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Abstract

The deep equilibrium model (DEQ) generalizes the conventional feedforward1

neural network by fixing the same weights for each layer block and extending2

the number of layers to infinity. This novel model directly finds the fixed points3

of such a forward process as features for prediction. Despite empirical evidence4

showcasing its efficacy compared to feedforward neural networks, a theoretical5

understanding for its separation and bias is still limited. In this paper, we take a6

step by proposing some separations and studying the bias of DEQ in its expressive7

power and learning dynamics. The results include: (1) A general separation is8

proposed, showing the existence of a width-m DEQ that any fully connected neural9

networks (FNNs) with depth O(mα) for α ∈ (0, 1) cannot approximate unless10

its width is sub-exponential in m; (2) DEQ with polynomially bounded size and11

magnitude can efficiently approximate certain steep functions (which has very large12

derivatives) in L∞ norm, whereas FNN with bounded depth and exponentially13

bounded width cannot unless its weights magnitudes are exponentially large; (3)14

The implicit regularization caused by gradient flow from a diagonal linear DEQ15

is characterized, with specific examples showing the benefits brought by such16

regularization. From the overall study, a high-level conjecture from our analysis17

and empirical validations is that DEQ has potential advantages in learning certain18

high-frequency components.19

1 Introduction20

Implicit deep learning [1], a paradigm that generalizes the recursive principles of traditional explicit21

models, has gained renewed interest with the advent of novel neural network architectures. Among22

these, deep equilibrium model (DEQ) [2] stands out as a commonly utilized model. In contrast to23

explicit neural network that derives features through forward propagation, DEQ computes features24

directly by solving an equilibrium equation induced by the implicit layer. Since the equilibrium state25

is also the limit point of the infinitely recursive iterations of the implicit layer, DEQ can be regarded26

as a new neural network that models the limit of a multi-layer weight-tied neural network with the27

depth goes to infinity.28

Nowadays, DEQ has become a popular and widely studied model in the field of machine learning.29

On the empirical side, competitive performances against explicit feedforward neural networks have30

been achieved in various real applications such as natural language processing [2], computer vision31

[3], image generation [4], and solving inverse problems [5]. On the theoretic side, a main research32

line is to study the well-posedness of DEQ. This line aims to analyze when unique equilibrium can33

be guaranteed by DEQ and some weight parameterization and initialization techniques have been34

proposed to ensure the well-posedness [6, 7, 8].35
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However, despite wide studies on DEQ, an understanding of the basic learning theory for its sepa-36

ration and bias against explicit feedforward neural networks is still limited. For the expressivity, a37

preliminary study about the connections between DEQ and fully-connected network (FNN) is pro-38

vided in the seminar work [2], where it is shown that every FNN can be reformulated as a large DEQ39

under a specific weight re-parameterization, whereas, a deeper study on the provable and quantitative40

advantage of DEQ in its expression power is still lacking. Besides, there is another research line that41

studies the learning properties of DEQ using the so-called neural tangent kernel (NTK) view [9],42

originating from analyzing FNNs [10, 11]. It is shown [12, 13] that under suitable initialization, the43

dynamic of over-parameterized DEQ can be approximated by a linear kernel model, therefore global44

convergence of Gradient Descent algorithm and possible generalization can be achieved under some45

regimes. However, it is still not known whether DEQ has potential advantages over FNNs, even in46

such simplified settings. A study on the separation and bias of DEQ over FNN can provide us with47

clear and intuitive suggestions about when DEQ is preferred in practice, thus it is strongly desired. In48

this paper, we initialize the study by analyzing its expressive power and learning dynamics. The main49

results are sketched as follows.50

1. We first propose a general separation showing that there exists a width-m DEQ which cannot51

be approximated to a constant accuracy by an FNN with depth O(mα) for α ∈ (0, 1) unless52

its width is exp(Ω(m1−α)). This is achieved by comparing the the number of linear regions53

that the two networks can generate. Based on the result, we further prove that a width-m54

DEQ can generate at most 2m linear regions, which has provable advantages than FNNs.55

2. We then propose another separation, where a steep function in [0, 1]d being the solution56

to fixed point equation is considered as the target function. We show that a DEQ with57

size and magnitude bounded by O(ε−1) can approximate this function to O(ε)-accuracy in58

L∞ norm, whereas an FNN with bounded depth and exponentially bounded width cannot59

unless its weights is exp(Ω(d)). For the technical contribution, we manage to show that60

an approximation of the fixed point mapping by the implicit layer can also guarantee the61

approximation the solution defined by the fixed point equation even if the Lipschitz constant62

of the fixed point mapping is very close to 1 by a new observation as shown in Lemma 3.63

3. Finally, we study the bias of DEQ from the perspective of learning dynamics. We propose a64

general characterization of regularization for gradient flow in an overparameterized setting.65

We further analyze the dynamics of both gradient flow and gradient descent, showing that66

under mild conditions, convergence is guaranteed, and the model tends to produce ‘dense’67

features. Then we offer a concrete example on a specific Out-of-Distribution (OOD) task,68

demonstrating that this bias can help reduce the OOD error.69

Finally, we conduct experiments to validate our theoretical results. From the overall study, a high-level70

conjecture is that DEQ has potential advantages in learning certain high-frequency components.71

Notations. We use standard notation O(·) and Ω(·) to hide constants. We use σ to denote the ReLU72

function, i.e., σ(x) = max(0, x), and we use sgn(·) to denote the sign function. We use diag(·) to73

transform a vector into a diagonal matrix with the vector’s elements on the diagonal. We denote by74

∥ · ∥p the ℓp vector norm or the subordinate matrix norm, and by ∥h∥Lp(k) the Lp-norm of a function75

h on a compact set K. For a vector or vector-valued function v, we denote vi the i-th entry of the76

vector or the function. For a function u : R → R, we denote u◦n the n-fold composition of u.77

2 Related Works78

In this section we briefly review the literature that are most related to us.79

Theoretical Studies on DEQs. Theoretical research on DEQs has primarily focused on ensuring80

their well-posedness [6, 7]. To guarantee well-posedness, different strategies are proposed, including81

new parameterizations of DEQ [6, 7], regularization [14], special initialization [8]. Another research82

line delve into the learning properties of DEQ. The expressivity of DEQ is preliminarily studied in83

[2]. Additionally, some recent works [15, 16, 13] couple the dynamics of over-parameterized DEQs84

with a linear kernel using the NTK method. They manage to prove the global convergence and study85

the generalization [16]. Nevertheless, an in-depth study on the potential or quantifiable advantage of86

DEQ over FNN is still lacking.87
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Separations on Expressivity of Neural Networks. The separation on expressivity of neural88

networks is a fundamental study characterizing functions that can be approximated efficiently by one89

type of neural architecture but not by another. These architectures include FNNs [17, 18], CNNs [19],90

RNNs [20], etc. Since DEQ can be viewed as an infinitely deep weight-tied neural networks, depth91

separation [21] is most relevant to our study. A key study by Telgarsky [22] constructs a saw-tooth92

function that have many oscillations to give a separation, which further inspires a series of separations93

[23, 24, 25]. In addition to depth, some recent works study the separation regrading the overall94

number of neurons in networks [26] or the magnitude of parameters [27] of FNNs. In this paper, the95

first separation result is also inspired by Telgarsky’s construction, whereas we focus on the separation96

between DEQ and FNN and provide a more refined analysis regrading the networks’ depth. The97

second separation is new.98

Implicit Bias of Learning Dynamics on Neural Networks. The implicit bias of learning dynamics99

plays a key role in determining what particular optima can be found by the algorithms when there100

are multiple optima. A series of papers study the implicit regularization of gradient-based methods,101

showing that under varying settings, these algorithms bias towards solutions with specific properties102

[28, 29], such as norm minimization [30], sparsity [31] and low complexity [32, 33, 34]. Due to103

the theoretical barrier in analyzing nonlinear neural networks [35], most existing works focus on104

simplified models such as random feature models [36, 30], networks with quadratic activations [37]105

and diagonal linear networks [31]. This paper follows similar strategies and analyzes the implicit106

bias of a simplified diagonal linear DEQ from learning dynamics.107

3 Preliminaries of DEQ108

The DEQ is an implicit-depth model [2] that employs the same weights in each layer block of a109

feedforward neural network and extends the number of layer to infinity. The layer blocks used in110

DEQ can be fully connected, convolutional, or Transformer blocks, resulting in different variants of111

deep equilibrium networks. In this paper, we consider a vanilla DEQ with ReLU activation as the112

generalization of an FNN. Specifically, an L-layer FNN from Rd to Rs can be expressed as113

z1 = x; zi+1 = σ(Wiz
i + bi), 1 ≤ i ≤ L− 2; y = WLz

L−1, (1)

where x ∈ Rd and y ∈ Rs. In DEQ, each Wi and bi in Eq. (1) is replaced by the same weight W and114

bias b, and a linear transform of the input Ux is added to each layer, i.e., zl = σ(Wzl−1+Ux+b)115

for all l. By extending the layer l to infinity, the feature and the prediction of this DEQ can be116

expressed as117

z = σ(Wz+Ux+b),

y = Az,
(2)

where W ∈ Rm×m,U ∈ Rm×d, b ∈ Rm, and A ∈ Rs×m. We call σ(Wz+Ux+b) the implicit118

layer and m the width of DEQ. In this paper, we mainly consider s = 1, i.e., DEQ as a scalar function119

on Rd.120

In [2], the authors show that every FNN can be reformulated as a large DEQ with specific weight121

reparameterization. Specifically, the depth-L FNN described in Eq. (1) is equivalent to a DEQ in the122

form of Eq.(2) with123

A =
(
0, · · · , I

)
,W =


0

W2 0
W3 0

. . .
. . .

WL−1 0

 ,U =


W1

0
...
0

 ,b =


b1

b2

...
bL−1

 . (3)

4 Separation on the Expressivity of DEQ124

In this section, we focus on the separations on the expressivity of DEQ.125
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4.1 General Separation over FNNs126

The following theorem states a general separation between DEQ and FNN from the size of networks.127

The motivation behind the theorem is a common observation that functions with many linear pieces128

are typically hard to be approximated by functions having fewer linear pieces.129

Theorem 1. Let m ∈ N+. Assume that L ≤ mα for some 0 < α < 1. Then there exists a function
Nd : [0, 1]d → R computed by a width-m ReLU-DEQ, such that for any function Nf computed by a
depth-L ReLU- FNN with width at most 2m

1−α−2, it holds that∫
[0,1]d

|Nd(x)−Nf (x)|dx ≥ 1

16
.

