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A B S T R A C T

Recent research has demonstrated the significance of incorporating invariance into neural networks. However,
existing methods require direct sampling over the entire transformation set, notably computationally taxing
for large groups like the affine group. In this study, we propose a more efficient approach by addressing the
invariances of the subgroups within a larger group. For tackling affine invariance, we split it into the Euclidean
group 𝐸(𝑛) and uni-axial scaling group 𝑈𝑆(𝑛), handling invariance individually. We employ an 𝐸(𝑛)-invariant
model for 𝐸(𝑛)-invariance and average model outputs over data augmented from a 𝑈𝑆(𝑛) distribution for
𝑈𝑆(𝑛)-invariance. Our method maintains a favorable computational complexity of (𝑁2) in 2D and (𝑁4) in
3D scenarios, in contrast to the (𝑁6) (2D) and (𝑁12) (3D) complexities of averaged models. Crucially, the
scale range for augmentation adapts during training to avoid excessive scale invariance. This is the first time
nearly exact affine invariance is incorporated into neural networks without directly sampling the entire group.
Extensive experiments unequivocally confirm its superiority, achieving new state-of-the-art results in affNIST
and SIM2MNIST classifications while consuming less than 15% of inference time and fewer computational
resources and model parameters compared to averaged models.
1. Introduction

Ideally, a machine learning model should adeptly extract task-
specific features while effectively disregarding irrelevant information.
For instance, applying modest geometric transformations to an image
should not essentially effect the features for classification. In other
words, an ideal model is sought to be invariant w.r.t. these trans-
formations. It is worth noting that CNN models inherently exhibit
translation invariance after global spatial pooling, which contributes
to their superiority over fully-connected neural networks that lack this
property. However, vanilla CNNs fall short of achieving invariance over
more intricate transformations, such as affine transformations.

To enhance invariance, a common approach is the utilization of data
augmentation (DA). For affine transformations encompassing rotations,
reflections, scalings, shears, and more, multiple augmentations are
typically sampled and then introduced into the model. Nevertheless,
this method places a substantial learning burden on the network, and
the invariance it offers lacks theoretical guarantees. Some alternative
techniques (Benton, Finzi, Izmailov, & Wilson, 2020; Immer, van der
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Ouderaa, Rätsch, Fortuin, & van der Wilk, 2022; Laptev, Savinov, Buh-
mann, & Pollefeys, 2016; Miao et al., 2023) involve averaging model
outputs across data augmented by the considered transformation group.
For instance, Lila (Immer et al., 2022) and Augerino (Benton et al.,
2020) are representative models that employ the reparameterization
technique to represent the distribution of the transformation. However,
it is important to note that the number of required samples scales
with the size of the considered transformation group, rendering them
computationally expensive for the large affine group.

In addition to averaged models, several works (Cohen & Welling,
2016; Finzi, Stanton, Izmailov, & Wilson, 2020; Sosnovik, Szmaja,
& Smeulders, 2020; Weiler, Hamprecht, & Storath, 2018) have em-
ployed group convolutions to address invariance over relatively simple
groups like rotations and scalings. These approaches are designed to
introduce hard-coded symmetries into neural networks by means of
group convolutions. Finzi et al. (2020) introduce a universal technique
to build a convolutional layer with equivariance to transformations
from any designated Lie group featuring a surjective exponential map.
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Table 1
Summary of notations in this paper.

Symbol Description Symbol Description

 Transformation group 𝜋𝑔 Group action of 𝑔
𝑔 Transformation in  𝑓 Input data
𝑈𝑆(𝑛) Uni-axial scaling group 𝛹 Network model
𝐼𝑆(𝑛) Isotropic scaling group 𝜇𝜃 Parameterized distribution of group
𝑆𝑂(𝑛) Special orthogonal group 𝜃 Parameter of the distribution
𝑇 (𝑛) Translation group 𝜖𝑖 Learnable parameters
𝐸(𝑛) Euclidean group 𝑆 Transformation set
Aff(𝑛) Affine group 𝑠 Transformation in 𝑆
𝑖 Subgroup of  𝑈 Uniform distribution
𝑔𝑖 Elements in 𝑖 𝑁 Number of samples
𝐶𝐸 Classification loss dim Dimensions of the group
𝑅 Regularization loss 𝜎 Parameter of the uni-axial scaling
𝑣𝑎𝑟 Variance penalty loss 𝛴𝜎 Transformation matrix of uni-axial scaling

However, their method does not support invariance to affine trans-
formations. MacDonald, Ramasinghe, and Lucey (2022) proposed a
method based on group convolutions to achieve affine equivariance by
sampling from the Haar measure of the group using the Metropolis
Sampling method. However, as the depth of the network increases,
the computational complexity of the evaluation function grows ex-
ponentially, significantly reducing the utility and efficiency of the
model. Furthermore, these model sizes also scale with the group sizes,
rendering them computationally expensive for the large affine group.
Some alternative methods propose the use of steerable CNNs (Cohen
& Welling, 2017; Shen, Hong, She, Ma, & Lin, 2022; Weiler & Cesa,
2019; Weiler, Geiger, Welling, Boomsma, & Cohen, 2018). These net-
works can decouple computational costs from group size by analytically
computing invariant filters. However, it is important to note that these
methods are primarily applicable to the Euclidean group 𝐸(𝑛) and
ts subgroups, which consist of rigid transformations. They cannot be
eadily applied to the more general affine group.

In general, we have observed that achieving complex invariance
an be simplified by breaking it down into simpler components. In the
ontext of our work, where we focus on achieving affine invariance,
e recognize that an affine transformation can be decomposed into
combination of uni-axial scalings and rigid transformations. Con-

equently, we address affine invariance by separately handling the
nvariance of uni-axial scalings and rigid transformations. To ensure
nvariance to uni-axial scalings, we compute the model output averaged
ver uni-axial scaling augmentations. For achieving invariance to rigid
ransformations, we utilize Rigid transformation Invariant CNNs (RI-
NNs) (Shen et al., 2022; Weiler & Cesa, 2019) as the backbones,
omplemented by a self-supervision regularization, which nearly guar-
ntees the invariance of the entire model over rigid transformations.
ompared to methods such as Augerino (Benton et al., 2020) and
ila (Immer et al., 2022), which achieve invariance by averaging vanilla
odels over affine transformations, our approach is significantly more

fficient on numbers of parameters, inference time and computation
ccupation. This efficiency arises from the fact that the former methods
onsider all affine augmentations primarily, whereas ours only needs
ampling over the uni-axial scalings.

We also take into consideration the degree of invariance. Typically,
igid transformations do not change the label of an image. However,
xcessive scaling along a single axis can distort an image significantly,
aking it difficult to recognize. Therefore, it is vital to confine uni-axial

cale invariance within a reasonable range to prevent unwarranted
iases in neural networks that could lead to performance degradation.
aking a cue from Augerino (Benton et al., 2020), we employ an adap-
ive training approach to determine the acceptable range of uni-axial
cale invariance. This adaptive process automatically excludes augmen-
ations that result from excessive scaling. Consequently, we introduce
he Scale-Adaptive Nearly Affine Invariant Network (SANAIN).

Our experiments serve as validation, confirming that our method
ffectively maintains affine invariance while outperforming counter-
arts like Augerino (Benton et al., 2020) and Lila (Immer et al., 2022),
2

all with a substantially reduced computational load. Furthermore, our
SANAINs significantly enhance the performance of RI-CNNs with a
manageable increase in computational cost, thanks to their superior
invariance incorporation. To evaluate the performance on the practical
scenarios, we conduct experiments on the ImageNet-1k (Deng et al.,
2009). Notably, our approach attains new state-of-the-art (SOTA) re-
sults in affNIST and SIM2MNIST classification tasks. The notations in
this paper are in Table 1.

