
Neural Networks 172 (2024) 106121

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

Sampling complex topology structures for spiking neural networks
Shen Yan a, Qingyan Meng b,c, Mingqing Xiao d, Yisen Wang d,e, Zhouchen Lin d,e,f,∗

a Center for Data Science, Peking University, China
b The Chinese University of Hong Kong, Shenzhen, China
c Shenzhen Research Institute of Big Data, Shenzhen 518115, China
d National Key Lab of General AI, School of Intelligence Science and Technology, Peking University, China
e Institute for Artificial Intelligence, Peking University, China
f Peng Cheng Laboratory, Shenzhen, 518055, China

A R T I C L E I N F O

Keywords:
Spiking neural networks
Neural architecture search

A B S T R A C T

Spiking Neural Networks (SNNs) have been considered a potential competitor to Artificial Neural Networks
(ANNs) due to their high biological plausibility and energy efficiency. However, the architecture design of
SNN has not been well studied. Previous studies either use ANN architectures or directly search for SNN
architectures under a highly constrained search space. In this paper, we aim to introduce much more complex
connection topologies to SNNs to further exploit the potential of SNN architectures. To this end, we propose
the topology-aware search space, which is the first search space that enables a more diverse and flexible design
for both the spatial and temporal topology of the SNN architecture. Then, to efficiently obtain architecture
from our search space, we propose the spatio-temporal topology sampling (STTS) algorithm. By leveraging
the benefits of random sampling, STTS can yield powerful architecture without the need for an exhaustive
search process, making it significantly more efficient than alternative search strategies. Extensive experiments
on CIFAR-10, CIFAR-100, and ImageNet demonstrate the effectiveness of our method. Notably, we obtain
70.79% top-1 accuracy on ImageNet with only 4 time steps, 1.79% higher than the second best model. Our
code is available under https://github.com/stiger1000/Random-Sampling-SNN.
1. Introduction

Spiking Neural Networks (SNNs), regarded as the third generation of
neural networks (Maass, 1997), have attracted considerable attention
due to their energy efficiency and high biological plausibility (Fang,
Yu, Chen, Huang, Masquelier, & Tian, 2021; Lee, Delbruck, & Pfeiffer,
2016; Li et al., 2021; Roy, Jaiswal, & Panda, 2019; Shrestha & Orchard,
2018; Wu, Deng, Li, Zhu, & Shi, 2018; Xiao, Meng, Zhang, Wang, &
Lin, 2021). The essential component of SNNs is the spiking neuron,
which encodes information with binary spikes over several time steps,
thus avoiding multiplication during inference. In recent years, with
the development of novel training algorithms, SNNs have achieved
competitive performance on several tasks, such as image classifica-
tion (Meng et al., 2022), object detection (Kim, Park, Na, & Yoon,
2020), and object segmentation (Patel, Hunsberger, Batir, & Eliasmith,
2021). Meanwhile, the development of neuromorphic hardware further
improves the performance of SNNs. For instance, the recently released
second-generation neuromorphic research chip Loihi 2 (Orchard et al.,
2021) supports larger neural architectures and new applications while
providing faster and energy-efficient processing.

∗ Corresponding author at: National Key Lab of General AI, School of Intelligence Science and Technology, Peking University, China.
E-mail addresses: yanshen@pku.edu.cn (S. Yan), qingyanmeng@link.cuhk.edu.cn (Q. Meng), mingqing_xiao@pku.edu.cn (M. Xiao), yisen.wang@pku.edu.cn

(Y. Wang), zlin@pku.edu.cn (Z. Lin).

However, the development of SNN architectures is lagging behind.
Unlike ANN, SNN has a two-dimensional computational graph contain-
ing both spatial and temporal domains. Most previous studies simply
utilize ANN architectures like VGG-Net (Simonyan & Zisserman, 2015),
and ResNet (He, Zhang, Ren, & Sun, 2016), ignoring the architecture
gap between ANNs and SNNs. On the other hand, directly applying
typical neural architecture search (NAS) methods such as ENAS (Pham,
Guan, Zoph, Le, & Dean, 2018) and DARTS (Liu, Simonyan, & Yang,
2019) on searching SNN architectures can be very time-consuming due
to the much slower training speed of SNNs. Existing NAS methods for
SNNs (Che et al., 2022; Kim, Li, Park, Venkatesha, & Panda, 2022; Na
et al., 2022) manage to accelerate the training process by imposing
limitations on the search space. For instance, SNASNet (Kim et al.,
2022) is selected from a cell-based search space with only four nodes
in each cell. SpikeDHS (Che et al., 2022) adopts a hierarchical search
space also with four nodes in each cell. AutoSNN (Na et al., 2022)
searches the hyperparameters of each spiking block under a pre-defined
vailable online 10 January 2024
893-6080/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2024.106121
Received 11 May 2023; Received in revised form 22 December 2023; Accepted 9 J
anuary 2024

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
https://github.com/stiger1000/Random-Sampling-SNN
mailto:yanshen@pku.edu.cn
mailto:qingyanmeng@link.cuhk.edu.cn
mailto:mingqing_xiao@pku.edu.cn
mailto:yisen.wang@pku.edu.cn
mailto:zlin@pku.edu.cn
https://doi.org/10.1016/j.neunet.2024.106121
https://doi.org/10.1016/j.neunet.2024.106121
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2024.106121&domain=pdf

Neural Networks 172 (2024) 106121S. Yan et al.
Fig. 1. A comparison of different search space designs for SNNs. (a) SNASNet (Kim et al., 2022) adopts a cell-based search space. The cell has a total of four nodes, and each
edge is associated with an operation selected from the operation set. (b) AutoSNN (Na et al., 2022) employs a fixed topology while searching for the optimal choices for the
to-be-determined (TBD) blocks. (c) SpikeDHS (Che et al., 2022) utilizes a search space similar to DARTS (Liu et al., 2019), with 4 nodes within a cell, and extends its search
to the layer level. (d) We present the topology-aware search space enabling complex designs of spatial and temporal topologies. Our architecture comprises multiple stages, each
represented by a connection topology graph. In this illustration, Stage 3 consists of 16 spiking convolution nodes (SCNs) in white, along with a source node and a sink node,
both colored blue. Each SCN transforms the summation of the input data through a layer of spiking neurons (SN), a convolutional layer, and a batch normalization (BN) layer.
Directed connections between nodes are indicated by arrows, while red dashed arrows represent connections with synaptic delay.
macro architecture. We note that these works do not pay enough atten-
tion to the connection topology of the SNN architecture. Their search
space highly restricts the connection topology of the SNN structure,
which may cause a severe loss of architecture diversity, resulting in
missing the optimal SNN architecture. Therefore, it is necessary to
design a dedicated search space for SNN architectures, which has a
higher degree of freedom on the connection topology design.

In this study, we aim to exploit the potential of the topology design
on both spatial and temporal dimensions for SNNs. To this end, we
propose the topology-aware search space specifically for searching
SNN architectures, which enables a more complex connection topol-
ogy of the network. The topology-aware search space has a larger
topology graph with at most 32 nodes, which is eight times larger
than that in previous studies (Che et al., 2022; Kim et al., 2022). We
also incorporate the synaptic delay within our architecture, thereby
enabling the design of the temporal topology. This provides a novel
perspective to better leverage the temporal processing ability of SNN
by the architecture design. Fig. 1 illustrates the difference between
our work and previous studies. Note that there is a huge number
of possible connection topologies in the topology-aware search space.
Learning to search for architectures in such an ample search space
is a big challenge, especially due to the high training cost of SNN
architectures (Kim et al., 2022; Wu et al., 2018). Nevertheless, we
notice that random algorithms (Li & Talwalkar, 2019; Sciuto, Yu, Jaggi,
Musat, & Salzmann, 2020; Xie, Kirillov, Girshick, & He, 2019) can
also yield competitive performance compared with other NAS methods.
Inspired by these works, we propose the spatio-temporal topology
sampling (STTS) algorithm to obtain SNN architectures efficiently. In
the proposed algorithm, we use random graph models to generate the
spatial topology and sample the synaptic delay from a pre-defined
distribution to generate the temporal topology. By leveraging the ef-
ficiency of random sampling, STTS avoids the search process and can
obtain a powerful architecture within 0.1 seconds, representing a
2

significant acceleration compared with existing NAS methods on SNNs.
We evaluate our method on CIFAR-10 (Krizhevsky, Hinton, et al.,
2009), CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al.,
2009) datasets. Our method achieves state-of-the-art accuracy on nearly
all datasets, while having a lower energy consumption compared with
prior works. We summarize our contributions as follows:

1. We propose the topology-aware search space explicitly designed
for SNN architecture searching. With the topology-aware search
space, it is the first time that we can introduce much more di-
verse connection topologies into the design of SNN architectures.