The proof involves quantifying the number of linear regions1 generated by a DEQ compared to an130

FNN. Specifically, we show in the proof that there exists a DEQ producing 2m linear pieces whereas131

no-so-deep FNNs, i.e., FNNs with depth O(mα) cannot generate such a large number of linear132

regions unless the width is sub-exponentially large.133

Moreover, the example of the hard-to-approximate DEQ enables us to derive an exact bound on the134

number of linear regions that a DEQ can generate. This result is of independent interest and is stated135

in the proposition below.136

Proposition 1. Let m > 0. A width-m DEQ has at most 2m linear regions in the input space.137

Moreover, this upper bound is attainable, i.e., there exists a width-m DEQ that computes a function138

with 2m linear regions on Rd.139

Remark 1. As a comparison, the work of [38] analyzes ReLU-FNNs. It shows that for a ReLU-FNN140

with a total of Ñ neurons of arbitrary depth, the maximal number of linear regions is bounded above141

by 2Ñ . To the best of our knowledge, it is yet to be determined whether this bound is achievable.142

Consequently, width-m DEQs can potentially generate a larger number of linear regions compared143

to FNNs with m neurons, as DEQs have been shown to achieve their upper bound.144

Theorem 1 shows that there exists a width-m DEQ that is hard to be approximated by FNN with145

depth O(mα). This theorem along with Proposition 1 reveals that, although DEQ computes features146

by solving an equilibrium function induced by a shallow implicit layer, its complexity in terms of147

expressing linear regions of DEQ can be larger than that of not-so-deep FNN.148

4.2 Separation on Certain Steep Functions149

In this section, we present another separation concerning both the size and parameter magnitude150

of neural networks, which more explicity reveals the bias and potential advantages of DEQ on151

expressivity. The separation is based on the observation that the fixed point of a DEQ can be rewritten152

as the solution to an optimization problem under certain conditions.153

To be specific, consider a simple quadratic optimization problem with the optimization variable154

z ∈ Rm and a parameter x ∈ Rd:155

min
z

1

2
zTA(x) z+bT (x) z+c, (4)

where A(x) is a positive definite matrix parameterized by x and ηI ≻ A(x) ≻ 0 for some
η > 0. Approximating z = z(x), i.e., the optimum as a function of the parameter x, serves useful
primitives in various applications. Directly approximating z(x) by FNN requires the approximation
of z(x) = −A(x)−1 b(x). On the other hand, from the optimality condition, z(x) is implicitly
defined through fixed point equation

z = z−1

η
(A(x) z+b(x)) .

1We follow the definition of linear regions in [38]: For any piecewise linear function F : Rn0 → R, a linear
region of the function is a subset D ⊂ Rn0 satisfying 1) F is linear on D; 2) If F is linear on some set D̃ ⊃ D,
then D̃ = D.
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Hence, approximating z(x) by DEQ may only require the approximation of the fixed point mapping156

z− 1
η (A(x) z+b(x)) by the implicit layer. To some extent, the approximation problem is ‘altered’157

due to the model difference, which possibly leads to distinctive division in approximation.158

Now, we construct a workable instance. The objective function of our central interest is a special case159

of Eq.(4) given by:160

min
z

(1 + δ − x1)z
2 − δx1z, x ∈ [0, 1]d, (5)

where δ = 2−d. The solution function is calculated as161

g(x) =
δx1

2(1 + δ − x1)
, x ∈ [0, 1]d, (6)

and it can also be determined by the following fixed point equation162

z = g̃(z,x) := (x1 − δ)z +
1

2
δx1. (7)

Note that g(x) has very large derivative when x1 is near 1. It can be regarded as a continuous version163

of the common indicator function of the first entry 1
21x1=1(x). The separation is presented as follows.164

Theorem 2. Let g(x) be defined as in Eq.(6) for x ∈ [0, 1]d and 1
4 ≥ ε > 0.165

A. For any function Nfnn(x) implemented by an FNN with depth L and width k where L ≤ C

and k ≤ 2
d

2C for some constant C = O(1). If

∥Nfnn(x)− g(x)∥L∞([0,1]d) ≤
1

16
,

then there exists a weight parameter Wij of the FNN for 1 ≤ i ≤ L and 1 ≤ j ≤ k, such
that

|Wij | ≥ 2
d

2C .

B. There exists a function Ndeq implemented by a DEQ with width bounded by 5ε−1 and
weights bounded 2ε−1, such that

∥Ndeq(x)− g(x)∥L∞([0,1]d) ≤ ε.

Remark 2. The inapproximability result of FNN in Theorem 2 is stated from the perspective of166

weight magnitude, which holds practical significance. Exponentially large weight often results in167

exponential iterations of optimization algorithms in learning with this model, as also noted in [39].168

Additionally, neural networks in practice typically have small weights due to techniques such as169

(standard) small initialization, normalization, and gradient clipping.170

In Theorem 2, the inapproximability of FNNs is relatively simple: Direct calculation shows that171

the derivative of the target function g(x) is exponentially large when x1 > 1− δ. To approximate172

g(x) in L∞ norm requires FNNs to have large derivative in certain region, resulting in exponentially173

large weight for FNNs with bounded depth. On the other hand, the proof of the approximability of174

DEQs is more technical. While g̃ in Eq. (7) seems more benign, it is not clear how to construct the175

approximation using the implicit layer in Eq. (2) that resembles an 1-layer FNN with very limited176

expressive power. Moreover, even if we manage to approximate g̃ in Eq. (7), it will not necessarily177

imply a good approximation between the fixed point of DEQ and the solution of z = g̃(z,x), i.e., the178

target function due to the Lipschitz constant of g̃ with respect to z being very close to 1 when x1 is179

around 1 according to Eq. (7). We provide a proof sketch of this result in Section 4.3.180

Further insights and implications can be gleaned from Theorem 2. First, it suggests that DEQ may181

excel in approximating functions induced by fixed-point iterations. In other words, DEQ may be182

better suited for representing algorithms. Second, Theorem 2 implies that functions with large183

derivative, or high-frequency components, may be approximated more efficiently by DEQ, as the184

function to be approximated by the implicit layer can have much smaller derivative.185

4.3 Proof Sketch of B. in Theorem 2186

As discussed in Section 4.2, we want to approximate g̃ using the implicit layer of DEQ. Due to the187

limited expressive power of the implicit layer, we propose an equivalent reparameterization of DEQ.188
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Lemma 1. Consider a revised DEQ defined as189

z = Vσ(Wz+Ux+b),

y = Bz,
(8)

where x ∈ Rd, z ∈ Rm,W ∈ Rq×m,U ∈ Rq×d, V ∈ Rm×q , B ∈ Rp×m and ∥WV∥2 ≤ 1. Then190

any revised DEQ can be represented by a vanilla DEQ defined as in Eq. (2) with width q.191

Lemma 1 enables us to approximate g̃(z,x) using the revised implicit layer, denoted by h̃(z,x).
Then the crux of the proof centered in bounding the error between the equilibria of two fixed-point
equations. To begin, for every x we denote û(z) = z − g̃(z,x), v̂(z) = z − h̃(z,x) and consider
|û◦2(z)− v̂◦2(z)|. Suppose that û(z) is Lû-Lipschitz, then we have

|û◦2(z)− v̂◦2(z)| ≤ |û◦2(z)− û ◦ v̂(z)|+ |û ◦ v̂(z)− v̂◦2(z)| ≤ (Lû + 1)|û(z)− v̂(z)|.

Thus if Lû < 1, by recursion, we can bound distance the between the infinitely composition of û(z)192

and v̂(z), from which the error of the two fixed points can be bounded.193

Lemma 2. Let Ω ⊂ R be a compact set, and u(z,x), v(z,x) : Ω × [0, 1]d → Ω be two functions.
Assume that for all x ∈ [0, 1]d, u(·,x) and v(·,x) are Lipschitz continuous with Lipschitz constant
Lu, Lv < 1, respectively. Then for any x ∈ [0, 1]d, it holds

|zu − zv| ≤ min{(1− Lu)
−1, (1− Lv)

−1} · |u(z,x)− v(z,x)|

for all ∀(z,x) ∈ Ω × [0, 1]d, where zu and zv are the fixed point of z = u(z,x) and z = v(z,x),194

respectively.195

In our case, u(z,x) and v(z,x) in this Lemma represent g̃(z,x) and h̃(z,x), respectively. When196

x < 1 − poly(d)−1, by calculating ∂g̃(z,x)
∂z , we have (1 − Lg̃)

−1 < poly(d). Leveraging this and197

Lemma 2, we just need ∥h̃ − g̃∥∞ ≤ poly(d)−1 to achieve a final accuracy of O(ε). However,198

when x ≥ 1 − δ, we only have (1 − Lg̃)
−1 < exp(Ω(d)), which may necessitate an exponential199

width for the implicit layer to achieve O(ε) accuracy. In fact, h̃(z,x) = xiz gives an example200

that even assuming ∥h̃ − g̃∥∞ ≤ exp(Ω(d))−1 is not sufficient to achieve O(ε) accuracy since201

zh̃(1) − zg̃(1) =
1
2 . So it seems difficult to bound the error without a specific structure of h̃. To202

overcome the issue, we observe a novel property that enables us to effectively bound the error.203

Lemma 3. Let ξ > 0. Under the conditions in Lemma 2, if for any interval T ⊂ Ω with diam(T ) > ξ,
u(z,x) = v(z,x) has a zero in T for all x, then it holds that

|zu(x)− zv(x)| ≤ ξ, ∀x ∈ [0, 1]d.