Our contributions are summarized as follows:

• To the best of our knowledge, this represents the first successful
attempt at achieving intricate affine invariance at an affordable
computational cost. We accomplish this by breaking down com-
plex invariances into more manageable components. Thanks to
this technique, the computational complexity of SANAIN is only
(𝑁2) in 2D and (𝑁4) in 3D, significantly more efficient than
the (𝑁6) and (𝑁12) complexities of averaged models (Benton
et al., 2020; Immer et al., 2022) in 2D and 3D, not to mention
the staggering (𝑁6𝐿) and (𝑁12𝐿) complexity associated with
MacDonald et al.’s method (MacDonald et al., 2022) in these two
cases.

• We employ adaptive learning techniques to determine the range
of uni-axial scale invariance based on data, allowing us to pre-
cisely define the extent of affine invariance.

• In our experimental evaluations, our models effectively preserve
affine invariance, surpassing previous methods on four compre-
hensive benchmarks, spanning both 2D and 3D scenarios. In
contrast to the approach of averaging model outputs with aug-
mented data, as seen in Lila and Augerino, our models demand
less than 15% of the processing time and significantly fewer
computational resources. Notably, we attain new state-of-the-art
results in affNIST and SIM2MNIST classifications.

. Related work

.1. RI-CNNs

In a general context, RI-CNNs are designed to introduce essential
ard-coded rigid transformation invariance into CNNs without the
eed for explicit learning. Initially applied to 2D images, Cohen &
elling (Cohen & Welling, 2016) introduced the concept of group

orrelation to incorporate 4-fold rotation invariance into CNNs. Sub-
equent research endeavors (Hoogeboom, Peters, Cohen, & Welling,
018; Marcos, Volpi, Komodakis, & Tuia, 2017; Shen, He, Lin, & Ma,
020; Weiler, Hamprecht, & Storath, 2018; Zhou, Ye, Qiu, & Jiao, 2017)
ave aimed to leverage larger rotation groups for enhanced invariance.
otably, Worrall & Brostow (Worrall & Brostow, 2018) extended group
orrelations into the realm of 3D imaging, introducing CubeNet, an
rchitecture invariant to transformations within the cube group. A
imilar approach has found applications in the field of medical image
nalysis (Winkels & Cohen, 2019).

The aforementioned approaches predominantly achieve invariance
hrough the utilization of group correlations, where the model’s size
cales in accordance with the size of the transformation group. Conse-
uently, these methods face practical limitations when applied to large
r continuous groups. An alternative direction was explored by Worrall
t al., who introduced H-Nets (Worrall, Garbin, Turmukhambetov, &
rostow, 2017). H-Nets are capable of producing invariant features
oncerning arbitrary 2D rotations. In an effort to disentangle computa-
ional costs from group sizes, Cohen and Welling introduced steerable
NNs (Cohen & Welling, 2017). These models represent feature spaces
s feature fields, and invariant filters are derived by solving specific
onstraints. In the 2D domain, E2CNNs (Weiler & Cesa, 2019) and
he work by Jenner (Jenner & Weiler, 2021) are among the most
ersatile steerable CNNs, as they can handle arbitrary feature fields of
(2) and its subgroups. In the 3D realm, PDO-s3DCNNs (Shen et al.,
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2022) and Cesa’s research (Cesa, Lang, & Weiler, 2021) stand as the
most comprehensive, as they can accommodate any subgroup of 𝐸(3).
However, it is important to note that these techniques are primarily
geared towards addressing rigid transformations and are not equipped
to handle more general affine transformations.

2.2. Affine invariant models

The most commonly employed technique for enforcing invariance
is data augmentation, as demonstrated, for instance, in Krizhevsky,
Sutskever, and Hinton (2017). The fundamental concept involves en-
riching the training dataset with transformed samples, including affine
augmentations. Jaderberg et al. introduced spatial transformer net-
works (STN) (Jaderberg, Simonyan, Zisserman, et al., 2015), which
utilize a differentiable module to actively transform feature maps.
In Sabour, Frosst, and Hinton (2017) and Hinton, Sabour, and Frosst
(2018), capsules are employed to represent location information and
enforce invariance. Guo, Zhu, Liu, and Yin (2019) adopted an unsuper-
vised approach to learn equivariant features, while Xu, Wang, Sullivan,
and Zhang (2020) utilized a multi-scale maxout CNN (Goodfellow,
Warde-Farley, Mirza, Courville, & Bengio, 2013) to acquire affine-
invariant representations. AffNet (Mishkin, Radenovic, & Matas, 2018)
and ASLFeat Luo et al. (2020) specifically focused on learning local
affine invariance for image matching tasks. In summary, these methods
achieve invariance primarily through the learning process, which can
impose a substantial computational burden on networks, particularly
when dealing with a significantly large transformation group like the
affine group.

To directly integrate invariance into models, Laptev et al. (2016)
employed parallel Siamese architectures for the considered transforma-
tion group and applied an invariant pooling operator to their outputs to
establish invariance. Building upon this concept, Benton et al. (2020)
introduced Augerino, which can further adapt to the extent of in-
variance in data during training. Following Augerino (Benton et al.,
2020), Immer et al. (2022) proposed Lila, a gradient-based method
for automated data augmentation selection. However, their models’
sizes scale proportionally with the group sizes, rendering them com-
putationally demanding when applied to the affine group in practical
scenarios. Esteves, Allenblanchette, Zhou and and Daniilidis (2018)
introduced polar transformer networks (PTN), which leveraged STN to
ensure translation invariance, subsequently utilizing group correlations
to achieve invariance over rotations and dilations by transforming
inputs into log-polar coordinates. Nevertheless, PTN essentially only
achieves invariance over 2D similarity transformations and cannot
accommodate other transformations within the affine group, such as
uni-axial scalings. MacDonald et al. (2022) introduced a module de-
signed to maintain equivariance for arbitrary Lie groups. However, as
network layers increase, the computational complexity of the evalua-
tion function grows exponentially, significantly reducing the model’s
practicality and efficiency.

3. Preliminaries

3.1. Affine invariance

The affine group is a relatively large group. It represents affine
transformations and encompasses translations and all invertible linear
transformations, such as rotations, scalings, shears, and more. It is
typically denoted as Aff(𝑛) when defined over R𝑛. Formally, for a given
ector 𝑥 ∈ R𝑛, an affine transformation 𝑔 operates on 𝑥 as follows:

𝑥 = 𝐴𝑥 + 𝑡, (1)

here the linear transformation is represented by 𝐴 ∈ GL(𝑛,R), and
he translation transformation by 𝑡 ∈ R𝑛. Here, GL(𝑛,R) denotes the
eneral linear transformation group, encompassing all invertible linear
3

ransformations expressible as invertible real matrices of size 𝑛 × 𝑛.
Table 2
This table illustrates the dimensions of different transformation groups, emphasizing
the substantial size difference between the affine group and the others.