2. We propose to consider the synaptic delay in the topology-aware
search space, which enables a more flexible design of the tempo-
ral topology. This presents a novel perspective for exploiting the
temporal learning capacity of SNNs by the architecture design.

3. We propose the spatio-temporal topology sampling (STTS) algo-
rithm to sample architectures from our search space. Our algo-
rithm provides an alternative way to obtain SNN architectures,
avoiding the huge searching cost in previous studies.

2. Related works

There are mainly two strategies to obtain an SNN architecture:
leveraging ANN architectures, and applying the NAS methods to search
for SNN architectures directly.

2.1. Leveraging ANN architectures

Converting ANNs to SNNs (Kugele, Pfeil, Pfeiffer, & Chicca, 2020;
Rueckauer, Lungu, Hu, Pfeiffer, & Liu, 2017) is one of the most effective
methods for training SNNs. This approach leverages ANN architectures
inherently. Consequently, a majority of subsequent SNN studies (Bu
et al., 2022; Deng, Li, Zhang, & Gu, 2022; Han, Srinivasan, & Roy,

Neural Networks 172 (2024) 106121S. Yan et al.

b

w
d

2020; Meng et al., 2022; Rathi, Srinivasan, Panda, & Roy, 2020; Zheng,
Wu, Deng, Hu, & Li, 2021) also make use of ANN architectures. Typical
ANN architectures, such as VGG-Net (Simonyan & Zisserman, 2015),
and ResNet (He et al., 2016), can be adapted to SNNs by replacing
the ReLU activation function with spiking neurons. Based on the ANN
backbone, some SNN-friendly modifications have been proposed, such
as tdBN (Zheng et al., 2021), PLIF neuron (Fang, Yu, Chen, Masquelier,
Huang, & Tian, 2021), and SEW block (Fang, Yu, Chen, Huang, Masque-
lier, & Tian, 2021). However, naively leveraging ANN architectures is
not optimal due to the inherent architectural gap between ANNs and
SNNs (Kim et al., 2022).

2.2. Neural architecture search

Neural architecture search (NAS) methods are proposed for search-
ing optimal neural architectures in an automated way. Early NAS
method (Zoph & Le, 2017) defines a global search space and uses
reinforcement learning (RL) as the search strategy. To search neu-
ral architectures more effectively and efficiently, recent studies in
the field of NAS focus on optimization strategies, including modular
search space (Zoph, Vasudevan, Shlens, & Le, 2018), continuous search
strategy (Dong & Yang, 2019; Liu et al., 2019; Wu et al., 2019), weight-
sharing strategy (Bender, Kindermans, Zoph, Vasudevan, & Le, 2018;
Cai, Gan, Wang, Zhang, & Han, 2019; Guo et al., 2020; Na et al., 2022;
Pham et al., 2018), and random algorithms (Li & Talwalkar, 2019;
Sciuto et al., 2020; Xie et al., 2019). However, these methods are for
searching ANN architectures only.

Recently, NAS methods have been utilized to obtain SNN architec-
tures directly, but the related work is very limited. Kim et al. (2022)
are the first to apply a NAS method for searching SNN architectures.
They evaluate the representation power of each candidate architecture
at initialization, thereby avoiding the training cost. Na et al. (2022)
investigate design choices concerning both accuracy and number of
spikes. They introduce a spike-aware evolutionary algorithm, aiming to
discover an SNN architecture that achieves high accuracy and generates
fewer spikes. Che et al. (2022) present a differentiable hierarchical
search framework that encompasses both cell-level and layer-level
search spaces. Additionally, they extend their approach to include
surrogate gradient search. However, the search space in these methods
is quite small, which highly restricts the topology design of the SNN ar-
chitecture. In contrast, we propose to introduce a much more complex
connection topology into the design of SNN architectures.

3. Preliminary

3.1. The Leaky Integrate-and-Fire (LIF) model

The fundamental component in SNNs to process binary information
is the spiking neuron. Similar to previous SNN studies (Fang, Yu, Chen,
Huang, Masquelier, & Tian, 2021; Kim et al., 2022; Na et al., 2022), we
adopt the discrete version of the Leaky Integrate-and-Fire (LIF) model
to describe the spatio-temporal dynamics of the spiking neuron, which
can be formulated as

𝐻 𝑙[𝑡] = 𝑉 𝑙[𝑡 − 1] + 1
𝜏
(𝑋𝑙[𝑡] − (𝑉 𝑙[𝑡 − 1] − 𝑉𝑟𝑒𝑠𝑒𝑡)), (1)

𝑆𝑙[𝑡] = 𝛩(𝐻 𝑙[𝑡] − 𝑉𝑡ℎ), (2)

𝑉 𝑙[𝑡] = 𝐻 𝑙[𝑡](1 − 𝑆𝑙[𝑡]) + 𝑉𝑟𝑒𝑠𝑒𝑡𝑆
𝑙[𝑡], (3)

where 𝑙 is the layer index, 𝜏 is the membrane time constant, 𝑋[𝑡] is the
input current at time step 𝑡, 𝐻[𝑡] represents the membrane potential
efore the trigger of a spike, and 𝑉 [𝑡] denotes the membrane potential

after triggering. 𝛩(𝑥) is the Heaviside step function. A spike is triggered
if 𝐻[𝑡] exceeds the firing threshold 𝑉𝑡ℎ. We use hard reset here, which
means that the spiking neuron resets its membrane potential to 𝑉𝑟𝑒𝑠𝑒𝑡
after firing a spike.
3

s

3.2. Spatio-temporal backpropagation

Due to the non-differentiability of the spike function, the training of
SNN is a great challenge. Recent works on directly training SNN (Deng
et al., 2022; Fang, Yu, Chen, Huang, Masquelier, & Tian, 2021) adopt
the spatio-temporal backpropagation (STBP) training framework (Wu
et al., 2018). These works regard the SNN as a recurrent neural network
(RNN) and calculate the gradient by the backpropagation on both
spatial and temporal dimensions. We use the same method, which is
formulated as

𝜕
𝜕𝐖

=
𝑇
∑

𝑡=1

𝜕
𝜕𝐻 𝑙[𝑡]

𝜕𝐻 𝑙[𝑡]
𝜕𝑋𝑙[𝑡]

𝜕𝑋𝑙[𝑡]
𝜕𝐖

, (4)

where denotes the loss function, 𝑇 is the number of time steps. Since
the Heaviside step function is non-differentiable, previous studies (Deng
et al., 2022; Fang, Yu, Chen, Huang, Masquelier, & Tian, 2021; Wu
et al., 2018) approximate its gradient with some surrogate gradients.
Following these studies, we employ the same surrogate gradient as
utilized in some previous works (Fang, Yu, Chen, Huang, Masquelier,
& Tian, 2021; Fang, Yu, Chen, Masquelier, Huang, & Tian, 2021; Kim
et al., 2022):

𝜕𝑆𝑙[𝑡]
𝜕𝐻 𝑙[𝑡]

= 𝛼

2
[

1 +
(

𝜋
2 𝛼𝐻

𝑙[𝑡]
)2

] , (5)

where 𝛼 denotes the slope parameter.

4. Methodology

4.1. Topology-aware search space

The cell-based search space has been widely used in modern NAS
algorithms (Dong & Yang, 2020; Liu et al., 2019; Zoph et al., 2018). In
the cell-based search space, the final architecture is constructed from
a few types of small cell structures, thereby significantly reducing the
search complexity. However, the cell-based search space is not suitable
for searching SNN architectures mainly because it highly restricts the
design of the spatial topology as well as the temporal topology of the
SNN architecture. Thus, designing a search space explicitly for SNN
architectures is important. To this end, we propose the topology-aware
search space, an SNN-friendly search space focusing on increasing the
diversity of both spatial and temporal connection topologies.

