
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 1

Adan: Adaptive Nesterov Momentum Algorithm
for Faster Optimizing Deep Models

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, Fellow, IEEE and Shuicheng Yan, Fellow, IEEE

Abstract—In deep learning, different kinds of deep networks typically need different optimizers, which have to be chosen after multiple
trials, making the training process inefficient. To relieve this issue and consistently improve the model training speed across deep networks,
we propose the ADAptive Nesterov momentum algorithm, Adan for short. Adan first reformulates the vanilla Nesterov acceleration to
develop a new Nesterov momentum estimation (NME) method, which avoids the extra overhead of computing gradient at the extrapolation
point. Then Adan adopts NME to estimate the gradient’s first- and second-order moments in adaptive gradient algorithms for convergence
acceleration. Besides, we prove that Adan finds an ϵ-approximate first-order stationary point within O

(
ϵ−3.5

)
stochastic gradient

complexity on the non-convex stochastic problems (e.g. deep learning problems), matching the best-known lower bound. Extensive
experimental results show that Adan consistently surpasses the corresponding SoTA optimizers on vision, language, and RL tasks and
sets new SoTAs for many popular networks and frameworks, e.g. ResNet, ConvNext, ViT, Swin, MAE, DETR, GPT-2, Transformer-XL, and
BERT. More surprisingly, Adan can use half of the training cost (epochs) of SoTA optimizers to achieve higher or comparable performance
on ViT, GPT-2, MAE, etc, and also shows great tolerance to a large range of minibatch size, e.g. from 1k to 32k. Code is released at
https://github.com/sail-sg/Adan, and has been used in multiple popular deep learning frameworks or projects.

Index Terms—Adaptive optimizer, Fast DNN training, DNN optimizer.

✦

1 INTRODUCTION

D EEP neural networks (DNNs) have made remarkable
success in many fields, e.g. computer vision [1], [2], [3],

[4] and natural language processing [5], [6]. A noticeable
part of such success is contributed by the stochastic gradient-
based optimizers, which find satisfactory solutions with high
efficiency. Among current deep optimizers, SGD [7], [8] is the
earliest and also the most representative stochastic optimizer,
with dominant popularity for its simplicity and effectiveness.
It adopts a single common learning rate for all gradient
coordinates but often suffers unsatisfactory convergence
speed on sparse data or ill-conditioned problems. In recent
years, adaptive gradient algorithms [9], [10], [11], [12], [13],
[14], [15], [16] have been proposed, which adjusts the learning
rate for each gradient coordinate according to the current
geometry curvature of the loss objective. These adaptive
algorithms often offer a faster convergence speed than SGD
in practice across many DNN frameworks.

However, none of the above optimizers can always
stay undefeated among all its competitors across different
DNN architectures and applications. For instance, for vanilla
ResNets [2], SGD often achieves better generalization perfor-
mance than adaptive gradient algorithms such as Adam [17],

• X. Xie and Z. Lin are with State Key Lab of General AI, School of
Intelligence Science and Technology, Peking University, China. Z. LIN is
also with Institute for Artificial Intelligence, Peking University, Pazhou
Laboratory (Huangpu), Guangzhou, China. E-mail: zlin@pku.edu.cn.

• P. Zhou is with the School of Computing and Information Systems at
Singapore Management University.

• S. Yan was with Sea AI Lab, and is now with Skywork AI, Singapore.
• H. Li is with the Institute of Robotics and Automatic Information Systems,

College of Artificial Intelligence, Nankai University, China.
• X. Xie and P. Zhou share equal contribution.
• Co-corresponding Author: Zhouchen Lin and Shuicheng Yan.

whereas on vision transformers (ViTs) [18], [19], [20], SGD
often fails, and AdamW [21] is the dominant optimizer with
higher and more stable performance. Moreover, these com-
monly used optimizers usually fail for large-batch training,
which is a default setting of the prevalent distributed training.
Although there is some performance degradation, we still
tend to choose the large-batch setting for large-scale deep
learning training tasks due to the unaffordable training time.
For example, training the ViT-B with the batch size of 512
usually takes several days, but when the batch size comes
to 32K, we may finish the training within three hours [22].
Although some methods, e.g. LARS [23] and LAMB [24], have
been proposed to handle large batch sizes, their performance
may varies significantly across DNN architectures. This
performance inconsistency increases the training cost and
engineering burden since one has to try various optimizers
for different architectures or training settings. This paper
aims at relieving this issue.

When we rethink the current adaptive gradient algo-
rithms, we find that they mainly combine the moving average
idea with the heavy ball acceleration technique to estimate
the first- and second-order moments of the gradient [17], [15],
[21], [24], [25]. However, previous studies [26], [27], [28] have
revealed that Nesterov acceleration can theoretically achieve
a faster convergence speed than heavy ball acceleration, as it
uses gradient at an extrapolation point of the current solution
and sees a slight “future". The ability to see the “future"
may help optimizers better utilize the curve information of
the dynamic training trajectory and show better robustness
to DNN architectures. Moreover, recent works [29], [30]
have shown the potential of Nesterov acceleration for large-
batch training. Thus we are inspired to consider efficiently
integrating Nesterov acceleration with adaptive algorithms.

The contributions of our work include: 1) We propose

https://github.com/sail-sg/Adan

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 2

TABLE 1: Comparison of different adaptive gradient algorithms on nonconvex stochastic problems. “Separated Reg.” refers
to whether the ℓ2 regularizer (weight decay) can be separated from the loss objective like AdamW. “Complexity" denotes
stochastic gradient complexity to find an ϵ-approximate first-order stationary point. Adam-type methods [31] includes Adam,
AdaMomentum [32], and AdaGrad [9], AdaBound [13] and AMSGrad [11], etc. AdamW has no available convergence result.
For SAM [33], A-NIGT [34] and Adam+ [35], we compare their adaptive versions. d is the variable dimension. The lower
bound is proven in [36] and please see Sec. A in the supplementary for the discussion on why the lower bound is Ω

(
ϵ−3.5

)
.

Smoothness
Condition Optimizer Separated

Reg.
Batch Size
Condition. Grad. Bound Complexity Lower Bound

Adam-type [31] % % ℓ∞ ≤ c∞ O
(
c2∞dϵ−4

)
Ω
(
ϵ−4

)
RMSProp [10], [37] % % ℓ∞ ≤ c∞ O

(√
c∞dϵ−4

)
Ω
(
ϵ−4

)
Lipschitz AdamW [21] " — — — —

Adabelief [15] % % ℓ2 ≤ c2 O
(
c62ϵ

−4
)

Ω
(
ϵ−4

)
Gradient Padam [38] % % ℓ∞ ≤ c∞ O

(√
c∞dϵ−4

)
Ω
(
ϵ−4

)
LAMB [24] % O

(
ϵ−4

)
ℓ2 ≤ c2 O

(
c22dϵ

−4
)

Ω
(
ϵ−4

)
Adan (ours) " % ℓ∞ ≤ c∞ O

(
c2.5∞ ϵ−4

)
Ω
(
ϵ−4

)
Lipschitz

Hessian

A-NIGT [34] % % ℓ2 ≤ c2 O
(
ϵ−3.5 log c2

ϵ

)
Ω
(
ϵ−3.5

)
Adam+ [35] % O

(
ϵ−1.625

)
ℓ2 ≤ c2 O

(
ϵ−3.625

)
Ω
(
ϵ−3.5

)
Adan (ours) " % ℓ∞ ≤ c∞ O

(
c1.25∞ ϵ−3.5

)
Ω
(
ϵ−3.5

)
an efficient DNN optimizer, named Adan. Adan develops
a Nesterov momentum estimation method to estimate sta-
ble and accurate first- and second-order moments of the
gradient in adaptive gradient algorithms for acceleration.
2) Moreover, Adan enjoys a provably faster convergence
speed than previous adaptive gradient algorithms such as
Adam. 3) Empirically, Adan shows superior performance
over the SoTA deep optimizers across vision, language,
and reinforcement learning (RL) tasks. So it is possible that
the effort on trying different optimizers for different deep
network architectures can be greatly reduced. Our detailed
contributions are highlighted below.