𝑈𝑆(𝑛) 𝐼𝑆(𝑛) 𝑆𝑂(𝑛) 𝑇 (𝑛) 𝐸(𝑛) Aff(𝑛)

𝑛 = 2 1 1 1 2 3 6
𝑛 = 3 1 1 3 3 6 12

When 𝐴 is constrained to belong to the orthogonal transformation
group 𝑂(𝑛), meaning 𝐴𝑇𝐴 = 𝐼𝑛, the affine group simplifies to the
igid transformation group, also known as the Euclidean group 𝐸(𝑛).
pecifically, the affine group includes several subgroups, such as the
igid transformation group 𝐸(𝑛), the special orthogonal transforma-
ion/rotation group 𝑆𝑂(𝑛), the translation group 𝑇 (𝑛), the isotropic
caling group 𝐼𝑆(𝑛) and the uni-axial scaling group 𝑈𝑆(𝑛). The uni-
xial scaling group performs scaling along a single axis. In Table 2,
e provide the dimensions of these groups for ease of comparison.
otably, the affine group is considerably larger than its subgroups,
specially as the dimensions increases, which results in significantly
igher computational costs when dealing with it.

In general, the invariance of a model reflects its robustness to
ransformations. Essentially, a model is considered invariant to a trans-
ormation set  if its outputs remain unchanged when a transformation
s applied to the inputs. Formally, for a model 𝛹 to be considered
nvariant, it should satisfy the condition that for all transformations 𝑔
ithin the set , the following holds:

𝛹 [𝜋𝑔[𝑓 ]] = 𝛹 [𝑓 ], (2)

here 𝑓 ∶ R𝑛 → R𝐾 represents the input data function, 𝐾 is the number
f channels, and 𝜋𝑔 describes how the transformation 𝑔 acts on the
nputs, as given by the equation:

𝑔[𝑓 ](𝑥) = 𝑓 (𝑔−1𝑥), (3)

here 𝑥 ∈ R𝑛 is the coordinate. 𝛹 is deemed affine invariant if this
ondition, as described above, holds when the transformation set 
omprises affine transformations, denoted as Aff(𝑛).

.2. Averaged models for invariance

In order to construct a model that exhibits invariance over a defined
et of transformations, aggregating the outcomes of a model over
nputs transformed by every operation within the transformation set
s a readily available and user-friendly approach. To the best of our
nowledge, Augerino (Benton et al., 2020) and Lila (Immer et al., 2022)
epresent notable examples of employing data augmentation to learn
nvariance.

The Augerino model (Benton et al., 2020) achieves invariance over
transformation set through augmentation. This approach involves

ampling multiple augmentations from a distribution and subsequently
pplying these augmentations to an input, resulting in several aug-
ented input samples. These augmented samples are then processed

hrough the model, and the final prediction is derived by averaging
he model outputs.

Formally, we consider working with a transformation set 𝑆. Given a
eural network 𝛹 , we can create a new model �̄� , which approximates
nvariance to transformations in 𝑆 by averaging the outputs using a
arameterized distribution 𝜇𝜃 over the transformations 𝑔 ∈ 𝑆. In other
ords,

̄ [𝑓 ] = E𝑔∼𝜇𝜃𝛹 [𝜋𝑔[𝑓 ]]. (4)

Specifically, the set of affine transformations constitutes an alge-
raic structure known as a Lie Group. For 2D affine transformations,
e can parameterize the distribution 𝑔 ∼ 𝜇𝜃 as follows:

𝜖 = exp

( 6
∑

𝜖𝑖𝜃𝑖𝐺𝑖

)

, (5)

𝑖=1
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where exp represents the matrix exponential function, 𝜖𝑖 ∼ 𝑈 [−1, 1],
and 𝑈 [−1, 1] signifies the uniform distribution within the range of −1
to 1. The terms 𝐺1,… , 𝐺6 correspond to translation in the 𝑥-direction,
translation in the 𝑦-direction, rotation, scaling in the 𝑥-direction, scal-
ing in the 𝑦-direction, and shearing, respectively. The 𝜃𝑖 values denote
the learnable bounds of a uniform distribution across the various
exponential generators 𝐺𝑖 within the Lie Algebra.

In practice, the implementation of Eq. (4) involves approximating it
by calculating the model output 𝛹 [𝜋𝑔[𝑓 ]] averaged over a finite number
of samples from 𝑔 ∼ 𝜇𝜃 , using a Monte Carlo estimator. For the 2D
affine group, we consider taking 𝑁 samples for each 𝜖𝑖 ∈ 𝑈 [−1, 1]. This
would require generating 𝑁6 transformed augmentations, resulting in
significant storage and computational overhead, especially when 𝑁
is relatively large. Consequently, Benton et al. (2020) found success
primarily with the 2D rotation group in practical scenarios. This is
because the 2D rotation group has just one dimension, and hence, only
requires 𝑁 samples. However, when applied to more complex groups,
its performance significantly degrades. Moreover, when attempting to
employ this method with larger transformation groups, such as the
3D affine group, which has a dimension of 12, the computational
complexity becomes prohibitively high at (𝑁12).

Lila (Immer et al., 2022) represents an improved iteration of
Augerino (Benton et al., 2020). It approaches augmentation as an in-
variance issue within the priors of neural network functions, employing
Bayesian model selection techniques. They optimize the objective using
a differentiable Kronecker-factored Laplace approximation, eliminating
the need for manual intervention or validation. However, similar to
Augerino (Benton et al., 2020), achieving invariance over a signifi-
cantly larger transformation group remains highly inefficient due to
the substantial computational demands involved.

4. Affine invariant neural networks

4.1. Overview

Acknowledging the current limitations of existing techniques in ef-
ficiently incorporating affine invariance into models without imposing
extensive computational overhead, our objective is to provide a viable
solution. We recognize that the intricate invariance of complex trans-
formations can be effectively achieved by decomposing it into more
manageable components with simpler group invariance. Therefore, our
primary focus in this endeavor is to introduce a practical approach
that involves breaking down the complex affine invariance, offering a
method to tackle this challenge.

As detailed in Section 4.2, we contend that an affine transforma-
tion can be dissected into a composition of uni-axial scalings and
rigid transformations. Consequently, we address these two types of
invariances individually to attain affine invariance. An overview of
architecture of SANAIN is presented in Fig. 1. Specifically, for uni-axial
scale invariance, we sample multiple uni-axial scale augmentations of
an input from a learnable distribution and subsequently input them
into a parallel Siamese network, with their outputs being averaged. For
the other form of invariance, we employ RI-CNNs as the backbones of
the parallel Siamese network, and the invariance of the entire network
over rigid transformations is nearly ensured through self-supervised
regularization. During training, our network is supervised by three loss
terms: a cross-entropy loss for classification, a regularization loss to
encourage the broadness of the learnable augmentation distribution,
and a variance loss to reduce output variance while enforcing rigid
transformation invariance across the entire network in a self-supervised
manner. Additionally, the extent of uni-axial scaling can be adaptively
adjusted. Subsequent sections delve into the design principles and the
4

major components of our framework in detail. a
4.2. Decomposition of the affine invariance

We observe that complex invariance can be obtained by decompos-
ing it into simpler components. We denote a complex group as . This
group  can be decomposed into several subgroups 1,2,… ,𝑛. This
implies that any element 𝑔 in  can be represented as:

𝑔 = 𝑔1𝑔2 ⋯ 𝑔𝑚, (6)

where for any 𝑖, there exists a corresponding 𝑗 such that 𝑔𝑖 ∈ 𝑗 .
To attain  invariance, we can deconstruct it into the individ-

ual invariances of 1,2,… ,𝑛. Suppose there exists a model 𝛹 that
maintains invariance over 1,2,… ,𝑛, which implies:

∀𝑔𝑖 ∈ 𝑖, 𝛹 [𝜋𝑔𝑖 [𝑓 ]] = 𝛹 [𝑓 ] (7)

Then, for all elements 𝑔 ∈ , we have:

𝛹 [𝜋𝑔[𝑓 ]] = 𝛹 [𝜋𝑔1𝑔2⋯𝑔𝑚 [𝑓 ]]

= 𝛹 [𝜋𝑔1𝜋𝑔2 ⋯𝜋𝑔𝑚 [𝑓 ]]

= 𝛹 [𝜋𝑔2 ⋯𝜋𝑔𝑚 [𝑓 ]]

⋯

= 𝛹 [𝑓 ]. (8)

Thus, achieving  invariance is realized through the invariance of
1,… ,𝑛.