The intuition behind Lemma 3 is that if for any x, z − u(z,x) and z − v(z,x) as two monotone204

univariate functions w.r.t. z can take the same value at frequent intervals, then their zeros will also be205

close to each other. By using this Lemma, it suffices to construct such h̃(z,x) that equals g̃(z,x) at206

frequent interval of length O(ε) for every x.207

5 The Bias on Learning Dynamics of DEQ208

In this section, we study the implicit bias of a simplified linear diagonal DEQ and present a concrete209

example illustrating how such an implicit bias may lead to improve generalization.210

We begin by considering the model:211

f(w,x) =

d∑
i=1

1

1− wi
xi := ⟨β,x⟩, βi =

1

1− wi
. (9)

The model can be regarded as a diagonal linear DEQ in Eq. (2) with W = diag(w1, w2, · · · , wd),212

U = Id, b = 0 and A = (1, 1, · · · , 1)T ∈ Rd. Our primary focus lies in minimizing the expected213

square loss:214

min
w

L(w) :=
1

2
E(x,y)∼D[(y − f(w,x))2]. (10)
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We are given access to a set of i.i.d. training examples {(xi, yi)}Ni=1, and we denote the (half) square
loss on these examples by L̂(w) = 1

2

∑N
i=1(yi − f(w, xi))

2. Moreover, let

X = (x1, · · · ,xN )T , µmin = λmin(XXT ), µmax = λmax(XXT ).

We mainly consider the dynamics of gradient flow (GF) and gradient descent (GD) with fixed stepsize215

η on minimizing L̂(w), expressed as follows216

(GF) ẇ(t) = −∇wL̂(w(t)); (GD) wk+1 = wk − η∇wL̂(wk). (11)

The main theorem below gives a general characterization of the bias of diagonal linear DEQ in the217

overparameterized regime. The proof is based on the technique proposed in [29].218

Theorem 3. Let βi in Eq. (9) be initialed as βi(0) > 0 for all i. Suppose that gradient flow for the219

parameterization problem in Eq. (10) converges to some β̂ satisfying Xβ̂ = y, then220

β̂ = argmin
β

Q(β), s.t. Xβ = y, (12)

where Q(β) =
∑d

i=1 q(βi) and q(x) = 1
2x2 + βi(0)

−3x.221

The theorem implies that the bias of the (simplified) DEQ significantly differs from that of conven-222

tional linear models and two-layer linear network which tends to give a minimum ℓ2-norm interpolator223

[40]. Specifically, the predictor β̂ hardly admits parameters of small magnitude due to the penalty224

term 1
2

∑d
i=1

1
βi

. Meanwhile, the predictor can endure parameters of greater magnitude as the penalty225

q(x) increase almost linearly when x is large.226

We then study the implicit bias from the learning dynamics of GF and GD. We show that when227

µmin > 0, under mild conditions, the convergence of both algorithms is guaranteed. Moreover, in this228

case, a positive lower bound of the ℓ∞ norm of the iterates can be derived, indicating that the model229

inclines to produce ‘dense’ features in learning process.230

Assumption 1. Denote by β0 the initialization of β of the model. There exists an optima β̂∗, i.e.,
X β̂∗ = y and a constant c > 0, such that

∥β̂∗∥∞ − ∥β̂∗ − β0∥2 ≥ c > 0.

Theorem 4. Let {β(t)} be the process following GF in Eq. (11) and {βk} the iterates following GD231

in Eq. (11). Assume that µmin > 0 and the initialization β(0) and β0 satisfy Assumption 1 with an232

optima β̂∗233

A. {β(t)} converges to an optima β∞
f with ∥β∞

f ∥∞ ≥ c. Moreover, for any t ≥ 0, we have234

c ≤ ∥β(t)∥∞ ≤ ∥β̂∗∥∞ + ∥β̂∗ − β0∥2.235

B. If there exists a constant C > 0 such that ∥βk∥∞ ≤ C for all k, then {βk} converges to an236

optima β∞
d with ∥β∞

d ∥∞ ≥ c. Moreover, for any k ≥ 0, we have c ≤ ∥βk∥∞ ≤ C.237

Remark 3. The assumption in Theorem 4 that ∥βk∥∞ is uniformly bounded can be removed if we238

manually incorporate a constrain on β and optimize the problem using projected gradient descent.239

In practice, certain reparameterization tricks [6, 7] are proposed to ensure that I−W ⪰ mI for240

some m > 0, thus corresponding to the aforementioned assumption.241

Based on our results above, we now provide a concrete example to show the advantages brought by242

the bias of DEQ in out-of-distribution (OOD) tasks. This is motivated by the fact that diversifying243

spurious features can improve OOD generalization [41]. Specifically, we focus on generalization244

on the unseen domain (GOTU) setting [34], a rather strong case of OOD generalization where part245

of the distribution domain is unseen at training but used at testing. As an example, we here utilize246

the setting in Theorem 3.11 in [34]. Consider the sample space S = {−1, 1}d and a linear boolean247

function f : S → R defined as248

f(x) = f̂(∅) +
d∑

i=1

f̂({i})xi, (13)
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where f̂({i}) = EX∼U{−1,1}d [xif(x)] and ∼UU refers to uniform sampling from U . In training,
the k-th component of every accessible sample is fixed as 1, i.e., the unseen domain is U = {x ∈
{±1}d : xk = −1}. Denote by f̃S\U the function learned on S\U . The GOTU error is the defined as
the generalization completely on the unseen domain, i.e.,

GOTU(f, f̃ ,U) = EX∼UU [l(f̃S\U (X), f(X))],

where l is the quadratic loss function. It is shown in [34] that learning this function with diagonal249

linear network results in a GOTU error of 4f̂({k})2 + O(ε) for an infinitesimal ε. On the other250

hand, the following proposition shows that under mild conditions, learning such function with251

DEQ achieves smaller GOTU error, where we consider DEQ in Eq. (9) with a bias term, i.e.,252

f(w,x) =
∑d

i=1
1

1−wi
xi + b.253

Proposition 2. Let f(x) be defined as in Eq. (13). Assume that

f̂({i}) > 0, ∀1 ≤ i ≤ d, f̂({k}) > 1, |f̂(∅)| ≤ 2|f̂({k})|.

Consider learning f using gradient flow on population loss2 on a linear diagonal DEQ with bias
initialized by wi(0) = b(0) = 0 for all i with unseen domain U = {x ∈ {±1}d : xk = −1}. Then
the loss converge to 0, and it holds for the generalization error on the unseen that

GOTU ≤ 4

(
f̂({k})−

(
4 + 3f̂({k})

)− 1
3

)2

< 4f̂({k})2.

In this setting, the function xk has a higher frequency component (i.e., degree) compared to the254

constant function 1. Consequently, the inductive bias of DEQ enables the model to capture some255

information about the high-frequency components. We further conduct experiments to study the256

potential advantages of DEQ in learning high-frequency components in Appendix B.2.257

6 Experiments258

In this section, we conduct experiments on FNNs and DEQs based on our theoretical results. We first259

evaluate the expressivity of both networks on the functions proposed in our two separation results.260

Then we experiment on specific OOD tasks. An additional experiment on audio representation is261

provided in Appendix B.2.262

Piecewise functions. We first verify the results in Section 4.1. The target function is designed as a263

saw-tooth function, as defined in Lemma 4 in Appendix A.1, which can be exactly computed by a264

DEQ. We set the number of linear regions of the saw-tooth function to 25 and 210 and experiments265

on other sawtooth functions can be seen in Appendix B.1. According to Proposition 1, a DEQ with266

width 5 and 10 can compute the above functions exactly. Following the standard setting, all models267

are trained using ℓ2 loss with AdamW optimizer [42], with a learning rate of 5e-4, weight decay of268

1e-4 and a cosine annealing scheduler for 1000 iterations.269

Figure 1(a) and Figure 1(d) show that DEQ can achieve nearly zero test loss, demonstrating the270

saw-tooth function with 2m linear regions can be computed by DEQ. On the other hand, a not-so-deep271

and not-so-wide FNN fails to achieve test loss as low as DEQ, thus verifying the separation results272

between FNN and DEQ.273

Solution to quadratic optimization problem. We then validate the ability of DEQ to approximate274

the solution function to certain optimization problems. We empirically demonstrate that DEQ can275

approximate such function better than an FNN with a similar number of parameters. We consider276

the objective function g(x) defined in Eq. (6), with the input dimension d 10 and 20, and thus δ in277

target function being 2−10 and 2−20. The input space is x ∈ [0, 1]d with the sampling distribution278

p(x) = 1
2(1−δ) for 0 < x1 < 1− δ and p(x) = 1

2δ for 1− δ < x1 < 1.279

In experiment, we train FNN and DEQ models using the ℓ2 loss. Following the standard setting,280

we employ mini-batch SGD optimizer with learning rate of 0.005, weight decay of 1e-4 and cosine281

annealing scheduler for all models. To verify results under different network parameters, we adjust282

2It is identical to the setting in Theorem 3.11, [34]. Note that optimizing the population loss in generalization
cannot reduce the OOD error.
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Figure 1: Test losses of FNN and DEQ networks with various width W and depth L. (a) and (b) apply
Sawtooth function I and II with 25 and 210 linear regions, respectively. (c) and (d) apply function
g(x) defined in Eq. (5) with δ = 2−10 and δ = 2−20, respectively. (e) Train loss and the GOTU error
of FNN and DEQ on the boolean function f1, f2 and unseen domain given by Eq. (14) and Eq. (15).

the layer number and hidden dimension of FNN and the layer width of DEQ while keeping the total283

number of parameters of both networks similar.284

As shown in Figure 1(b) and Figure 1(e), for different network parameters and target functions,285

DEQ consistently achieves a lower test loss than FNN, demonstrating the superiority of DEQ to286

approximate and represent functions as solutions to certain optimization problems.287

Out-of-Distribution tasks. We further perform experiments on the implicit bias of DEQ to verify288

the advantage of DEQ on OOD tasks. We consider 2 linear boolean functions f : S → R in the form289

of Eq. (13) and unseen domains U ⊂ {±1}d. The first function is an example of the mean function290

and the second function is a part of DTFT. Experiments on other OOD functions can be found in291

Appendix B.1.292

f1(x) = 1.25x0 + 1.25x1 + 1.25x2 + · · ·+ 1.25x10, U = {x ∈ {±1}10 : x2 = −1}, (14)

f2(x) =

9∑
n=0

sin(
π ∗ n
10

)xn, U = {x ∈ {±1}10 : x1 = −1} (15)

