
Highlights

Sampling Complex Topology Structures for Spiking Neural Net-

works

Shen Yan, Qingyan Meng, Mingqing Xiao, Yisen Wang, Zhouchen Lin

• The SNN architectures significantly benefit from much more complex

connection topologies

• Incorporating synaptic delay provides a novel perspective to the design

of SNN architectures

• The novel sampling method greatly accelerates the process of obtaining

SNN architectures

Sampling Complex Topology Structures for Spiking

Neural Networks

Shen Yana, Qingyan Mengb,c, Mingqing Xiaod, Yisen Wangd,e, Zhouchen
Lind,e,f,∗

aCenter for Data Science, Peking University, China
bThe Chinese University of Hong Kong, Shenzhen, China

cShenzhen Research Institute of Big Data, Shenzhen 518115, China
dKey Lab of General AI, School of Intelligence Science and Technology, Peking

University, China
eInstitute for Artificial Intelligence, Peking University, China

fPeng Cheng Laboratory, Shenzhen, 518055, China

Abstract

Spiking Neural Networks (SNNs) have been considered a potential competi-

tor to Artificial Neural Networks (ANNs) due to their high biological plau-

sibility and energy efficiency. However, the architecture design of SNN has

not been well studied. Previous studies either use ANN architectures or di-

rectly search for SNN architectures under a highly constrained search space.

In this paper, we aim to introduce much more complex connection topolo-

gies to SNNs to further exploit the potential of SNN architectures. To this

end, we propose the topology-aware search space, which is the first search

space that enables a more diverse and flexible design for both the spatial

and temporal topology of the SNN architecture. Then, to efficiently obtain

∗Corresponding author
Email addresses: yanshen@pku.edu.cn (Shen Yan),

qingyanmeng@link.cuhk.edu.cn (Qingyan Meng), mingqing_xiao@pku.edu.cn
(Mingqing Xiao), yisen.wang@pku.edu.cn (Yisen Wang), zlin@pku.edu.cn (Zhouchen
Lin)

Preprint submitted to Neural Networks September 19, 2023

architecture from our search space, we propose the spatio-temporal topology

sampling (STTS) algorithm. By leveraging the benefits of random sampling,

STTS can yield powerful architecture without the need for an exhaustive

search process, making it significantly more efficient than alternative search

strategies. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet

demonstrate the effectiveness of our method. Notably, we obtain 70.79% top-

1 accuracy on ImageNet with only 4 time steps, 1.79% higher than the second

best model.

Keywords:

spiking neural networks, neural architecture search

1. Introduction

Spiking Neural Networks (SNNs), regarded as the third generation of neu-

ral networks (Maass, 1997), have attracted considerable attention due to their

energy efficiency and high biological plausibility (Lee et al., 2016; Shrestha

and Orchard, 2018; Wu et al., 2018; Roy et al., 2019; Fang et al., 2021a; Xiao5

et al., 2021; Li et al., 2021). The essential component of SNNs is the spik-

ing neuron, which encodes information with binary spikes over several time

steps, thus avoiding multiplication during inference. In recent years, with

the development of novel training algorithms, SNNs have achieved competi-

tive performance on several tasks, such as image classification (Meng et al.,10

2022), object detection (Kim et al., 2020), and object segmentation (Patel

et al., 2021). Meanwhile, the development of neuromorphic hardware fur-

ther improves the performance of SNNs. For instance, the recently released

second-generation neuromorphic research chip Loihi 2 (Orchard et al., 2021)

2

supports larger neural architectures and new applications while providing15

faster and energy-efficient processing.

However, the development of SNN architectures is lagging behind. Un-

like ANN, SNN has a two-dimensional computational graph containing both

spatial and temporal domains. Most previous studies simply utilize ANN ar-

chitectures like VGG-Net (Simonyan and Zisserman, 2015), and ResNet (He20

et al., 2016), ignoring the architecture gap between ANNs and SNNs. On

the other hand, directly applying typical neural architecture search (NAS)

methods such as ENAS (Pham et al., 2018) and DARTS (Liu et al., 2019) on

searching SNN architectures can be very time-consuming due to the much

slower training speed of SNNs. Existing NAS methods for SNNs (Kim et al.,25

2022; Na et al., 2022; Che et al., 2022) manage to accelerate the training

process by imposing limitations on the search space. For instance, SNASNet

(Kim et al., 2022) is selected from a cell-based search space with only four

nodes in each cell. SpikeDHS (Che et al., 2022) adopts a hierarchical search

space also with four nodes in each cell. AutoSNN (Na et al., 2022) searches30

the hyperparameters of each spiking block under a pre-defined macro ar-

chitecture. We note that these works do not pay enough attention to the

connection topology of the SNN architecture. Their search space highly re-

stricts the connection topology of the SNN structure, which may cause a

severe loss of architecture diversity, resulting in missing the optimal SNN35

architecture. Therefore, it is necessary to design a dedicated search space for

SNN architectures, which has a higher degree of freedom on the connection

topology design.

In this study, we aim to exploit the potential of the topology design on

3

 Skip

 1x1 Conv

 3x3 Conv

Operation Set

(a)

Conv-BN-SN

TBD

TBD

Classifier

…

(b)

co
n
cat

Cell

1

R
es

o
lu

ti
o

n

 Skip

 3x3 Conv

Operation Set

1/2

(c)

+

SN

SCN

Conv

BN

Stage 1

Stage 2

Stage 3

Stage 4

Classifier

(d) The topology-aware search space (ours)

Figure 1: A comparison of different search space designs for SNNs. (a) SNASNet (Kim

et al., 2022) adopts a cell-based search space. The cell has a total of four nodes, and each

edge is associated with an operation selected from the operation set. (b) AutoSNN (Na

et al., 2022) employs a fixed topology while searching for the optimal choices for the to-be-

determined (TBD) blocks. (c) SpikeDHS (Che et al., 2022) utilizes a search space similar

to DARTS (Liu et al., 2019), with 4 nodes within a cell, and extends its search to the layer

level. (d) We present the topology-aware search space enabling complex designs of spatial

and temporal topologies. Our architecture comprises multiple stages, each represented by

a connection topology graph. In this illustration, Stage 3 consists of 16 spiking convolution

nodes (SCNs) in white, along with a source node and a sink node, both colored blue. Each

SCN transforms the summation of the input data through a layer of spiking neurons (SN),

a convolutional layer, and a batch normalization layer (BN). Directed connections between

nodes are indicated by arrows, while red dashed arrows represent connections with synaptic

delay.

