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Abstract.
Sequence modeling is a critical task in various domains such

as natural language processing, speech recognition, and time series
analysis. The existing models still face challenges in capturing long-
range dependencies and efficiently modeling sequences. This paper
proposes a novel hybrid sequence modeling architecture called Mix-
Con to address these challenges. The MixCon (Mixture of Conba)
architecture combines a Transformer layer based on attention mecha-
nism, a Conba layer, and a Mixture of Experts (MoE) module. We ap-
ply this idea to the design of the attention mechanism, achieving sig-
nificant improvements in computational efficiency. Additionally, the
MixCon architecture integrates feedback and adaptive control mech-
anism inspired by control theory, providing a new perspective and
approach to sequence modeling. The experimental results demon-
strate MixCon’s superior throughput, outperforming Mixtral by 4.5
times and Jamba by 1.5 times when processing lengthy sequences of
up to 128K tokens on a single A800 80GB GPU. Moreover, MixCon
achieves top-tier scores on academic benchmarks, exemplified by its
outstanding performance with a score of 87.9% on HellaSwag and
83.4% on WinoGrande, showcasing its capability to excel in com-
plex sequence modeling tasks.

1 Introduction
Despite significant advancements in sequence modeling in fields
such as natural language processing, speech recognition, and time
series analysis, existing models still face challenges in capturing
long-range dependencies and efficiently modeling sequences. The
Transformer model [32], although dominant in natural language pro-
cessing tasks, has high computational costs and significant mem-
ory requirements. Consequently, researchers have proposed alterna-
tive models such as linear attention transformer, Mixture of Experts
(MOE) models, and linear RNN models.

The linear attention Transformer is an approach that aims to im-
prove the efficiency of the original transformer model by approximat-
ing the attention mechanism with linear complexity. While it reduces
computational overhead, it may struggle with capturing long-range
dependencies and might experience a decrease in performance com-
pared to the original Transformer. Early research utilized local sen-
sitive hashing schemes to reduce the computational complexity from
O(n2) to O(n logn) [19], but it introduced a large constant fac-
tor that made it challenging to apply in common cases. Recent stud-
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ies have explored alternative methods to approximate the Softmax
function, which is computationally expensive due to pairwise com-
putations between queries and keys. These methods include using
simple activation functions or custom mapping functions [18, 29, 6].
By changing the computation order, the overall complexity can be
reduced to O(n). However, current linear attention methods still suf-
fer from significant performance degradation compared to softmax
attention and may introduce additional computational overhead, lim-
iting their practical application.

Linear RNN models, such as Mamba [12], provide an efficient
framework for sequence modeling by representing sequences as state
spaces and utilizing scan operations, with linear time complexity.
However, they may lack adaptability and dynamic characteristics re-
quired for complex sequence modeling tasks. Mamba addresses this
by introducing selection mechanism and selective information trans-
mission or forgetting through scan operations, but still shares limita-
tions with traditional sequence models, such as the absence of feed-
back mechanism and adaptive control.

On the other hand, the MoE (Mixture of Experts) models [26, 17,
22] address these challenges by incorporating expert modules, which
enable effective handling of long sequences while maintaining com-
putational efficiency. The expert modules can adaptively select the
appropriate experts for processing given input data, thus improv-
ing the model’s computational efficiency and performance. Although
the MoE models can efficiently handle long sequences and maintain
computational efficiency, its design also brings some challenges. For
instance, the sparse activation in the model’s expert modules may
lead to training stability issues. Additionally, since not all parame-
ters in the model are frequently used, this may reduce parameter effi-
ciency. Moreover, the MoE model may face challenges in computa-
tional efficiency and training stability when handling long sequences
and may lack adaptability to dynamic changes.

Despite significant progress in the field of sequence modeling, ex-
isting models still face limitations and challenges. These include in-
sufficient processing capabilities for long-range dependencies, lack
of adaptability to dynamic changes, and limitations in computational
resources. To overcome these challenges, we propose the MixCon,
an innovative hybrid sequence modeling architecture that skillfully
combines Transformer layers based on attention mechanism, Conba
layers, and an MoE component.