293

For each experiment, we generate all binary sequences in {±1}d\U for training. We employ AdamW294

optimizer with ℓ2 loss and a cosine annealing scheduler. We can observe in Figure1(c) that the GOTU295

error of f1 is below he threshold of generalization error based on the Proposition 2. As shown in296

Figure1(c) and Figure1(f), the training loss converges to 0 and the generalization error on the unseen297

is bounded, which empirically demonstrates the advantage of DEQ on OOD tasks.298

7 Conclusions299

In this paper, we provide two separations of DEQ and FNN and analyze the bias of DEQ through the300

lens of learning dynamics. Our theoretical results provably show the advantage of DEQ over FNN in301

specific problems and quantify certain learning properties of DEQ. Overall, we conjecture that DEQ302

may be advantageous in learning certain high-frequency components.303
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A Proofs397

A.1 Proofs in Subsection 4.1398

In following technical lemma, we show that there exists a width-m ReLU-DEQ computing a function399

with 2m linear regions.400

Lemma 4. Let m ∈ N+. For all m ≥ 1, consider the following function on [0, 1]d:

ϕ(m)(x) =

{
2mx1 − 2i, x1 ∈

[
2i
2m , 2i+1

2m

]
, 0 ≤ i ≤ 2m−1 − 1,

−2mx1 + 2i+ 2, x1 ∈
[
2i+1
2m , 2i+2

2m

]
, 0 ≤ i ≤ 2m−1 − 1.

Then there exists a DEQ with width m that exactly computes −ϕ(m)(x) + 2mx1 on [0, 1]d. Moreover,401

the DEQ has 2m linear regions on [0, 1]d.402

Proof. Since 2mx1 is a linear function with respect to z1, by definition, −ϕ(m)(x) + 2mx1 has 2403

linear regions on
[

2i
2m , 2i+2

2m

]
× [0, 1]d−1 for all 0 ≤ i ≤ 2m−1 − 1. Thus it has 2m linear regions on404

[0, 1]d. It suffices to show that existence of a DEQ computing −ϕ(m)(x) + 2mx1.405

Consider a width-m DEQ with weight matrices as follows:

AT =


−2m

−2m−1

...
−2

 ,W =


0
−4 0
−8 −4 0

...
...

...
. . .

−2m −2m−1 −2m−2 · · · 0

 , U1 =


2
4
...

2m

 ,b =


−1
−1

...
−1

 ,

where U1 denotes the first column of U and U = (U1 0). When m = 1, W = 0 and other matrices406

follow the above expressions. Direct calculations show that the fixed point z satisfy407

z1(x) = σ(2x1 − 1), zt(x) = σ

(
−

t−1∑
i=1

2t−i+1zi(x) + 2tx1 − 1

)
, ∀2 ≤ t ≤ m. (16)

Note that {ϕ(m)(x)} admits a recursive expression:408

ϕ(m+1)(x) = 2ϕ(m)(x)− 2σ(2ϕ(m)(x)− 1), ∀m ≥ 0, (17)

for ϕ(0)(x) := x1. We now show by induction that zt(x) = σ(2ϕ(t−1)(x)− 1) for all 1 ≤ t ≤ m.409

When t = 1, it is true immediately from Eq. (16) and 17. Assume it is true for some t < m, then by410

Eq. (16) we have411

zt+1(x) = σ

(
t∑

i=1

−2t−i+2zi(x) + 2t+1x1 − 1

)

= σ

(
t∑

i=1

−2t−i+2σ(2ϕ(i−1)(x)− 1) + 2t+1x1 − 1

)

= σ

(
t∑

i=1

−2t−i+2

(
ϕ(i−1)(x)− ϕ(i)(x)

2

)
+ 2t+1x1 − 1

)
= σ(−2t+1ϕ(0)(x) + 2ϕ(t)(x) + 2t+1x1 − 1) = σ(2ϕ(t)(x)− 1),

where we use the induction in the second line, Eq. (17) in the third line, and ϕ(0)(x) = x1 in the last412

line. Thus the induction holds.413
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Using the induction and Eq. (17) for the DEQ, we have414

Az(x) =

m∑
i=1

−2m+1−izi(x)

=

m∑
i=1

−2m+1−iσ(2ϕ(i−1)(x)− 1)

=

m∑
i=1

−2m+1−i

(
ϕ(i−1)(x)− ϕ(i)(x)

2

)
= −2mϕ(0)(x) + ϕ(m)(x) = ϕ(m)(x)− 2mx1,

and the lemma follows.415

In prove the theorem, we also need the following lemma which is proved in [18].416

Lemma 5 (Lemma 2.1 in [18]). Let k ∈ N+, L ≥ 2 and ρ(x) : R → R be a piecewise affine linear417

function with p pieces. Then every f : R → R implemented by an FNN with depth L, width k and418

activation function ρ has at most (pk)L−1 linear regions.419

Note that the in Lemma 4, the function computed by DEQ is a variant of the saw-tooth function that420

has many linear regions. On the other hand, Lemma 5 provides an upper bound on the number of421

linear regions generated by FNN. Combining these two lemmas and using a technique similar to that422

in Theorem 1.1, [22], we are able to prove Theorem 1.423

Proof of Theorem 1. Let Nd(x) be the DEQ in Lemma 4 that computes 2mx1 −ϕ(m)(x) and denote
the width of the FNN that computes Nf (x) by k. For any y ∈ [0, 1]d−1, define py(x) : [0, 1] →
[0, 1]d as py = (x1,y). Then for Nf ◦ py(x), by Lemma 5, the number of linear regions is upper
bounded by

(pk)L−1 ≤ 2(m
1−α−1)(L−1) ≤ 2m−2,

where p = 2 denotes the number of linear pieces of ReLU activation function. Therefore, Nf ◦424

py(x)− 2mx has at most 2m−2 linear regions on [0, 1].425

Note that ϕ(m)(x) only depends on the first entry of x, for simplicity, we define φ(m)(x) : R → R
as φ(m)(x) = ϕ(m) ◦ py(x). Now we claim that there exists at least 3 · 2m−3 − 2 small intervals
{Tl}2

m−1

l=1 with diam(Tl) = 2−m, such that for any y, it holds

sgn
(
φ(m)(x)− 1

2

)
̸= sgn

(
Nf ◦ py(x)− 2mx− 1

2

)
, ∀x ∈ Tl, ∀l.

For simplicity, denote φ̃(x) = φ(m)(x)− 1
2 and Ñf (x) = Nf ◦py(x)−2mx− 1

2 . Denote Pϕ and PN

the partitions of [0, 1] into intervals so that sgn
(
φ(m)(x)− 1

2

)
and sgn (Nf ◦ py(x)− 2mx) remains

constant within each interval, respectively. Let Iϕ be the set of all intervals partitioned by Pϕ and
IN be the set of all intervals partitioned by PN . By definition, |Iϕ| = 2m + 1. Since Ñf (x) has at
most 2m−2 linear regions, the number of the boundary points of the intervals in IN is upper bounded
2m−2 +1. So there are at least 3 · 2m−2 intervals in Iϕ that do not intersect with any boundary points
of intervals, i.e., lie completely in an interval in IN . Denote this set of intervals by I ′

ϕ. On the other
hand, for every J ∈ IN that contains iJ intervals in I ′

ϕ, there will be iJ+1
2 intervals when iJ is odd

and iJ
2 intervals when iJ is even, on which sgn(φ̃(x)) = sgn(Ñf (x)). Note that

∑
J∈IN

= 3 · 2m−2.
Therefore, among the sets in I ′

ϕ, the number of sets on which sgn(φ̃(x)) ̸= sgn(Ñf (x)) is at least

3 · 2m−2 −
∑
J∈IN

iJ + 1

2
≥ 2m−3.

Note that except for two intervals, every T ∈ I ′
ϕ can be represented as

[
4i+1
2m+1 ,

4i+3
2m+1

]
or
[
4i−1
2m+1 ,

4i+1
2m+1

]
426

for some i, thus diam(Tl) = 2−m, which proves the claim. Moreover, on each Tl, direct calculations427

show
∫
Tl

∣∣ϕ(m)(x)− 1
2

∣∣dx ≥ 2−m−2.428
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Therefore, by using the claim, we have429 ∫
[0,1]d

|Nd(x)−Nf (x)|dx

=

∫
[0,1]d−1

∫
[0,1]

∣∣∣2mx1 − ϕ(m)(x1)−Nf ◦ py(x1)
∣∣∣ dx1dy

≥
∫
[0,1]d−1

∫
⋃

l Tl

∣∣∣2mx1 − ϕ(m)(x1)−Nf ◦ py(x1)
∣∣∣dx1dy

≥
∫
[0,1]d−1

∫
⋃

l Tl

∣∣∣∣12 − ϕ(m)(x1)

∣∣∣∣dx1dy

≥
∫
[0,1]d−1

|Tl| · 2−m−2dy

≥(3 · 2m−3 − 2) · 2−m−2 ≥ 1

16
.

430

Next we turn to proof Proposition 1. We use Diag(·) to extract the diagonal elements of a matrix into431

a vector. The proof of Proposition 1 relies on following explicit expression of ReLU DEQ.432

Lemma 6. Let W,U,b be the weights of a DEQ with ∥W ∥2 < 1. Then for any x ∈ Rd, there433

exists a diagonal matrix D ∈ Rd×d whose diagonal entries are either 1 or 0, such that434

sgn(diag((I−WD)−1)(Ux+b)) = Diag(D). (18)

Moreover, fix D, for all x that Eq. (18) holds, we have435

z(x) = (I−DW)−1D(Ux+b). (19)

Proof. Recall that the fixed point z(x) satisfies436

z = σ(Wz+Ux+b). (20)

For each zi, if the i-th entry of (Wz+Ux+b) is smaller than 0, then zi = 0. Without loss of437

generality, we assume that the first t (t ≤ m) entries of (Wz+Ux+b) are greater than 0, and the438

rest m− t entries are smaller than 0. Denote by v = Ux+b and the corresponding block matrices439

z,W,v by440

z =

(
z̃
0

)
,W =

(
W11 W12

W21 W22

)
,v =

(
v1

v2

)
, (21)

where z̃ ∈ Rt,W11 ∈ Rt×t, and v1 ∈ Rt. Then, Eq.(20) is equivalent to441

z̃ = W11z̃+ v1, W21z̃+ v2 ≤ 0, z̃ > 0. (22)

Now we define D =

(
It 0
0 0

)
and show that it is the desired matrix. Note that ∥W ∥2 < 1 and

∥D∥2 = 1, we have
∥W11∥2 = ∥WD∥2 ≤ ∥W ∥2∥D∥2 < 1,

showing that It −W11 is invertible. Thus Eq.(22) gives442

z̃ = (It −W11)
−1v1 > 0, W21(It −W11)

−1v1 + v2 ≤ 0. (23)

Additionally, by simple calculation, we have443

(I−DW)−1 =

(
(It −W11)

−1 (It −W11)
−1W12

0 I

)
,

(I−WD)−1 =

(
(It −W11)

−1 0
W21(It −W11)

−1 I

)
.