4

both spatial and temporal dimensions for SNNs. To this end, we propose40

the topology-aware search space specifically for searching SNN architectures,

which enables a more complex connection topology of the network. The

topology-aware search space has a larger topology graph with at most 32

nodes, which is eight times larger than that in previous studies (Kim

et al., 2022; Che et al., 2022). We also incorporate the synaptic delay within45

our architecture, thereby enabling the design of the temporal topology. This

provides a novel perspective to better leverage the temporal processing ability

of SNN by the architecture design. Fig. 1 illustrates the difference between

our work and previous studies. Note that there is a huge number of possible

connection topologies in the topology-aware search space. Learning to search50

for architectures in such an ample search space is a big challenge, especially

due to the high training cost of SNN architectures (Kim et al., 2022; Wu

et al., 2018). Nevertheless, we notice that random algorithms (Sciuto et al.,

2020; Xie et al., 2019; Li and Talwalkar, 2019) can also yield competitive

performance compared with other NAS methods. Inspired by these works,55

we propose the spatio-temporal topology sampling (STTS) algorithm to ob-

tain SNN architectures efficiently. In the proposed algorithm, we use random

graph models to generate the spatial topology and sample the synaptic de-

lay from a pre-defined distribution to generate the temporal topology. By

leveraging the efficiency of random sampling, STTS avoids the search process60

and can obtain a powerful architecture within 0.1 seconds, representing

a significant acceleration compared with existing NAS methods on SNNs.

We evaluate our method on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100

(Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) datasets. Our

5

method achieves state-of-the-art accuracy on nearly all datasets, while hav-65

ing a lower energy consumption compared with prior works. We summarize

our contributions as follows:

1. We propose the topology-aware search space explicitly designed for

SNN architecture searching. With the topology-aware search space, it

is the first time that we can introduce much more diverse connection70

topologies into the design of SNN architectures.

2. We propose to consider the synaptic delay in the topology-aware search

space, which enables a more flexible design of the temporal topology.

This presents a novel perspective for exploiting the temporal learning

capacity of SNNs by the architecture design.75

3. We propose the spatio-temporal topology sampling (STTS) algorithm

to sample architectures from our search space. Our algorithm pro-

vides an alternative way to obtain SNN architectures, avoiding the

huge searching cost in previous studies.

2. Related Works80

There are mainly two strategies to obtain an SNN architecture: leverag-

ing ANN architectures, and applying the NAS methods to search for SNN

architectures directly.

2.1. Leveraging ANN Architectures

Converting ANNs to SNNs (Rueckauer et al., 2017; Kugele et al., 2020)85

is one of the most effective methods for training SNNs. This approach lever-

ages ANN architectures inherently. Consequently, a majority of subsequent

6

SNN studies (Han et al., 2020; Rathi et al., 2020; Zheng et al., 2021; Meng

et al., 2022; Deng et al., 2022; Bu et al., 2022) also make use of ANN ar-

chitectures. Typical ANN architectures, such as VGG-Net (Simonyan and90

Zisserman, 2015), and ResNet (He et al., 2016), can be adapted to SNNs by

replacing the ReLU activation function with spiking neurons. Based on the

ANN backbone, some SNN-friendly modifications have been proposed, such

as tdBN (Zheng et al., 2021), PLIF neuron (Fang et al., 2021b), and SEW

block (Fang et al., 2021a). However, naively leveraging ANN architectures is95

not optimal due to the inherent architectural gap between ANNs and SNNs

(Kim et al., 2022).

2.2. Neural Architecture Search

Neural architecture search (NAS) methods are proposed for searching op-

timal neural architectures in an automated way. Early NAS method (Zoph100

and Le, 2017) defines a global search space and uses reinforcement learning

(RL) as the search strategy. To search neural architectures more effectively

and efficiently, recent studies in the field of NAS focus on optimization strate-

gies, including modular search space (Zoph et al., 2018), continuous search

strategy (Liu et al., 2019; Wu et al., 2019; Dong and Yang, 2019), weight-105

sharing strategy (Pham et al., 2018; Cai et al., 2019; Bender et al., 2018; Na

et al., 2022; Guo et al., 2020), and random algorithms (Xie et al., 2019; Li

and Talwalkar, 2019; Sciuto et al., 2020). However, these methods are for

searching ANN architectures only.

Recently, NAS methods have been utilized to obtain SNN architectures110

directly, but the related work is very limited. Kim et al. (2022) are the first

to apply a NAS method for searching SNN architectures. They evaluate the

7

representation power of each candidate architecture at initialization, thereby

avoiding the training cost. Na et al. (2022) investigate design choices con-

cerning both accuracy and number of spikes. They introduce a spike-aware115

evolutionary algorithm, aiming to discover an SNN architecture that achieves

high accuracy and generates fewer spikes. Che et al. (2022) present a differ-

entiable hierarchical search framework that encompasses both cell-level and

layer-level search spaces. Additionally, they extend their approach to include

surrogate gradient search. However, the search space in these methods is120

quite small, which highly restricts the topology design of the SNN architec-

ture. In contrast, we propose to introduce a much more complex connection

topology into the design of SNN architectures.

3. Preliminary

3.1. The Leaky Integrate-and-Fire (LIF) Model125

The fundamental component in SNNs to process binary information is

the spiking neuron. Similar to previous SNN studies (Fang et al., 2021a;

Kim et al., 2022; Na et al., 2022), we adopt the discrete version of the Leaky

Integrate-and-Fire (LIF) model to describe the spatio-temporal dynamics of

the spiking neuron, which can be formulated as130

H l[t] = V l[t− 1] +
1

τ
(X l[t]− (V l[t− 1]− Vreset)), (1)

Sl[t] = Θ(H l[t]− Vth), (2)

V l[t] = H l[t](1− Sl[t]) + VresetS
l[t], (3)

where l is the layer index, τ is the membrane time constant, X[t] is the input

current at time step t, H[t] represents the membrane potential before the

8

trigger of a spike, and V [t] denotes the membrane potential after triggering.

Θ(x) is the Heaviside step function. A spike is triggered if H[t] exceeds the

firing threshold Vth. We use hard reset here, which means that the spiking135

neuron resets its membrane potential to Vreset after firing a spike.