As shown in Fig. 1(d), each stage in our search space can be
represented by a connection topology graph. The connection topology
graph consists of several spiking convolution nodes and some edges
connecting the nodes. Unlike conventional representations associating
operations with edges (Dong & Yang, 2020), we define operations in-
side each spiking convolution node, and an edge represents information
transmission between a pair of nodes.

Spiking convolution node. The spiking convolution node (SCN) is the
basic computing unit in the topology-aware search space. As shown in
Fig. 1(d), SCN has some input edges as well as output edges. The node
first receives input data from all the input edges, then aggregates all
the input data via a simple summation. Afterwards, the aggregated data
are transformed sequentially through a layer of spiking neurons (SN), a
convolutional layer, and a batch normalization (BN) layer. Finally, the
node sends out the transformed data through its output edges. We can
formulate the node operations as

𝑋𝑗 [𝑡] =
∑

(𝑖,𝑗)∈𝐸
𝑆𝑖[𝑡], (6)

𝑆𝑗 [𝑡] = BN
(

Conv2d
(

SN
(

𝑋𝑗 [𝑡]
)))

, (7)

here 𝑋𝑗 [𝑡] and 𝑆𝑗 [𝑡] represent the aggregated data and transformed
ata of the 𝑗th node at time step 𝑡, respectively. In the topology-aware

earch space, we do not search for the choice of operations. We adopt

Neural Networks 172 (2024) 106121S. Yan et al.

t
g
D
w
t
c

T
o
b
o
o
m
o
i
d
e
a
r
i

𝑋

p
e

S
t
a
t
s
t
S
W
s
a
t
o
s
s
i

𝑋

a

𝑆

a
i

s

S
2

i
c
h

the SN-convolution-BN triplet inside all spiking convolution nodes.
During the inference, we will merge the BN layer into the precedent
convolutional layer.

Spatial connection topology. In our topology-aware search space,
he spatial connection topology can be represented as a directed acyclic
raph (DAG) 𝐺 = (𝑉 ,𝐸). For simplicity, we assume that nodes in the
AG are sorted in a topology order. An edge only points to the node
ith a higher index from the node with a smaller index. Benefiting from

hese settings, we have a high degree of freedom to design the spatial
onnection topology, especially when the number of nodes is large (e.g.
|𝑉 | = 16, 32). For instance, considering a DAG with |𝑉 | nodes, there
are 2

|𝑉 |(|𝑉 |−1)
2 different graphs if ignoring the isomorphism of graphs.

emporal connection topology. Due to the spatio-temporal dynamics
f the spiking neuron, SNN has not only spatial connection topology,
ut also temporal connection topology. The temporal connection topol-
gy of SNN, controlled by the synaptic delay, has an important impact
n the effectiveness and efficiency of SNN (Maass, 1997). However,
ost existing works ignore the synaptic delay, restricting the utilization

f temporal information. We propose to incorporate the synaptic delay
nto our topology-aware search space to enable temporal topology
esign. In our topology-aware search space, each edge is assigned an
xtra parameter, controlling the synaptic delay on the edge. We adopt
simplified modeling of synaptic delay in which synaptic delay is

estricted to discrete values. In this model, the operations inside SCN
n Eq. (6) are modified as

𝑗 [𝑡] =
∑

(𝑖,𝑗)∈𝐸
𝑆𝑖[𝑡 − 𝑑(𝑖,𝑗)], (8)

where 𝑑(𝑖,𝑗) is a nonnegative integer, representing the discrete synaptic
delay associated with edge (𝑖, 𝑗). The output data sent out from the 𝑖th
node at time step 𝑡− 𝑑(𝑖,𝑗) arrives at the 𝑗th node at time step 𝑡 through
edge (𝑖, 𝑗) after a synaptic delay of 𝑑(𝑖,𝑗). When 𝑡 is smaller than 𝑑(𝑖,𝑗),
we assume that 𝑆𝑖[𝑡 − 𝑑(𝑖,𝑗)] is a zero tensor. Additionally, 𝑑(𝑖,𝑗) = 0 is
ossible in this model, which means that there is no synaptic delay on
dge (𝑖, 𝑗), and the operations are simplified as in Eq. (6).

ource and sink. We have defined the spiking convolution node and
he connection topology graph. Besides, we need to specify the input
nd the output of the whole graph in order to convert the connection
opology graph into a valid neural network. Note that there are still
ome nodes that do not have any input edge or output edge. For
he nodes without any input edge, we define them as input nodes.
imilarly, nodes without any output edge are defined as output nodes.
e use to denote the set of input nodes and to represent the

et of output nodes. A common approach to deal with multiple input
nd output nodes is to create a unique source node connecting to all
he input nodes and a unique sink node receiving outputs from all the
utput nodes, as shown in Fig. 1(d). Specifically, we assume that the
ource node sends a copy of input data to every input node while the
ink node collects a mean from all the output nodes. We can formulate
t as

𝑗 [𝑡] =

{

𝑋[𝑡], if 𝑗 ∈ ,
∑

(𝑖,𝑗)∈𝐸 𝑆𝑖[𝑡 − 𝑑(𝑖,𝑗)], otherwise,
(9)

nd

[𝑡] = 1
| |

∑

𝑖∈
𝑆𝑖[𝑡], (10)

where 𝑋[𝑡] and 𝑆[𝑡] denote the input and the output of the whole graph
t time step 𝑡, respectively. Note that the output of the whole graph
s a summation of | | tensors, then be divided by | |. Since | | is

fixed as soon as the graph is determined, the division operation can
be replaced by scaling up the firing threshold by | | in the following
piking neurons.

tages. It is very common (He et al., 2016; Simonyan & Zisserman,
015; Xie et al., 2019) for neural architectures to have multiple stages
4

Table 1
Two settings of TANet. Each stage is generated from a connec-
tion topology graph. For each graph, 𝑁 denotes the number of
nodes, and 𝐶 represents the output channel. We set 𝑁 = 1 for
the first few stages, where the graph becomes a single node.
Stage TANet-Tiny TANet-Regular

1 single node
𝐶

single node
𝐶∕2

2 single node
𝐶

graph
𝑁∕2, 𝐶

3 graph
𝑁 , 2𝐶

graph
𝑁 , 2𝐶

4 graph
𝑁 , 4𝐶

graph
𝑁 , 4𝐶

5 – graph
𝑁 , 8𝐶

classifier

to down-sample the feature maps from high resolution to low resolu-
tion, especially for image classification and object detection. Inspired
by these works, We divide our entire model into several stages that
generate different sizes of feature maps. Each stage is defined by a
connection topology graph described above. For two adjacent stages,
the preceding stage’s sink node is also the succeeding stage’s source
node.

Regarding image input, we assume that the input resolution for the
𝑖th stage is 𝐻𝑖 ×𝑊𝑖 with 𝐶𝑖 channels. To make a 2× downsampling of
the resolution, we use a stride of 2 and an output channel number of
2𝐶𝑖 in the convolutional layer inside each input node. For other nodes
n the same stage, a stride of 1 is used, and the input and the output
hannel numbers are both 2𝐶𝑖. By doing so, the output of the 𝑖th stage
as a dimension of 2𝐶𝑖 with a resolution of 𝐻𝑖

2 × 𝑊𝑖
2 .

The class of architectures defined by the topology-aware search
space is named the topology-aware network (TANet). We adopt a
similar macro skeleton as previous studies (Xie et al., 2019). Table 1
summarizes two settings of our TANet: the tiny version, referred to as
TANet-Tiny, and the regular version, referred to as TANet-Regular. The
TANet-Tiny has four stages in total. It is designed for datasets with
a smaller resolution, such as CIFAR-10 and CIFAR-100. The TANet-
Regular has five stages and is proposed for larger resolution datasets
such as ImageNet. Both TANet-Tiny and TANet-Regular have a classifier
in the end.