Firstly, we propose an efficient Nesterov-acceleration-
induced deep learning optimizer termed Adan. Given a func-
tion f and the current solution θk, Nesterov acceleration [26],
[27], [28] estimates the gradient gk = ∇f(θ′

k) at the extrapo-
lation point θ′

k = θk − η(1− β1)mk−1 with the learning rate
η and momentum coefficient β1 ∈ (0, 1), and updates the
moving gradient average as mk = (1− β1)mk−1+gk. Then
it runs a step by θk+1 = θk − ηmk. Despite its theoretical
advantages, the implementation of Nesterov acceleration in
practice reveals several significant challenges: 1) The process
requires estimating the gradient at a point, θ′

k, which is not
the current parameter set but an extrapolation. This two-
step operation involves storing the original parameters θk
and updating them to θ′

k solely for the purpose of gradient
computation. Such a mechanism increases complexity in
implementation, adds computational overhead, and escalates
memory demands within deep learning frameworks. This ad-
ditional step interrupts the workflow, as the optimizer cannot
proceed directly to forward propagation without first com-
pleting this parameter extrapolation, thereby complicating
the training process; 2) Distributed training, essential for han-
dling large models, splits optimizer states and model weights
across multiple GPUs. The requirement to manually update
model weights to reflect the extrapolated position introduces
significant communication burdens. Effective synchroniza-
tion of these updates and their corresponding gradients
across various nodes is crucial but challenging, often leading
to inefficiencies and potential delays. To resolve the above

incompatibility issues, we propose an alternative Nesterov
momentum estimation (NME). We compute the gradient
gk = ∇f(θk) at the current solution θk, and estimate the
moving gradient average as mk = (1− β1)mk−1+g′

k, where
g′
k = gk+(1− β1)(gk − gk−1). Our NME is provably equiv-

alent to the vanilla one yet can avoid the extra cost. Then by
regarding g′

k as the current stochastic gradient in adaptive
gradient algorithms, e.g. Adam, we accordingly estimate the
first- and second-moments as mk = (1− β1)mk−1 + β1g

′
k

and nk = (1− β2)nk−1 + β2(g
′
k)

2, respectively. Finally, we
update θk+1 = θk−ηmk/(

√
nk+ε). In this way, Adan enjoys

the merit of Nesterov acceleration, namely faster convergence
speed and tolerance to large mini-batch size [39], which is
verified in our experiments in Sec. 5.

Secondly, as shown in Table 1, we theoretically justify the
advantages of Adan over previous SoTA adaptive gradient
algorithms on nonconvex stochastic problems.

• Given the Lipschitz gradient condition, to find an ϵ-
approximate first-order stationary point, Adan has the
stochastic gradient complexity O

(
c2.5∞ ϵ−4

)
which ac-

cords with the lower bound Ω(ϵ−4) (up to a constant
factor) [40]. This complexity is lower than O

(
c62ϵ

−4
)

of Adabelief [15] and O
(
c22dϵ

−4
)

of LAMB, especially
on over-parameterized networks. Specifically, for the
d-dimensional gradient, compared with its ℓ2 norm
c2, its ℓ∞ norm c∞ is usually much smaller, and can
be

√
d× smaller for the best case. Moreover, Adan’s

results still hold when the loss and the ℓ2 regularizer
are separated, which could significantly benefit the
generalization [18] but the convergence analysis for
Adam-type optimizers remains open.

• Given the Lipschitz Hessian condition, Adan has
a complexity O

(
c1.25∞ ϵ−3.5

)
which also matches the

lower bound Ω(ϵ−3.5) in [36]. This complexity is
superior to O

(
ϵ−3.5 log c2

ϵ

)
of A-NIGT [34] and also

O
(
ϵ−3.625

)
of Adam+ [35]. Indeed, Adam+ needs

the minibatch size of order O
(
ϵ−1.625

)
which is pro-

hibitive in practice. For other optimizers, e.g. Adam,
their convergence has not been provided yet under
the Lipschitz Hessian condition.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 3

Finally, Adan simultaneously surpasses the correspond-
ing SoTA optimizers across vision, language, and RL tasks,
and establishes new SoTAs for many networks and settings,
e.g. ResNet, ConvNext [4], ViT [18], Swin [19], MAE [41],
LSTM [42], Transformer-XL [43] and BERT [44]. More impor-
tantly, with half of the training cost (epochs) of SoTA optimiz-
ers, Adan can achieve higher or comparable performance on
ViT, Swin, ResNet, etc. Besides, Adan works well in a large
range of minibatch sizes, e.g. from 1k to 32k on ViTs. Due
to the consistent improvement for various architectures and
settings, Adan is supported in several popular deep learning
frameworks or projects including Timm [45] (a library
containing SoTA CV models), Optax from DeepMind [46] and
MMClassification [47] from OpenMMLab, see our Github
repo for more projects.

2 RELATED WORK

Current DNN optimizers can be grouped into two families:
SGD and its accelerated variants, and adaptive gradient
algorithms. SGD computes stochastic gradient and updates
the variable along the gradient direction. Later, heavy-
ball acceleration [48] movingly averages stochastic gradient
in SGD for faster convergence. Nesterov acceleration [28]
runs a step along the moving gradient average and then
computes the gradient at the new point to look ahead
for correction. Typically, Nesterov acceleration converges
faster both empirically and theoretically at least on convex
problems, and also has superior generalization results on
DNNs [33], [49].

Unlike SGD, adaptive gradient algorithms, e.g. Ada-
Grad [9], RMSProp [10] and Adam, view the second mo-
mentum of gradient as a precontioner and also use moving
gradient average to update the variable. Later, many variants
have been proposed to estimate more accurate and stable first
momentum of gradient or its second momentum, e.g. AMS-
Grad [11], Adabound [13], and Adabelief [15]. To avoid
gradient collapse, AdamP [16] proposes to clip gradient
adaptively. Radam [14] reduces gradient variance to stabilize
training. To improve generalization, AdamW [21] splits the
objective and trivial regularization, and its effectiveness is
validated across many applications; SAM [33] and its vari-
ants [49], [50], [22] aim to find flat minima but need forward
and backward twice per iteration. LARS [23] and LAMB [24]
train DNNs with a large batch but suffer unsatisfactory
performance on small batch. [51] reveal the generalization
and convergence gap between Adam and SGD from the
perspective of diffusion theory and propose the optimizers,
Adai, which accelerates the training and provably favors
flat minima. Padam [38] provides a simple but effective
way to improve the generalization performance of Adam
by adjusting the second-order moment in Adam. The most
related work to ours is NAdam [52]. It simplifies Nesterov
acceleration to estimate the first moment of the gradient in
Adam. But its acceleration does not use any gradient from
the extrapolation points and thus does not look ahead for
correction. Moreover, there is no theoretical result to ensure
its convergence. See more difference discussion in Sec. 3.2,
especially for Eqn. (3).

In addition to the optimization techniques that form the
core focus of our work, it is pertinent to acknowledge the

breadth of research dedicated to enhancing training efficiency
across various domains. Notable among these is the domain
of data augmentation, where techniques such as mixup have
been proposed, which performs the training on convex com-
binations of pairs of examples and their labels [53], [54]. This
approach significantly enriches the training data without the
need for additional data collection. Furthermore, innovative
training strategies play a crucial role in the efficient training
of compact deep neural networks. For instance, the concept
of multi-way BP offers a more efficient gradient calculation
mechanism [55]. Additionally, the design of loss functions,
as explored in works like Sphere Loss [56], introduces novel
approaches to learning discriminative features. Each of these
areas contributes to the overarching goal of training efficiency,
offering complementary avenues to optimization techniques.

3 METHODOLOGY

In this work, we study the following regularized nonconvex
optimization problem:

minθ F (θ) := Eζ∼D [f(θ, ζ)] +
λ

2
∥θ∥22, (1)

where loss f(·, ·) is differentiable and possibly nonconvex,
data ζ is drawn from an unknown distribution D, θ is
learnable parameters, and ∥·∥ is the classical ℓ2 norm. Here
we consider the ℓ2 regularizer as it can improve general-
ization performance and is widely used in practice [21].
The formulation (1) encapsulates a large body of machine
learning problems, e.g. network training problems, and
least square regression. Below, we first introduce the key
motivation of Adan in Sec. 3.1, and then give detailed
algorithmic steps in Sec. 3.2.