The main contributions of this paper include:

• Proposal of the Conba architecture: We introduce a new sequence
modeling architecture, which integrates feedback and adaptive



control mechanism inspired by control theory. We provide a de-
tailed mathematical formalization of Conba, including state space
equations, adaptive control mechanism, and neural network ap-
proximation, offering a new perspective and method for sequence
modeling.

• Integration with the MoE model: Utilizing the concept of an MoE
model, we combine attention/Conba layer and MoE layer, achiev-
ing a flexible balance between low memory usage, high through-
put, and high quality. This hybrid architecture not only provides
efficient sequence modeling capabilities but also adapts to dy-
namic changes in sequences, thereby enhancing the model’s per-
formance and robustness.

• Demonstration of superior performance: On a single 80GB A800
GPU, MixCon offers a maximum context length that is fourteen
times that of Llama-2-70B. In throughput analysis, it achieves a
throughput three times higher than Mixtral and double that of
Jamba on an 8K context length. Additionally, MixCon outper-
forms several publicly available models on various natural lan-
guage processing tasks and demonstrates efficiency with better
long-context throughput.

2 Related Work

2.1 Linear Attention Transformer

Efficient methods for computing attention, such as linear attention
mechanism, have been proposed to address the computational chal-
lenges of traditional Softmax-based self-attention in deep learning,
particularly in Transformer models, when dealing with large-scale
data.

Efficient strategies, such as orthogonal random features in Per-
former [6], separate Softmax functions in Efficient attention [29],
and a linear kernel in Castling-ViT [34], have been proposed to ap-
proximate Softmax operations and reduce computational complexity
in self-attention mechanism.

Nyströmformer [33] and SOFT [23] utilize matrix decomposition
techniques to approximate the self-attention matrix, with Nyström-
former employing the Nyström method for low-rank matrix approx-
imation and SOFT employing different operations and optimization
strategies.

Alternative softmax attention mechanisms, such as Hydra atten-
tion [3], EfficientVit [4], and Focused Linear Attention [14], provide
novel computational approaches to achieve self-attention effects, re-
ducing computational complexity, enhancing local feature extrac-
tion, and enabling concentrated information processing for specific
regions. Infini-Transformer [24] introduces Infini-attention, integrat-
ing compressed memory and masked local/long-term linear atten-
tion mechanism to handle infinite-length input sequences. However,
it introduces increased model complexity and potential challenges in
training stability and computational efficiency.

Despite the improvement in computational efficiency, linear at-
tention mechanism may still face challenges when processing long
sequences, which may affect their performance and efficiency. Ad-
ditionally, to maintain computational efficiency, these models may
sacrifice some complexity and expressive power in certain cases.

2.2 Linear RNN Model

Linear RNN models have provided new solutions for sequence mod-
eling tasks by optimizing the computational efficiency of traditional
RNNs while maintaining model performance.

The RWKV model [25] combines efficient parallel training of
Transformers and efficient reasoning of RNNs using linear attention
mechanism, achieving comparable performance to similarly scaled
Transformers while maintaining constant computational and mem-
ory complexity. It is currently the largest dense RNN model trained.

Structured state space models (SSMs), such as S4 [13] and its ex-
tension Mamba [12], offer efficient sequence modeling with linear
time complexity and selective information transmission. However,
they may lack adaptability and struggle to capture the complexity of
sequences with changing dynamics or adapt to varying input distri-
butions.

Hawk [10] is a linear architecture that incorporates residual pat-
terns, MLP blocks, and a loop block with RG-LRU for temporal
mixing. It outperforms Mamba in downstream tasks despite having
fewer training tokens. Griffin [10] combines gated linear recurrence
and local attention mechanism, excelling in language modeling tasks
and achieving high efficiency in both training and inference stages,
comparable to Transformers on TPU-v3.