3.2. Spatio-temporal Backpropagation

Due to the non-differentiability of the spike function, the training of SNN

is a great challenge. Recent works on directly training SNN (Fang et al.,

2021a; Deng et al., 2022) adopt the spatio-temporal backpropagation (STBP)140

training framework (Wu et al., 2018). These works regard the SNN as a

recurrent neural network (RNN) and calculate the gradient by the backprop-

agation on both spatial and temporal dimensions. We use the same method,

which is formulated as

∂L
∂W

=
T∑
t=1

∂L
∂H l[t]

∂H l[t]

∂X l[t]

∂X l[t]

∂W
, (4)

where L denotes the loss function, T is the number of time steps. Since145

the Heaviside step function is non-differentiable, previous studies (Wu et al.,

2018; Fang et al., 2021a; Deng et al., 2022) approximate its gradient with

some surrogate gradients. Following these studies, we employ the same sur-

rogate gradient as utilized in some previous works (Fang et al., 2021a,b):

∂Sl[t]

∂H l[t]
=

α

2
[
1 +

(
π
2
αH l[t]

)2] , (5)

where α denotes the slope parameter.150

9

4. Methodology

4.1. Topology-aware Search Space

The cell-based search space has been widely used in modern NAS algo-

rithms (Liu et al., 2019; Zoph et al., 2018; Dong and Yang, 2020). In the

cell-based search space, the final architecture is constructed from a few types155

of small cell structures, thereby significantly reducing the search complexity.

However, the cell-based search space is not suitable for searching SNN archi-

tectures mainly because it highly restricts the design of the spatial topology

as well as the temporal topology of the SNN architecture. Thus, designing

a search space explicitly for SNN architectures is important. To this end,160

we propose the topology-aware search space, an SNN-friendly search space

focusing on increasing the diversity of both spatial and temporal connection

topologies.

As shown in Fig. 1d, each stage in our search space can be represented

by a connection topology graph. The connection topology graph consists165

of several spiking convolution nodes and some edges connecting the nodes.

Unlike conventional representations associating operations with edges (Dong

and Yang, 2020), we define operations inside each spiking convolution node,

and an edge represents information transmission between a pair of nodes.

Spiking convolution node. The spiking convolution node (SCN) is the ba-170

sic computing unit in the topology-aware search space. As shown in Fig. 1d,

SCN has some input edges as well as output edges. The node first receives

input data from all the input edges, then aggregates all the input data via a

simple summation. Afterwards, the aggregated data are transformed sequen-

tially through a layer of spiking neurons (SN), a convolutional layer, and a175

10

batch normalization layer (BN). Finally, the node sends out the transformed

data through its output edges. We can formulate the node operations as

Xj[t] =
∑

(i,j)∈E

Si[t], (6)

Sj[t] = BN (Conv2d (SN (Xj[t]))) , (7)

where Xj[t] and Sj[t] represent the aggregated data and transformed data of

the j-th node at time step t, respectively. In the topology-aware search space,

we do not search for the choice of operations. We adopt the SN-convolution-180

BN triplet inside all spiking convolution nodes. During the inference, we will

merge the BN layer into the precedent convolutional layer.

Spatial connection topology. In our topology-aware search space, the

spatial connection topology can be represented as a directed acyclic graph

(DAG) G = (V,E). For simplicity, we assume that nodes in the DAG are185

sorted in a topology order. An edge only points to the node with a higher

index from the node with a smaller index. Benefiting from these settings,

we have a high degree of freedom to design the spatial connection topology,

especially when the number of nodes is large (e.g. |V | = 16, 32). For

instance, considering a DAG with |V | nodes, there are 2
|V |(|V |−1)

2 different190

graphs if ignoring the isomorphism of graphs.

Temporal connection topology. Due to the spatio-temporal dynamics of

the spiking neuron, SNN has not only spatial connection topology, but also

temporal connection topology. The temporal connection topology of SNN,

controlled by the synaptic delay, has an important impact on the effectiveness195

and efficiency of SNN (Maass, 1997). However, most existing works ignore

the synaptic delay, restricting the utilization of temporal information. We

11

propose to incorporate the synaptic delay into our topology-aware search

space to enable temporal topology design. In our topology-aware search

space, each edge is assigned an extra parameter, controlling the synaptic200

delay on the edge. We adopt a simplified modeling of synaptic delay in which

synaptic delay is restricted to discrete values. In this model, the operations

inside SCN in Eq. (6) are modified as

Xj[t] =
∑

(i,j)∈E

Si[t− d(i,j)], (8)

where d(i,j) is a nonnegative integer, representing the discrete synaptic delay

associated with edge (i, j). The output data sent out from the i-th node at205

time step t− d(i,j) arrives at the j-th node at time step t through edge (i, j)

after a synaptic delay of d(i,j). When t is smaller than d(i,j), we assume that

Si[t− d(i,j)] is a zero tensor. Additionally, d(i,j) = 0 is possible in this model,

which means that there is no synaptic delay on edge (i, j), and the operations

are simplified as in Eq. (6).210

Source and sink. We have defined the spiking convolution node and the

connection topology graph. Besides, we need to specify the input and the

output of the whole graph in order to convert the connection topology graph

into a valid neural network. Note that there are still some nodes that do not

have any input edge or output edge. For the nodes without any input edge,215

we define them as input nodes. Similarly, nodes without any output edge

are defined as output nodes. We use S to denote the set of input nodes and

T to represent the set of output nodes. A common approach to deal with

multiple input and output nodes is to create a unique source node connecting

to all the input nodes and a unique sink node receiving outputs from all the220

12

output nodes, as shown in Fig. 1d. Specifically, we assume that the source

node sends a copy of input data to every input node while the sink node

collects a mean from all the output nodes. We can formulate it as

Xj[t] =

X[t], if j ∈ S,∑
(i,j)∈E Si[t− d(i,j)], otherwise,

(9)

and

S[t] =
1

|T |
∑
i∈T

Si[t], (10)

where X[t] and S[t] denote the input and the output of the whole graph225

at time step t, respectively. Note that the output of the whole graph is a

summation of |T | tensors, then be divided by |T |. Since |T | is fixed as soon

as the graph is determined, the division operation can be replaced by scaling

up the firing threshold by |T | in the following spiking neurons.

Stages. It is very common (Simonyan and Zisserman, 2015; He et al., 2016;230

Xie et al., 2019) for neural architectures to have multiple stages to down-

sample the feature maps from high resolution to low resolution, especially for

image classification and object detection. Inspired by these works, We divide

our entire model into several stages that generate different sizes of feature

maps. Each stage is defined by a connection topology graph described above.235

For two adjacent stages, the preceding stage’s sink node is also the succeeding

stage’s source node.

Regarding image input, we assume that the input resolution for the i-

th stage is Hi × Wi with Ci channels. To make a 2× downsampling of the

resolution, we use a stride of 2 and an output channel number of 2Ci in240

13

the convolutional layer inside each input node. For other nodes in the same

stage, a stride of 1 is used, and the input and the output channel numbers

are both 2Ci. By doing so, the output of the i-th stage has a dimension of

2Ci with a resolution of Hi

2
× Wi

2
.