(24)
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Combining Eq. (21), (23) and (24), we have444

(I−WD)−1(Ux+b) =

(
W11z̃+ v1

W21(It −W11)
−1v1 + v2

)
,

z =

(
(It −W11)

−1v1

0

)
= (I−DW)−1D(Ux+b).

Finally, since the output of the implicit layer is unique, in the sense of permuting the entries of D,445

there always exists a matrix D such that the Lemma follows.446

Note that there are at most 2m diagonal matrix whose diagonal entries are either 1 or 0, the upper447

bound of the number of linear regions is 2m. Thus Proposition 1 follows straightforwardly from 6448

and 4.449

A.2 Proofs in Subsection 4.2450

A.2.1 Inapproximability of FNNs451

The goal of this section is to prove the following proposition, which is an extended version of the452

inapproximability result in Theorem 2.453

Assumption 2. The activation function σ̃ is of C0(R) and continuous differentiable except for at454

most finitely many points. And there exists an absolute constant Cσ̃ > 0, such that |σ̃′(x)| ≤ Cσ̃ for455

all x on which σ̃ is differentiable.456

Proposition 3 (Inapproximability of FNN). Let Nfnn(x) be computed by an FNN with depth L, width
k, and an activation function σ̃ satisfying Assumption 2 on x ∈ [0, 1]d. Let g(x) be defined as in
Eq.(6), and 1

4 ≥ ε > 0. If ∥Nfnn(x)− g(x)∥L∞([0,1]d) ≤ ε, then there exists a weight parameter Wij

of the FNN for 1 ≤ i ≤ L and 1 ≤ j ≤ k, such that

|Wij | ≥
1

Cσ̃k
· 2

d−4
L .

Proof. By assumption, Nfnn(x) is of C(Rd) and continuous differentiable except for at most finitely457

many points, then by the intermediate value theorem, we have458

max
x∈[0,1]d

∣∣∣∣∂Nfnn(x)

∂x1

∣∣∣∣ ≥ ∣∣∣∣g1(1)− g1(1− δ)

δ

∣∣∣∣ ≥ 1
2 − δ(1−δ)

4δ − 2 · 1
16

δ
≥ 1

8δ
− 1 ≥ 2d−4, (25)

where ∂Nfnn(x)
∂x1

refers to the subgradient on the non-differentiable points. Additionally, by definition,

Nfnn(x) = WLσ̃ (WL−1σ̃(· · · σ̃(W1 x+b1) · · · ) + bL−1)

Then direct calculation gives459

∇Nfnn(x) = WT
1 D1 · · ·DL−1W

T
L , (26)

where Dl = diag(σ̃′(Wlσ̃(· · · σ̃(W1x + b1) · · · ) + bl)) for 1 ≤ l ≤ L − 1. By Assumption 2, it
holds that

∥Dl∥∞ ≤ Cσ̃, ∀1 ≤ l ≤ L− 1.

Then combining Eq. (25) and (26), we have

2d−4 ≤ ∥∇Nfnn(x)∥∞ ≤
L∏

i=1

∥DiWi∥∞ ≤ CL
σ̃ ·

L∏
i=1

∥Wi∥∞.

Therefore, there exists at least one Wi for 1 ≤ i ≤ L, such that

∥Wi∥∞ ≥ C−1
σ̃ 2

d−4
L .

Finally, by the definition of ∥ · ∥∞, there exists an entry Wij with 1 ≤ j ≤ k, such that

|Wij | ≥
1

Cσ̃k
· 2

d−4
L .

460
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Remark 4. Assumption 2 is mild and one can verify that most commonly used activation functions461

such as ReLU, GeLU, sigmoid and tanh satisfy the assumption.462

To prove the inapproximability of FNNs in Theorem 2, we take Cσ̃ = 1 in Proposition 3 as |σ′(x)| ≤ 1
and derive

|Wij | ≥ k−1 · 2
d−4
L ≤ 2−

d
2C + d−4

C ≥ 2−
d

2C ,

which finishes the proof.463

A.2.2 Approximability of DEQs464

This section centers around the approximability result of DEQs. We restate the approximability result465

of Theorem 2 as the following proposition.466

Proposition 4 (Approximability of DEQ). Let g(x) be defined as in Eq.(6) on [0, 1]d. ∀ 1
4 ≥ ε > 0,

there exists a DEQ Ndeq with width bounded by 5ε−1 and weights bounded by 2ε−1, such that

∥Ndeq(x)− g(x)∥L∞([0,1]d) ≤ ε.

The proof of the proposition requires some intermediate steps regrading the constructing approxima-467

tion by DEQ and bounding the fixed-points’ error. For simplicity, in the rest of the section, for any468

function f which is continuous differentiable except for at most finitely many points, we denote f ′469

the derivative of f on the differentiable points, and the subgraident of f on the non-differentiable470

points.471

The next lemma considers approximating the square function using a 2-layer FNN.472

Lemma 7. For any N ∈ N+, there exists a function ϕ implemented by a 2-layer ReLU FNN with
width 2N such that

|ϕ(x)− x2| ≤ 4N−2, |ϕ′(x)| ≤ 2− 1

N
, ∀x ∈ [−1, 1].

Proof. Denote 1
N by t for simplicity. Let {xi}2N+1

i=1 be 2N + 1 points on R defined as follows:

x1 = −1, x2 = −1 + t, · · · , x2N = 1− t, x2N+1 = 1.

We consider the following function ϕ(x) that interpolates x2 on all {xi}2N+1
i=1 :473

ϕ(x) = σ(tx) + σ(−tx) +

N−1∑
i=1

σ(2tx− 2it2) +

N−1∑
i=1

σ(−2tx+ 2it2). (27)

It can be seen that ϕ(x) can be implemented by a 2-layer ReLU FNN with width 2N and weight
bounded by 2t. By the interpolation property of ϕ(x), on every [xj , xj+1], it holds

max
x∈[xj ,xj+1]

|ϕ(x)− x2| = ϕ

(
xj + xj+1

2

)
−
(
(xj + xj+1)

2

)2

=
t2

4
.

Thus we have |ϕ(x)− x2| ≤ 4N−2 for all x ∈ [−1, 1]. Moreover, since ϕ(x) is convex, we have

|ϕ′(x)| ≤ 1− (1− t)2

t
= 2− t.

474

We now move to prove the equivalence between the revised DEQ and vanilla DEQ.475

Proof of Lemma 1. For any ẑ0 ∈ Rm, we define a sequence {ẑk} as

ẑk+1 = σ(WVẑk +Ux+ b).

Since ∥WV∥2 ≤ 1, {ẑk} converges and the limit ẑ∗ is the fixed point of ẑ = σ(WVẑ+Ux+b).
Now we set z0 = Vy0 and define another sequence {zk} as

zk+1 = Vσ(Wzk +Ux+b), ∀k ≥ 0.
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It follows immediately by induction that zk = Vẑk for all k ≥ 0. Note that {zk} converges and the
limit z∗ is exactly the fixed point of the revised DEQ in Eq. (8). Therefore, it holds that

z∗ = lim
k→∞

zk = lim
k→∞

Vẑk = Vẑ∗.

The desired DEQ is constructed as476

ẑ = σ(WVẑ+Ux+b),

ŷ = (BV)ẑ

477

In the following we turn to bound the error between the equilibria of two fixed-point equations. We478

start with the proof of Lemma 2.479

Proof of Lemma 2. The existence of zu and zv follows from the fixed point theorem since u(·,x) and480

v(·,x) are contraction mappings. For simplicity, we denote ux(z) = u(z,x) and vx(z) = v(z,x).481

Note that the range of ux and vx are in Ω. Then ∀n ∈ N+, we have482

∥u◦n
x − v◦nx ∥ ≤

∥∥∥u◦n
x − ux

(
v◦(n−1)
x

)∥∥∥+ ∥∥∥ux

(
v◦(n−1)
x

)
− v◦nx

∥∥∥
≤ Lu

∥∥∥u◦(n−1)
x − v◦(n−1)

x

∥∥∥+ ∥ux − vx∥

≤ Lu

(∥∥∥u◦(n−2)
x − v◦(n−2)

x

∥∥∥+ ∥ux − vx∥
)
+ ∥ux − vx∥

≤ · · ·
≤ (1 + Lu + · · ·+ Ln−1

u )∥ux − vx∥

=
1− Ln

u

1− Lu
∥ux − vx∥.

By definition, ∀(z,x) ∈ Ω×[0, 1]d, zu(x) = limn→∞ u◦n
x (z), and zv(x) = limn→∞ v◦nx (z). Hence,483

we have484

|zu(x)− zv(x)| ≤ lim
n→∞

|u◦n
x (z)− v◦nx (z)|

≤ lim
n→∞

1− Ln
u

1− Lu
|u(z,x)− v(z,x)|

≤ 1

1− Lu
|u(z,x)− v(z,x)|.