However, models like Mamba, Hawk, and Griffin still inherit some
limitations from traditional sequence models, such as the lack of
feedback mechanism and adaptive control. These limitations may
hinder their performance in dynamic and complex sequence mod-
eling tasks, where adaptability and feedback are crucial.

2.3 MoE Model

MoE (Mixture of Experts) is a revolutionary technology that allows
for a significant increase in the number of model parameters while
having a relatively small impact on the computational efficiency of
training and inference. The core of MoE models is the sparse activa-
tion mechanism, where each processed token only uses a subset of
the parameters, greatly improving computational efficiency.

In MoE technology, the feedforward layers in Transformer models
have become the standard target for various expert modules because
these layers are relatively independent in computation and suitable
for the design and deployment of expert modules. Recently, Mixtral
8×7B [17] have begun to be applied in open scenarios. It achieves
comparable performance levels with only about 1/6 of the inference
computational budget of Llama 2 70B [31].

Jamba [22] is a large language model based on a mixed
Transformer-Mamba expert combination. By interleaving Trans-
former and Mamba layers, it combines the advantages of the two
model series and achieves state-of-the-art performance in standard
language model benchmarks and long context evaluations, particu-
larly outstanding when the context length reaches 256K tokens.

However, hybrid expert models, while offering advantages in
leveraging specialized knowledge, face challenges such as training
stability, high computational complexity, and complex parameter
management, requiring careful training strategies, efficient compu-
tational approaches, and effective parameter management techniques
to ensure model performance and efficiency.

Our MixCon model is proposed to address the limitations and
drawbacks of existing sequence modeling approaches, such as lin-
ear attention Transformers, MoE-Mamba, and linear RNN models,
by effectively capturing long-range dependencies and enhancing the
efficiency of sequence modeling.

3 Conba Model Architecture
Conba is based on the concept of modeling using state space and
incorporates feedback and adaptive control mechanism from control



theory. The mathematical description of Conba includes state space
equations, adaptive control mechanism, and neural network approxi-
mation. The architecture of Conba is depicted in Figure 1.
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Figure 1. The architecture of Conba. Conba integrates state space,
adaptive control, and neural network technologies.

3.1 State Space Equations

Conba represents sequence modeling tasks as a state space system.
The state space of Conba is defined as follows:

xk+1 = f(xk, uk), (1)

yk = h(xk), (2)

where xk is the state at time step k, uk is the input at time step k, yk
is the output at time step k, respectively. The functions f(·) and h(·)
are nonlinear functions that can be approximated by neural networks.

The state transition function f(·) captures the dynamic changes of
the sequence state over time. It can be decomposed into a linear part
Ak and a nonlinear part Bk:

f(xk, uk) = Akxk +Bkuk, (3)

where Ak and Bk are matrices with learnable parameters. The ob-
servation function h(·) maps the state xk to the output yk:

h(xk) = Ckxk, (4)

where Ck is a matrix with learnable parameters.
To address the challenges posed by long sequences, Conba em-

ploys a selective state space mechanism. This mechanism enables the
model to adaptively pass or forget information based on the current
data. The selective state space function is defined as follows:

S(xk, uk) = Swish(Wkxk + Ukuk + vk), (5)

where Wk and Uk are matrices with learnable parameters, vk is a
vector with learnable parameters, and Swish is the Swish activation
function. The selective state space function determines the relevant
information to be passed to the next state, thereby reducing compu-
tational complexity and improving efficiency.

To further enhance the model’s ability to capture long-range de-
pendencies, Conba introduces delayed state representation. The de-
layed state is defined as follows:

xd
k+1 = fd(xk, uk), (6)

where xd
k+1 is the delayed state at time step k + 1, and fd(·) is a

nonlinear function representing delayed dynamics. The delayed state
representation captures the influence of past states on the current
state, enabling the model to effectively model long-range dependen-
cies.

Conba further incorporates a dynamic state scaling mechanism to
adaptively adjust the impact of different state dimensions on the out-
put. The scaling function is defined as follows:

Rk(xk) = Swish(Zkxk + gk), (7)

where Zk is a matrix with learnable parameters, and gk is a vector
with learnable parameters. The scaling function adjusts the influence
of each state dimension on the output, allowing the model to adapt to
different input distributions and dynamically changing sequences.