Intuitively, when considering the complex group  and its compo-
nents 1,2,… ,𝑛, if the following inequality holds:

dim(1) + dim(2) +⋯ + dim(𝑛) < dim(), (9)

it becomes more efficient to address the individual components rather
than dealing with the larger group  as a whole.

Taking the affine group as an example, we firstly leverage some
mathematical tools to simplify it. Formally, we have the following
conclusion.

Proposition 1. An affine transformation can be decomposed as a compo-
sition of rigid transformations and uni-axial scalings.

The proof of Proposition 1 is presented in Appendix. According
to Proposition 1, for any affine transformation 𝑔 ∈ Aff(𝑛), it can be
decomposed as

𝑔 = 𝑒1𝑠1𝑒2𝑠2 ⋯ 𝑒𝑚𝑠𝑚, (10)

where 𝑒𝑖 ∈ 𝐸(𝑛) and 𝑠𝑖 ∈ 𝑈𝑆(𝑛). Suppose that a model 𝛹 is invariant
ver both 𝐸(𝑛) and 𝑈𝑆(𝑛), i.e.,

𝑒 ∈ 𝐸(𝑛), 𝑠 ∈ 𝑈𝑆(𝑛), 𝛹 [𝜋𝑒[𝑓 ]] = 𝛹 [𝜋𝑠[𝑓 ]] = 𝛹 [𝑓 ], (11)

t is easy to deduce that

[𝜋𝑔[𝑓 ]] = 𝛹 [𝜋𝑒1𝑠1𝑒2𝑠2⋯𝑒𝑚𝑠𝑚 [𝑓 ]] = 𝛹 [𝑓 ], (12)

.e., this model is naturally invariant over affine transformations. As a
esult, we can separately address uni-axial scale and rigid transforma-
ion invariances, which are considerably more manageable, ultimately
chieving affine invariance.

Some prior works (Esteves, Allenblanchette, Zhou & and Daniilidis,
018; Xu et al., 2020) have also devised invariant neural networks
y handling certain basic invariances independently, such as transla-
ions, dilations, and rotations. However, they primarily handle isotropic
calings, where all axes are scaled uniformly, rather than uni-axial
calings. Specifically, they decompose the 2D similarity transformations
roup SIM(2) into translation group 𝑇 (2), rotation group 𝑆𝑂(2), and the
sotropic scaling group 𝐼𝑆(2). This decomposition results in:

im(SIM(2)) = dim(𝑇 (2))+dim(𝑆𝑂(2))+dim(𝐼𝑆(2)) = 2+1+1 = 4. (13)

ence, this decomposition does not significantly improve the efficiency
f calculating invariance for SIM(2). Additionally, their approaches are
estricted to the 2D similarity transformations group SIM(2), rather than
ddressing the entire affine group, which distinguishes them from our

pproach.
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Fig. 1. The architecture of our SANAIN model. Firstly, multiple augmentations are sampled from a learnable distribution over the uni-axial scale transformation group and applied
to an input, resulting in multiple augmented inputs. These augmented inputs then pass through RI-CNNs with shared weights. The final prediction is obtained by averaging over
the multiple outputs. Our model is supervised by three loss terms: a regularization loss 𝑅 to encourage the diversity of the augmentation distribution, a cross-entropy loss 𝐶𝐸
for classification, and a variance loss 𝑣𝑎𝑟 to enforce rigid transformation invariance across the entire network by reducing output variance.
4.3. SANAIN

Now, our initial consideration pertains to the degree of affine invari-
ance, which will guide our approach to handling rigid transformations
and uni-axial scale invariance separately.

For uni-axial scale transformations, we employ the concept of an
average model, denoted as follows:

�̄� [𝑓 ] = E𝑠𝛹 [𝜋𝑠[𝑓 ]], (14)

where 𝑠 denotes the uni-axial scale transformation. It is evident from
Eq. (14) that �̄� [𝑓 ] remains invariant to uni-axial scale transformations.

When addressing rigid transformations such as rotations and trans-
lations, they inherently do not alter the label of an image. However,
when in the case of uni-axial scalings, if an image undergoes an extreme
scaling along a single axis, it can become severely distorted and may
no longer be recognizable to humans. Consequently, it is essential to
constrain the extent of uni-axial scale invariance within a reasonable
range. Excessive invariance, as mentioned earlier, should be avoided
because it can introduce unexpected biases into the model, ultimately
degrading its performance.

In accordance with the approach introduced by Augerino (Benton
et al., 2020), our methodology addresses the aforementioned challenge
through adaptive learning of uni-axial scaling extent. To be specific, we
parameterize uni-axial scaling as follows:

𝛴𝜎 =
[

𝜎 0
0 1

]

, (15)

where 𝜎 represents the scaling factor applied to the first dimension of
the input. To constrain the scale factor 𝜎 within a reasonable range
for maintaining uni-axial scale invariance, we limit 𝜎 to the interval
[exp(−𝜃), exp(𝜃)]. To ensure the parameter 𝜃 remains positive, we intro-
duce a learned parameter 𝜃, where 𝜃 is defined as 𝜃 = log(1 + exp(𝜃)).
Subsequently, we reparameterize the scale as 𝜎 = exp(𝜖𝜃), where 𝜖 ∼
𝑈 [−1, 1]. Consequently, our adaptation of Augerino for uni-axial scale
invariance can be represented as follows:

�̄� [𝑓 ] = E𝑠𝛹 [𝜋𝑠[𝑓 ]] = E𝜖∼𝑈 [−1,1]𝛹 [𝜋𝛴exp(𝜖𝜃)
[𝑓 ]], (16)

where 𝛹 signifies the backbone models with shared weights.
In practice, it is essential to recognize that a less constrained model

often achieves a lower training loss when employing the cross-entropy
loss 𝐶𝐸 for classification. Interestingly, this outcome contradicts the
prior expectation that a model should inherently maintain a certain
degree of invariance. To address this concern and steer the training
process towards solutions that inherently incorporate invariance, we
draw inspiration from Benton et al. (2020) and introduce a regulariza-
tion penalty into the network loss function. This penalty is designed
5

to encourage broader distributions over augmentations, and it can be
formally expressed as:

𝑅 = −‖𝜃‖2. (17)

To tackle the challenge of achieving rigid transformation invariance,
we adopt RI-CNNs as the backbone networks 𝛹 in the formulation
presented in Eq. (16), which have been extensively explored in prior
research, with notable contributions from studies such as Cesa et al.
(2021), Jenner and Weiler (2021), Shen et al. (2022), Weiler and Cesa
(2019).

RI-CNNs are particularly noteworthy for their capability to attain
𝐸(𝑛)-invariance, a property that greatly contributes to robust affine
invariance. However, empirical findings from studies like (Shen et al.,
2022; Weiler & Cesa, 2019) suggest that models invariant to discrete
subgroups may exhibit superior performance, despite achieving only
approximate invariance over 𝐸(𝑛). As a result, we adopt different RI-
CNNs as needed to implement the desired level of invariance in our
approach.