Finally, by the symmetry of u and v, we also have |zu(x)− zv(x)| ≤ 1
1−Lv

|u(z,x)− v(z,x)|. The485

proof is finished.486

We also need Lemma 3 to bound the error.487

Proof of Lemma 3. We use the intermediate value theorem to proof the lemma. Define q(z,x) =488

z − v(z,x). The fixed point zv(x) is unique zero of q(z,x) = 0. Since v(z,x) is Lv Lipschitz with489

respect to z and Lv < 1, q(z,x) is monotonically increasing with respect to z for all x.490

Fix zu, the proof proceeds by discussing the following 2 cases:491

• If q(zu,x) ≤ 0, i.e., u(zu,x) = zu ≤ v(zu,x), we consider T = [zu, zu + ξ] ⊂ Ω.492

By assumption, there exists z∗ ∈ T , such that u(z∗,x) = v(z∗,x). Note that q(·,x) is493

monotonically increasing, thus we have q(z∗,x) ≥ 0. By the continuity of q(z,x) w.r.t.494

z and the intermediate value theorem, q(z,x) must have a zero in [zu, z0] ⊂ T , which is495

zv(x) by definition. Hence, it holds that |zu − zv| ≤ ξ.496

• If q(zu,x) ≥ 0, i.e., u(zu,x) = zu ≥ v(zu,x), we consider T = [zu − ξ, zu] ⊂ Ω. It497

follows from similar deductions that |zu − zv| ≤ ξ in this case.498
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We finish the proof.499

With the results above, we begin our formal proof of Proposition 4. The proof is sketched as follows:500

First, we consider a fixed point equation z = g̃(z,x) that induce the target function g(x). We show501

that there exists a function h̃(z,x) : Rd+1 → R computed by a 2-layer FNN with width O(ε−1) that502

can approximate g̃(z,x) in sup-norm to an accuracy of O(ε2). Moreover, z = h̃(z,x) is a well-posed503

fixed point equation and induces a revised DEQ. Second, we bound the error between g(x) and h(x),504

where h(x) is the fixed point of z = h̃(z,x). The proof is further divided into two parts: When505

1− x1 > ε
2 , by using Lemma 2, we can bound the error ∥h− g∥ by ε · ∥h̃− g̃∥. When 1− x1 < ε

2 ,506

we show that the conditions of Proposition 4 holds for ξ = ε, thus ∥h− g∥ is upper bounded by ε.507

Proof of Proposition 4. Let g(x) be defined as in Eq.(6). Recall that g(x) is the fixed point of the
fixed point equation

z = g̃(z,x) := zx1 + δ
(x1

2
− z
)
.

Approximate g̃ using 2-layer FNN. By Lemma 7,∀N ∈ N+, there exist a ∈ R2N , b̃ ∈ R2N ,W̃ ∈508

R2N and a function ϕ(x) = aTσ(W̃x+ b̃) , such that for all x ∈ [−1, 1], it holds509

|ϕN (x)− x2| ≤ 4N−2, |ϕ′
N (x)| ≤ 2− 1

N
. (28)

Now, we define

h̃(z,x) =
1

2

[
ϕN

(
z +

x1

2

)
− ϕN

(
z − x1

2

)]
+ δ

(x1

2
− z
)
.

1. h̃(z,x) can be implemented by a 2-layer ReLU FNN with width 4N + 2 for (z,x) ∈510 [
−δ, 1

2

]
× [0, 1]d. To see this, when (z,x) ∈

[
−δ, 1

2

]
× [0, 1]d, it holds z + x1

2 ∈ [0, 1],511

z − x1

2 ∈ [−1, 0]. Then512

(
aT

2
aT

2 −δ δ
)
σ



W̃ 0

0 W̃
0 1
0 −1

(1 1
2 0

1 − 1
2 0

)( z
x1

x−1

)
+


b̃

b̃
0
0




=
(

aT

2
aT

2 −δ δ
)
σ



W̃
(
z + x1

2

)
+ b̃

W̃
(
z − x1

2

)
+ b̃(

z − x1

2

)
−
(
z − x1

2

)



=
1

2
aTσ

(
W̃
(
z +

x1

2

)
+ b

)
+

1

2
aTσ

(
W̃
(
z − x1

2

)
+ b̃

)
+ δ

(
σ
(
−z +

x1

2
− σ

(
z − x1

2

)))
=
1

2

[
ϕN

(
z +

x1

2

)
− ϕN

(
z − x1

2

)]
+ δ

(x1

2
− z
)
= h̃(z,x),

(29)

where the first line resembles a function implemented by an FNN with width 4N + 2.513

2. h̃(z,x) approximate g̃(z,x) well on (z,x) ∈
[
−δ, 1

2

]
× [0, 1]d. Since z + x1

2 ∈ [0, 1] and514

z − x1

2 ∈ [−1, 0], from Eq. (28), we have515

|h̃(z,x)− g̃(z,x)| = 1

2

[
ϕN

(
z +

x1

2

)
−

(
z +

x1

2

)2
]
− 1

2

[
ϕN

(
z − x1

2

)
−

(
z − x1

2

)2
]

≤ 1

2

∣∣∣∣ϕN

(
z +

x1

2

)
−

(
z +

x1

2

)2
∣∣∣∣+ 1

2

∣∣∣∣ϕN

(
z − x1

2

)
−

(
z − x1

2

)2
∣∣∣∣

≤ 1

2

(
t2

4
+

t2

4

)
=

t2

4
.

(30)
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3. The fixed point equation z = h̃(z,x) is well-posed on
[
−δ, 1

2

]
× [0, 1]d. for the partial516

derivative ∂h̃(z,x)
∂z , we have517 ∣∣∣∣∣∂h̃(z,x)∂z

∣∣∣∣∣ = 1

2

(
ϕ′
N

(
z +

x1

2

)
− ϕ′

N

(
z − x1

2

))
− δ

≤ 1

2

(
ϕ′
N

(
z +

x1

2

)
− ϕ′

N

(
z +

x1

2
− 1
))

− δ

≤ 1− δ < 1,

where the second line holds because ϕ′(x) is monotonically increasing and x1 < 1. There-518

fore, the fixed point equation z = h̃(z,x) has a unique solution for all x.519

4. Note that h̃(z,x) can be computed by a revised DEQ defined in Eq. (8) with

V =
(

aT

2
aT

2 −δ δ
)
, W =


W̃

W̃
1
−1

 , B = 1.

And it can be verified that ∥WV∥2 = 1 − t − 2δ ≤ 1. By Lemma 1, the fixed point of520

z = h̃(z,x) can be computed by a DEQ with width 4N + 2, which we denote by Ndeq(x).521

Further calculations shows that the weight of the DEQ is also bounded by 2t.522

Approximate g using the induced DEQ. We will bound ∥Ndeq(x)− g(x)∥L∞([0,1]d) using Lemma523

2 and Lemma 3. Let Ω = [−δ, 1
2 ] and assume that t > 10δ. It can be easily verified that both the524

range of g̃(z,x) and h̃(z,x) are in Ω when (z,x) ∈ Ω× [0, 1]d.525

1. When x1 ≤ 1 − t
2 , by definition, the Lipschitz constant of g̃(·,x) is upper bounded by

max
∣∣∣∂g̃(z,x)∂z

∣∣∣. Leveraging Lemma 2 and Eq.(30), we have

|Ndeq(x)− g(x)| ≤
∣∣∣∣1− ∂g̃(z,x)

∂z

∣∣∣∣−1

|h̃(z,x)− g̃(z,x)| ≤ 2

t
· t

2

4
=

t

2
.

2. When 1 > x1 > 1− t
2 , if z + x1

2 = nt for some N
2 − 1 ≤ n ≤ N , we have

z − x1

2
= nt− x1

2
∈
((

n− N

2

)
t,

(
n− N

2
− 1

)
t

)
.

Note that ϕN (x) > x2 for all x ∈ [0, 1]\tN and ϕN (x) = x2 for all x ∈ [0, 1] ∩ tN. Thus,
when z = nt− x1

2 , we have

h̃(z,x) <
1

2

((
z +

x1

2

)2
−
(
z − x1

2

)2)
+ δ

(x1

2
− z
)
= g̃(z,x).

Note that for every T ⊂ Ω with |T | ≤ t, there exists zg ∈ T , such that zg = nt− x1

2 and526

thus h̃(zg,x) < g̃(zg,x).527

On the other hand, if z = x1

2 − kt for some 0 ≤ k ≤ N
2 − 1, we have

z +
x1

2
= kt+

x1

2
∈
((

−k +
N

2
− 1

)
t,

(
−k +

N

2

)
t

)
.

Similarly, we have

h̃(z,x) >
1

2

((
z +

x1

2

)2
−
(
z − x1

2

)2)
+ δ

(x1

2
− z
)
= g̃(z,x).

Note that for every T ⊂ Ω with |T | ≤ t, there exists zl ∈ T , such that zl = x1

2 − kt and
thus h̃(zg,x) > g̃(zg,x). From the intermediate value theorem, there exists z∗ ∈ T , such
that h̃(z∗,x) = g̃(z∗,x). Thus it follows from Lemma 3 immediately that

|Ndeq(x)− g(x)| ≤ t.
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Additionally, when x1 = 1, by simple calculations, we have h̃
(
1
2 ,x
)
= g̃

(
1
2 ,x
)
= 1

2 , indicating that
Ndeq(x) = g(x) = 1

2 . Combining all the results above, we have

|Ndeq(x)− g(x)| ≤ |g(x)− z̄′| ≤ t, x ∈ [0, 1]d.