3.1 Preliminaries

Adaptive gradient algorithms, Adam [17] and AdamW [21],
have become the default choice to train CNNs and ViTs.
Unlike SGD which uses one learning rate for all gradient
coordinates, adaptive algorithms adjust the learning rate for
each gradient coordinate according to the current geometry
curvature of the objective function, and thus converge faster.
Take RMSProp [10] and Adam [17] as examples. Given
stochastic gradient estimator gk := Eζ∼D[∇f(θk, ζ)] + ξk,
e.g. minibatch gradient, where ξk is the gradient noise,
RMSProp updates the variable θ as follows:

RMSProp:
{
nk = (1− β)nk−1 + βg2

k

θk+1 = θk − ηk ◦ gk,

where ηk := η/
(√

nk + ε
)
,m0 = g0, n0 = g2

0, the scalar η is
the base learning rate, ◦ denotes the element-wise product,
and the vector square and the vector-to-vector or scalar-to-
vector root in this paper are both element-wise.

Based on RMSProp, Adam (for presentation convenience,
we omit the de-bias term in adaptive gradient methods), as
follows, replaces the estimated gradient gk with a moving
average mk of all previous gradient gk.

Adam:


mk = (1− β1)mk−1 + β1gk

nk = (1− β2)nk−1 + β2g
2
k

θk+1 = θk − ηk ◦mk,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 4

By inspection, one can easily observe that the moving average
idea in Adam is similar to the classical (stochastic) heavy-ball
acceleration (HBA) technique [48]:

HBA:


gk = ∇f(θk) + ξk

mk = (1− β1)mk−1 + gk

θk+1 = θk − ηmk,

Both Adam and HBA share the spirit of moving gradient
average, though HBA does not have the factor β1 on the
gradient gk. That is, given one gradient coordinate, if its gra-
dient directions are more consistent along the optimization
trajectory, Adam/HBA accumulates a larger gradient value
in this direction and thus goes ahead for a bigger gradient
step, which accelerates convergence.

In addition to HBA, Nesterov’s accelerated (stochastic)
gradient descent (AGD) [26], [27], [28] is another popular
acceleration technique in the optimization community:

AGD:


gk = ∇f(θk − η(1− β1)mk−1) + ξk

mk = (1− β1)mk−1 + gk

θk+1 = θk − ηmk

(2)

Unlike HBA, AGD uses the gradient at the extrapolation
point θ′

k = θk − η(1− β1)mk−1. Hence when the adjacent
iterates share consistent gradient directions, AGD sees a
slight future to converge faster. Indeed, AGD theoretically
converges faster than HBA and achieves optimal conver-
gence rate among first-order optimization methods on the
general smooth convex problems [28]. It also relaxes the
convergence conditions of HBA on the strongly convex
problems [27]. Meanwhile, since the over-parameterized
DNNs have been observed/proved to have many convex-
alike local basins [57], [58], [59], [60], [61], [62], [63], [64], [65],
AGD seems to be more suitable than HBA for DNNs. For
large-batch training, [29] showed that AGD has the potential
to achieve comparable performance to some specifically de-
signed optimizers, e.g. LARS and LAMB. With its advantage
and potential in convergence and large-batch training, we
consider applying AGD to improve adaptive algorithms.

3.2 Adaptive Nesterov Momentum Algorithm
Main Iteration. We temporarily set λ = 0 in Eqn. (1). As
aforementioned, AGD computes gradient at an extrapolation
point θ′

k instead of the current iterate θk, which however
brings extra computation and memory overhead for comput-
ing θ′

k and preserving both θk and θ′
k. To solve the issue,

Lemma 1 with proof in supplementary Sec. C.1 reformulates
AGD (2) into its equivalent but more DNN-efficient version.

Lemma 1. Assume E(ξk) = 0, Cov(ξi, ξj) = 0 for any
k, i, j > 0, θ̄k and m̄k be the iterate and momentum of the vanilla
AGD in Eqn. (2), respectively. Let θk+1 := θ̄k+1−η(1− β1)m̄k

and mk := (1− β1)
2
m̄k−1 + (2− β1)(∇f(θk) + ξk). The

vanilla AGD in Eqn. (2) becomes AGD-II:

AGD II:


gk = Eζ∼D[∇f(θk, ζ)] + ξk

mk = (1− β1)mk−1 + g′
k

θk+1 = θk − ηmk

,

where g′
k := gk + (1− β1)(gk − gk−1). Moreover, if vanilla

AGD in Eqn. (2) converges, so does AGD-II: E(θ∞) = E(θ̄∞).

The main idea in Lemma 1 is that we maintain
(θk − η(1− β1)mk−1) rather than θk in vanilla AGD at each
iteration since there is no difference between them when
the algorithm converges. Like other adaptive optimizers, by
regarding g′

k as the current stochastic gradient and movingly
averaging g′

k to estimate the first- and second-moments of
gradient, we obtain:

Vanilla Adan:


mk = (1− β1)mk−1 + β1g

′
k

nk = (1− β3)nk−1 + β3(g
′
k)

2

θk+1 = θk − ηk ◦mk

,

where g′
k := gk+(1− β1)(gk − gk−1) and the vector square

in the second line is element-wisely. The main difference of
Adan with Adam-type methods and Nadam [52] is that, as
compared in Eqn. (3), the first-order moment mk of Adan
is the average of {gt + (1− β1)(gt − gt−1)}kt=1 while those
of Adam-type and Nadam are the average of {gt}kt=1. So is
their second-order term nk,

mk=


∑k

t=0 ck,t[gt + (1− β1)(gt − gt−1)], Adan,∑k
t=0 ck,tgt, Adam,

µk+1

µ′
k+1

(∑k
t=0 ck,tgt

)
+ 1−µk

µ′
k

gk, Nadam,

(3)

where ck,t = β1(1− β1)
k−t for t > 0 and ck,t = (1− β1)

k

for t = 0. {µt}∞t=1 is a predefined exponentially decaying
sequence, µ′

k = 1−
∏k

t=1 µt. Nadam is more like Adam than
Adan, as their mk averages the historical gradients instead
of gradient differences in Adan. For the large k (i.e. small
µk), mk in Nadam and Adam are almost the same.

As shown in Eqn. (3), the moment mk in Adan consists of
two terms, i.e. gradient term gt and gradient difference term
(gt − gt−1), which actually have different physic meanings.
So here we decouple them for greater flexibility and also
better trade-off between them. Specifically, we estimate:

(θk+1−θk)/ηk =

k∑
t=0

[
ck,tgt+(1−β2)c

′
k,t(gt−gt−1)

]
= mk + (1− β2)vk,

(4)

where c′k,t = β2(1− β2)
k−t for t > 0, c′k,t = (1− β2)

k for
t = 0, and, with a little abuse of notation on mk, we let mk

and vk be:{
mk = (1− β1)mk−1 + β1gk

vk = (1− β2)vk−1 + β2(gk − gk−1)
.

This change for a flexible estimation does not impair conver-
gence speed. As shown in Theorem 1, Adan’s convergence
complexity still matches the best-known lower bound. We do
not separate the gradients and their difference in the second-
order moment nk, since E(nk) contains the correlation term
Cov(gk,gk−1) ̸= 0 which may have statistical significance.

Decay Weight by Proximation. As observed in AdamW,
decoupling the optimization objective and simple-type reg-
ularization (e.g. ℓ2 regularizer) can largely improve the
generalization performance. Here we follow this idea but
from a rigorous optimization perspective. Intuitively, at each
iteration θk+1 = θk − ηk ◦ m̄k, we minimize the first-order

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 5

Algorithm 1: Adan (Adaptive Nesterov Momentum
Algorithm)

Input: initialization θ0, step size η, momentum
(β1, β2, β3) ∈ [0, 1]3, stable parameter ε > 0,
weight decay λk > 0, restart condition.