To handle nonlinear and complex dependencies in sequences,
Conba adopts a hybrid architecture that combines recurrent neural
networks (RNNs) and feedforward neural networks (FNNs). RNNs
capture temporal dependencies, while FNNs learn complex input-
output relationships. The architecture is defined as follows:

xk+1 = Rk(fd(xk, uk)), (8)

yk = h(xk), (9)

where f(·) and h(·) are defined as in (3) and (4). This hybrid archi-
tecture endows Conba with the ability to capture long-range depen-
dencies and adapt to dynamic changes in sequences.

3.2 Adaptive Control Mechanism

Conba employs adaptive control mechanism to achieve the desired
performance and adaptability. The design objective of the control
mechanism is to minimize the tracking error between the actual out-
put yk and the desired output yd:

uk = −Kk(yk − yd) + ud, (10)

where Kk is the control gain matrix, yd is the desired output, and ud

is the desired input. The control gain matrix Kk is updated through
an adaptive mechanism:

Kk+1 = Kk − α
∂∥ek∥2
∂Kk

, (11)

where ∥ek∥2 denotes the 2-norm of the tracking error vector ek =
yk − yd, and α is the learning rate.

In summary, Conba leverages an adaptive control mechanism to
achieve flexible adaptation and efficient control in sequence model-
ing tasks, thereby enhancing the model’s performance and robustness
to effectively manage various complex and dynamic scenarios.

3.3 Implementation Details

3.3.1 Neural Network Approximation

Conba employs neural networks to approximate the functions f(·),
h(·), and the selective state space function S(·). The neural networks
are trained end-to-end to determine the optimal parameters for each
function. The architecture of these neural networks is crafted to cap-
ture the intricate relationships among inputs, states, and outputs, en-
abling Conba to proficiently model sequences with long-range de-
pendencies.



To capture the dynamic changes of sequence states over time,
Conba utilizes a Multi-Layer Perceptron (MLP) in the nonlinear part
of the state transition function f(·). This MLP consists of multiple
fully connected layers with Swish activation functions. The number
of layers and the number of neurons per layer are tunable hyperpa-
rameters that can be adjusted to achieve optimal performance.

The observation function h(·) also employs an MLP for approx-
imation, mapping the state xk to the output yk. The MLP for h(·)
has the same architecture as that for f(·), facilitating its learning of
complex input-output relationships.

The selective state space function S(·) is approximated using
SwiGLU, a hybrid activation function based on Swish and GLU.
SwiGLU captures temporal dependencies in sequences and deter-
mines the relevant information to pass to the next state based on the
current input and hidden state. SwiGLU consists of two parts and is
updated using the following equation:

S(xk, uk) = SwishGLU(xk, uk)

= Swish(W 1
kxk + U1

kuk + v1k)⊙ (W 2
kxk + U2

kuk + v2k),
(12)

where W 1
k , U1

k , W 2
k , and U2

k are matrices with learnable parameters,
and v1k and v2k are vectors with learnable parameters. Swish is the
Swish activation function, and ⊙ denotes the element-wise product.

Conba leverages neural network approximations with MLPs and
SwiGLU to adeptly capture intricate input-state-output relationships,
model long-range dependencies, and dynamically adapt, while fine-
tuning architecture and hyperparameters for optimal performance
across diverse sequence modeling tasks.

3.3.2 Further Expansion and Enhanced Robustness

To further enhance the robustness of the model, we can introduce
process noise wk and observation noise vk into the state space defi-
nition of Conba. The functions f(·) and h(·) , which are represented
by (3) and (4) respectively, are nonlinear functions that can be ap-
proximated using neural networks. The state transition function f(·)
captures the dynamic changes of the sequence state over time and
can be decomposed into a linear part Ak and a nonlinear part Bk:

f (xk, uk, wk) = Akxk +Bkuk + wk, (13)

where Ak and Bk are matrices with learnable parameters. The ob-
servation function h(·) maps the state xk to the output yk:

h (xk, vk) = Ckxk +Dkvk, (14)

where Ck and Dk are matrices with learnable parameters.
The incorporation of wk and vk enhances Conba’s resilience to

perturbations by introducing noise, enabling adaptation to data un-
certainties, with future research exploring noise types and intensities
to optimize robustness across sequence modeling tasks.