The class of architectures defined by the topology-aware search space245

is named the topology-aware network (TANet). We adopt a similar macro

skeleton as previous studies (Xie et al., 2019). Table 1 summarizes two

settings of our TANet: the tiny version, referred to as TANet-Tiny, and the

regular version, referred to as TANet-Regular. The TANet-Tiny has four

stages in total. It is designed for datasets with a smaller resolution, such250

as CIFAR-10 and CIFAR-100. The TANet-Regular has five stages and is

proposed for larger resolution datasets such as ImageNet. Both TANet-Tiny

and TANet-Regular have a classifier in the end.

4.2. Spatio-temporal Topology Sampling

Modern NAS methods (Liu et al., 2019; Pham et al., 2018) have already255

achieved state-of-the-art performance on many tasks. However, these meth-

ods are not suitable for searching SNN architectures from the topology-aware

search space, due to the huge number of candidate architectures in the search

space and the high training cost of directly training SNNs (Kim et al., 2022).

Nevertheless, recent works on random sampling (Xie et al., 2019; Sciuto et al.,260

2020) have given us an alternative approach to yield powerful neural archi-

tectures without high searching costs. In these works, neural architectures

are sampled from the search space through some pre-defined random algo-

rithms. Inspired by these studies, we propose the spatio-temporal topology

sampling (STTS) algorithm to sample SNN architectures from the topology-265

14

Stage TANet-Tiny TANet-Regular

1
single node

C

single node

C/2

2
single node

C

graph

N/2, C

3
graph

N , 2C

graph

N , 2C

4
graph

N , 4C

graph

N , 4C

5 -
graph

N , 8C

classifier

Table 1: Two settings of TANet. Each stage is generated from a connection topology

graph. For each graph, N denotes the number of nodes, and C represents the output

channel. We set N = 1 for the first few stages, where the graph becomes a single node.

15

aware search space randomly. Different from random search algorithm (Li

and Talwalkar, 2019), STTS does not evaluate the performance of candi-

date architectures but directly outputs the sampled architecture as the final

architecture. Therefore, STTS is very efficient compared with other NAS

methods.270

Specifically, in STTS, we sample the spatial topology as well as the tem-

poral topology for each stage. As shown in Algorithm 1, STTS consists

of two procedures: 1) using random graph models to generate the spatial

topology and 2) sampling the synaptic delay of each edge from a pre-defined

distribution to generate the temporal topology. As soon as we determine the275

connection topology graph, we convert the graph into a valid neural network.

Finally, we stack stages sequentially and output the final architecture.

In practice, we use the Watts-Strogatz (WS) model (Watts and Strogatz,

1998) and the Barabási-Albert (BA) model (Albert and Barabási, 2002) to

generate the spatial topology in the first procedure. We describe the details280

in Appendix A. Since the random graph models generate undirected graphs,

we have to convert the undirected graph to a DAG. To do so, we randomly

assign a topology order. Then each edge is directed from the node with a

smaller index to the node with a higher index. In the second procedure, we

randomly sample the synaptic delay of each edge independently from a pre-285

defined distribution Dsd. We set the synaptic delay to be either 0 or 1, and

Dsd is a Bernoulli distribution. The parameter p in the Bernoulli distribution

is referred to as the synaptic delay parameter, which controls the temporal

connection topology.

Although STTS directly outputs the final architecture without evalua-290

16

tion, as we will see in the experimental results section, sampling multiple

architectures leads to similar accuracies after training.

Algorithm 1: Spatio-temporal topology sampling

Input: Random graph model; Number of stages n; Synaptic delay

distribution Dsd;

for i = 1 to n do

Generate spatial topology Gi = (Vi, Ei) through the random

graph model;

foreach e in Ei do
Sample the synaptic delay of edge e from Dsd;

end

Covert the connection topology graph into a valid neural network;

end

Stack each stage sequentially to construct the final architecture.

5. Experiments

We conduct extensive experiments to verify the effectiveness of our pro-

posed method. The implementation details of these experiments are de-295

scribed in Appendix B.

5.1. Architecture Details

We use two settings of TANet in our experiments: TANet-Tiny for CIFAR-

10/100 and TANet-Regular for ImageNet. We set the number of nodes N to

32 and the number of channels C to 96 for both TANet-Tiny and TANet-300

Regular. For the synaptic delay parameter p, we set it to 0.05 for both

17

TANet-Tiny and TANet-Regular. We use the BA graph model and the WS

graph model to generate the spatial topology of TANet-Tiny and TANet-

Regular, respectively. Between the final stage and the classifier, there is a

layer of spiking neurons. The classifier consists of a 1×1 convolution-BN-SN305

triplet, a global average pooling layer, and a voting layer. To avoid overfit-

ting, We add a dropout (Srivastava et al., 2014) layer between the average

pooling layer and the voting layer in the classifier of TANet-Tiny, and we set

the drop probability to 0.2.

We use depthwise separable convolution (Chollet, 2017) in every spiking310

convolution node. The depthwise separable convolution consists of two layers:

the depthwise convolution and the pointwise convolution. The depthwise

convolution has a kernel size of 3 × 3 while the pointwise convolution has

a kernel size of 1 × 1. Note that we can transform the depthwise separable

convolution into a standard convolution with the same function. Therefore,315

we use depthwise separable convolutions in the training process and replace

them with equivalent convolutions during the inference.

5.2. Similarity between Different Samples

In the STTS algorithm, we sample architecture once without evaluation.

This raises the question of whether different samples will exhibit significant320

variation in accuracy after the training process. In this section, we empir-

ically demonstrate the similarities between different samples and show that

sampling multiple architectures leads to similar accuracies after training.

It is noteworthy that the architectures we sampled with different seeds all

utilize the same graph model for generating spatial topology and the same325

distribution for generating temporal topology. Consequently, these samples

18

� �������������������
�

�

�

�

�

��

��

��
������������
�����	

������������������	

Av
era

ge
pat

h l
eng

th

N u m b e r o f p a t h s

(a)

�

���

���

���

���

���

Sta
nda

rd
dev

iati
on

(%
) S a m e a r c h i t e c t u r e

 D i f f e r e n t a r c h i t e c t u r e s

C I F A R - 1 0 C I F A R - 1 0 0 I m a g e N e t

(b)

Figure 2: Similarity between different samples. (a) The number of paths and the average

path length across different samples. (b) The standard deviation across several training

runs of the same architecture and across different samples.

inherently exhibit similarities. To quantify these similarities, we calculate

two important statistical values of the spatial topology across these samples:

the number of paths and the average path length. The results are presented in

Fig. 2a. Notably, instances sampled from the same graph model exhibit clear330

similarities. Specifically, instances sampled from the WS model demonstrate

similar numbers of paths, while those sampled from the BA model exhibit

comparable average path lengths.