By choosing t = ε, we finish the proof.528

529

A.3 Proofs in Section 5530

We start with the proof of Theorem 3.531

Proof of Theorem 3. Denote {β(t)} the process that follows the gradient flow dynamics ẇ(t) =532

−∇wL̂(w(t)) initialized by β(0) > 0. Recall that the empirical loss is 1
2∥Xβ − y ∥22, then the533

dynamics of {β(t)} can be computed as follows:534

dβ(t)

dt
= ∇wβ(t) · dw(t)

dt

= ∇wβ(t) ·
(
−∇w

(
1

2
∥Xβ(t)− y ∥22

))
= ∇wβ(t)2 ·

(
−∇β

(
1

2
∥X β̃(t)− y ∥22

))
= −

(
XT r(t)

)
⊙ β̃(t)⊙4,

(31)

where r(t) = Xβ(t)− y denotes the residual. For any t > 0, it can be verified easily from Eq. (31)535

that536

−1

3
β(t)⊙−3 +

1

3
β(0)⊙−3 = −

T

X

∫ t

0

r(s)ds. (32)

For simplicity, we denote v(t) =
∫ t

0
r(s)ds. Then from Eq. (32), we have537

β(t) =
(
3XTv(t) + β(0)⊙−3

)⊙− 1
3 (33)

By assumption, β(t) converges to some β∞ ∈ Rd when t → ∞, thus v(t) converges to some538

v∞ :=
∫∞
0

r(s)ds. By letting t → ∞ in Eq. (33), we have539

β∞ =
(
3XTv∞ + β(0)⊙−3

)⊙− 1
3 . (34)

Next we want to show that β∞ satisfies the KKT condition of the optimization problem in Eq. (12).
Given access to the expression of Q(β), the KKT optimality conditions can be expressed as

Xβ∗ = y, ∇Q(β∗) = Xv,

for some v ∈ Rd. By the definition of Q(β), ∇Q(β∗) = XT v is equivalent to540 (
XT v

)
i
= (∇Q(β∗))i = q′(β∗

i ) = −(β∗
i )

−3 + βi(0)
−3, ∀i.

On the other hand, from Eq. (34), it can be verified that541

−(β∞
i )−3 + βi(0)

−3 = −3(XTv∞)i − βi(0)
−3 + βi(0)

−3 = −3(XTv∞)i, ∀i.

Thus it holds that ∇Q(β∞) = − 1
3 X(v∞). Combining this with the assumption that Xβ∞ = y, we542

derive that β∞ satisfies the KKT condition. Moreover, by simple calculation, Q(β) is convex, which543

make β∞ an optimum of the problem.544

545

Proof of Theorem 4. Gradient Flow. We first show that the distance between β(t) and β̂∗ is bounded.546

From the dynamic of β(t) shown in Eq. (31), we can derive the gradient flow of ∥β(t)− β̂∗∥22 as547

below:548

d

dt
∥β(t)− β̂∗∥22 =

(
dβ̃(t)

dt

)T

(β(t)− β̂∗) = −
∥∥∥X(β(t)− β̂∗)⊙ β(t)⊙2

∥∥∥2
2
≤ 0. (35)
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Therefore, ∥β(t)− β̂∗∥22 is monotonically non-increasing and upper bounded by ∥β(0)− β̂∗∥22 for549

all t. By Assumption 1, we then have ∥β(t)∥∞ ≥ c > 0 for all t. To prove the convergence, we550

denote r(t) = Xβ(t)− y. The gradient flow of ∥r(t)∥22 is551

d

dt
∥r(t)∥22 =

(
dβ̃(t)

dt

)T

X̃
T
r(t) = −(r(t)T X̃X̃

T
r(t))⊙ β̃(t)⊙4. (36)

Combining this with the fact that µmin > 0 and the lower boundedness of ∥β(t)∥∞, we then have

d

dt
∥r(t)∥22 ≤ c4µmin∥r(t)∥22,

which proves the convergence of gradient flow.552

Gradient Descent. The proof of gradient descent follows from a similar strategy. We first give an
explicit expression of the update on βk. In the following we denote rk = Xβk − y. Recall that the
gradient descent iterate on wi is

wk+1
i = wk

i − η
1

(1− wi)2
x̃ir

k,

where x̃i denotes the i-th column of X. Then by the definition of β, we have553

βk+1
i =

1

1− wk+1
i

=

(
1

1− wk
i

− 1

1− wk
i + ηβ2

i x
T
i r

k

)
1− wk

i

ηβ2
i x̃

T
i r

k

=
βk
i − βk+1

i

η(βk
i )

3xT
i r

k
,

Equivalently, the update of β can be expressed as554

βk+1 = βk − ηXT rk ⊙ uk, uk :=
(
βk
)⊙3 ⊙ βk+1. (37)

We now show that with an appropriate choice of η, the distance between βk and β̂∗ is bounded. By555

Eq. (37), we have556

∥βk+1 − β̂∗∥22 − ∥βk − β̂∗∥22 = ∥βk+1 − βk∥22 − 2(βk − β̂∗)T (βk+1 − βk)

= η2
∥∥XT rk ⊙ uk

∥∥2
2
− 2η∥rk ⊙ (uk)⊙

1
2 ∥22

≤ µmaxη
2

n∑
i=1

(rki u
k
i )

2 − 2η

n∑
i=1

(rki )
2uk

i .

(38)

Assume βk > 0 for all k so that uk
i > 0 for all i. Now we set η < 1

Cµmax
. With these conditions, it

holds for each i that
µmaxη

2(uk
i )

2 − 2ηuk
i ≤ 0.

Combining this with Eq. (38), we have ∥βk+1 − β̂∗∥22 ≤ ∥βk − β̂∗∥22. By Assumption 1, it can be557

shown that ∥βk∥∞ ≥ c > 0 for all k. Similar to the proof for gradient flow, we turn to the update of558

∥rk∥2. Note the the loss function is µmax-smooth w.r.t. β, thus we have559

∥rk+1∥22 ≤ ∥rk∥22 + 2(rk)TX(βk+1 − βk) + µmax∥βk+1 − βk∥22.

Substituting the update of βk in Eq. (37) into the above equation, we have560

∥rk+1∥22 ≤ ∥rk∥22 − 2η(rk)TX
(
XT rk ⊙ (βk+1)3 ⊙ βk

)
+ η2µmax

∥∥XT rk ⊙ (βk+1)3 ⊙ βk
∥∥2
2

= ∥rk∥22 − 2η

n∑
i=1

(lki )
2uk

i + η2µmax

n∑
i=1

(lki u
k
i )

2,

(39)
where we denote XT rk = lk for simplicity. For every fixed lki , the quadratic function f(uk

i ) =561

−2η(lki )
2uk

i +η2µmax(l
k
i u

k
i )

2 attains its minima at uk
i = 1

ηµmax
> C, from which we know that f(uk

i )562

is monotonically decreasing for uk
i < C. Hence, by the fact that uk

i > c, it holds that563

−2η(lki )
2uk

i + η2µmax(l
k
i u

k
i )

2 ≤ (−2ηc+ η2µmaxc
2)(lki )

2 ≤ 0, ∀1 ≤ i ≤ n, (40)
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Note that
∑n

i=1(l
k
i )

2 = ∥XT rk∥22 ≤ µmax∥rk∥22. Leveraging this and Eq. (39) and Eq. (40), we have

∥rk+1∥22 ≤ (1− (−2ηc+ η2µmaxc
2))∥rk∥22.

Moreover, to ensure β1
i =

β0
i

1+η(β0
i )

3xT
i r0

≥ 0 for all i, we choose

η ≤ 1

∥β0∥3∞x̃T
i r

0
≤ 1

C3∥X ∥2∥r0∥2
≤ 1

C4µmax∥r0∥2
.

With this choice of η, we can prove by induction that the assumption βk > 0 holds for all k. Indeed,
k = 0 follows immediately from assumption. If βt > 0 holds, then from update of βt+1, we have

βt+1
i =

βt
i

1 + η(βt
i)

3xT
i r

t
≥ βt

i

1 + η(βt
i)

3∥xT
i ∥2∥rt∥2

≥ βt
i

1 + ηC3∥X ∥2∥r0∥2
≥ 0.

Thus the induction holds. Finally, we set η = min
{

2
C4µmax

, 1
C4µmax∥r0∥2

}
, the theorem follows.564

Next, we move to prove Proposition 2. For completeness, we formally introduce the definition of565

GOTU in [34] as below.566

Definition 1 (Generalization on the Unseen, [34]). Let ℓ : R× R → R be a loss function and S be a
given sample space. During training, part of S is not sampled, which we call the unseen domain U ,
while in testing, we sample from the full set S. Let f be the target function and f̃S\U the function
learned by a learning algorithm on S\U . The generalization on the unseen for an algorithm f̃ and
target function f is defined as

GOTU(f, f̃ ,U) = EX∼UU [ℓ(f̃S\U (X), f(X))],

where ∼UU refers to uniform sampling from U .567

Proof of Proposition 2. We first give an explicit expression of the expected loss and gradient flow
dynamics. Denote

f̃β(x) =

d∑
i=1

βixi + b = f(w,x) =

d∑
i=1

1

1− wi
xi + b.

By definition, the half ℓ2 loss on any sample x is

ℓ(f̃β(x), f(x)) =
1

2
(f̃β(x)− f(x)) =

1

2

(
b− f̂(∅) +

d∑
i=1

(
βi − f̂({i})

)
xi

)2

Denote the distribution on the training set by Ud−1
−k . Note that {1, x1, · · · , xd} are orthogonal in the568

Hilbert space S = {±1}d equipped with the inner product ⟨g, h⟩ = Ex∼U{±1}d [g(x)h(x)]. Denote569

the distribution on the training samples by Ud−1
−k . By using Parseval’s Theorem, the expected loss on570

the training set can be expressed as:571

EUd−1
−k

[ℓ(f̃β(x), f(x))] =
1

2
EUd−1

−k

(b− f̂(∅) +
d∑

i=1

(
βi − f̂({i})

)
xi

)2


=
1

2

(
b− f̂(∅) + βk − f̂({k})

)2
+

1

2

d∑
i ̸=k

(βi − f̂({i}))2.

Then we can derive the gradient flow for βi and b as below572

db(t)

dt
= −(b(t)− f̂(∅) + βk(t)− f̂({k})),

dβk(t)

dt
= −(b(t)− f̂(∅) + βk(t)− f̂({k}))βk(t)

4,

dβi(t)

dt
= −(βi(t)− f̂({i}))βi(t)

4, ∀i ̸= k.
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For simplicity, denote B = f̂(∅) + f̂({k}). Using the above, we have573

d

dt
(b(t) + βk(t)−B)2 = −2(b(t) + βk(t)−B)2(1 + βk(t)

4),

d

dt
(βi(t)− f̂({i}))2 = −2(βi(t)− f̂({i}))2βi(t)

4,

(41)

which shows that |b(t) + βk(t)−B|2 and |βi(t)− f̂({i})|2 is monotonically nonincreasing. Since574

βi(0) and f̂({i}) are greater than 0, from the monotonicity we know that βi(t) > 0 for all t.575

Therefore, the convergence of gradient flow follows from Eq. (41) that both |b(t) + βk(t)−B|2 and576

|βi(t)− f̂({i})|2 decrease linearly.577

Denote the limit of βi(t) and b(t) by β∞
i and b∞, respectively. We now turn to estimate the GOTU578

error.579

1. When B > 1, it holds that b(0) + βk(0) − B < 0, thus b(t) and βk(t) is monotonically580

increasing. Using the fact that βk(t) > βk(0) = 1, we know that581

d

dt
(βk(t)− b(t)) = −2(b(t) + βk(t)−B)2(βk(t)

4 − 1) < 0.