We now delve into the investigation of the model 𝛹 for its rigid
transformation invariance. We assume that the inputs 𝑓 follow a
rotation-invariant distribution, which leads to the following analysis:

E𝑓E𝑒|�̄� [𝑓 ] − �̄� [𝜋𝑒[𝑓 ]]|
=E𝑓E𝑒|�̄� [𝑓 ] − 𝛹 [𝑓 ] + 𝛹 [𝜋𝑒[𝑓 ]] − �̄� [𝜋𝑒[𝑓 ]]|
≤E𝑓 |�̄� [𝑓 ] − 𝛹 [𝑓 ]| + E𝑓E𝑒|𝛹 [𝜋𝑒[𝑓 ]] − �̄� [𝜋𝑒[𝑓 ]]|
=E𝑓 |E𝑠𝛹 [𝜋𝑠[𝑓 ]] − 𝛹 [𝑓 ]| + E𝑓E𝑒|𝛹 [𝜋𝑒[𝑓 ]] − E𝑠𝛹 [𝜋𝑠𝜋𝑒[𝑓 ]]|
=2E𝑓 |𝛹 [𝑓 ] − E𝑠𝛹 [𝜋𝑠[𝑓 ]]|.

Employing Chebyshev’s inequality, we find that for any 𝛿 > 0:

𝑃𝑟(|𝛹 [𝑓 ] − E𝑠𝛹 [𝜋𝑠[𝑓 ]]| > 𝛿) <
𝑉 𝑎𝑟𝑠(𝛹 [𝜋𝑠[𝑓 ]])

𝛿2
, (18)

where 𝑉 𝑎𝑟(⋅) represents the average of the pointwise variance of output
features. Therefore, enforcing rigid transformation invariance can be
achieved by driving the above variance towards zero during training.
This objective can be realized by incorporating a penalty loss term 𝑣𝑎𝑟.
Ultimately, the loss function takes the form:

𝐿𝑜𝑠𝑠 =𝐶𝐸 + 𝜆𝑅 + 𝜇𝑣𝑎𝑟

=𝑙(E𝑠𝛹 [𝜋𝑠[𝑓 ]]) − 𝜆‖𝜃‖2 + 𝜇𝑉 𝑎𝑟𝑠𝛹 [𝜋𝑠[𝑓 ]], (19)

where 𝑙 represents the cross-entropy loss utilized for classification,
and 𝜆 and 𝜇 are associated weights, which are set to 0.1 and 0.001,
respectively. During training, multiple samples are drawn from the
learnable augmentation distribution to estimate expectations and vari-
ance in Eq. (19), in our experiments. During testing, we sample multiple
transformations from the discovered distribution and make predictions
by averaging over the predictions generated by the transformed inputs,
approximating Eq. (16).
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Table 3
Computational complexity of testing comparison for achieving affine invariance
etween output-averaged-based Lila, group correlations-based methods proposed by
acDonald et al. and SANAIN. In this table, 𝑁 represents the number of samples

for each degree of freedom.
Aff(2) Aff(3)

Augerino (Benton et al., 2020) (𝑁6) (𝑁12)
Lila (Immer et al., 2022) (𝑁6) (𝑁12)
MacDonald et al. (2022) (𝑁6𝐿) (𝑁12𝐿)

SANAIN (ours) ≤ (𝑁2) ≤ (𝑁4)

4.4. Computational complexity analysis

In essence, an RI-CNN, implemented using group correlations, em-
ploys one kernel for each transformation considered, except for trans-
lations, since a CNN naturally exhibits translation equivariance. In the
case of 𝐸(2) with one additional degree of freedom, if we sample
𝑁 transformations for this degree of freedom, we require 𝑁 kernels.
Consequently, SANAIN, which is invariant over Aff(2), exhibits a com-
putational complexity of only (𝑁2), with 𝑁 kernels for RI-CNNs and
𝑁 for uni-axial scale copies. Notably, when it comes to the 3D affine
group, the computational complexity of SANAIN is 𝑂(𝑁4), with 𝑁3

dedicated to RI-CNNs and 𝑁 for copies. It is important to highlight that
our computational cost can be further reduced by employing steerable
CNNs (Shen et al., 2022; Weiler & Cesa, 2019) as the backbones, as
they are more efficient than group correlations.

As discussed in Section 2.2, while there are numerous models
robust to affine transformations, most existing methods do not exhibit
true invariance to such transformations, such as PTN (Esteves, Allen-
blanchette, Zhou & and Daniilidis, 2018) and STN (Jaderberg et al.,
2015). Therefore, we only compare the performance of these models
with our method in practical experiments and do not compare the
computational complexity here.

There are two main categories of methods for achieving invariance
to transformation groups in existing implementations. The first type
relies on averaged models, where the approach involves averaging
the model outputs for data augmentation to achieve invariance to
affine transformations. Models relying on averaged outputs, such as
Augerino (Benton et al., 2020) and Lila (Immer et al., 2022), ex-
hibit much higher computational complexity. For 2D affine invariance,
the testing-stage model complexity is (𝑁6). In the case of 3D, the
testing-stage model’s sampling complexity increases to (𝑁12).

The second mainstream approach is the design of neural networks
based on group correlation. To the best of our knowledge, currently,
only the method proposed by MacDonald et al. (2022) achieves in-
variance to affine transformations through group correlation. They
attempted to achieve affine invariance using group correlations by
sampling from the Haar measure from the Lie algebra. Nevertheless,
because the discretized set for estimating the integral of group correla-
tion does not form a group, elements sampled for calculating the group
correlation may fall outside the set, which brings substantial sampling.
Therefore, as the number of layers increases, combinatorial explosion
occurs in the sampling process, resulting in computational complexities
of (𝑁6𝐿) for 2D and (𝑁12𝐿) for 3D, where 𝐿 represents the number
of layers in the neural network. Consequently, their method is primarily
suitable for shallow networks and faces challenges when applied to
more complex tasks. A summary of the computational complexity
comparison is presented in Table 3.

5. Experiments

5.1. Testing affine invariance

We evaluate the affine invariance of our approach using the MNIST
dataset, a commonly used dataset of handwritten digits with 28 × 28
6

pixels, drawn from 10 classes. The training and test sets contain 60,000
and 10,000 images, respectively. We set a fixed uni-scale transforma-
tion range for data augmentation and train our model using a combi-
nation of cross-entropy loss and variance loss. This training approach
aims to generate distinctive invariant features, preventing model degra-
dation. For the analysis of invariance errors, we randomly sample
𝑛 = 10,000 affine transformations 𝑔𝑖 and calculate the invariance error
using the following formula:

Error = 1
𝑛

𝑛
∑

𝑖=1

‖�̄�
[

𝜋𝑔𝑖 [𝐼𝑖]
]

− �̄� [𝐼𝑖]‖2

‖�̄� [𝐼𝑖]‖2
, (20)

where 𝐼𝑖 represents the test samples, and �̄� is defined in Eq. (16),
with a predefined range of uni-axial scaling between 0.8 and 1.25. This
range ensures that transformed digits remain within the image bound-
aries and remain recognizable to humans. Our choice of backbone
networks 𝛹 was 𝑆𝑂(2)-steerable CNNs, which exhibit exact invariance
to arbitrary 2D rotations.