4.2. Spatio-temporal topology sampling

Modern NAS methods (Liu et al., 2019; Pham et al., 2018) have
already achieved state-of-the-art performance on many tasks. However,
these methods are not suitable for searching SNN architectures from
the topology-aware search space, due to the huge number of candidate
architectures in the search space and the high training cost of directly
training SNNs (Kim et al., 2022). Nevertheless, recent works on random
sampling (Sciuto et al., 2020; Xie et al., 2019) have given us an al-
ternative approach to yield powerful neural architectures without high
searching costs. In these works, neural architectures are sampled from
the search space through some pre-defined random algorithms. Inspired
by these studies, we propose the spatio-temporal topology sampling
(STTS) algorithm to sample SNN architectures from the topology-aware
search space randomly. Different from random search algorithm (Li &
Talwalkar, 2019), STTS does not evaluate the performance of candidate
architectures but directly outputs the sampled architecture as the final
architecture. Therefore, STTS is very efficient compared with other NAS
methods.

Specifically, in STTS, we sample the spatial topology as well as
the temporal topology for each stage. As shown in Algorithm 1, STTS
consists of two procedures: (1) using random graph models to generate

Neural Networks 172 (2024) 106121S. Yan et al.

f

e
S

Fig. 2. Similarity between different samples. (a) The number of paths and the average path length across different samples. (b) The standard deviation of the accuracies across
several training runs of the same architecture and across different samples.
t
t
l
c
c

5

a
s
t
f
s

s
a
q
r
t
i
i
p
e

the spatial topology and (2) sampling the synaptic delay of each edge
from a pre-defined distribution to generate the temporal topology. As
soon as we determine the connection topology graph, we convert the
graph into a valid neural network. Finally, we stack stages sequentially
and output the final architecture.

In practice, we use the Watts–Strogatz (WS) model (Watts & Stro-
gatz, 1998) and the Barabási–Albert (BA) model (Albert & Barabási,
2002) to generate the spatial topology in the first procedure. We
describe the details in Appendix A. Since the random graph models
generate undirected graphs, we have to convert the undirected graph to
a DAG. To do so, we randomly assign a topology order. Then each edge
is directed from the node with a smaller index to the node with a higher
index. In the second procedure, we randomly sample the synaptic delay
of each edge independently from a pre-defined distribution 𝑠𝑑 . We set
the synaptic delay to be either 0 or 1, and 𝑠𝑑 is a Bernoulli distri-
bution. The parameter 𝑝 in the Bernoulli distribution is referred to as
the synaptic delay parameter, which controls the temporal connection
topology.

Although STTS directly outputs the final architecture without eval-
uation, as we will see in the experimental results section, sampling
multiple architectures leads to similar accuracies after training.

Algorithm 1: Spatio-temporal topology sampling
Input: Random graph model; Number of stages 𝑛; Synaptic delay

distribution 𝑠𝑑 ;
or 𝑖 = 1 to 𝑛 do

Generate spatial topology 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖) through the random
graph model;

foreach 𝑒 in 𝐸𝑖 do
Sample the synaptic delay of edge 𝑒 from 𝑠𝑑 ;

end
Covert the connection topology graph into a valid neural
network;

nd
tack each stage sequentially to construct the final architecture.

5. Experiments

We conduct extensive experiments to verify the effectiveness of our
proposed method. The implementation details of these experiments are
described in Appendix B.
5

s

5.1. Architecture details

We use two settings of TANet in our experiments: TANet-Tiny for
CIFAR-10/100 and TANet-Regular for ImageNet. We set the number
of nodes 𝑁 to 32 and the number of channels 𝐶 to 96 for both
TANet-Tiny and TANet-Regular. For the synaptic delay parameter 𝑝,
we set it to 0.05 for both TANet-Tiny and TANet-Regular. We use
the BA graph model and the WS graph model to generate the spatial
topology of TANet-Tiny and TANet-Regular, respectively. Between the
final stage and the classifier, there is a layer of spiking neurons. The
classifier consists of a 1 × 1 convolution-BN-SN triplet, a global average
pooling layer, and a voting layer. To avoid overfitting, We add a
dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,
2014) layer between the average pooling layer and the voting layer in
the classifier of TANet-Tiny, and we set the drop probability to 0.2.

We use depthwise separable convolution (Chollet, 2017) in ev-
ery spiking convolution node. The depthwise separable convolution
consists of two layers: the depthwise convolution and the pointwise
convolution. The depthwise convolution has a kernel size of 3 × 3 while
he pointwise convolution has a kernel size of 1 × 1. Note that we can
ransform the depthwise separable convolution into a standard convo-
ution with the same function. Therefore, we use depthwise separable
onvolutions in the training process and replace them with equivalent
onvolutions during the inference.

.2. Similarity between different samples

In the STTS algorithm, we sample architecture once without evalu-
tion. This raises the question of whether different samples will exhibit
ignificant variation in accuracy after the training process. To address
his concern, we empirically demonstrate the similarities between dif-
erent samples and show that sampling multiple architectures leads to
imilar accuracies after training.

It is noteworthy that the architectures we sampled with different
eeds all utilize the same graph model for generating spatial topology
nd the same distribution for generating temporal topology. Conse-
uently, these samples inherently exhibit similarities. While previous
esearch (Albert & Barabási, 2002) has provided theoretical analyses of
he properties of random graph models, we empirically quantify these
nherent similarities among our samples. Specifically, we calculate two
mportant statistical values of the spatial topology: the number of
aths and the average path length. These values have been shown to
xhibit a strong correlation with architecture performance in previous

tudies (White, Neiswanger, & Savani, 2021; You, Leskovec, He, & Xie,

Neural Networks 172 (2024) 106121S. Yan et al.
Table 2
Comparison between our work and other methods on CIFAR-10, CIFAR-100, and ImageNet. ‘‘Params" denotes the number of parameters in the
architecture. We categorize methods into two groups: training methods and architectural designs. For each dataset, the first section presents
methods related to training techniques, while the second section focuses on architectural designs. Accuracy is reported as mean and standard
deviation (after ±) based on five runs with different random seeds.

Method Architecture Params Time steps Accuracy (%)
CI

FA
R-

10

Rathi et al. (2020) VGG-9 32M 100 90.54
Yan, Zhou, and Wong (2021) VGG-like 9M 600 94.16
Zheng et al. (2021) ResNet-19 13M 6 93.16
Deng et al. (2022) ResNet-19 13M 4 94.44

Kim et al. (2022) Searched Architecture 20M 5 92.73
Na et al. (2022) Searched Architecture 21M 8 93.15
Che et al. (2022) Searched Architecture 14M 6 95.50
STTS (ours) TANet-Tiny 7M 4 95.10 ± 0.09

CI
FA

R-
10

0

Rathi et al. (2020) VGG-11 37M 125 67.87
Yan et al. (2021) VGG-like 9M 300 71.84
Deng et al. (2022) ResNet-19 13M 4 74.47

Kim et al. (2022) Searched Architecture 21M 5 73.04
Na et al. (2022) Searched Architecture 5M 8 69.16
Che et al. (2022) Searched Architecture 14M 6 76.25
STTS (ours) TANet-Tiny 7M 4 76.33 ± 0.32

Im
ag

eN
et

Rathi et al. (2020) VGG-16 138M 250 65.19
Rathi and Roy (2021) VGG-16 138M 5 69.00
Deng et al. (2022) SEW-ResNet-34 22M 4 68.00

Fang, Yu, Chen, Huang, Masquelier, and Tian (2021) SEW-ResNet-50 26M 4 67.78
Che et al. (2022) Searched Architecture 58M 6 68.64
STTS (ours) TANet-Regular 25M 4 70.79 ± 0.43
2020). The results are presented in Fig. 2(a). Notably, instances sam-
pled from the same graph model exhibit clear similarities. Specifically,
instances sampled from the WS model demonstrate similar numbers
of paths, while those sampled from the BA model exhibit comparable
average path lengths.

Additionally, we calculate the standard deviation across multiple
training runs of the same architecture and compare it to the standard
deviation across different samples. The results are shown in Fig. 2(b).
Notably, the variation across different samples is slightly larger than
that observed across several training runs of the same architecture.
However, it is important to highlight that in both cases, the standard
deviation remains relatively low.