4 Model Architecture
MixCon is an innovative hybrid decoder architecture that skillfully
combines Transformer layers based on attention mechanism, Conba
layers, and MoE components. As shown in Figure 2, this unique
combination allows MixCon to achieve a flexible balance between
low memory usage, high throughput, and high quality, although these
goals may sometimes conflict. In terms of memory usage, it is impor-
tant to note that the total number of model parameters does not al-
ways reflect the actual memory requirements. In MoE models, only

the active parameters involved in forward propagation actually oc-
cupy memory, and the total number of parameters may be much
larger than the number of active parameters. Additionally, the KV
cache (used to store attention keys and values in the context) is a key
factor. When extending the Transformer model based on attention
to handle long contexts, the KV cache may become a performance
bottleneck. By carefully balancing between the attention and Conba
layers, we can significantly reduce the total size of the KV cache.
Our architecture design not only provides very few active parame-
ters but also reduces the KV cache by 32 times compared to Mamba.
The comparison results in Table 1 show that even in a 256K token
context, MixCon can maintain a smaller KV cache advantage.

Figure 2. Left: A single MixCon block; Right: Different colors correspond
to different layers in the left figure.

In terms of throughput, for short sequences, the proportion of
FLOPS (floating-point operations) taken up by attention operations
during inference and training is relatively small. However, when pro-
cessing long sequences, attention operations become the main com-
putational burden. In contrast, the Conba layer is more computa-
tionally efficient. Therefore, increasing the proportion of Conba lay-
ers, especially when processing long sequences, can significantly im-
prove overall throughput.

This paper describes a primary configuration aimed at providing
improved performance and efficiency. The basic unit of this config-
uration is a MixCon block, which can be repeatedly used in a se-
quence. Each MixCon block is composed of a combination of Conba
or attention layers. Each such layer contains an attention module or a
Conba module, followed by a multi-layer perceptron (MLP) or MoE
layer. Figure 2 (right) illustrates examples of different types of layers.
A MixCon block consists of 8 layers. In the MixCon, the MLP layer
is replaced by an MoE layer, which helps increase the model’s capac-
ity while maintaining a relatively small number of active parameters,
thus keeping the computational load relatively low.

For the implementation of the Conba layer, we adopt several
normalization techniques to help stabilize training at large model
scales. Specifically, we apply RMSNorm [36] to the Conba layer.
Other architectural details include grouped query attention (GQA)
[1], SwiGLU activation function [7], and MoE load balancing [11].



Table 1. Comparison of MixCon with recent open models in terms of total available parameters, active parameters, and KV cache memory in long contexts.

Available params Active params KV cache (256K context, 16bit)
Llama-2 [31] 6.7B 6.7B 128GB
Mamba [12] 3.0B 3.0B 64GB
Hawk [10] 7.0B 7.0B 32GB
Griffin [10] 14.0B 14.0B 32GB

Infini-Transformer [24] 7B 7B 32GB
Mixtral [17] 46.7B 12.9B 32GB
Jamba [22] 52B 12B 4GB

MixCon (Ours) 60B 5B 2GB

The vocabulary size of the model is 256K. The tokenizer uses BPE
for training [28], with each digit being a separate token.

5 Experiments and Evaluations

Figure 3. MixCon offers a maximum context length that is twice that of
Jamba, four times that of Mixtral, and fourteen times that of Llama-2-70B

on a single A800 80GB GPU.