Our model is trained for 10 epochs, and thereafter, we assess its
affine invariance performance. As depicted in Fig. 2(a), our model
nearly achieves affine invariance, with an invariance error of less than
0.1 in most cases. Interestingly, as the network depth increases, the
level of invariance improves. This observation aligns with the intuition
that a larger network capacity aids in better invariance learning dur-
ing training. It is important to note that using only 2 augmentations
provides satisfactory affine invariance, leading us to employ 2 copies
in subsequent experiments to strike a balance between performance
and computational cost. Next, we conduct a comparative analysis of
our approach against its counterparts, specifically, averaged models
designed for achieving affine invariance. We maintain uniformity in
backbone sizes and training details to ensure a fair comparison. Setting
the number of augmentations to 4, we find that these models fail to
attain the same level of invariance as our method, which utilizes only
2 augmentations. This discrepancy can be attributed to the considerably
larger affine group, making it challenging for Eq. (4) to provide accu-
rate approximations with a limited number of samples. In an attempt
to enhance their performance, we increase the number of augmenta-
tions to 8 and 12, albeit at a significantly higher computational cost.
Nevertheless, even with these additional augmentations, their affine
invariance still falls short of ours, validating the effectiveness and
efficiency of our proposed method.

Notably, the quality of affine invariance degrades considerably
when 𝑣𝑎𝑟 is omitted (as shown in Fig. 2(b) and (c)). In this scenario,
rotation invariance cannot be guaranteed, highlighting the essential
role and effectiveness of incorporating 𝑣𝑎𝑟 in our approach.

5.2. MNIST variants

The AffNIST dataset is created by applying various reasonable affine
transformations to images from the MNIST dataset. The resulting im-
ages are resized to 40 × 40 pixels while preserving the original MNIST
ontent. Specifically, the vertical and horizontal expansion scales are
niformly sampled from the range of 0.8 to 1.2. The dataset is divided
nto training (50k samples), validation (10k samples), and test (10k
amples) sets.

For this dataset, we utilize 𝑆𝑂(2)-steerable CNNs (Weiler & Cesa,
019) with 7 layers as the backbone for our SANAIN model. To address
ni-axial scale invariance, we employ 2 augmentations. Hyperparame-
ers are selected based on achieving the lowest validation error during
raining. Our models are trained using the Adam optimizer (Kingma &
a, 2015) for a total of 150 epochs, with a batch size of 64 and a weight
ecay of 0.0001. The initial learning rate is set to 0.001 and is decayed
y a factor of 0.7 every 10 epochs.

Several approaches (Jin, Lazarow, & Tu, 2017; Lee, Xu, Fan, & Tu,
018) have attempted to address the challenges posed by this dataset
hrough augmenting the original training data to enhance its affine
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Fig. 2. (a) illustrates the affine invariance error comparison between the affine invariant averaged model and our SANAIN. Our method effectively preserves affine invariance
with significantly fewer copies compared to the averaged model. Panels (b) and (c) display the rotation invariance error and affine invariance error of SANAIN, both with and
without 𝑣𝑎𝑟.
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Table 4
Test error rates on affNIST.

Method Test err. (%)

Macdonald et al.(w/ DA) (MacDonald et al., 2022) 2.15
CNN (w/ DA) 1.65
ICN (w/ DA) (Jin et al., 2017) 1.54
WINN (w/ DA) (Lee et al., 2018) 1.48
ITN (w/ DA) (Zhao, Tian, Fowlkes, Shen, & Yuille, 2020) 1.09
𝑆𝑂(2)-steerable CNN (Weiler & Cesa, 2019) 1.01
(Xu et al., 2020) 0.92
Augerino (Benton et al., 2020) 0.81
Lila (Immer et al., 2022) 0.72

SANAIN (ours) 0.56

robustness. However, when compared to these DA-based methods, the
𝑆𝑂(2)-steerable approach exhibits superior performance, underscoring
he advantage of incorporating hard-coded invariance into networks
ather than relying solely on data augmentation. MacDonald et al.
2022) employed improved group correlations to achieve affine in-
ariance. Nevertheless, they can only employ very shallow network,
hich results in very poor performance. Also, their framework lacks the

apacity to adaptively learn the appropriate degree of invariance. Xu
t al. (2020) tackled scalings and rotations jointly in CNNs to learn
ffine invariance, achieving a test error rate of 0.92%. However, it
s important to note that their method primarily addresses similarity
ransformations. Augerino (Benton et al., 2020) achieves a test error
ate of 0.81%. Lila serves as a compelling alternative to Augerino and
as demonstrated performance improvements, achieving a test error
ate of 0.72%. In our experiments, we evaluate the performance of
ugerino and Lila with a comprehensive set of 31 augmentations. To
nsure a fair comparison, the backbone architecture used for Augerino
nd Lila aligns with the backbone employed in SANAIN in terms of
hannel count.

As illustrated in Table 4, our SANAIN achieves an impressive test
rror rate of 0.56% on the affNIST dataset, signifying a remarkable
erformance improvement. Notably, this outperformance is achieved
ith just two copies, a notably lower number when compared to 31

opies employed by vanilla Augerino (0.81%) and Lila (0.72%). It is
orth highlighting that our model learns a uni-axial scale range of
0.79, 1.26], which closely matches the actual scale range of [0.8, 1.2]

within which the original images are generated.
SIM2MNIST, a more challenging variant of the MNIST dataset in-

troduced in Esteves, Allenblanchette, Zhou and and Daniilidis (2018),
incorporates random transformations from the 2D similarity transfor-
mations group SIM(2). This group encompasses translations, dilations,
nd rotations, making the task notably complex. The images in this
ataset are larger at 96 × 96 pixels, featuring arbitrary 2D rotations.
cale factors vary between 1 and 2.4, and the digits can appear any-
here within the images. The dataset is partitioned into training (10k

amples), validation (5k samples), and test (50k samples) sets.
7

Table 5
Test error rates on SIM2MNIST.

Method Test err. (%) Params

Polar CNN (Esteves, Allenblanchette, Zhou & and
Daniilidis, 2018)

15.46 129k

CNN 11.73 129k

STN (Jaderberg et al., 2015) 12.35 150k
Augerino (Benton et al., 2020) 10.21 2.35M
H-Net (Worrall et al., 2017) 9.28 44k
Lila (Immer et al., 2022) 8.54 2.35M
PTN (Esteves, Allenblanchette, Zhou & and Dani-
ilidis, 2018)

5.03 134k

SANAIN (ours) 3.98 132k

For this demanding task, we leverage a more expressive 8-steerable
NNs architecture, comprising 10 layers. Remarkably, given that this
ataset primarily involves similarity transformations, we adaptively
ocus on learning dilation invariance rather than uni-axial scaling
nvariance. This adaptation is achieved by modifying the uni-axial
caling operations in Eq. (16) to accommodate dilations. In our exper-
ments on SIM2MNIST, we utilize 2 augmentations to address dilation
nvariance. We meticulously tune our hyperparameters to minimize
alidation error, ensuring consistency with the settings used in the
ffNIST experiments.