5.3. Comparison to the state of the art

We compare our experimental results with some SOTA methods on
CIFAR-10, CIFAR-100, and ImageNet. The results are summarized in
Table 2.

For the CIFAR-10 dataset, our architecture achieves competitive
accuracy among all other methods. The reported mean accuracy of
TANet-Tiny is only 0.4% lower than the SpikeDHS (Che et al., 2022),
although TANet-Tiny uses a much less number of parameters and time
steps. The results also show that the variation of the corresponding
accuracies among the sampled architectures is low. The classification
accuracy only has a standard deviation of 0.09% among these samples.

We can see that our method has a significant improvement on
more difficult datasets. For the CIFAR-100 dataset, our architecture
yields state-of-the-art results using only 4 time steps. Our method
outperforms the works on training methods (first section of the results
on each dataset) and those on architectural designs (second section
of the results on each dataset). Specifically, TANet-Tiny achieves a
mean accuracy of 76.33%, which performs 0.08% advance compared
to SpikeDHS.

For the ImageNet dataset, our architecture has 70.79% top-1 accu-
racy using 4 time steps, achieving a 3.01% increment compared with
SEW-ResNet-50 and a 2.15% increment compared with SpikeDHS. Note
that our architecture has fewer parameters and uses a similar or much
less number of time steps.
6

Table 3
Comparison with SEW-ResNet backbone on ImageNet. ‘‘w/o SN‘‘ and ‘‘w/
SN’’ represent the SNN architecture and the ANN architecture using the same
backbone, respectively. Accuracy is reported as mean and standard deviation
(after ±) based on five runs with different random seeds.
Architecture w/o SN (%) w/ SN (%)

SEW-ResNet-50 76.34±0.12 66.16±0.11
TANet-Regular (ours) 74.93±0.27 70.79±0.43

5.4. Analysis on the topology-aware search space

We conduct experiments to validate the suitability of our topology-
aware search space for obtaining SNN architectures. In our comparison,
we evaluate TANet-Regular alongside SEW-ResNet-50 (Fang, Yu, Chen,
Huang, Masquelier, & Tian, 2021), which is an SNN-friendly modifica-
tion of the conventional ANN architecture ResNet (He et al., 2016).
To ensure a fair comparison, we use identical hyperparameters and
training methods for both models. The results are shown in Table 3. Un-
der the same training settings, TANet-Regular achieves a 4.63% higher
classification accuracy compared to SEW-ResNet-50 in the context of
SNNs. These experimental results strongly demonstrate that typical
ANN architectures are not optimal for SNNs. Our topology-aware search
space proves to be an SNN-friendly search space that can further exploit
the potential of SNN structures.

5.5. Effect of the size of the graph

We test the effect of the size of the graph in the topology-aware
search space. In details, We vary the number of nodes in the graph
from 8 to 64 while adjusting the number of channels to keep the
total number of parameters. The results are shown in Table 4. We
can see that as we increase the number of nodes from 8 to 32, the
performance improves, implying that SNN architectures benefit from a
more complex connection topology. However, as the number of nodes
continuing increasing from 32 to 64, the accuracy becomes lower and
lower. This might be because the decreasing of the number of channels
has a more significant impact as we increase the number of nodes.
Additionally, increasing the number of nodes above a certain level
might lead to overfitting.

Neural Networks 172 (2024) 106121S. Yan et al.
Fig. 3. Effects of the synaptic delay parameter 𝑝 on (a) CIFAR-10, (b) CIFAR-100, and (c) ImageNet.
Table 4
Effect of the size of the graph on CIFAR-10. Accuracy is reported as mean and standard deviation (after ±) based on three
runs with different random seeds.
Number of nodes 8 16 32 48 64

Accuracy (%) 94.81±0.07 94.93±0.07 94.99±0.04 94.58±0.12 94.27±0.11
5.6. Effect of the synaptic delay

We conduct experiments to analyze the influence of the synaptic
delay parameter 𝑝. We vary 𝑝 from 0 to 0.2, where 𝑝 = 0 means no
synaptic delay in the architecture. For values of 𝑝 greater than 0.2,
we observe that it is not suitable for the static image classification
task, since the number of time steps is small (e.g. 𝑇 = 4). The results
are shown in Fig. 3. We can see that the architecture is not optimal
when there is no synaptic delay. When we increase 𝑝 to 0.05, we
observe a slight improvement in classification accuracies for CIFAR-
100 and ImageNet. However, as we continue increasing the synaptic
delay parameter 𝑝 (e.g. 𝑝 = 0.15, 0.2), an increasing number of spikes
are truncated, leading to a noticeable decrease in accuracy. We choose
𝑝 = 0.05 for optimal on all the datasets.

5.7. Energy efficiency

In contrast to ANNs, SNNs perform event-based operation and
multiplication-free inference. In this section, we demonstrate the en-
ergy efficiency of our method by measuring the sparsity and energy
consumption of TANet.

Sparsity. To provide a comprehensive insight into the sparsity of our
architecture, we calculate both the average firing rate (per time step)
and the spike count for each SCN in our architecture. Fig. 4 visualizes
the sparsity statistics at different stages. The experimental results reveal
a notably sparse spiking activity within our architecture. Specifically,
concerning firing rates, the majority of nodes exhibit average firing
rates of less than 10% in TANet-Tiny and less than 15% in TANet-
Regular. In terms of spike counts, the majority of nodes generate fewer
than 30 K spikes in TANet-Tiny and 500 K spikes in TANet-Regular.
Both of these two sparsity statistics exhibit distinct patterns at different
stages, with the firing rate and spike count decreasing as the neural
network’s depth increases.

Energy consumption. Following previous studies (Che et al., 2022;
Deng et al., 2022; Lemaire et al., 2022; Li et al., 2021), we estimate the
energy consumption of our architecture by measuring the operational
cost and the memory cost. For more details of the energy consumption
analysis, please refer to Appendix C. We conduct a comprehensive anal-
ysis of energy consumption, comparing our architectures with typical
ANN architecture, SNN architecture searched by SpikeDHS (Che et al.,
2022), and ANN versions of our architectures. The results are shown in
Table 5 and Table C.7. We can see that our architectures achieve the
lowest energy consumption among these architectures.
7

Table 5
The operational cost. ‘‘# Add.‘‘ and ‘‘#Mult.’’ represent the number of addition and
multiplication operations, respectively. An MAC operation leads to an increase in both
#Add. and #Mult., while an AC operation only increases #Add.

Architecture #Add. #Mult. Operational
cost (mJ)

CI
FA

R-
10 ResNet-19 (ANN) 2285M 2285M 10.5

TANet-Tiny (ANN) 735M 735M 3.4
SpikeDHS (SNN) 5973M 19M 5.5
TANet-Tiny (ours) 1329M 3M 1.2

Im
ag

eN
et ResNet-50 (ANN) 4134M 4134M 19.0

TANet-Regular (ANN) 3093M 3093M 14.2
TANet-Regular (ours) 9026M 16M 8.2

6. Conclusion and future work

In this paper, we propose the topology-aware search space to ex-
pand the range of design choices for SNN architectures. The topology-
aware search space not only enables complex designs of spatial topol-
ogy but also empowers the design of temporal topology by incorpo-
rating the synaptic delay. Instead of utilizing a classical NAS method,
we propose the spatio-temporal topology sampling (STTS) algorithm
to obtain SNN architectures from our search space. By avoiding the
unaffordable NAS cost, our algorithm is much more efficient compared
with previous studies. Experimental results show that our proposed
method achieves state-of-the-art accuracy and generates fewer spikes
on image classification tasks. Our method highlights the significance of
the connection topology in designing SNN architectures.

For our work, there is still a lack of theoretical guarantee of the
random sampling method, although empirical results show that the
variance between different sampled architectures is low. Additionally,
we only investigate the benefits of our approach on the static image
classification tasks. These tasks do not adequately demonstrate the
benefits of random delays. In future research, we plan to analyze
the effectiveness of different topologies in SNNs theoretically. We will
also investigate the correlation between the spatial topology and the
temporal topology on more diverse tasks or datasets. We aim to propose
a robust NAS method with a theoretical guarantee and yield more
powerful SNN architectures.