5.1 Implementation Details

In the specific implementation, we carefully select a specific config-
uration to adapt to the computational capabilities of a single 80GB
A800 NVIDIA GPU while achieving optimal performance in terms
of quality and throughput. In our implementation, we have a se-
quence consisting of 4 MixCon blocks. Each MixCon block contains
8 layers (L = 8), with a ratio of 2 : 6 between attention layers and
Conba layers (a : c = 2 : 6). Every other layer (e = 2), we choose
to replace the MLP module with MoE. The model has a total of 16
experts (n = 16), and each token uses 2 top-level experts (K = 2).
We selected the ratio of a : c = 2 : 6 in our preliminary ablation
experiments as it was one of the variants with the highest compu-
tational efficiency among the best-performing variants in terms of
quality. These settings are designed to improve the performance and
efficiency of the model.

5.2 Context Length Analysis

The configuration of the experts is designed to make the model com-
patible with a single 80GB A800 GPU (with int8 weights) while hav-
ing enough memory for inputs. Additionally, we balanced n, K, and
e to ensure high quality while keeping computational requirements
and communication dependencies (memory transfers) under control.

Figure 4. ConMix achieves a throughput three times higher than Mixtral
and twice as high as Jamba when considering different batch sizes on a

single A800 GPU with an 8K context length.

Hence, we chose to replace the MLP module with MoE every other
layer, resulting in a total of 16 experts, with each token utilizing two
experts. These choices were inspired by previous work on MoE and
validated through preliminary experiments.

Figure 3 illustrates the maximum context length accommodated by
our MixCon implementation on a single 80GB A800 GPU compared
to Mixtral 8x7B and Llama-2-70B. The context length provided by
Conba is twice that of Jamba, four times that of Mixtral, and fourteen
times that of Llama-2-70B.

5.3 Throughput Analysis

To provide specific insights, we present the throughput results for
two particular configurations. In the first configuration, we consider
different batch sizes, a single A800 80GB GPU with int8 quantiza-
tion, an 8K context length, and generate an output of 512 tokens.
As shown in Figure 4, MixCon enables efficient processing of large
batches, resulting in a throughput (tokens/second) three times higher
than Mixtral and double that of Jamba.

In the second configuration, we focus on a single batch (batch size
= 1), four A800 GPUs without quantization, varying context lengths,
and generate an output of 512 tokens. As depicted in Figure 5, for
shorter context lengths, all models exhibit similar throughput. How-
ever, MixCon excels in handling long contexts, achieving a through-
put 1.5 times higher than Jamba and 4.5 times higher than Mixtral
when considering 128K tokens.

5.4 Dataset Evaluation

We report the results of a range of standard academic benchmark
tests to comprehensively evaluate the performance of the Conba



Table 2. Comparison of MixCon with other public models, where MixCon achieves similar or better performance.

HellaSwag WinoGrande ARC-E ARC-Challenge BoolQ QuAC MMLU BBH
Llama-2 [31] 70B 85.3 80.2 80.2 67.3 85.0 42.4 69.8 51.2

Mamba [12] 85.7 80.5 80.6 67.8 84.6 41.9 70.6 51.6
Hawk [10] 85.9 81.6 81.9 70.2 85.1 42.6 71.6 51.1
Griffin [10] 86.2 81.9 81.6 70.3 85.6 43.4 70.1 51.9

Infini-Transformer [24] 7B 87.6 82.4 76.9 69.5 88.9 41.6 70.2 50.1
Mixtral [17] 86.7 81.2 77.6 66.2 88.4 40.9 70.6 50.3
Jamba [22] 87.1 82.5 73.5 64.4 88.2 40.9 67.4 45.4

MixCon (Ours) 87.9 83.4 81.3 69.8 88.6 44.6 70.5 51.6

Figure 5. A single batch and four A800 GPUs, ConMix demonstrates a
throughput that is 1.5 times higher than Jamba and 4.5 times higher than

Mixtral when considering 128K tokens.

Table 3. Ablation Experiment Results on Academic Benchmark
Evaluation Dataset.