Output: some average of {θk}Kk=1.
1 while k < K do
2 estimate the stochastic gradient gk at θk;
3 mk = (1− β1)mk−1 + β1gk;
4 vk = (1− β2)vk−1 + β2(gk − gk−1);
5 nk = (1−β3)nk−1+β3[gk+(1−β2)(gk−gk−1)]

2;
6 ηk = η/

(√
nk + ε

)
;

7 θk+1=(1+λkη)
−1

[θk−ηk ◦ (mk + (1− β2)vk)];
8 if restart condition holds then
9 estimate stochastic gradient g0 at θk+1;

10 set k = 1 and update θ1 by Line 7;
11 end if
12 end while

we set m0 = g0 , v0 = 0, v1 = g1 − g0, and n0 = g2
0 .

approximation of F (·) at the point θk:

θk+1=argmin
θ

(
F (θk)+⟨m̄k,θ − θk⟩+

1

2η
∥θ − θk∥2√nk

)
,

where ∥x∥2√nk
:=

〈
x,
(√

nk + ε
)
◦ x
〉

and m̄k := mk +

(1− β2)vk is the first-order derivative of F (·) in some sense.
Follow the idea of proximal gradient descent [66], [67], we
decouple the ℓ2 regularizer from F (·) and only linearize the
loss function f(·):

θk+1=argmin
θ

(
F ′
k(θ)+⟨m̄k,θ−θk⟩+

1

2η
∥θ−θk∥2√nk

)
=

θk − ηk ◦ m̄k

1 + λkη
,

(5)

where F ′
k(θ) := Eζ∼D [f(θk, ζ)] +

λk

2 ∥θ∥2√nk
, and λk > 0 is

the weight decay at the k-th iteration. Interestingly, we can
easily reveal the updating rule θk+1 = (1−λη)θk −ηk ◦ m̄k

of AdamW by using the first-order approximation of Eqn. (5)
around η = 0: 1) (1 + λη)−1 = (1− λη) +O

(
η2
)
; 2) ληηk =

O
(
η2
)
/
(√

nk + ε
)
.

One can find that the optimization objective of Separated
Regularization at the k-th iteration is changed from the
vanilla “static" function F (·) in Eqn. (1) to a “dynamic"
function Fk(·) in Eqn. (6), which adaptively regularizes the
coordinates with larger gradient more:

Fk(θ) := Eζ∼D [f(θ, ζ)] +
λk

2
∥θ∥2√nk

. (6)

We summarize our Adan in Algorithm 1. We reset the
momentum term properly by the restart condition, a common
trick to stabilize optimization and benefit convergence [68],
[69]. But to make Adan simple, in all experiments except
Table 22, we do not use this restart strategy although it can
improve performance as shown in Table 22.

4 CONVERGENCE ANALYSIS

For analysis, we make several mild assumptions used in
many works, e.g. [31], [37], [38], [33], [34], [35], [49], [32], [72]

Assumption 1 (L-smoothness). The function f(·, ·) is L-smooth
w.r.t. the parameters. Denote F (x) := Eζ [f(x, ζ)]. We have:

∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥, ∀x, y

Assumption 2 (Unbiased and bounded gradient oracle). The
stochastic gradient oracle gk = Eζ [∇f(θk, ζ)] + ξk is unbiased,
i.e., E (ξk) = 0, and its magnitude and variance are bounded with
probability 1:

∥gk∥∞ ≤ c∞/3, E
(
∥ξk∥2

)
≤ σ2, ∀k ∈ [T].

Assumption 3 (ρ-Lipschitz continuous Hessian). The function
f(·, ·) has ρ-Lipschitz Hessian w.r.t. the parameters. :∥∥∇2F (x)−∇2F (y)

∥∥ ≤ ρ∥x− y∥, ∀x, y,

where F (x) := Eζ [f(x, ζ)], ∥·∥ is matrix spectral norm for
matrix and ℓ2 norm for vector.

For a general nonconvex problem, if Assumptions 1 and 2
hold, the lower bound of the stochastic gradient complexity
(a.k.a. IFO complexity) to find an ϵ-approximate first-order
stationary point (ϵ-ASP) is Ω(ϵ−4) [40]. Moreover, if Assump-
tion 3 further holds, the lower complexity bound becomes
Ω(ϵ−3.5) for a non-variance-reduction algorithm [36].

Lipschitz Gradient. Theorem 1 with proof in Supplemen-
tary Sec. C.2 proves the convergence of Adan on problem (6)
with Lipschitz gradient condition.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Let
max {β1, β2} = O

(
ϵ2
)
, µ :=

√
2β3c∞/ε ≪ 1, η = O

(
ϵ2
)
,

and λk = λ(1− µ)
k. Algorithm 1 runs at most K = Ω

(
c2.5∞ ϵ−4

)
iterations to achieve:

1

K + 1

∑K

k=0
E
(
∥∇Fk(θk)∥2

)
≤ 4ϵ2.

That is, to find an ϵ-ASP, the stochastic gradient complexity of
Adan on problem (6) is O

(
c2.5∞ ϵ−4

)
.

Theorem 1 shows that under Assumptions 1 and 2,
Adan can converge to an ϵ-ASP of a nonconvex stochastic
problem with stochastic gradient complexity O

(
c2.5∞ ϵ−4

)
which accords with the lower bound Ω(ϵ−4) in [40]. For
this convergence, Adan has no requirement on minibatch
size and only assumes gradient estimation to be unbiased
and bounded. Moreover, as shown in Table 1 in Sec. 1, the
complexity of Adan is superior to those of previous adaptive
gradient algorithms. For Adabelief and LAMB, Adan always
has lower complexity and respectively enjoys d3× and d2×
lower complexity for the worst case. Adam-type optimizers
(e.g. Adam and AMSGrad) enjoy the same complexity as
Adan. But they cannot separate the ℓ2 regularizer with the
objective like AdamW and Adan. Namely, they always solve
a static loss F (·) rather than a dynamic loss Fk(·). The regu-
larizer separation can boost generalization performance [18],
[19] and already helps AdamW dominate training of ViT-
alike architectures. Besides, some previous analyses [13], [71],
[14], [73] need the momentum coefficient (i.e. βs) to be close
or increased to one, which contradicts with the practice that
βs are close to zero. In contrast, Theorem 1 assumes that all
βs are very small, which is more consistent with the practice.
Note that when µ = c/T , we have λk/λ ∈ [(1− c), 1] during
training. Hence we could choose the λk as a fixed constant
in the experiment for convenience.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 6

TABLE 2: Top-1 Acc. (%) of ResNet and ConvNext on ImageNet under the official settings. ∗ and ⋄ are from [70], [4].

ResNet-50 ResNet-101
Epoch 100 200 300 100 200 300

SAM [33] 77.3 78.7 79.4 79.5 81.1 81.6
SGD-M [26], [27], [28] 77.0 78.6 79.3 79.3 81.0 81.4
Adam [17] 76.9 78.4 78.8 78.4 80.2 80.6
AdamW [21] 77.0 78.9 79.3 78.9 79.9 80.4
LAMB [24], [70] 77.0 79.2 79.8∗ 79.4 81.1 81.3∗

Adan (ours) 78.1 79.7 80.2 79.9 81.6 81.8

ConvNext Tiny
Epoch 150 300

AdamW [21], [4] 81.2 82.1⋄
Adan (ours) 81.7 82.4

ConvNext Small
Epoch 150 300

AdamW [21], [4] 82.2 83.1⋄
Adan (ours) 82.5 83.3

TABLE 3: Top-1 Acc. (%) of ResNet-18 under the official setting in [2]. ∗ are reported in [15].

Adan SGD [7] Nadam [52] AdaBound [13] Adam [17] Radam [14] Padam [38] LAMB [24] AdamW [21] AdaBlief [15]

70.90 70.23∗ 68.82 68.13∗ 63.79∗ 67.62∗ 70.07 68.46 67.93∗ 70.08∗

TABLE 4: Top-1 Acc. (%) of ResNet-34 under the setting from AdaBlief [15] on CIFAR-10 dataset.

Adan SGD [7] Nadam [52] AdaBound [13] Adam [17] Radam [14] LAMB [24] AdamW [21] AdaBlief [15] Yogi [71]

95.07 94.65 92.98 94.69 93.17 94.39 94.01 94.28 94.11 94.52

Lipschitz Hessian. To further improve the theoretical
convergence speed, we introduce Assumption 3, and set
a proper restart condition to reset the momentum during
training. Consider an extension point yk+1 := θk+1 + ηk ◦
[mk + (1− β2)vk − β1gk], and the restart condition is:

(k + 1)
∑k

t=0
∥yt+1 − yt∥2√nt

> R2, (7)

where the constant R controls the restart frequency. In-
tuitively, when the parameters have accumulated enough
updates, the iterate may reach a new local basin. Resetting
the momentum at this moment helps Adan to better use
the local geometric information. Besides, we change ηk

from η/
(√

nk + ε
)

to η/
(√

nk−1 + ε
)

to ensure ηk to be
independent of noise ζk. See its proof in Supplementary C.3.