Neural Networks 172 (2024) 106121S. Yan et al.
Fig. 4. Sparsity statistics at different stages. (a) Firing rate distribution in TANet-Tiny. (b) Spike count distribution in TANet-Tiny. (c) Firing rate distribution in TANet-Regular.
(d) Spike count distribution in TANet-Regular.
a

𝑀
g
e
e
e

CRediT authorship contribution statement

Shen Yan: Conceptualization, Investigation, Methodology, Writing
– original draft, Writing – review & editing. Qingyan Meng: Conceptu-
alization, Writing – review & editing. Mingqing Xiao: Writing – review
& editing. Yisen Wang: Writing – review & editing. Zhouchen Lin:
Funding acquisition, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

Z. Lin was supported by National Key R&D Program of China
(2022ZD0160302), the NSF China (No. 62276004), and the major key
project of PCL, China (No. PCL2021A12).
8

e

Appendix A. Random graph models

To generate network topologies, Xie et al. (2019) use random graph
models from graph theory. Inspired by their works, we use the Watts–
Strogatz (WS) model (Watts & Strogatz, 1998) and the Barabási–Albert
(BA) model (Albert & Barabási, 2002) to generate the spatial topology.
We describe them in the following.

Watts–Strogatz. The WS model is a random graph model which can
generate graphs with small-world properties. To generate an undirected
graph with 𝑁 nodes, the WS model contains two procedures: (1) Place
the 𝑁 nodes in a regular ring lattice. Each node is connected to 𝐾
neighbors, with 𝐾∕2 on both sides. (2) For every node 𝑣, the edge that
connects 𝑣 to its 𝐾∕2 rightmost neighbors is rewired with probability
𝑃 . ‘‘Rewire’’ means that the edge is replaced with edge (𝑣, 𝑘) where the
node 𝑘 is uniformly chosen at random while avoiding duplication.

Barabási–Albert. The BA model is a random graph model which
generates scale-free networks. The graph begins with 𝑀 nodes without
any edges. Then, new nodes are sequentially added to the graph, one
at a time. Each new node will be connected to 𝑀 existing nodes with

probability proportional to the degrees of the existing nodes.
In our experiments, we set 𝐾 = 4, 𝑃 = 0.75 for the WS model and
= 8 for the BA model. Consequently, in the case of TANet-Tiny, a

raph with 32 nodes exhibits dense connectivity, with a total of 192
dges. In the configuration of TANet-Regular, a 32-node graph has 64
dges, representing a sparser connectivity pattern. We visualize two
xamples in Fig. A.5.

The choice of the graph model for each network is based on our
xperimental results. In the case of TANet-Tiny, we observe a slight

Neural Networks 172 (2024) 106121S. Yan et al.
Fig. A.5. Two topology graph instances. (a) A topology graph with the spatial topology generated by the WS model. (b) A topology graph with the spatial topology generated
by the BA model. Nodes representing the source and sink are highlighted in blue, while red dashed arrows represent connections with synaptic delays.
Table B.6
Hyperparameters for training on CIFAR-10/100 and ImageNet.

Dataset CIFAR-10 CIFAR-100 ImageNet

Optimizer SGD SGD SGD
Epoch 300 300 120
𝑙𝑟 0.1 0.1 0.1
𝑙𝑟 scheduler Cosine Annealing Cosine Annealing Cosine Annealing
Weight decay 1e−4 1e−4 4e−5
Batch size per GPU 64 64 16
GPU 1 1 16

improvement in accuracy (about 0.1%) when applying the BA model
compared to the WS model. Therefore, we use the BA model for TANet-
Tiny. For TANet-Regular, the BA model and the WS model perform
equally well. As a result, we select the WS model for TANet-Regular,
as it generates a simpler graph structure.

Appendix B. Implementation details

B.1. Datasets

We conduct experiments on CIFAR-10 (Krizhevsky et al., 2009),
CIFAR-100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009).

CIFAR. The CIFAR dataset consists of 60k colored images with a
resolution of 32 × 32. The images are separated into 50k training
samples and 10k test samples. There are 10 classes of objects in
CIFAR-10 and 100 classes of objects in CIFAR-100. We apply the same
data preprocessing for CIFAR-10 and CIFAR-100, which contains data
normalization, random horizontal flipping, cutout (DeVries & Taylor,
2017), and random cropping. We employ direct encoding (Rathi & Roy,
2021) to convert image pixels into time series. In this method, the
floating-point pixel matrix of the images is duplicated at each time step
and then fed into the first layer of the SNN architecture.

ImageNet. The ImageNet dataset consists of over 1250k training im-
ages, 50k validation images, and 100k test images. We apply data
normalization so that the input data have zero mean and unit variance.
Besides, our data preprocessing contains random resized cropping and
horizontal flipping. The input size is set to 224 × 224 by default. We
also use the direct encoding (Rathi & Roy, 2021), as done for the CIFAR
dataset.
9

B.2. Training settings

Our implementation is based on PyTorch (Paszke et al., 2019).
We use SpikingJelly (Fang et al., 2020) to implement the LIF neuron.
Specifically, we consistently set the number of time steps to 4 through-
out our experiments. We set 𝜆 = 3.0, 𝑉𝑟𝑒𝑠𝑒𝑡 = 0, and 𝑉𝑡ℎ = 1 in every
spiking neuron for all datasets. The surrogate gradient used in this work
can be formulated as

𝜕𝑆𝑙[𝑡]
𝜕𝐻 𝑙[𝑡]

= 𝛼

2
[

1 +
(

𝜋
2 𝛼𝐻

𝑙[𝑡]
)2

] , (B.1)

where we set 𝛼 = 2 for all datasets. We use the cross-entropy loss and
adopt the standard STBP (Wu et al., 2018) training framework to train
the SNN architecture. As recommended by Zenke and Vogels (2021),
We detach the computational graph of reset during backpropagation to
further improve the performance.

The hyperparameters about optimization are shown in Table B.6.
We use an SGD optimizer (Rumelhart, Hinton, & Williams, 1986) with
momentum 0.9 to train our models in all experiments. The weight
decay is set to 1e−4 and 4e−5 for CIFAR-10/100 and ImageNet, re-
spectively. We set the initial learning rate to 0.1 for all datasets and
use a cosine learning rate decay (Loshchilov & Hutter, 2017). We adopt
the mixed precision training (Micikevicius et al., 2018) in order to
reduce memory consumption and speed up our training process. For
the ImageNet dataset, we train our model on multi-GPU, and we use
the synchronized batch normalization (SyncBN) (Zhang et al., 2018)
technique.

The experiments are conducted on NVIDIA Tesla A100 GPU or
NVIDIA GeForce RTX 3090 GPU.

Appendix C. Energy consumption analysis details

We conduct an energy consumption analysis to evaluate the benefit
of energy efficiency of our architecture. Previous studies (Che et al.,
2022; Deng et al., 2022; Lemaire et al., 2022; Li et al., 2021) have
typically estimated the energy consumption of SNNs using either op-
erational cost or memory cost. In this section, we remain consistent
with these established methodologies, estimating the operational cost
in Appendix C.1 and the memory cost in Appendix C.2.

Neural Networks 172 (2024) 106121S. Yan et al.

w

o

a
e
c
t
o
t
t
a
c

𝐸

w
e
t
p
d
4
p

c
n
i
c
l
t
i
c

C

c
(

𝐸

w
o
p
o
t
a
𝐸

o
e
t
A

R

A

B

B

C

C

C

D

D

D

D

D

F

F

F

G

H

H

H

K

K

K

K

L

L

L

L

L

L

M

M

Table C.7
The memory cost on CIFAR-10. ‘‘#Read‘‘ and ‘‘#Write’’ represent the number of read
and write operations, respectively.

