012

FC (denoting global spatial Max-Pooling as “MP” and fully1013

connected layers as “FC”) to obtain the classification result,1014

where the output dimension of the first FC is fixed at 64.

Invariants Conv Conv

ReLU

Figure 6. The architecture for InvarLayer.
1015

InvarLayer is an equivariant layer extracted and adapted1016

from the iterative process of a symmetric PDE, which al-1017

lows for free specification of input and output channel num-1018

bers, as illustrated in Figure 6. It can serve as a drop-in re-1019

placement for convolutional networks of various architec-1020

tures. The layer first computes invariants of the input uin,1021

and then performs Conv-ReLU-Conv to get the output uout1022

of the layer. The dimension of uin is specified by the hy-1023

perparameter channel in. The input dimension of the first1024

Conv is the same as the number of invariants. Different1025

from InvarPDEs-Net, the output dimension of the second1026

Conv is not restricted but is specified by the hyperparam- 1027

eter channel out, indicating the dimension of uout. We 1028

fix the input dimension of the second Conv as channel out 1029

to reduce the number of hyperparameters. We do not in- 1030

clude additional BN in InvarLayer, since usually there are 1031

already BN after convolutional layers in most convolutional 1032

network structures. Given a convolutional network, we re- 1033

place every convolutional layer with InvarLayer by choos- 1034

ing appropriate values for channel in and channel out. If 1035

the convolutional layer has a stride more than 1, we add a 1036

Max-Pooling with an appropriate kernel size before the sec- 1037

ond Conv in InvarLayer. 1038

D. Details of experiments 1039

For empirical validation, we implement InvarPDEs-Net 1040

and InvarLayer for three non-Euclidean groups: the scale 1041

group, the rotation-scale group, and the affine group. We 1042

conduct classification experiments on image datasets with 1043

different group transformations. In all experiments, we do 1044

not use data augmentation to emphasize the innate equivari- 1045

ance of networks. Models are trained using AdamW with 1046

a batch size of 32 and the CosineLR schedule on a single 1047

RTX 3090. We report the mean test performances of mod- 1048

els, taken at the final epoch, over 6 independent training 1049

2

CVPR
#2786

CVPR
#2786

CVPR 2024 Submission #2786. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

runs.1050

Experiments in Section 4.1 (scale equivariance). For1051

InvarPDEs, we set hyperparameters as follows: channel =1052

65, hidden channel = 65, iteration = 16. After the1053

8th iteration, we apply Conv-ReLU-MP2 (denoting Max-1054

Pooling with kernel size 2 as “MP2”) to double the chan-1055

nel numbers. This network can be viewed as two PDEs1056

stacked together. On both datasets Scale-MNIST and Scale-1057

Fashion, we train the model for 60 epochs with learning rate1058

2e-3 and weight decay 1e-6. For InvarLayer, we incorpo-1059

rate it into a CNN by replacing convolutional layers. The1060

architecture is Layer-ReLU-MP2-BN-Layer-ReLU-MP2-1061

BN-Layer-ReLU-MP7-BN-FC-BN-ReLU-Dr5-FC (denot-1062

ing InvarLayer as “Layer” and DropOut with rate 0.5 as1063

“Dr5”), where the input and output dimensions of the last1064

FC are 256 and 10, respectively. We modify the channel1065

numbers (1-83-163-247) to keep the number of parameters1066

almost invariant. On both datasets, we train the model for1067

60 epochs with learning rate 2e-3 and weight decay 1e-6.1068

Experiments in Section 4.2 (rotation-scale equivari-1069

ance). For InvarPDEs, we set hyperparameters as fol-1070

lows: channel = 25, hidden channel = 43, iteration =1071

16. After the 4th, 8th, and 12th iterations, we ap-1072

ply Conv-ReLU-MP2 to double the channel numbers.1073

This network can be viewed as four PDEs stacked to-1074

gether. On both datasets RS-MNIST and RS-Fashion,1075

we report the results in Table 3 after training the model1076

for 60 epochs with learning rate 2e-3 and weight de-1077

cay 1e-6. For InvarLayer, we incorporate it into a1078

CNN by replacing convolutional layers. The archi-1079

tecture is Layer-ReLU-MP2-BN-Layer-ReLU-MP2-BN-1080

Layer-ReLU-MP7-BN-FC-BN-ReLU-Dr5-FC, where the1081

input and output dimensions of the last FC are 256 and 10,1082

respectively. We modify the channel numbers (1-67-132-1083

199) to keep the number of parameters almost invariant. On1084

both datasets, we present the results in Table 3 after train-1085

ing the model for 60 epochs with learning rate 8e-3 and1086

weight decay 1e-6. If training for 90 epochs, InvarLayer1087

lifts the accuracy (%) from 93.15 ± 0.21 to 93.40 ± 0.241088

on RS-MNIST, as mentioned in the text of Section 4.2. If1089

replacing the first MP2 with MP4 and replacing Dr5 with1090

Dr6, InvarLayer lifts the accuracy (%) from 74.51± 0.71 to1091

76.08± 0.36 on RS-Fashion after training for 90 epochs.1092

Experiments in Section 4.3 (affine equivariance).1093

There are two settings in this section: testing on affNIST af-1094

ter training on MNIST and testing on affNIST after training1095

on affNIST. In the first setting, we use 50k non-transformed1096

MNIST images for training and 320k affNIST images for1097

testing. In the second setting, we use 50k affNIST images1098

for training and 10k affNIST images for testing. In both set-1099

tings, we employ the same models and the same optimiza-1100

tion process. For InvarPDEs, we set hyperparameters as fol-1101

lows: channel = 45, hidden channel = 45, iteration =1102

15. After the 7th iteration, we apply Conv-ReLU to double 1103

the channel numbers. This network can be viewed as two 1104

PDEs stacked together. For InvarLayer, we incorporate it 1105

into ResNet-32 by directly replacing all convolutional lay- 1106

ers without modifying the channel numbers. We train both 1107

models for 90 epochs with learning rate 1e-3 and weight 1108

decay 1e-6. 1109

3

	. Introduction
	. Related works
	. Theoretical framework
	. Basic concepts and notations
	. From symmetric PDE to equivariant network
	. SupNorm normalized differential invariants
	. Extensions of network architecture
	. Implementation
	. Discussion

	. Experiments
	. Scale equivariance
	. Rotation-Scale equivariance
	. Affine equivariance

	. Conclusion
	. Proof of from differential invariants to invariants
	. Polynomial relative differential invariants
	. Implementation details of models
	. Details of experiments