Additionally, we calculate the standard deviation across multiple training

runs of the same architecture and compare it to the standard deviation across335

different samples. The results are shown in Fig. 2b. Notably, the variation

across different samples is slightly larger than that observed across several

training runs of the same architecture. However, it’s important to highlight

that in both cases, the standard deviation remains relatively low.

19

Method Architecture Params Time steps Accuracy (%)

C
IF
A
R
-1
0

Rathi et al. (2020) VGG-9 32M 100 90.54

Yan et al. (2021) VGG-like 9M 600 94.16

Zheng et al. (2021) ResNet-19 13M 6 93.16

Deng et al. (2022) ResNet-19 13M 4 94.44

Kim et al. (2022) Searched Architecture 20M 5 92.73

Na et al. (2022) Searched Architecture 21M 8 93.15

Che et al. (2022) Searched Architecture 14M 6 95.50

STTS (ours) TANet-Tiny 7M 4 95.10±0.09

C
IF
A
R
-1
00

Rathi et al. (2020) VGG-11 37M 125 67.87

Yan et al. (2021) VGG-like 9M 300 71.84

Deng et al. (2022) ResNet-19 13M 4 74.47

Kim et al. (2022) Searched Architecture 21M 5 73.04

Na et al. (2022) Searched Architecture 5M 8 69.16

Che et al. (2022) Searched Architecture 14M 6 76.25

STTS (ours) TANet-Tiny 7M 4 76.33±0.32

Im
ag
eN

et

Rathi et al. (2020) VGG-16 138M 250 65.19

Rathi and Roy (2021) VGG-16 138M 5 69.00

Fang et al. (2021a) SEW-ResNet-50 26M 4 67.78

Deng et al. (2022) SEW-ResNet-34 22M 4 68.00

Che et al. (2022) Searched Architecture 58M 6 68.64

STTS (ours) TANet-Regular 25M 4 70.79±0.43

Table 2: Comparison between our work and other methods on CIFAR-10, CIFAR-100, and

ImageNet. “Params” denotes the number of parameters in the architecture. We report

the mean and standard deviation accuracy (after ±) of five runs under different random

seeds. 20

5.3. Comparison to the State of the Art340

We compare our experimental results with some SOTAmethods on CIFAR-

10, CIFAR-100, and ImageNet. The results are summarized in Table 2.

For the CIFAR-10 dataset, our architecture achieves competitive accuracy

among all other methods. The reported mean accuracy of TANet-Tiny is

only 0.4% lower than the SpikeDHS (Che et al., 2022), although TANet-345

Tiny uses a much less number of parameters and time steps. The results also

show that the variation of the corresponding accuracies among the sampled

architectures is low. The classification accuracy only has a standard deviation

of 0.09% among these samples.

We can see that our method has a significant improvement on more dif-350

ficult datasets. For the CIFAR-100 dataset, our architecture yields state-

of-the-art results using only 4 time steps. Specifically, TANet-Tiny achieves

a mean accuracy of 76.33%, which performs 0.08% advance compared to

SpikeDHS. It is noteworthy that although we only focus on designing SNN

architectures, our method outperforms these works that include both training355

methods and architecture designs.

For the ImageNet dataset, our architecture has 70.79% top-1 accuracy us-

ing 4 time steps, achieving a 3.01% increment compared with SEW-ResNet-

50 and a 2.15% increment compared with SpikeDHS. Note that our architec-

ture has fewer parameters and uses a similar or much less number of time360

steps.

5.4. Analysis on the Topology-aware Search Space

We conduct experiments to validate the suitability of our topology-aware

search space for obtaining SNN architectures. In our comparison, we evaluate

21

Architecture w/o SN (%) w/ SN (%)

SEW-ResNet-50 76.34±0.12 66.16±0.11

TANet-Regular (ours) 74.93±0.27 70.79±0.43

Table 3: Comparison with SEW-ResNet backbone on ImageNet. “w/o SN” and “w/

SN” represent the SNN architecture and the ANN architecture using the same backbone,

respectively. We report the mean and standard deviation accuracy (after ±) of five runs

under different random seeds.

Number of nodes 8 16 32 48 64

Accuracy (%) 94.81±0.07 94.93±0.07 94.99±0.04 94.58±0.12 94.27±0.11

Table 4: Effect of the size of the graph on CIFAR-10. We report the mean and standard

deviation accuracy (after ±) of three runs under different random seeds.

TANet-Regular alongside SEW-ResNet-50 (Fang et al., 2021a), which is an365

SNN-friendly modification of the conventional ANN architecture ResNet (He

et al., 2016). To ensure a fair comparison, we use identical hyperparameters

and training methods for both models. The results are shown in Table 3.

Under the same training settings, TANet-Regular achieves a 4.63% higher

classification accuracy compared to SEW-ResNet-50 in the context of SNNs.370

These experimental results strongly demonstrate that typical ANN architec-

tures are not optimal for SNNs. Our topology-aware search space proves to

be an SNN-friendly search space that can further exploit the potential of

SNN structures.

22

5.5. Effect of the Size of the Graph375

We test the effect of the size of the graph in the topology-aware search

space. In details, We vary the number of nodes in the graph from 8 to 64

while adjusting the number of channels to keep the total number of param-

eters. The results are shown in Table 4. We can see that as we increase the

number of nodes from 8 to 32, the performance improves, implying that SNN380

architectures benefit from a more complex connection topology. However, as

the number of nodes continuing increasing from 32 to 64, the accuracy be-

comes lower and lower. This might be because the decreasing of the number

of channels has a more significant impact as we increase the number of nodes.

Additionally, increasing the number of nodes might lead to overfitting.385

5.6. Effect of the Synaptic Delay

We conduct experiments to analyze the influence of the synaptic delay

parameter p. We vary p from 0 to 0.2, where p = 0 means no synaptic delay

in the architecture. The results are shown in Fig. 3. We can see that the

architecture is not optimal when there is no synaptic delay. When we increase390

p to 0.05, we observe a slight improvement in classification accuracies for

CIFAR-100 and ImageNet. However, as we continue increasing the synaptic

delay parameter p (e.g. p = 0.15, 0.2), the accuracy begins to decrease. We

choose p = 0.05 for optimal on all the datasets.

5.7. Energy Efficiency395

In contrast to ANNs, SNNs perform event-based operation and multiplication-

free inference. In this section, we demonstrate the energy efficiency of our

method by measuring the sparsity and energy consumption of TANet.