Theorem 2. Suppose that Assumptions 1-3 hold. Let R =
O
(
ϵ0.5
)
, max {β1, β2} = O

(
ϵ2
)
, β3 = O

(
ϵ4
)
, η = O

(
ϵ1.5
)
,

K = O
(
ϵ−2
)
, λ = 0. Then Algorithm 1 with restart condition

Eqn. (7) satisfies:

E
(∥∥∇Fk(θ̄)

∥∥) = O
(
c0.5∞ ϵ

)
, where θ̄ :=

1

K0

K0∑
k=1

θk,

and K0 = argmin⌊K
2 ⌋≤k≤K−1 ∥yt+1 − yt∥2√nt

. Moreover, to
find an ϵ-ASP, Algorithm 1 restarts at most O

(
c0.5∞ ϵ−1.5

)
times

in which each restarting cycle has at most K = O
(
ϵ−2
)

iterations, and hence needs at most O
(
c1.25∞ ϵ−3.5

)
stochastic

gradient complexity.

From Theorem 2, one can observe that with an extra
Hessian condition, Assumption 3, Adan improves its stochas-
tic gradient complexity from O

(
c2.5∞ ϵ−4

)
to O

(
c1.25∞ ϵ−3.5

)
,

which also matches the corresponding lower bound
Ω(ϵ−3.5) [36]. This complexity is lower than O

(
ϵ−3.5 log c2

ϵ

)
of A-NIGT [34] and O

(
ϵ−3.625

)
of Adam+ [35]. For other

DNN optimizers, e.g. Adam, their convergence under Lips-
chitz Hessian condition has not been proved yet.

Moreover, Theorem 2 still holds for the large batch size.

For example, by using minibatch size b = O
(
ϵ−1.5

)
, our

results still hold when R = O
(
ϵ0.5
)
, max {β1, β2} = O

(
ϵ0.5
)
,

β3 = O(ϵ), η = O(1), K = O
(
ϵ−0.5

)
, and λ = 0. In this

case, our η is of the order O(1), and is much larger than
O(ploy(ϵ)) of other optimizers (e.g., LAMB [24] and Adam+)
for handling large minibatch. This large step size often boosts
convergence speed in practice, which is actually desired.

5 EXPERIMENTAL RESULTS

We evaluate Adan on vision tasks, natural language process-
ing (NLP) tasks and reinforcement learning (RL) tasks. For
vision classification tasks, we test Adan on several represen-
tative SoTA backbones under the conventional supervised
settings, including 1) CNN-type architectures (ResNets [2]
and ConvNexts [4]) and 2) ViTs (ViTs [3], [18] and Swins [19]).
We also investigate Adan via the self-supervised pretraining
by using it to train MAE-ViT [41]. Moreover, we test Adan
on the vision object detection and instance segmentation
tasks with two frameworks Deformable-DETR [74] and
Mask-RCNN[75] (choosing ConvNext [4] as the backbone).
For NLP tasks, we train LSTM [42], Transformer-XL [43],
and BERT [44] for sequence modeling. We also provide the
Adan’s results on large language models, like GPT-2 [76],
on the code generation tasks. For more results on general
large-language model can be found in Appendix. On RL
tasks, we evaluate Adan on four games in MuJoCo [77]. We
also conduct the experiments on GNNs.

Due to space limitation, we defer the ablation study, ad-
ditional experimental results, and implementation details
into supplementary materials. We compare Adan with the
model’s default/SoTA optimizer in all the experiments but
may miss some representative optimizers, e.g., Adai, Padam,
and AdaBlief in some cases. This is because they report few
results for larger-scale experiments. For instance, Adablief
only tests ResNet-18 performance on ImageNet and actually
does not test any other networks. So it is really hard for us to
compare them on ViTs, Swins, ConvNext, MAEs, etc, due to

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 7

the challenges for hyper-parameter tuning and limited GPU
resources. The other reason is that some optimizers may fail
or achieve poor performance on transformers. For example,
SGD and Adam achieve much lower accuracy than AdamW.
See Table 16 in supplementary materials.

5.1 Experiments for Vision Classification Tasks
5.1.1 Training Setting
Besides the vanilla supervised training setting used in
ResNets [2], we further consider the following two prevalent
training settings on ImageNet [78].

Training Setting I. The recently proposed “A2 train-
ing recipe” in [70] has pushed the performance limits of
many SoTA CNN-type architectures by using stronger data
augmentation and more training iterations. For example,
on ResNet50, it sets new SoTA 80.4%, and improves the
accuracy 76.1% under vanilla setting in [2]. Specifically, for
data augmentation, this setting uses random crop, horizontal
flipping, Mixup (0.1) [53]/CutMix (1.0) [54] with probability
0.5, and RandAugment [79] with M = 7, N = 2 and MSTD
= 0.5. It sets stochastic depth (0.05) [80], and adopts cosine
learning rate decay and binary cross-entropy (BCE) loss. For
Adan, we use batch size 2048 for ResNet and ViT.

Training Setting II. We follow the same official training
procedure of ViT/Swin/ConvNext. For this setting, data
augmentation includes random crop, horizontal flipping,
Mixup (0.8), CutMix (1.0), RandAugment (M = 9, MSTD
= 0.5) and Random Erasing (p = 0.25). We use CE loss,
the cosine decay for base learning rate, the stochastic depth
(with official parameters), and weight decay. For Adan, we
set batch size 2048 for Swin/ViT/ConvNext and 4096 for
MAE. We follow MAE and tune β3 as 0.1.

5.1.2 Results on CNN-type Architectures
To train ResNet and ConvNext, we respectively use their
official Training Setting I and II. For ResNet/ConvNext, its
default official optimizer is LAMB/AdamW. From Table 2,
one can observe that on ResNet, 1) in most cases, Adan only
running 200 epochs can achieve higher or comparable top-1
accuracy on ImageNet [78] compared with the official SoTA
result trained by LAMB with 300 epochs; 2) Adan gets more
improvements over other optimizers, when training is insuf-
ficient, e.g. 100 epochs. The possible reason for observation 1)
is the regularizer separation, which can dynamically adjust
the weight decay for each coordinate instead of sharing a
common one like LAMB. For observation 2), this can be
explained by the faster convergence speed of Adan than
other optimizers. As shown in Table 1, Adan converges faster
than many adaptive gradient optimizers. This faster speed
partially comes from its large learning rate guaranteed by
Theorem 2, almost 3× larger than that of LAMB, since the
same as Nestrov acceleration, Adan also looks ahead for
possible correction. Note, we have tried to adjust learning
rate and warmup-epoch for Adam and LAMB, but observed
unstable training behaviors. On ConvNext (tiny and small),
one can observe similar comparison results on ResNet.

Since some well-known deep optimizers test ResNet-18
for 90 epochs under the official vanilla training setting [2],
we also run Adan 90 epochs under this setting for more com-
parison. Table 3 shows that Adan consistently outperforms

SGD and all compared adaptive optimizers. Note for this
setting, it is not easy for adaptive optimizers to surpass SGD
due to the absence of heavy-tailed noise, which is the crucial
factor helping adaptive optimizers beat AGD [82].

Additionally, we have extended our experiments to
include smaller datasets, specifically running tests on the
CIFAR-10 [83] dataset using a ResNet-34 model to evaluate
Adan against nine other optimizers. These experiments were
conducted using AdaBelief’s codebase [15] as a benchmark
for settings and hyperparameters, ensuring consistency and
comparability. The results, now included in Table 4, reveal
that Adan not only maintains its superior performance in
comparison with other optimizers but also confirms its
efficacy on smaller datasets. This evidence underlines Adan’s
robust performance across various dataset sizes and its
capability to adapt to diverse training conditions.