Combing this with β∞
k + b∞ = B, it can be verified that β∞

k ≥ B+1
2 . Then by definition582

and Parseval’s theorem, the GOTU loss is583

GOTU(f, f̃β , {xk = −1}) =
(
b∞ − f̂(∅)− β∞

k + f̂({k})
)2

+

d∑
i ̸=k

(β∞
i − f̂({i}))2

= 4(f̂({k})− β∞
k )2,

where we use the convergence of the flow in the second line. Leveraging the bound of β∞
k ,584

we derive that585

4(f̂({k})− β∞
k )2 ≤ 4

(
f̂({k})− B + 1

2

)2

. (42)

By the assumption that f̂(∅) < 2f̂({k}), we have B+1
2 < 3f̂({k})+1

2 < 2f̂({k}). Leverag-586

ing this in Eq. (42), we know that587

GOTU(f, f̃β , {xk = −1}) ≤ (f̂({k}) + 1)2. (43)

2. When B < 1, similar to the proof of Theorem 3, we have from the dynamic of βk(t) that

βk(t)
−3 − 1 = 3

∫ t

0

(b(s) + βk(t)−B)ds ≤ 3(1−B),

where we use the monotonicity of b(s) + βk(t) − B and the convergence of the flow.588

Therefore, it holds that β∞
k ≥ (3(1−B) + 1)−

1
3 . We can bound the GOTU error as589

4(f̂({k})− β∞
k )2 ≤ 4(f̂({k})− (3(1−B) + 1)−

1
3 )2. (44)

By using the assumption that f̂(∅) > −2f̂({k}), Eq. (44) gives590

GOTU(f, f̃β , {xk = −1}) ≤ 4

(
f̂({k})−

(
4 + 3f̂({k})

)− 1
3

)2

. (45)

Then the proposition follows from Eq. (43) and (45).591
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Figure 2: Test loss of FNN and DEQ trained on sawtooth functions with 21, 23, 215 linear regions.
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(a) OOD function f1.
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(b) OOD function f2.

Figure 3: Train and test loss of DEQ and FNN trained on OOD tasks f1 and f2.

B Experiment Details593

B.1 Supplementary Experiments in Section 6594

In this subsection, We first show how DEQ and FNN perform on various linear regions of sawtooth595

function. We report results of other sawtooth functions with less or more linear regions. Figure 2596

present the test loss for sawtooth functions with 21, 23 and 215 linear regions. For all experiments,597

we execute our program on Nvidia GTX 1660 and all the program occupies less than 10M memory598

and runs for less than 2 minutes. In consistency with our results in Section 6, we can see that DEQ599

outperforms FNN with similar size of network on every sawtooth function in our experiment and the600

test loss of DEQ converges closer to zero loss.601

We next conduct OOD experiments on the following 2 functions and unseen domains. The first602

function is a higher-dimensional form of Eq. (14) which is a form of mean function. The second603

function is the majority function on 3 bits with the maximum degree 3. The expressions of these604

functions are presented below.605

f1(x) = 1.25 ∗ x0 + 1.25 ∗ x1 + · · ·+ 1.25 ∗ x20, U = {x ∈ {±1}10 : x1 = −1},

f2(x) =
1

2
(x0 + x1 + x2 − x1x2x3), U = {x ∈ {±1}10 : x0x1 = −1}.

For all experiments, we generate all binary sequences in Uc = {±1}d\U for training. Figure 3(a)606

shows that the GOTU error does not increase significantly compared to Figure 1 where the ambient607

dimension is 10. In consistency with our results in Section 6, we can learn from Figure 3(a) that when608

learning a linear boolean function on population loss on DEQ, the training loss converges to zero609

and the generalization error on the unseen is bounded. As is shown in Figure 3(b), when learning610

the unlinear boolean function, DEQ can also achieve nearly zero train loss with smaller GOTU error611

compared with FNN.612
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(a) Audio reconstruction using DEQ.
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(b) Audio reconstruction using FNN.

Figure 4: The reconstruction results with DEQ and FNN and the error computed by subtracting the
original signal.

B.2 Experiment on Audio Representation613

Inspired by the overall studies, we conduct experiments on a real tasks of audio representation614

to verify the potential advantage of DEQ in learning functions with high-frequency component.615

We utilize the setting of experiments in [43], where the very-high-frequency audio signals were616

represented using a conventional explicit network and an(implicit)2 network, which is variant of DEQ617

employing a neural block with three layers and specific activation functions such as sin(x) Although618

Huang et al. [43] shows that (implicit)2 network outperforms conventional explicit networks in audio619

representation [43], revealing the advantage of DEQ to an extend, it is unclear whether the superiority620

of the (implicit)2 network is attributed solely to the carefully-designed block. In contrast, we apply621

DEQ and FNN in their basic forms to represent the audio signal in our experiment to further explore622

the potential advantages of DEQ in real scenarios.623

Following the setting in [43], we train the models to fit a 7-second music piece. We set the width of624

DEQ to 20, the layer of FNN to 3 and the hidden dimension of FNN to 20. This setting enables the625

model to exactly fit the audio signal based on our experiments.626

In Figure 4, we show the reconstruction results with DEQ and FNN and the error computed by627

subtracting the original signal. We observe that DEQ outperforms FNN with a noticeable error,628

verifying the advantages of DEQ in representing high-frequency components.629
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models that generate Deepfakes faster.841

• The authors should consider possible harms that could arise when the technology is842

being used as intended and functioning correctly, harms that could arise when the843

technology is being used as intended but gives incorrect results, and harms following844

from (intentional or unintentional) misuse of the technology.845

• If there are negative societal impacts, the authors could also discuss possible mitigation846

strategies (e.g., gated release of models, providing defenses in addition to attacks,847

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from848

feedback over time, improving the efficiency and accessibility of ML).849

11. Safeguards850

Question: Does the paper describe safeguards that have been put in place for responsible851

release of data or models that have a high risk for misuse (e.g., pretrained language models,852

image generators, or scraped datasets)?853

Answer: [NA]854

Justification: This paper focuses on theory.855

Guidelines:856

• The answer NA means that the paper poses no such risks.857

• Released models that have a high risk for misuse or dual-use should be released with858

necessary safeguards to allow for controlled use of the model, for example by requiring859

that users adhere to usage guidelines or restrictions to access the model or implementing860

safety filters.861

• Datasets that have been scraped from the Internet could pose safety risks. The authors862

should describe how they avoided releasing unsafe images.863

• We recognize that providing effective safeguards is challenging, and many papers do864

not require this, but we encourage authors to take this into account and make a best865

faith effort.866

12. Licenses for existing assets867

Question: Are the creators or original owners of assets (e.g., code, data, models), used in868

the paper, properly credited and are the license and terms of use explicitly mentioned and869

properly respected?870

Answer: [NA]871

Justification: See Section 6 and Appendix B. Although experiments in Appendix B.2 utilize872

another experiment, the code, data and models are created by ourselves.873

Guidelines:874

• The answer NA means that the paper does not use existing assets.875

• The authors should cite the original paper that produced the code package or dataset.876

• The authors should state which version of the asset is used and, if possible, include a877

URL.878

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.879

• For scraped data from a particular source (e.g., website), the copyright and terms of880

service of that source should be provided.881

• If assets are released, the license, copyright information, and terms of use in the882

package should be provided. For popular datasets, paperswithcode.com/datasets883

has curated licenses for some datasets. Their licensing guide can help determine the884

license of a dataset.885

• For existing datasets that are re-packaged, both the original license and the license of886

the derived asset (if it has changed) should be provided.887

• If this information is not available online, the authors are encouraged to reach out to888

the asset’s creators.889

13. New Assets890

31

paperswithcode.com/datasets


Question: Are new assets introduced in the paper well documented and is the documentation891

provided alongside the assets?892

Answer: [NA]893

Justification:894

Guidelines:895

• The answer NA means that the paper does not release new assets.896

• Researchers should communicate the details of the dataset/code/model as part of their897

submissions via structured templates. This includes details about training, license,898

limitations, etc.899

• The paper should discuss whether and how consent was obtained from people whose900

asset is used.901

• At submission time, remember to anonymize your assets (if applicable). You can either902

create an anonymized URL or include an anonymized zip file.903

14. Crowdsourcing and Research with Human Subjects904

Question: For crowdsourcing experiments and research with human subjects, does the paper905

include the full text of instructions given to participants and screenshots, if applicable, as906

well as details about compensation (if any)?907

Answer: [NA]908

Justification:909

Guidelines:910

• The answer NA means that the paper does not involve crowdsourcing nor research with911

human subjects.912

• Including this information in the supplemental material is fine, but if the main contribu-913

tion of the paper involves human subjects, then as much detail as possible should be914

included in the main paper.915

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,916

or other labor should be paid at least the minimum wage in the country of the data917

collector.918

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human919

Subjects920

Question: Does the paper describe potential risks incurred by study participants, whether921

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)922

approvals (or an equivalent approval/review based on the requirements of your country or923

institution) were obtained?924

Answer: [NA]925

Justification:926

Guidelines:927

• The answer NA means that the paper does not involve crowdsourcing nor research with928

human subjects.929

• Depending on the country in which research is conducted, IRB approval (or equivalent)930

may be required for any human subjects research. If you obtained IRB approval, you931

should clearly state this in the paper.932

• We recognize that the procedures for this may vary significantly between institutions933

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the934

guidelines for their institution.935

• For initial submissions, do not include any information that would break anonymity (if936

applicable), such as the institution conducting the review.937
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