23

� ���� ��� ���� ���
	���

	���

	�

	���

	���

	���

Ac
cur

acy
 (%

)

S y n a p t i c d e l a y p a r a m e t e r p

C I F A R - 1 0

(a)

� ���� ��� ���� ���
��

����

����

����

���	

��

����

����

����

���	

��

Ac
cur

acy
 (%

)

S y n a p t i c d e l a y p a r a m e t e r p

C I F A R - 1 0 0

(b)

� ���� ��� ���� ���
�
��

�
�	

��

����

����

����

���	

��

����

����

����

Ac
cur

acy
 (%

)

S y n a p t i c d e l a y p a r a m e t e r p

I m a g e N e t

(c)

Figure 3: Effects of the synaptic delay parameter p on (a) CIFAR-10, (b) CIFAR-100, and

(c) ImageNet.

Sparsity. To provide a comprehensive insight into the sparsity of our ar-

chitecture, We calculate both the average firing rate (per time step) and the400

spike count for each SCN in our architecture. Fig. 4 visualizes the sparsity

statistics at different stages. The experimental results reveal a notably sparse

spiking activity within our architecture. Specifically, concerning firing rates,

the majority of nodes exhibit average firing rates of less than 10% in TANet-

Tiny and less than 15% in TANet-Regular. In terms of spike counts, the405

majority of nodes generate fewer than 30K spikes in TANet-Tiny and 500K

spikes in TANet-Regular. Both of these two sparsity statistics exhibit distinct

patterns at different stages, with the firing rate and spike count decreasing

as the neural network’s depth increases.

Energy consumption. Following previous studies (Li et al., 2021; Deng410

et al., 2022; Che et al., 2022), we estimate the energy consumption of our

architecture by measuring the number of synaptic operations. For more

details of the energy consumption analysis, please refer to Appendix C.

We conduct a comprehensive analysis of energy consumption, comparing our

architectures with typical ANN architecture, SNN architecture searched by415

24

��������������������������������

�

�

��

��

��

��

�

�

De
nsi

ty

F i r i n g R a t e

 S t a g e 3
 S t a g e 4

(a)

� ����� �����

�

������

������

������

������

������

��������

��������

�

�

De
nsi

ty

S p i k e C o u n t

 S t a g e 3
 S t a g e 4

(b)

��������	������������������	��������

�

�

��

��

��

�

�

De
nsi

ty

F i r i n g R a t e

 S t a g e 2
 S t a g e 3
 S t a g e 4
 S t a g e 5

(c)

��� ��� ���

�

������

������

������

������

������

������

	�����

�����

������

������

��������

�

�

De
nsi

ty

S p i k e C o u n t

 S t a g e 2
 S t a g e 3
 S t a g e 4
 S t a g e 5

(d)

Figure 4: Sparsity statistics at different stages. (a) Firing rate distribution in TANet-Tiny.

(b) Spike count distribution in TANet-Tiny. (c) Firing rate distribution in TANet-Regular.

(d) Spike count distribution in TANet-Regular.

25

Architecture #Add. #Mult. Energy (mJ)
C
IF
A
R
-1
0 ResNet-19 (ANN) 2285M 2285M 10.5

TANet-Tiny (ANN) 735M 735M 3.4

SpikeDHS (SNN) 5973M 19M 5.5

TANet-Tiny (ours) 1329M 3M 1.2

Im
ag
eN

et ResNet-50 (ANN) 4134M 4134M 19.0

TANet-Regular (ANN) 3093M 3093M 14.2

TANet-Regular (ours) 9026M 16M 8.2

Table 5: The operation number and energy consumption. “# Add.” and “#Mult.” repre-

sent the number of addition and multiplication operations, respectively.

SpikeDHS (Che et al., 2022), and ANN versions of our architectures. The

results are shown in Table 5. We can see that our architectures achieve the

lowest energy consumption among these architectures.

6. Conclusion and Future Work

In this paper, we propose the topology-aware search space to expand the420

range of design choices for SNN architectures. The topology-aware search

space not only enables complex designs of spatial topology but also empowers

the design of temporal topology by incorporating the synaptic delay. Instead

of utilizing a classical NAS method, we propose the spatio-temporal topology

sampling (STTS) algorithm to obtain SNN architectures from our search425

space. By avoiding the unaffordable NAS cost, our algorithm is much more

efficient compared with previous studies. Experimental results show that

26

our proposed method achieves state-of-the-art accuracy and generates fewer

spikes on image classification tasks. Our method highlights the significance

of the connection topology in designing SNN architectures.430

For our work, there is still a lack of theoretical guarantee of the random

sampling method, although empirical results show that the variance between

different sampled architectures is low. In future research, we plan to ana-

lyze the effectiveness of different topologies in SNNs theoretically. We will

also investigate the correlation between the spatial topology and the tempo-435

ral topology. We aim to propose a robust NAS method with a theoretical

guarantee and yield more powerful SNN architectures.

Acknowledgements

Z. Lin was supported by National Key R&D Program of China (2022ZD0160302),

the NSF China (No. 62276004), the major key project of PCL, China (No.440

PCL2021A12), and Qualcomm.

Appendix A. Random Graph Models

To generate network topologies, Xie et al. (2019) use random graph mod-

els from graph theory. Inspired by their works, we use the the Watts-Strogatz

(WS) model (Watts and Strogatz, 1998) and the Barabási-Albert (BA) model445

(Albert and Barabási, 2002) to generate the spatial topology. We describe

them in the following.

Watts-Strogatz. The WS model is a random graph model which can gen-

erate graphs with small-world properties. To generate an undirected graph

with N nodes, the WS model contains two procedures: 1) Place the N nodes450

27

(a) (b)

Figure A.5: Two topology graph instances. (a) A topology graph with the spatial topology

generated by the WS model. (b) A topology graph with the spatial topology generated

by the BA model. Nodes representing the source and sink are highlighted in blue, while

red dashed arrows represent connections with synaptic delays.

in a regular ring lattice. Each node is connected to K neighbors, with K/2

on both sides. 2) For every node v, the edge that connects v to its K/2

rightmost neighbors is rewired with probability P . “Rewire” means that the

edge is replaced with edge (v, k) where the node k is uniformly chosen at

random while avoiding duplication.455

Barabási-Albert. The BA model is a random graph model which gener-

ates scale-free networks. The graph begins with M nodes without any edges.

Then, new nodes are sequentially added to the graph, one at a time. Each

new node will be connected to M existing nodes with a probability propor-

tional to the degrees of the existing nodes.460

In our experiments, we set K = 4, P = 0.75 for the WS model and

M = 8 for the BA model. Consequently, in the case of TANet-Tiny, a graph

28

with 32 nodes exhibits dense connectivity, with a total of 192 edges. In the

configuration of TANet-Regular, a 32-node graph has 64 edges, representing

a sparser connectivity pattern. We visualize two examples in Fig. A.5.465

Appendix B. Implementation Details

Appendix B.1. Datasets

We conduct experiments on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-

100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009).