5.1.3 Results on ViTs
Supervised Training. We train ViT and Swin under their
official training setting, i.e. Training Setting II. Table 5 shows
that across different model sizes of ViT and Swin, Adan
outperforms the official AdamW optimizer by a large margin.
For ViTs, their gradient per iteration differs much from
the previous one due to the much sharper loss landscape
than CNNs [84] and the strong random augmentations for
training. So it is hard to train ViTs to converge within a
few epochs. Thanks to its faster convergence, as shown in
Figure 1, Adan is very suitable for this situation. Moreover,
the direction correction term from the gradient difference
vk of Adan can also better correct the first- and second-
order moments. One piece of evidence is that the first-order
moment decay coefficient β1 = 0.02 of Adan is much smaller
than 0.1 used in other deep optimizers. Besides AdamW, we
also compare Adan with several other popular optimizers,
including Adam, SGD-M, and LAMB, on ViT-S, please see
Table 16 in supplementary materials.

Self-supervised MAE Training (pre-train + finetune).
We follow the MAE training framework to pre-train and
finetune ViT-B on ImageNet, i.e. 300/800 pretraining epochs
and 100 fine-tuning epochs. Table 6 shows that 1) with
300 pre-training epochs, Adan makes 0.5% improvement
over AdamW; 2) Adan pre-trained 800 epochs surpasses
AdamW pre-trained 1,600 epochs by non-trial 0.2%. All these
results show the superior convergence and generalization
performance of Adan.

Large-Batch Training. Although large batch size can
increase computation parallelism to reduce training time
and is heavily desired, optimizers often suffer performance
degradation, or even fail. For instance, AdamW fails to train
ViTs when batch size is beyond 4,096. How to solve the
problem remains open [30]. At present, LAMB is the most
effective optimizer for large batch size. Table 7 reveals that
Adan is robust to batch sizes from 2k to 32k, and shows
higher performance and robustness than LAMB.

5.1.4 Comparison of Convergence Speed
In Figure 1 (a), we plot the curve of training and test loss
along with the training epochs on ResNet50. One can observe
that Adan converges faster than the compared baselines and
enjoys the smallest training and test losses. This demonstrates
its fast convergence property and good generalization ability.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 8

0 20 40 60 80 100
Epochs

2

3

4

5

6

7
Tr

ai
ni

ng
 L

os
s

ResNet50

Adan(ours)
AdamW
LAMB
Nadam
SAM
SGD-M

0 20 40 60 80 100
Epochs

1

2

3

4

5

6

Te
st

 L
os

s

ResNet50

Adan(ours)
AdamW
LAMB
Nadam
SAM
SGD-M

(a) Training and test curves on ResNet-50.

0 20 40 60 80 100
Epochs

1

2

3

4

5

6

7

Te
st

 L
os

s

ViT-S

Adan(ours)
Adam
AdamW
LAMB
SGD-M

0 20 40 60 80 100
Epochs

3

4

5

6

7

Tr
ai

ni
ng

 L
os

s

ViT-S

Adan(ours)
Adam
AdamW
LAMB
SGD-M

(b) Training and test curves on ViT-S.

Fig. 1: Training and test curves of various optimizers on ImageNet. The different magnitude of training and test loss is due
to data argumentation. Best viewed in 2×-sized color pdf file.

TABLE 5: Top-1 ACC. (%) of ViT and Swin on ImageNet. We use their official Training Setting II to train them. ∗ and ⋄ are
respectively reported in [18], [19]

ViT Small ViT Base Swin Tiny Swin small Swin Base
Epoch 150 300 150 300 150 300 150 300 150 300

AdamW [18], [19], [21] 78.3 79.9∗ 79.5 81.8∗ 79.9 81.2⋄ 82.1 83.2⋄ 82.6 83.5⋄
Adan (ours) 79.6 80.9 81.7 82.6 81.3 81.6 82.9 83.7 83.3 83.8

TABLE 6: Top-1 Acc. (%) of ViT-B and ViT-L trained by MAE
under the official Training Setting II. ∗ and ⋄ are respectively
reported in [81], [41].

MAE-ViT-B MAE-ViT-L
Epoch 300 800 1600 800 1600

AdamW [21], [41] 82.9∗ — 83.6⋄ 85.4⋄ 85.9⋄
Adan (ours) 83.4 83.8 — 85.9 —

TABLE 7: Top-1 Acc. (%) of ViT-S on ImageNet trainined by
Adam and LAMB under the Training Setting I with different
batch sizes.

Batch Size 1k 2k 4k 8k 16k 32k

LAMB [24], [30] 78.9 79.2 79.8 79.7 79.5 78.4
Adan (ours) 80.9 81.1 81.1 80.8 80.5 80.2

To sufficiently investigate the fast convergence of Adan, we
further plot the curve of training and test loss on the ViT-
Small in Figure 1 (b). From the results, we can see that Adan
consistently shows faster convergence behaviors than other
baselines in terms of both training loss and test loss. This
also partly explains the good performance of Adan.

5.1.5 Experiments for Detection and Segmentation Tasks
In this experiment, we test Adan on the detection and seg-
mentation tasks via the COCO dataset [86] which is a large-
scale dataset for detection, segmentation and captioning
tasks. We accomplish the experiments with Deformable-
DETR [74] and Mask R-CNN [75] (with ConvNext [4] as
the backbone) to compare Adan and their official optimizer
AdamW.

Table 8 reports the box Average Precision (AP) of objec-
tion detection by Deformable-DETR. For AdamW, its results
on Deformable-DETR are quoted from the reported results
under the official setting [74] and improved setting from
MMdection [85]. For fairness, we also follow the setting in
MMdection to test Adan. The results in Table 8 show that
Adan improves the box AP by 1.6% ∼ 1.8% compared to
the official optimizer AdamW. Meanwhile, Table 9 reports
both the box AP and mask AP of instance segmentation
by Mask R-CNN with ConvNext backbone. Adan achieves
0.5% ∼ 1.2% mask/box AP improvement over the official
optimizer AdamW. All These results show the effectiveness
of the proposed Adan.

5.2 Experiments for Language Processing Tasks
5.2.1 Results on LSTM
To begin with, we test our Adan on LSTM [42] by using
the Penn TreeBank dataset [87], and report the perplexity

(the lower, the better) on the test set in Table 10. We follow
the exact experimental setting in Adablief [15]. Indeed, all
our implementations are also based on the code provided
by Adablief [15]1. We use the default setting for all the
hyper-parameters provide by Adablief, since it provides
more baselines for fair comparison. For Adan, we utilize its
default weight decay (0.02) and βs (β1 = 0.02, β2 = 0.08,
and β3 = 0.01). We choose learning rate as 0.01 for Adan.

Table 10 shows that on the three LSTM models, Adan
always achieves the lowest perplexity, making about 1.0
overall average perplexity improvement over the runner-up.
Moreover, when the LSTM depth increases, the advantage of
Adan becomes more remarkable.

5.2.2 Results on BERT
Similar to the pretraining experiments of MAE which is also
a self-supervised learning framework on vision tasks, we
utilize Adan to train BERT [44] from scratch, which is one
of the most widely used pretraining models/frameworks
for NLP tasks. We employ the exact BERT training setting
in the widely used codebase—Fairseq [89]. We replace the
default Adam optimizer in BERT with our Adan for both
pretraining and fune-tuning. Specifically, we first pretrain
BERT-base on the Bookcorpus and Wikipedia datasets, and
then finetune BERT-base separately for each GLUE task on
the corresponding training data. Note, GLUE is a collection of
9 tasks/datasets to evaluate natural language understanding
systems, in which the tasks are organized as either single-
sentence classification or sentence-pair classification.

Here we simply replace the Adam optimizer in BERT
with our Adan and do not make other changes, e.g. random

1. The reported results in [15] slightly differ from the those in [38] be-
cause of their different settings for LSTM and training hyper-parameters.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 9

TABLE 8: Detection box-AP of Deformable-DETR [74] on
COCO. ∗ and ⋄ are respectively reported in official set-
ting [74] and MMdection’s improved settings [85]. The official
optimizer is AdamW and the training epoch is 50.

Method
(Backbone) Optimizer APb APb

50 APb
75

Deformable-DETR
(ResNet-50)

AdamW 43.8∗ 62.6∗ 47.7∗
AdamW 44.5⋄ 63.2⋄ 48.9⋄

Adan 45.3 64.4 49.3

TABLE 9: Instance segmentation box/mask-AP of Mask-
RCNN [75], choosing ConvNext-T as the backbone, on COCO.
⋄ is from [85]. The official optimizer of these settings is
AdamW and the training epoch is 36.