Architecture #Read #Write Memory cost (mJ)

TANet-Tiny (ANN) 10943M 3M 109.5
TANet-Tiny (ours) 3004M 1484M 44.9

C.1. Operational cost

Before calculating the operational cost, we calculate the number of
synaptic operations in SNNs. This calculation is performed as follows:

𝑆𝑂𝑃 𝑙 = 𝑓𝑟𝑙 × 𝑇 × 𝐹𝐿𝑂𝑃𝑠𝑙 , (C.1)

here 𝑙 represents the layer index, 𝑆𝑂𝑃 𝑙 denotes the number of synap-
tic operations in layer 𝑙, 𝑓𝑟𝑙 represents the average firing rate of layer 𝑙,
𝑇 denotes the number of time steps, and 𝐹𝐿𝑂𝑃𝑠𝑙 refers to the number
f floating point operations of layer 𝑙.

Then, we can compute the operational cost of the convolutional
nd linear layers in our architecture. Due to the employment of direct
ncoding, the input to our architecture is non-binary and remains
onsistent across various time steps. Consequently, in our architecture,
he first convolutional layer performs multiply-and-accumulate (MAC)
perations on a single time step and duplicates its output across other
ime steps. In all subsequent convolutional or linear layers, the archi-
ecture transfers spikes and performs accumulate (AC) operations across
ll time steps. Therefore, we can quantify the operational cost of the
onvolutional and linear layers, denoted as 𝐸𝑆𝑁𝑁

𝑜𝑝 , as follows:

𝑆𝑁𝑁
𝑜𝑝 = 𝐸𝑀𝐴𝐶 ⋅ 𝐹𝐿𝑂𝑃𝑠1 + 𝐸𝐴𝐶 ⋅

𝑁
∑

𝑛=2
𝑆𝑂𝑃 𝑛, (C.2)

here 𝑁 is the total number of layers, 𝐸𝑀𝐴𝐶 and 𝐸𝐴𝐶 represent the
nergy cost of MAC and AC operation, respectively. 𝐹𝐿𝑂𝑃𝑠1 denotes
he number of floating point operations in the first layer. Refer to
revious studies (Che et al., 2022; Li et al., 2021), we assume that the
ata for various operations are 32-bit floating-point implementation in
5 nm technology (Horowitz, 2014), with 𝐸𝑀𝐴𝐶 = 4.6 pJ and 𝐸𝐴𝐶 = 0.9
J.

It is crucial to note that the BN layer is merged into the precedent
onvolutional layer during inference. Consequently, the BN layer incurs
o operational cost during inference. Additionally, there are operations
nside spiking neurons. However, it is essential to highlight that this
ost is per neuron, whereas the cost for convolutional and linear
ayers is per synapse. Given that the number of synapses is typically
housands of times greater than that of neurons, this per-neuron cost
s considered negligible. Therefore, in line with previous studies, we
hoose to neglect this specific cost.

.2. Memory cost

In this section, we outline the method for estimating the memory
ost of our architecture. Following the methodology in Lemaire et al.
2022), the memory cost of an SNN can be formulated as:
𝑆𝑁𝑁
𝑚𝑒𝑚 = (𝑅𝑑𝐼𝑛𝑆𝑁𝑁 + 𝑅𝑑𝑃𝑎𝑟𝑎𝑚𝑆𝑁𝑁 + 𝑅𝑑𝑃𝑜𝑡𝑆𝑁𝑁) × 𝐸𝑅𝑑𝑅𝐴𝑀

+ (𝑊 𝑟𝑂𝑢𝑡𝑆𝑁𝑁 +𝑊 𝑟𝑃𝑜𝑡𝑆𝑁𝑁) × 𝐸𝑊 𝑟𝑅𝐴𝑀 ,
(C.3)

here 𝑅𝑑𝐼𝑛𝑆𝑁𝑁 , 𝑅𝑑𝑃𝑎𝑟𝑎𝑚𝑆𝑁𝑁 , and 𝑅𝑑𝑃𝑜𝑡𝑆𝑁𝑁 represent the number
f read operations for the input data, parameters, and membrane
otentials, respectively. 𝑊 𝑟𝑂𝑢𝑡𝑆𝑁𝑁 and 𝑊 𝑟𝑃𝑜𝑡𝑆𝑁𝑁 denote the number
f write operations to the outputs and membrane potentials, respec-
ively. 𝐸𝑅𝑑𝑅𝐴𝑀 and 𝐸𝑊 𝑟𝑅𝐴𝑀 represent the energy for a single read
nd a single write operation in RAM. In our computation, we assume
𝑅𝑑𝑅𝐴𝑀 = 𝐸𝑊 𝑟𝑅𝐴𝑀 = 10 pJ.

Nevertheless, we acknowledge that relying solely on the number
f operations may not provide a comprehensive evaluation of the
fficiency of SNNs. A more realistic hardware evaluation is required
o thoroughly evaluate the benefits of energy efficiency compared to
10

NNs. We recognize the importance of this and leave it to future work.
eferences

lbert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Reviews
of Modern Physics, 74(1), 47.

ender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., & Le, Q. (2018). Understanding
and simplifying one-shot architecture search. In International conference on machine
learning.

u, T., Fang, W., Ding, J., Dai, P., Yu, Z., & Huang, T. (2022). Optimal ANN-SNN
conversion for high-accuracy and ultra-low-latency spiking neural networks. In
International conference on learning representations.

ai, H., Gan, C., Wang, T., Zhang, Z., & Han, S. (2019). Once-for-all: Train one network
and specialize it for efficient deployment. arXiv preprint arXiv:1908.09791.

he, K., Leng, L., Zhang, K., Zhang, J., Meng, Q., Cheng, J., et al. (2022). Differentiable
hierarchical and surrogate gradient search for spiking neural networks. In Advances
in neural information processing systems.

hollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

eng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-
scale hierarchical image database. In Proceedings of the IEEE conference on computer
vision and pattern recognition.

eng, S., Li, Y., Zhang, S., & Gu, S. (2022). Temporal efficient training of spiking
neural network via gradient re-weighting. In International conference on learning
representations.

eVries, T., & Taylor, G. W. (2017). Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552.

ong, X., & Yang, Y. (2019). Searching for a robust neural architecture in four gpu
hours. In Proceedings of the IEEE conference on computer vision and pattern recognition.

ong, X., & Yang, Y. (2020). NAS-Bench-201: Extending the scope of reproducible
neural architecture search. In International conference on learning representations.

ang, W., Chen, Y., Ding, J., Chen, D., Yu, Z., Zhou, H., et al. (2020). SpikingJelly.
https://github.com/fangwei123456/spikingjelly.

ang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., & Tian, Y. (2021). Deep residual
learning in spiking neural networks. In Advances in neural information processing
systems.

ang, W., Yu, Z., Chen, Y., Masquelier, T., Huang, T., & Tian, Y. (2021). Incorporating
learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision.

uo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., et al. (2020). Single path one-shot
neural architecture search with uniform sampling. In Proceedings of the European
conference on computer vision.

an, B., Srinivasan, G., & Roy, K. (2020). RMP-SNN: Residual membrane potential
neuron for enabling deeper high-accuracy and low-latency spiking neural network.
In Proceedings of the IEEE conference on computer vision and pattern recognition.

e, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition.

orowitz, M. (2014). 1.1 computing’s energy problem (and what we can do about it).
In 2014 IEEE international solid-state circuits conference digest of technical papers (pp.
10–14). IEEE.

im, Y., Li, Y., Park, H., Venkatesha, Y., & Panda, P. (2022). Neural architecture search
for spiking neural networks. In Proceedings of the European conference on computer
vision.

im, S., Park, S., Na, B., & Yoon, S. (2020). Spiking-yolo: Spiking neural network for
energy-efficient object detection. In Proceedings of the AAAI conference on artificial
intelligence.

rizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny
images: Tech Report.

ugele, A., Pfeil, T., Pfeiffer, M., & Chicca, E. (2020). Efficient processing of spatio-
temporal data streams with spiking neural networks. Frontiers in Neuroscience, 14,
439.

ee, J. H., Delbruck, T., & Pfeiffer, M. (2016). Training deep spiking neural networks
using backpropagation. Frontiers in Neuroscience, 10, 508.

emaire, E., Cordone, L., Castagnetti, A., Novac, P.-E., Courtois, J., & Miramond, B.
(2022). An analytical estimation of spiking neural networks energy efficiency. In
International conference on neural information processing.