CIFAR. The CIFAR dataset consists of 60k colored images with a resolution470

of 32× 32. The images are separated into 50k training samples and 10k test

samples. There are 10 classes of objects in CIFAR-10 and 100 classes of ob-

jects in CIFAR-100. We apply the same data preprocessing for CIFAR-10 and

CIFAR-100, which contains data normalization, random horizontal flipping,

cutout (DeVries and Taylor, 2017), and random cropping. We employ direct475

encoding (Rathi and Roy, 2021) to convert image pixels into time series. In

this method, the floating-point pixel matrix of the images is duplicated at

each time step and then fed into the first layer of the SNN architecture.

ImageNet. The ImageNet dataset consists of over 1250k training images,

50k validation images, and 100k test images. We apply data normalization480

so that the input data have zero mean and unit variance. Besides, our data

preprocessing contains random resized cropping and horizontal flipping. The

input size is set to 224 × 224 by default. We also use the direct encoding

(Rathi and Roy, 2021), as done for the CIFAR dataset.

29

Dataset CIFAR-10 CIFAR-100 ImageNet

Optimizer SGD SGD SGD

Epoch 300 300 120

lr 0.1 0.1 0.1

lr scheduler Cosine Annealing Cosine Annealing Cosine Annealing

Weight decay 1e-4 1e-4 4e-5

Batch size per GPU 64 64 16

GPU 1 1 16

Table B.6: Hyperparameters for training on CIFAR-10/100 and ImageNet.

Appendix B.2. Training Settings485

Our implementation is based on PyTorch (Paszke et al., 2019). We use

SpikingJelly (Fang et al., 2020) to implement the LIF neuron. Specifically, we

set λ = 3.0, Vreset = 0, and Vth = 1 in every spiking neuron for all datasets.

The surrogate gradient used in this work can be formulated as

∂Sl[t]

∂H l[t]
=

α

2
[
1 +

(
π
2
αH l[t]

)2] , (B.1)

where we set α = 2 for all datasets. We use the cross-entropy loss and adopt490

the standard STBP (Wu et al., 2018) training framework to train the SNN

architecture. As recommended by (Zenke and Vogels, 2021), We detach the

computational graph of reset during backpropagation to further improve the

performance.

The hyperparameters about optimization are shown in Table B.6. We495

use an SGD optimizer (Rumelhart et al., 1986) with momentum 0.9 to train

30

our models in all experiments. The weight decay is set to 1e-4 and 4e-5 for

CIFAR-10/100 and ImageNet, respectively. We set the initial learning rate

to 0.1 for all datasets and use a cosine learning rate decay (Loshchilov and

Hutter, 2017). We adopt the mixed precision training (Micikevicius et al.,500

2018) in order to reduce memory consumption and speed up our training

process. For the ImageNet dataset, we train our model on multi-GPU, and

we use the synchronized batch normalization (SyncBN) (Zhang et al., 2018)

technique.

The experiments are conducted on NVIDIA Tesla A100 GPU or NVIDIA505

GeForce RTX 3090 GPU.

Appendix C. Energy Consumption Analysis Details

We conduct an energy consumption analysis following previous studies

(Li et al., 2021; Che et al., 2022; Deng et al., 2022). Before calculating

the theoretical energy consumption, we calculate the number of synaptic510

operations in SNNs. This calculation is performed as follows:

SOP l = fr × T × FLOPsl, (C.1)

where l represents a layer, SOP l denotes the number of synaptic operations in

layer l, fr represents the average firing rate of the layer, T denotes the number

of time steps, FLOPsl refers to the number of floating point operations of

the layer.515

Regarding our architecture, the first layer performs multiply-and-accumulate

(MAC) operations since it receives non-binary inputs. In all subsequent lay-

ers, the architecture transfers spikes and performs accumulate (AC) opera-

tions. Therefore, we can quantify the estimated energy consumption of our

31

architecture, denoted as ETANet, as follows:520

ETANet = EMAC · FLOPs1 + EAC ·
N∑

n=2

SOP n, (C.2)

where N is the total number of layers, EMAC and EAC represent the energy

cost of MAC and AC operation, respectively. FLOPs1 denotes the number of

floating point operations in the first layer. Refer to previous studies (Li et al.,

2021; Che et al., 2022), we assume that the data for various operations are

32-bit floating-point implementation in 45nm technology (Horowitz, 2014),525

with EMAC = 4.6pJ and EAC = 0.9pJ .

References

Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex

networks. Reviews of Modern Physics, 74(1):47.

Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q. (2018).530

Understanding and simplifying one-shot architecture search. In Inter-

national Conference on Machine Learning.

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T. (2022). Optimal

ANN-SNN conversion for high-accuracy and ultra-low-latency spiking

neural networks. In International Conference on Learning Representa-535

tions.

Cai, H., Gan, C., Wang, T., Zhang, Z., and Han, S. (2019). Once-for-all:

Train one network and specialize it for efficient deployment. arXiv

preprint arXiv:1908.09791.

32

Che, K., Leng, L., Zhang, K., Zhang, J., Meng, Q., Cheng, J., Guo, Q.,540

and Liao, J. (2022). Differentiable hierarchical and surrogate gradient

search for spiking neural networks. In Advances in Neural Information

Processing Systems.

Chollet, F. (2017). Xception: Deep learning with depthwise separable con-

volutions. In Proceedings of the IEEE Conference on Computer Vision545

and Pattern Recognition.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009).

Imagenet: A large-scale hierarchical image database. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition.

Deng, S., Li, Y., Zhang, S., and Gu, S. (2022). Temporal efficient training550

of spiking neural network via gradient re-weighting. In International

Conference on Learning Representations.

DeVries, T. and Taylor, G. W. (2017). Improved regularization of convolu-

tional neural networks with cutout. arXiv preprint arXiv:1708.04552.

Dong, X. and Yang, Y. (2019). Searching for a robust neural architecture555

in four gpu hours. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition.

Dong, X. and Yang, Y. (2020). NAS-Bench-201: Extending the scope of

reproducible neural architecture search. In International Conference on

Learning Representations.560

Fang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., Tian, Y.,

33

and other contributors (2020). Spikingjelly. https://github.com/

fangwei123456/spikingjelly.

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., and Tian, Y. (2021a).

Deep residual learning in spiking neural networks. In Advances in Neural565

Information Processing Systems.

Fang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., and Tian, Y. (2021b).

Incorporating learnable membrane time constant to enhance learning of

spiking neural networks. In Proceedings of the IEEE/CVF International

Conference on Computer Vision.570

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and Sun, J. (2020).