Method
(Backbone)

Optimizer APb APb
50 APb

75 APm APm
50 APm

75

Mask R-CNN
(ConvNeXt-T)

AdamW 46.2⋄ 68.1⋄ 50.8⋄ 41.7⋄ 65.0⋄ 44.9⋄

Adan 46.7 68.5 51.0 42.2 65.5 45.3

TABLE 10: Test perplexity (the lower, the better) on Penn Treebank for one-, two- and three-layered LSTMs. All results
except Adan and Padam in the table are reported by AdaBelief [15].

LSTM Adan AdaBelief [15] SGD [7] AdaBound [13] Adam [17] AdamW [21] Padam [38] RAdam [14] Yogi [71]

1 layer 83.6 84.2 85.0 84.3 85.9 84.7 84.2 86.5 86.5
2 layers 65.2 66.3 67.4 67.5 67.3 72.8 67.2 72.3 71.3
3 layers 59.8 61.2 63.7 63.6 64.3 69.9 63.2 70.0 67.5

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

1000

2000

3000

4000

5000

6000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

Ant

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

2000

4000

6000

8000

10000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

HalfCheetah

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

1000

2000

3000

4000

5000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

Walker2d

0 1 M 2 M 3 M 4 M 5 M 6 M
Timesteps

0

1000

2000

3000

4000

5000

Ep
is

od
e

Re
w

ar
d

ppo
ppo_adan

Humanoid

Fig. 2: Comparison of PPO and our PPO-Adan on several RL games simulated by MuJoCo. Here PPO-Adan simply replaces
the Adam optimizer in PPO with our Adan and does not change others. Best viewed in 2×-sized color pdf file.

TABLE 11: Correlation or ACC. (%) (the higher, the better) of BERT-base model on the development set of GLUE.

BERT-base MNLI QNLI QQP RTE SST-2 CoLA STS-B Average

Adam [17] (from [88]) 83.7/84.8 89.3 90.8 71.4 91.7 48.9 91.3 81.5
Adam [17] (reproduced) 84.9/84.9 90.8 90.9 69.3 92.6 58.5 88.7 82.5
Adan (ours) 85.7/85.6 91.3 91.2 73.3 93.2 64.6 89.3 84.3 (+1.8)

TABLE 12: Pass@k metric (the higher, the better), evaluat-
ing functional correctness, for GPT-2 (345M) model on the
HumanEval dataset pre-trained with different steps.

GPT-2 (345m) Steps pass@1 pass@10 pass@100

Adam 300k 0.0840 0.209 0.360
Adan 150k 0.0843 0.221 0.377

TABLE 13: Test PPL (the lower, the better) for Transformer-
XL-base model on the WikiText-103 dataset with different
training steps. * is reported in the official implementation.

Transformer-XL-base Training Steps
50k 100k 200k

Adam [17] 28.5 25.5 24.2∗
Adan (ours) 26.2 24.2 23.5

seed, warmup steps and learning rate decay strategy, dropout
probability, etc. For pretraining, we use Adan with its default
weight decay (0.02) and βs (β1 = 0.02, β2 = 0.08, and β3 =
0.01), and choose learning rate as 0.001. For fine-tuning, we
consider a limited hyper-parameter sweep for each task, with
a batch size of 16, and learning rates ∈ {2e− 5, 4e− 5} and
use Adan with β1 = 0.02, β2 = 0.01, and β3 = 0.01 and
weight decay 0.01.

Following the conventional setting, we run each fine-
tuning experiment three times and report the median perfor-
mance in Table 11. On MNLI, we report the mismatched and
matched accuracy. And we report Matthew’s Correlation and
Person Correlation on the task of CoLA and STS-B, respec-
tively. The performance on the other tasks is measured by
classification accuracy. The performance of our reproduced
one (second row) is slightly better than the vanilla results
of BERT reported in Huggingface-transformer [88] (widely

used codebase for transformers in NLP), since the vanilla
Bookcorpus data in [88] is not available and thus we train on
the latest Bookcorpus data version.

From Table 11, one can see that in the most commonly
used BERT training experiment, Adan reveals a much better
advantage over Adam. Specifically, in all GLUE tasks, on
the BERT-base model, Adan achieves higher performance
than Adam and makes 1.8 average improvements on all
tasks. In addition, on some tasks of Adan, the BERT-base
trained by Adan can outperform some large models. e.g.,
BERT-large which achieves 70.4% on RTE, 93.2% on SST-2,
and 60.6 correlation on CoLA, and XLNet-large which has
63.6 correlation on CoLA. See [90] for more results.

5.2.3 Results on GPT-2
We evaluate Adan on the large language models (LLMs),
GPT-2 [76], for code generalization tasks, which enables the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 10

completion and synthesis of code, both from other code
snippets and natural language descriptions. LLMs work
across a wide range of domains, tasks, and programming
languages, and can, for example, assist professional and citi-
zen developers with building new applications. We pre-train
GPT-2 on The-Stack dataset (Python only) [91] from BigCode2

and evaluated on the HumanEval dataset [92] by zero-shot
learning. HumanEval is used to measure functional correct-
ness for synthesizing programs from docstrings. It consists
of 164 original programming problems, assessing language
comprehension, algorithms, and simple mathematics, with
some comparable to simple software interview questions. We
set the temperature to 0.8 during the evaluation.

We report pass@k [93] in Table 12 to evaluate the func-
tional correctness, where k code samples are generated per
problem, a problem is considered solved if any sample passes
the unit tests and the total fraction of problems solved is
reported. We can observe that on GPT-2, Adan surpasses its
default Adam optimizer in terms of pass@k within only half
of the pre-training steps, which implies that Adan has a much
larger potential in training LLMs with fewer computational
costs. For more comprehensive results on LLMs, please
refer to Appendix Sec. B.1.

5.2.4 Results on Transformer-XL
Here we investigate the performance of Adan on
Transformer-XL [43] which is often used to model long
sequences. We follow the exact official setting to train
Transformer-XL-base on the WikiText-103 dataset that is the
largest available word-level language modeling benchmark
with long-term dependency. We only replace the default
Adam optimizer of Transformer-XL-base by our Adan, and
do not make other changes for the hyper-parameter. For
Adan, we set β1 = 0.1, β2 = 0.1, and β3 = 0.001, and choose
learning rate as 0.001. We test Adan and Adam with several
training steps, including 50k, 100k, and 200k (official), and
report the results in Table 13.

From Table 13, one can observe that on Transformer-
XL-base, Adan surpasses its default Adam optimizer in
terms of test PPL (the lower, the better) under all training
steps. Surprisingly, Adan using 100k training steps can even
achieve comparable results to Adam with 200k training steps.
All these results demonstrate the superiority of Adan over
the default SoTA Adam optimizer in Transformer-XL.

5.3 Results on Reinforcement Learning Tasks

Here we evaluate Adan on reinforcement learning tasks.
Specifically, we replace the default Adam optimizer in
PPO [94] , which is one of the most popular policy gradient
methods, without making any other changes to PPO. For
brevity, we call this new PPO version “PPO-Adan". Then we
test PPO and PPO-Adan on several games which are actually
continuous control environments simulated by the standard
and widely-used engine, MuJoCo [77]. For these test games,
their agents receive a reward at each step. Following standard
evaluation, we run each game under 10 different and inde-
pendent random seeds (i.e. 1 ∼ 10), and test the performance
for 10 episodes every 30,000 steps. All these experiments

2. https://www.bigcode-project.org

TABLE 14: Comparison of ROC-AUC metrics for the Deep-
GCN graph neural network on the ogbn-proteins dataset.

DeepGCN [98] Epochs
layer=24, channel=64 500 1, 000

Adam (official) 0.812 0.826
Adan 0.828 0.831

are based on the widely used codebase Tianshou [95]. For
fairness, we use the default hyper-parameters in Tianshou,
e.g. batch size, discount, and GAE parameter. We use Adan
with its default β’s (β1 = 0.02, β2 = 0.08, and β3 = 0.01).
Following the default setting, we do not adopt the weight
decay and choose the learning rate as 3e-4.