HellaSwag WinoGrande NQ
Only Attention 57.6 61.9 17.1

Only Conba 55.6 62.5 19.6
MixCon(a : c = 1:7, no MOE) 57.9 62.5 20.2
MixCon(a : c = 2: 6, no MOE) 57.8 62.6 21.2

model across various natural language processing tasks. These tasks
include:

• We assess the performance of Conba on four common-sense rea-
soning tasks: HellaSwag [35], WinoGrande [27], ARC-E and
ARC-Challenge [9]. These tasks aim to evaluate the model’s abil-
ity to understand and apply common-sense knowledge. We em-
ploy 10-shot, 5-shot, 0-shot, and 25-shot learning strategies for
these tasks, respectively.

• We examine the performance of Conba on two tasks: BoolQ [8]
and QuAC [5]. These tasks assess the model’s comprehension and
reasoning abilities on reading materials. We use 10-shot and zero-
shot learning strategies for BoolQ and QuAC, respectively.

• We also test Conba on two aggregation benchmark tests: MMLU
[15] and BBH [30]. These tasks evaluate the model’s understand-
ing and application of knowledge across multiple domains. We
employ 5-shot and 3-shot learning strategies for MMLU and BBH,
respectively.

Through these benchmark tests, we are able to comprehensively
evaluate Conba’s performance across different natural language pro-

cessing tasks and validate its adaptability to various task require-
ments. Table 2 provides a detailed comparison of MixCon’s perfor-

Figure 6. The training loss curves for Attention, Conba, and
Attention-Conba hybrid models with different Attention/Conba ratios (a : c

= 1:7 and 2:6)

mance against several publicly available models on common aca-
demic benchmarks for evaluating language models. Notably, Mix-
Con’s performance matches or exceeds that of similarly or larger-
scale advanced publicly available models, including Llama-2 70B
and Mixtral. Despite having fewer total parameters than Llama-2
(60B vs 70B), MixCon is a sparse model with only 5B active param-
eters, in contrast to Mixtral’s 12.9B active parameters. Furthermore,
as a model based on softmax attention, Mixtral has a larger memory
footprint when processing long sequences, requiring 32GB of KV
cache to handle 256 tokens. In contrast, due to its hybrid MixCon
architecture, even in such long contexts, MixCon only requires 2GB
of KV cache. In summary, MixCon demonstrates the capability of a
hybrid architecture to achieve performance comparable to state-of-
the-art Transformer models of the same scale, while also benefiting
from SSM advantages.

5.5 Ablation Experiments

In this section, we delve into the ablation experiments conducted dur-
ing the implementation of the Conba architecture, focusing on dif-
ferent design choices. We first showcase the benefits of combining
Attention and Conba layers, as well as the optimal proportion and
interleaving techniques for their combination. Through these experi-
ments, we discovered that the pure Conba model faced difficulties in
contextual learning, while the Attention-Conba hybrid demonstrated
contextual learning capabilities similar to pure Transformer models.
Subsequently, we explore the advantages of adding the MoE layer on
top of the Attention-Conba hybrid model.



Table 4. Results (F1) of MixCon’s long-context QA benchmark test, using a 3-shot format.

LongFQA CUAD NarrativeQA NQ Avg
Llama-2 [31] 0.38 0.41 0.29 0.42 0.38
Mamba [12] 0.32 0.42 0.39 0.38 0.38

Infini-Transformer [24] 0.43 0.42 0.36 0.68 0.47
Mixtral [17] 0.42 0.46 0.29 0.58 0.44
Jamba [22] 0.44 0.44 0.30 0.60 0.44

MixCon (Ours) 0.45 0.48 0.38 0.62 0.48

Table 5. Comparison of attention, Mamba, and MixCon on academic
benchmarks with a 7B model size and trained on 50B tokens.

HellaSwag WinoGrande NQ
attention 60.4 59.7 13.7
Mamba 60.2 55.8 14.0

MixCon (a : c = 2:6, no MOE) 57.9 72.5 20.2
MixCon (a : c = 2:6, MOE) 67.8 72.6 21.2

Table 6. Enhancing MixCon with MOE.