The results for SIM2MNIST are presented in Table 5, where we
bserve notable distinctions between various methods. STN (Jaderberg
t al., 2015) exhibits subpar performance due to the inherent diffi-
ulty in achieving complete affine invariance through the learning of
differential module. H-Net (Worrall et al., 2017), while invariant

ver rotations, lacks invariance over dilations, rendering it unsuit-
ble for this dataset. Approaches employing output averaging, such as
ugerino (Benton et al., 2020) and Lila (Immer et al., 2022), attain only
odest accuracy at 10.21% and 8.54%, respectively, when utilizing
1 copies for transformation invariance. PTN (Esteves, Allenblanchette,
hou & and Daniilidis, 2018) projects images into log-polar coordi-
ates, achieving similar transformation invariance but is impeded by an
mplicit oversampling near the origins. This leads to a degradation in
odel performance, with polar CNNs performing worse than standard
NNs. Moreover, their methods theoretically maintain invariance over
rbitrary dilations without imposed bounds. However, excessive in-
ariance can introduce unintended biases into the network, negatively
mpacting performance.

In contrast, our SANAIN method dynamically constrains the dilation
ange to a sensible interval, specifically [0.67, 1.48], with a maximum

scale factor of 2.21, closely aligning with the actual scale factor of 2.4.
This adaptive approach yields superior results, with SANAIN surpassing
PTN (Esteves, Allenblanchette, Zhou & and Daniilidis, 2018) (3.98% vs.

5.03%) and establishing a new state-of-the-art performance.
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Table 6
Test error rates on CIFAR-10 without data augmentation. Time per batch and GPU
memory occupation are measured during inference.

Method Test err. (%) Params Time (ms) Memory (MB)

WideResNet 14.83 2.7M – –
Augerino (Benton et al., 2020) 12.33 2.7M 52 10,517
Lila (Immer et al., 2022) 8.02 2.7M 52 10,517

SANAIN 6.72 1.2M 25 3,893

Table 7
Test error rates on ImageNet-1k.

Method Top-1 err. (%) Top-5 err. (%) Params

ResNet (He, Zhang, Ren, & Sun, 2016) 23.91 6.99 25M
Augerino (Benton et al., 2020) 23.54 6.68 25M
8-ResNet 21.96 5.88 27M

SANAIN (ours) 20.44 5.15 22M

In terms of efficiency, SANAIN demonstrates remarkable advan-
ages. It processes each batch in just 9 ms and consumes 2407MB of

GPU memory. In contrast, both Lila and Augerino require 63 ms and a
substantial 5814MB of GPU memory for the same inference tasks.

5.3. Natural image classification

In the context of natural images, affine transformations often occur
due to varying camera positions and distances. To evaluate our method
and stress its practical value, we perform comparisons with its counter-
parts, Augerino and Lila, using the CIFAR-10 dataset (Krizhevsky et al.,
2017) and ImageNet-1k (Deng et al., 2009).

CIFAR-10, comprises colored natural images, each measuring 32 ×
32 pixels, drawn from 10 distinct classes. The dataset consists of 50,000
training images, 10,000 test images, and an additional 5000 training
images for validation.

For CIFAR-10, Augerino and Lila employed WideResNet as their
backbones in previous work (Immer et al., 2022). In our approach, we
replace the standard convolutional layers with 8-steerable layers, and
then the 8-WideResNet serves as the backbone for SANAIN. Despite
increasing the number of channels in the 8-WideResNet compared to
the standard WideResNet, our models still maintain lower parameter
counts and demonstrate improved efficiency. We employ 2 copies for
uni-axial scale invariance. Our model is trained using stochastic gra-
dient descent (SGD) with a Nesterov momentum (Sutskever, Martens,
Dahl, & Hinton, 2013) of 0.9 without dampening. The training process
runs for 200 epochs with a batch size of 128 and a weight decay of
0.0005. The initial learning rate is set to 0.1 and decays by a factor of
0.2 every 70 epochs.

The results in Table 6 demonstrate that SANAIN achieves the most
favorable test error rate (6.72%) compared to Augerino (12.33%) and
Lila (8.02%), all while using significantly fewer parameters and copies.
Compared with the WideResNet, SANAIN achieves a remarkable im-
provement with an acceptable computational cost of only 2 copies.

Additionally, to evaluate the efficiency of our image classification,
we measure the inference time and GPU memory usage. Notably,
SANAIN requires less than half the inference time and GPU mem-
ory compared to the other two averaged models, while achieving
significantly lower test errors.

ImageNet-1k, is the most commonly used subset of ImageNet (Deng
et al., 2009). This dataset spans 1000 object classes and contains
1, 281, 167 training images and 50,000 validation images. We evaluate
the model performance on the validation images.

We employ ResNet-50 as the base model. The vanilla Augerino is
implemented by utilizing 2 affine augmentations with ResNet-50 as the
subnetworks. 8-ResNet is implemented by replacing the convolutional
layers of ResNet-50 by 8-steerable ones (Weiler & Cesa, 2019). Our
8

SANAIN is implemented by employing 8-ResNet as subnetworks with
2 uni-axial scale augmentations. We train all models using SGD and a
Nesterov momentum (Sutskever et al., 2013) of 0.9 without dampening,
with an initial learning rate of 0.1. The models are trained for 100
epochs and the learning rate is divided by 10 at 30, 60 and 90 epochs.
The batch size is set to 256. The weight factors 𝜆 and 𝜇 are 0.1 and
0.001, respectively.

As shown in Table 7, our SANAIN outperforms affine invariant
Augerino (2 copies) and 8-ResNet with fewer parameters, because
of better affine invariance. For Lila (Immer et al., 2022), the com-
putational complexity and memory complexity during training are
(𝑁𝑃𝐶 + 𝑃 1.5) and (𝑀𝑃𝐶), respectively (Immer et al., 2022), where
𝑃 represents the number of parameters, 𝑀 denotes the batch size, 𝑁
signifies the data points and 𝐶 indicates the neural network outputs.
The intractable costs make it challenging to be evaluated on large
and practical datasets, such as ImageNet datasets. In contrast, our
method can be evaluated on ImageNet. Regarding MacDonald et al.’s
approach (MacDonald et al., 2022), as discussed in Section 4.4, the
extensive sampling complicates the construction of a deep neural net-
work, let alone testing it in practical scenarios, where large models are
required to address large datasets.

Accordingly, the above results indicate that incorporating affine
invariance into networks, as SANAIN does, is helpful for natural image
classification.

5.4. 3D shape retrieval

We also assess the effectiveness of SANAIN in the SHREC’17 re-
trieval task (Savva et al., 2017), a complex 3D vision task involving
transformed shapes. The retrieval task features 51,162 models of 3D
shapes spanning 55 classes. This dataset is partitioned into 35,764
training samples, 5133 validation samples, and 10,265 test samples.
Our focus is on the ‘‘perturbed’’ version of the dataset, where models
undergo various transformations. The retrieval performance is quan-
tified using the average mean average precision (mAP), measured
for both the micro-average and macro-average versions, collectively
referred to as the ‘‘score’’.

We adopt -steerable CNNs as used in Shen et al. (2022) for our
backbone. These models exhibit invariance over the cubic group, and
we incorporate 2 copies for uni-axial scale invariance. Our model is
trained using the Adam optimizer (Kingma & Ba, 2015). Training
extends for 2000 epochs with a batch size of 32. The initial learning
rate is set to 0.01 and is reduced by a factor of 10 at 700 and 1,400
epochs.

Many existing methods (Banerjee et al., 2020; Cobb et al., 2020;
Esteves, Allen-Blanchette, Makadia, & Daniilidis, 2018; Li et al., 2021;
Weiler, Geiger, et al., 2018) tackle this dataset by employing 3D
rotation invariant models. However, these models do not account for
general affine transformations, which often stem from variations in
sampling poses or data itself. The results presented in Table 8 reveal
a significant performance boost (from 58.6% to 60.9%) upon incorpo-
rating affine invariance into the networks through our SANAIN method.
This outcome underscores the efficacy of applying SANAIN in the
context of 3D vision tasks.