Single path one-shot neural architecture search with uniform sampling.

In Proceedings of the European Conference on Computer Vision.

Han, B., Srinivasan, G., and Roy, K. (2020). RMP-SNN: Residual membrane

potential neuron for enabling deeper high-accuracy and low-latency spik-575

ing neural network. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for

image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition.580

Horowitz, M. (2014). 1.1 computing’s energy problem (and what we can do

about it). In 2014 IEEE International Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), pages 10–14. IEEE.

34

https://github.com/fangwei123456/spikingjelly
https://github.com/fangwei123456/spikingjelly
https://github.com/fangwei123456/spikingjelly

Kim, S., Park, S., Na, B., and Yoon, S. (2020). Spiking-yolo: Spiking neural

network for energy-efficient object detection. In Proceedings of the AAAI585

Conference on Artificial Intelligence.

Kim, Y., Li, Y., Park, H., Venkatesha, Y., and Panda, P. (2022). Neural

architecture search for spiking neural networks. In Proceedings of the

European Conference on Computer Vision.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features590

from tiny images. Tech Report.

Kugele, A., Pfeil, T., Pfeiffer, M., and Chicca, E. (2020). Efficient processing

of spatio-temporal data streams with spiking neural networks. Frontiers

in Neuroscience, 14:439.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking neural595

networks using backpropagation. Frontiers in Neuroscience, 10:508.

Li, L. and Talwalkar, A. (2019). Random search and reproducibility for

neural architecture search. In Uncertainty in Artificial Intelligence.

Li, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., and Gu, S. (2021). Differentiable

spike: Rethinking gradient-descent for training spiking neural networks.600

In Advances in Neural Information Processing Systems.

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Differentiable architec-

ture search. In International Conference on Learning Representations.

Loshchilov, I. and Hutter, F. (2017). Sgdr: Stochastic gradient descent with

warm restarts. In International Conference on Learning Representations.605

35

Maass, W. (1997). Networks of spiking neurons: the third generation of

neural network models. Neural Networks, 10(9):1659–1671.

Meng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., and Luo, Z.-Q. (2022). Train-

ing high-performance low-latency spiking neural networks by differenti-

ation on spike representation. In Proceedings of the IEEE Conference610

on Computer Vision and Pattern Recognition.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D.,

Ginsburg, B., Houston, M., Kuchaiev, O., Venkatesh, G., et al. (2018).

Mixed precision training. In International Conference on Learning Rep-

resentations.615

Na, B., Mok, J., Park, S., Lee, D., Choe, H., and Yoon, S. (2022). AutoSNN:

Towards energy-efficient spiking neural networks. In International Con-

ference on Machine Learning.

Orchard, G., Frady, E. P., Rubin, D. B. D., Sanborn, S., Shrestha, S. B.,

Sommer, F. T., and Davies, M. (2021). Efficient neuromorphic signal620

processing with loihi 2. In 2021 IEEE Workshop on Signal Processing

Systems (SiPS).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,

T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An

imperative style, high-performance deep learning library. In Advances625

in Neural Information Processing Systems.

Patel, K., Hunsberger, E., Batir, S., and Eliasmith, C. (2021). A spiking neu-

ral network for image segmentation. arXiv preprint arXiv:2106.08921.

36

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural

architecture search via parameters sharing. In International Conference630

on Machine Learning.

Rathi, N. and Roy, K. (2021). Diet-SNN: A low-latency spiking neural net-

work with direct input encoding and leakage and threshold optimization.

IEEE Transactions on Neural Networks and Learning Systems.

Rathi, N., Srinivasan, G., Panda, P., and Roy, K. (2020). Enabling deep spik-635

ing neural networks with hybrid conversion and spike timing dependent

backpropagation. In International Conference on Learning Representa-

tions.

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature, 575(7784):607–617.640

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017).

Conversion of continuous-valued deep networks to efficient event-driven

networks for image classification. Frontiers in Neuroscience, 11:682.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back-propagating errors. Nature, 323(6088):533–536.645

Sciuto, C., Yu, K., Jaggi, M., Musat, C., and Salzmann, M. (2020). Eval-

uating the search phase of neural architecture search. In International

Conference on Learning Representations.

Shrestha, S. B. and Orchard, G. (2018). Slayer: Spike layer error reassign-

ment in time. In Advances in Neural Information Processing Systems.650

37

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for

large-scale image recognition. In International Conference on Learning

Representations.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,

R. (2014). Dropout: a simple way to prevent neural networks from655

overfitting. The Journal of Machine Learning Research, 15(1):1929–

1958.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’

networks. Nature, 393(6684):440–442.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P.,660

Jia, Y., and Keutzer, K. (2019). Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal

backpropagation for training high-performance spiking neural networks.665

Frontiers in Neuroscience, 12:331.

Xiao, M., Meng, Q., Zhang, Z., Wang, Y., and Lin, Z. (2021). Training

feedback spiking neural networks by implicit differentiation on the equi-

librium state. In Advances in Neural Information Processing Systems.

Xie, S., Kirillov, A., Girshick, R., and He, K. (2019). Exploring randomly670

wired neural networks for image recognition. In Proceedings of the

IEEE/CVF International Conference on Computer Vision.

38

Yan, Z., Zhou, J., and Wong, W.-F. (2021). Near lossless transfer learning

for spiking neural networks. In Proceedings of the AAAI Conference on

Artificial Intelligence.675

Zenke, F. and Vogels, T. P. (2021). The remarkable robustness of surro-

gate gradient learning for instilling complex function in spiking neural

networks. Neural Computation, 33(4):899–925.

Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., and Agrawal,

A. (2018). Context encoding for semantic segmentation. In Proceedings680

of the IEEE Conference on Computer Vision and Pattern Recognition.

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021). Going deeper with

directly-trained larger spiking neural networks. In Proceedings of the

AAAI Conference on Artificial Intelligence.

Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement685

learning. In International Conference on Learning Representations.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transfer-

able architectures for scalable image recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition.

39

	Introduction
	Related Works
	Leveraging ANN Architectures
	Neural Architecture Search

	Preliminary
	The Leaky Integrate-and-Fire (LIF) Model
	Spatio-temporal Backpropagation

	Methodology
	Topology-aware Search Space
	Spatio-temporal Topology Sampling

	Experiments
	Architecture Details
	Similarity between Different Samples
	Comparison to the State of the Art
	Analysis on the Topology-aware Search Space
	Effect of the Size of the Graph
	Effect of the Synaptic Delay
	Energy Efficiency

	Conclusion and Future Work
	Random Graph Models
	Implementation Details
	Datasets
	Training Settings

	Energy Consumption Analysis Details