HellaSwag WinoGrande NQ
MixCon (no MoE) 57.9 72.5 20.2

MixCon + MoE 63.2 73.6 22.1

For these ablation experiments, we report the following metrics,
which demonstrate good informative performance even with small
datasets or smaller model scales: HellaSwag (10-shot) [35], Wino-
Grande (5-shot) [27], and Natural Questions closed-book (NQ, 5-
shot) [21]. The results in Table 3 indicate that even with limited re-
sources, the MixCon exhibits robust performance.

Figure 6 illustrates the training loss of these three architectures.
While the pure Transformer and Mamba exhibit similar convergence
patterns, the MixCon (without MoE) has lower loss throughout the
entire training process.

5.6 Long Context Evaluation

We evaluate the ability of MixCon to handle long contexts using
question-answering benchmark tests that contain lengthy inputs. To
do so, we reutilize five datasets from the longest-context dataset in
L-Eval [2] and structure them in a few-shot format (using three ex-
amples in all experiments).

Specifically, we evaluate the model on the following datasets: Nar-
rativeQA (narrative question-answering) [20], LongFQA (finance)
[2], Natural Questions (NQ; Wikipedia)[21], CUAD (legal) [16]. The
average input lengths in these datasets range from 6K to 62K tokens.
These context lengths are further augmented through the few-shot
format.

Table 4 summarizes the evaluation results in terms of F1 score.
MixCon outperforms Mixtral and Jamba on most datasets and
achieves superior performance on average. Additionally, due to the
computationally intensive nature of these long-context tasks, Mix-
Con demonstrates efficiency with better long-context throughput.

5.7 Benefits of Combining Attention and Conba

First, we investigate the ratio (a : c) between the attention layer and
the Conba layer using a model with 1.3 billion parameters trained on
250 billion tokens. As shown in Table 5, the performance of MixCon
surpasses that of pure attention or pure Mamba. The ratio between

the attention and Conba layers can be 2:6 or 1:7, with little perfor-
mance difference observed.

Next, we compare the performance of pure Transformer, pure
Mamba, and MixCon hybrid models with a model size of 7B pa-
rameters and trained on 50B tokens. As shown in Table 5, the pure
Mamba layer is competitive but slightly inferior to pure attention.
However, MixCon outperforms both pure models while achieving
better throughput than the pure Transformer.

5.8 The Impact of Mixed Experts

Recent studies suggest that the use of Mixture of Experts (MoE)
technology can enhance the performance of Transformer-based lan-
guage models while maintaining manageable computational re-
sources. Moreover, preliminary research findings indicate that MoE
can improve the performance of the Mamba layer, even when deal-
ing with smaller-scale models and datasets. However, there is a lack
of definitive evidence regarding whether MoE can be effectively in-
tegrated with large-scale state space models and our hybrid MixCon
architecture. In fact, the data presented in Table 6 demonstrates a sig-
nificant performance improvement when MoE technology is applied
in a large-scale context (5B parameters, trained on 50B tokens) of the
MixCon architecture. In the MoE variant, there are a total of n = 16
experts, with K = 2 experts used per token.

6 Conclusion

This paper presents MixCon, an innovative hybrid sequence mod-
eling architecture aimed at tackling the challenges of long-range
dependency capture and efficient sequence modeling. By integrat-
ing Transformer layers, Conba layers, and a mixed expert com-
ponent (MoE), MixCon effectively manages complex, dynamic se-
quences with high computational efficiency. Our experiments show
its significant advantages across various tasks, with efficient long se-
quence processing, low memory usage, and high throughput, making
it highly scalable and practical for large, complex datasets. Despite
its strengths, MixCon’s performance could be enhanced by refin-
ing state space representation, adaptive control for long sequences,
and domain-specific fine-tuning, along with optimizing training al-
gorithms to minimize computational demands. Overall, MixCon of-
fers a novel solution for sequence modeling, showcasing its prowess
in complex sequence handling and paving the way for transformative
applications in NLP and beyond.
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