5.5. Efficiency evaluation

To assess the efficacy of SANAIN, we present a comparison be-
tween our model and its counterparts, the vanilla affine invariant
Augerino (Benton et al., 2020) and Lila (Immer et al., 2022), using
different numbers of copies on the affNIST dataset. As depicted in
Table 9, SANAIN achieves a remarkable test error of only 0.56% with
just two copies, significantly outperforming vanilla Augerino (1.27%)
and Lila (1.13%) when employing the same number of copies.

To further highlight the superiority of SANAIN, we increase the
number of copies for both vanilla Augerino and Lila. Although their
results improve with more copies, they still fall short of SANAIN’s
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Table 8
Performance comparison on the SHREC’17 perturbed dataset. Retrieval performance is evaluated using the average mean average precisions
(mAP) for both micro-average and macro-average versions, denoted as the ‘‘score.’’.
Method Score micro macro Params

P@N R@N mAP P@N R@N mAP

SE3CNN (Weiler, Geiger, et al., 2018) 55.5 70.4 70.6 66.1 49.0 54.9 44.9 0.14M
(Li, Fujiwara, Okura, & Matsushita, 2021) 56.5 69.4 69.4 65.8 48.1 56.0 47.2 2.9M
VolterraNet (Banerjee, Chakraborty, Bouza, & Vemuri, 2020) – 71.0 70.0 67.0 – – – 0.4M
(Esteves, Allen-Blanchette, Makadia, & Daniilidis, 2018) 56.5 71.7 73.7 68.5 45.0 55.0 44.4 0.5M
(Cobb et al., 2020) – 71.9 71.0 67.9 – – – 0.25M
PDO-s3DCNN (Shen et al., 2022) 58.6 72.9 73.0 68.8 51.9 57.7 48.3 0.15M

SANAIN (ours) 60.9 72.8 73.7 69.8 51.0 60.0 52.0 0.15M
Table 9
The performance of Augerino, Lila, and SANAIN on affNIST. The running time per
batch and the memory occupation is measured during inference.

Method Copies Test err. (%) Time (ms) Memory (MB)

Augerino (Benton et al., 2020)

2 1.27 ± 0.07 8 1,801
4 0.95 ± 0.03 12 1,891
8 0.83 ± 0.05 16 2,077
16 0.83 ± 0.04 21 2,841
31 0.81 ± 0.04 49 4,213

Lila (Immer et al., 2022)

2 1.13 ± 0.09 8 1,801
4 0.89 ± 0.04 12 1,891
8 0.79 ± 0.02 16 2,077
16 0.75 ± 0.02 21 2,841
31 0.72 ± 0.03 49 4,213

SANAIN (ours) 2 0.56 ± 0.04 6 1,871

Table 10
Results on affNIST and SIM2MNIST with different combinations of loss terms.
𝐶𝐸 𝑣𝑎𝑟 𝑅 Aff. err. (%) SIM. err. (%)

✓ 1.34 5.79
✓ ✓ 1.01 5.11
✓ ✓ 0.86 4.92

✓ ✓ ✓ 0.56 3.98

performance. It is important to note that the architectures and channel
counts of their backbones remain similar to ours. Therefore, their
reliance on more copies incurs significantly higher computational costs
and memory usage, underscoring the efficiency and effectiveness of our
approach.

In terms of inference time and GPU resource consumption, SANAIN
stands out as the most efficient method for handling affine invariance.
It not only achieves superior results but also requires the least time and
nearly the lowest GPU resources compared to the two averaged models,
further confirming the overall efficiency of SANAIN.

5.6. Ablation study

To verify the effectiveness of adaptive scale invariance, we conduct
experiments by fixing the scale range width, represented as exp(𝜃) −
exp(−𝜃), and evaluate the performance on the SIM2MNIST dataset. The
results, illustrated in Fig. 3, demonstrate that our model excels when
the scale range width falls within an appropriate scope. Importantly,
our model exhibits the capability to adaptively recover the optimal
scale range width (as seen in Section 5.2). Notably, both insufficient
and excessive scale invariance adversely affect the performance, under-
scoring the significance of adaptive scaling in achieving optimal results.

We then justify the effectiveness of 𝑣𝑎𝑟 and 𝑅. As shown in
Table 10, employing both 𝑣𝑎𝑟 and 𝑅 results in the best performance.
By contrast, when 𝑅 is discarded, the models tend to be unconstrained
and the learned scale invariance extent is insufficient. When 𝑣𝑎𝑟 is
discarded, the rotation invariance cannot be ensured, and the affine
invariance is weak therefore, which degrades the performance.
9

Fig. 3. Test error rates on SIM2MNIST with varying scale range widths.

Moreover, we meticulously examine the impact of 𝑣𝑎𝑟 on affine
invariance within our method. As displayed in Fig. 2(c), the omission of
𝑣𝑎𝑟 significantly deteriorates affine invariance, mainly due to the lack
of robust rotation invariance in this context (as evidenced by Fig. 2(b)).
This emphasizes the indispensability and effectiveness of incorporating
𝑣𝑎𝑟 in our approach.

6. Conclusions

In our study, we have demonstrated that an affine transformation
can be elegantly decomposed into the combination of rigid transfor-
mations and uni-axial scalings. Leveraging this insight, we have taken
a divide-and-conquer approach, addressing these simpler invariances
separately, leading to an efficient framework for achieving affine in-
variance. Importantly, our model has the capability to adaptively learn
a reasonable range of scales. Through extensive experimentation, we
have validated the remarkable efficiency of our approach in preserv-
ing affine invariance, showcasing significant improvements over prior
methods in both 2D and 3D contexts.

However, it is important to note that our method only achieves
approximate affine invariance, not exact, and it focuses on invariance
rather than equivariance, which is a more general concept with appli-
cations like image segmentation. In our future work, we plan to explore
these aspects further, seeking to broaden the horizons of our approach.
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Appendix. Detailed Proof of Theorems

Proof of Proposition 1. As for the affine transformation

𝑔𝑥 = 𝐴𝑥 + 𝑡, (A.1)

it could be decomposed as follows using the singular value decomposi-
tion (SVD):

𝑔𝑥 = 𝑈𝛴𝑉 𝑥 + 𝑡, (A.2)

where 𝑈, 𝑉 ∈ 𝑂(𝑛) and 𝛴 is a diagonal matrix with its diagonal
lements positive. Furthermore, we can derive that
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e further derive that
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(A.4)

nd the above formula can be further simply denoted as 𝑃𝑖𝛴𝜎𝑖𝑄𝑖. As a
esult, we have that

= 𝑃1𝛴𝜎1𝑄1 ⋯𝑃𝑛𝛴𝜎𝑛𝑄𝑛,

here 𝛴𝜎𝑖 ∈ 𝑈𝑆(𝑛) and 𝑃𝑖, 𝑄𝑖 ∈ 𝑆𝑂(𝑛). Noting that 𝑆𝑂(𝑛), 𝑂(𝑛)
nd 𝑇 (𝑛) are all subgroups of 𝐸(𝑛), the affine transformation can be
ecomposed as the combinations of rigid transformations and uni-scale
ransformations, i.e.,

𝑥 = 𝑈𝑃1𝛴𝜎1𝑄1 ⋯𝑃𝑛𝛴𝜎𝑛𝑄𝑛𝑉 𝑥 + 𝑡. □ (A.5)
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