i, Y., Guo, Y., Zhang, S., Deng, S., Hai, Y., & Gu, S. (2021). Differentiable spike:
Rethinking gradient-descent for training spiking neural networks. In Advances in
neural information processing systems.

i, L., & Talwalkar, A. (2019). Random search and reproducibility for neural
architecture search. In Uncertainty in artificial intelligence.

iu, H., Simonyan, K., & Yang, Y. (2019). DARTS: Differentiable architecture search.
In International conference on learning representations.

oshchilov, I., & Hutter, F. (2017). Sgdr: Stochastic gradient descent with warm restarts.
In International conference on learning representations.

aass, W. (1997). Networks of spiking neurons: the third generation of neural network
models. Neural Networks, 10(9), 1659–1671.

eng, Q., Xiao, M., Yan, S., Wang, Y., Lin, Z., & Luo, Z.-Q. (2022). Training
high-performance low-latency spiking neural networks by differentiation on spike
representation. In Proceedings of the IEEE conference on computer vision and pattern
recognition.

http://refhub.elsevier.com/S0893-6080(24)00035-2/sb1
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb1
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb1
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb2
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb2
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb2
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb2
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb2
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb3
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb3
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb3
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb3
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb3
http://arxiv.org/abs/1908.09791
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb5
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb6
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb6
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb6
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb7
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb7
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb7
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb7
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb7
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb8
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb8
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb8
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb8
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb8
http://arxiv.org/abs/1708.04552
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb10
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb10
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb10
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb11
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb11
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb11
https://github.com/fangwei123456/spikingjelly
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb13
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb13
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb13
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb13
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb13
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb14
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb14
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb14
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb14
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb14
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb15
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb15
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb15
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb15
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb15
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb16
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb16
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb16
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb16
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb16
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb17
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb17
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb17
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb17
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb17
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb18
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb18
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb18
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb18
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb18
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb19
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb19
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb19
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb19
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb19
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb20
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb20
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb20
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb20
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb20
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb21
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb21
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb21
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb22
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb22
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb22
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb22
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb22
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb23
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb23
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb23
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb24
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb24
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb24
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb24
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb24
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb25
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb25
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb25
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb25
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb25
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb26
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb26
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb26
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb27
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb27
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb27
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb28
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb28
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb28
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb29
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb29
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb29
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb30
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb30

Neural Networks 172 (2024) 106121S. Yan et al.

R

S

S

S

S

W

W

W

W

X

X

Y

Y

Z

Z

Z

Z

Z

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., et al. (2018).
Mixed precision training. In International conference on learning representations.

Na, B., Mok, J., Park, S., Lee, D., Choe, H., & Yoon, S. (2022). AutoSNN: Towards
energy-efficient spiking neural networks. In International conference on machine
learning.

Orchard, G., Frady, E. P., Rubin, D. B. D., Sanborn, S., Shrestha, S. B., Sommer, F. T.,
et al. (2021). Efficient neuromorphic signal processing with loihi 2. In 2021 IEEE
workshop on signal processing systems.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
Pytorch: An imperative style, high-performance deep learning library. In Advances
in neural information processing systems.

Patel, K., Hunsberger, E., Batir, S., & Eliasmith, C. (2021). A spiking neural network
for image segmentation. arXiv preprint arXiv:2106.08921.

Pham, H., Guan, M., Zoph, B., Le, Q., & Dean, J. (2018). Efficient neural architecture
search via parameters sharing. In International conference on machine learning.

Rathi, N., & Roy, K. (2021). DIET-SNN: A low-latency spiking neural network with
direct input encoding and leakage and threshold optimization. IEEE Transactions on
Neural Networks and Learning Systems.

Rathi, N., Srinivasan, G., Panda, P., & Roy, K. (2020). Enabling deep spiking neural
networks with hybrid conversion and spike timing dependent backpropagation. In
International conference on learning representations.

Roy, K., Jaiswal, A., & Panda, P. (2019). Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784), 607–617.

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., & Liu, S.-C. (2017). Conversion
of continuous-valued deep networks to efficient event-driven networks for image
classification. Frontiers in Neuroscience, 11, 682.

umelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by
back-propagating errors. Nature, 323(6088), 533–536.

ciuto, C., Yu, K., Jaggi, M., Musat, C., & Salzmann, M. (2020). Evaluating the
search phase of neural architecture search. In International conference on learning
representations.

hrestha, S. B., & Orchard, G. (2018). Slayer: Spike layer error reassignment in time.
In Advances in neural information processing systems.

imonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale
image recognition. In International conference on learning representations.

rivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1), 1929–1958.
11
atts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks.
Nature, 393(6684), 440–442.

hite, C., Neiswanger, W., & Savani, Y. (2021). Bananas: Bayesian optimization with
neural architectures for neural architecture search. In Proceedings of the AAAI
conference on artificial intelligence.

u, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., et al. (2019). Fbnet: Hardware-
aware efficient convnet design via differentiable neural architecture search. In
Proceedings of the IEEE conference on computer vision and pattern recognition.

u, Y., Deng, L., Li, G., Zhu, J., & Shi, L. (2018). Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12,
331.

iao, M., Meng, Q., Zhang, Z., Wang, Y., & Lin, Z. (2021). Training feedback spiking
neural networks by implicit differentiation on the equilibrium state. In Advances in
neural information processing systems.

ie, S., Kirillov, A., Girshick, R., & He, K. (2019). Exploring randomly wired neural net-
works for image recognition. In Proceedings of the IEEE/CVF international conference
on computer vision.

an, Z., Zhou, J., & Wong, W.-F. (2021). Near lossless transfer learning for spiking
neural networks. In Proceedings of the AAAI conference on artificial intelligence.

ou, J., Leskovec, J., He, K., & Xie, S. (2020). Graph structure of neural networks. In
International conference on machine learning.

enke, F., & Vogels, T. P. (2021). The remarkable robustness of surrogate gradient learn-
ing for instilling complex function in spiking neural networks. Neural Computation,
33(4), 899–925.

hang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., et al. (2018). Context
encoding for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition.

heng, H., Wu, Y., Deng, L., Hu, Y., & Li, G. (2021). Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI conference on artificial
intelligence.

oph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement learning.
In International conference on learning representations.

oph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018). Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition.

http://refhub.elsevier.com/S0893-6080(24)00035-2/sb31
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb31
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb31
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb32
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb32
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb32
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb32
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb32
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb33
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb33
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb33
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb33
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb33
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb34
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb34
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb34
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb34
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb34
http://arxiv.org/abs/2106.08921
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb36
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb36
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb36
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb37
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb37
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb37
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb37
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb37
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb38
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb38
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb38
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb38
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb38
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb39
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb39
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb39
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb40
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb40
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb40
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb40
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb40
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb41
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb41
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb41
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb42
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb43
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb43
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb43
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb44
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb44
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb44
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb45
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb45
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb45
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb45
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb45
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb46
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb46
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb46
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb47
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb47
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb47
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb47
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb47
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb48
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb48
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb48
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb48
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb48
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb49
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb49
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb49
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb49
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb49
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb50
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb50
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb50
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb50
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb50
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb51
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb51
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb51
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb51
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb51
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb52
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb52
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb52
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb53
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb53
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb53
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb54
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb54
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb54
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb54
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb54
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb55
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb55
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb55
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb55
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb55
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb56
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb56
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb56
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb56
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb56
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb57
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb57
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb57
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb58
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb58
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb58
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb58
http://refhub.elsevier.com/S0893-6080(24)00035-2/sb58

	Sampling complex topology structures for spiking neural networks
	Introduction
	Related Works
	Leveraging ANN Architectures
	Neural Architecture Search

	Preliminary
	The Leaky Integrate-and-Fire (LIF) Model
	Spatio-temporal Backpropagation

	Methodology
	Topology-aware Search Space
	Spatio-temporal Topology Sampling

	Experiments
	Architecture Details
	Similarity between Different Samples
	Comparison to the State of the Art
	Analysis on the Topology-aware Search Space
	Effect of the Size of the Graph
	Effect of the Synaptic Delay
	Energy Efficiency

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Random Graph Models
	Appendix B. Implementation Details
	Datasets
	Training Settings

	Appendix C. Energy Consumption Analysis Details
	Operational Cost
	Memory Cost

	References