We report the results on four test games in Figure 2, in
which the solid line denotes the averaged episodes rewards
in evaluation and the shaded region is its 75% confidence
intervals. From Figure 2, one can observe that on the four
test games, PPO-Adan achieves much higher rewards than
vanilla PPO which uses Adam as its optimizer. These results
demonstrate the advantages of Adan over Adam since PPO-
Adan simply replaces the Adam optimizer in PPO with our
Adan and does not make other changes.

5.4 Results on Graph Neural Networks
To further assess the effectiveness of the Adan optimizer
across different network architectures, this section focuses
on graph neural networks using the Open Graph Benchmark
(OGB) [96]. OGB encompasses several challenging large-scale
datasets. Consistent with the settings used in DeepGCN [97],
[98], our experiments were conducted on the ogbn-proteins
dataset, optimizing the node feature prediction task at
the level of the optimizer. The ogbn-proteins dataset is
an undirected, weighted graph, classified by species type,
comprising 132, 534 nodes and 39, 561, 252 edges. Each
edge is associated with an 8-dimensional feature, and every
node features an 8-dimensional binary vector representing
the species of the corresponding protein. Given that the
prediction task for ogbn-proteins in DeepGCN is multi-
label, ROC-AUC was chosen as the evaluation metric. As
demonstrated in Table 14, the Adan optimizer exhibits
unique advantages in addressing the complex optimization
challenges of graph convolutional networks. Particularly in
the context of deep graph neural networks, Adan efficiently
and effectively manages learning rate adjustments and model
parameter update directions, enabling the DeepGCN model
to achieve superior performance on the test dataset.

6 CONCLUSION

In this paper, to relieve the plague of trying different
optimizers for different deep network architectures, we
propose a new deep optimizer, Adan. We reformulate the
vanilla AGD to a more efficient version and use it to
estimate the first- and second-order moments in adaptive
optimization algorithms. We prove that the complexity of
Adan matches the lower bounds and is superior to those of
other adaptive optimizers. Finally, extensive experimental
results demonstrate that Adan consistently surpasses other
optimizers on many popular backbones and frameworks,
including ResNet, ConvNext, ViT, Swin, MAE-ViT, LSTM,
Transformer-XL, BERT, and GPT-2.

https://www.bigcode-project.org

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 11

7 ACKNOWLEDGE

Z. Lin was supported by National Key R&D Program of
China (2022ZD0160300), the NSF China (No. 62276004), and
Qualcomm. Pan Zhou was supported by the Singapore
Ministry of Education (MOE) Academic Research Fund
(AcRF) Tier 1 grant.

REFERENCES

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov
et al., “Going deeper with convolutions,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
1

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2016, pp. 770–778. 1, 6, 7

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner et al., “An image is worth 16x16 words: Transform-
ers for image recognition at scale,” in International Conference on
Learning Representations, 2020. 1, 6

[4] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie,
“A convnet for the 2020s,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2022, pp. 11 976–11 986. 1,
3, 6, 8, 18

[5] T. N. Sainath, B. Kingsbury, A.-r. Mohamed, G. E. Dahl, G. Saon,
H. Soltau et al., “Improvements to deep convolutional neural
networks for LVCSR,” in 2013 IEEE Workshop on Automatic Speech
Recognition and Understanding. IEEE, 2013, pp. 315–320. 1

[6] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, and
D. Yu, “Convolutional neural networks for speech recognition,”
IEEE Trans. on Audio, Speech, and Language Processing, vol. 22, no. 10,
pp. 1533–1545, 2014. 1

[7] H. Robbins and S. Monro, “A stochastic approximation method,”
The Annals of Mathematical Statistics, pp. 400–407, 1951. 1, 6, 9

[8] D. Saad, “Online algorithms and stochastic approximations,”
Online Learning, vol. 5, pp. 6–3, 1998. 1

[9] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. 7, 2011. 1, 2, 3

[10] T. Tijmen and H. Geoffrey, “Lecture 6.5-rmsprop: Divide the gra-
dient by a running average of its recent magnitude,” COURSERA:
Neural Networks for Machine Learning, vol. 4, 2012. 1, 2, 3

[11] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of Adam
and beyond,” in International Conference on Learning Representations,
2018. 1, 2, 3

[12] X. Chen, S. Liu, R. Sun, and M. Hong, “On the convergence of a
class of Adam-type algorithms for non-convex optimization,” in
International Conference on Learning Representations, 2018. 1

[13] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods
with dynamic bound of learning rate,” in International Conference
on Learning Representations, 2018. 1, 2, 3, 5, 6, 9

[14] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao et al., “On the
variance of the adaptive learning rate and beyond,” in International
Conference on Learning Representations, 2019. 1, 3, 5, 6, 9

[15] J. Zhuang, T. Tang, Y. Ding, S. C. Tatikonda, N. Dvornek, X. Pa-
pademetris et al., “Adabelief optimizer: Adapting stepsizes by
the belief in observed gradients,” Advances in Neural Information
Processing Systems, vol. 33, pp. 18 795–18 806, 2020. 1, 2, 3, 6, 7, 8, 9

[16] B. Heo, S. Chun, S. J. Oh, D. Han, S. Yun, G. Kim et al., “Adamp:
Slowing down the slowdown for momentum optimizers on
scale-invariant weights,” in International Conference on Learning
Representations, 2020. 1, 3

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014. 1, 3, 6, 9, 15

[18] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International Conference on Machine Learning.
PMLR, 2021, pp. 10 347–10 357. 1, 2, 3, 5, 6, 8, 15, 17, 18

[19] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang et al., “Swin trans-
former: Hierarchical vision transformer using shifted windows,”
in Proceedings of the IEEE International Conference on Computer
Vision, 2021, pp. 10 012–10 022. 1, 3, 5, 6, 8, 18

[20] W. Yu, M. Luo, P. Zhou, C. Si, Y. Zhou, X. Wang et al., “Metaformer
is actually what you need for vision,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2022, pp.
10 819–10 829. 1

[21] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in International Conference on Learning Representations, 2018.
1, 2, 3, 6, 8, 9, 15, 17

[22] Y. Liu, S. Mai, X. Chen, C.-J. Hsieh, and Y. You, “Towards efficient
and scalable sharpness-aware minimization,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2022,
pp. 12 360–12 370. 1, 3

[23] Y. You, I. Gitman, and B. Ginsburg, “Large batch training of
convolutional networks,” arXiv preprint arXiv:1708.03888, 2017. 1,
3

[24] Y. You, J. Li, S. Reddi, J. Hseu, S. Kumar, S. Bhojanapalli et al.,
“Large batch optimization for deep learning: Training bert in 76
minutes,” in International Conference on Learning Representations,
2019. 1, 2, 3, 6, 8, 15

[25] P. Zhou, X. Xie, Z. Lin, K.-C. Toh, and S. Yan, “Win: Weight-
decay-integrated nesterov acceleration for faster network training,”
Journal of Machine Learning Research, vol. 25, no. 83, pp. 1–74, 2024.
1

[26] Y. Nesterov, “A method for solving the convex programming
problem with convergence rate O

(
1/k2

)
,” in Doklady Akademii

Nauk, vol. 269, no. 3. Russian Academy of Sciences, 1983, pp.
543–547. 1, 2, 4, 6, 15

[27] Y. Nesterov, “On an approach to the construction of optimal
methods of minimization of smooth convex functions,” Ekonomika
i Mateaticheskie Metody, vol. 24, no. 3, pp. 509–517, 1988. 1, 2, 4, 6,
15

[28] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer Science & Business Media, 2003, vol. 87. 1, 2, 3,
4, 6, 15

[29] Z. Nado, J. M. Gilmer, C. J. Shallue, R. Anil, and G. E. Dahl, “A
large batch optimizer reality check: Traditional, generic optimizers
suffice across batch sizes,” arXiv preprint arXiv:2102.06356, 2021. 1,
4, 15

[30] X. He, F. Xue, X. Ren, and Y. You, “Large-scale deep learn-
ing optimizations: A comprehensive survey,” arXiv preprint
arXiv:2111.00856, 2021. 1, 7, 8

[31] Z. Guo, Y. Xu, W. Yin, R. Jin, and T. Yang, “A novel convergence
analysis for algorithms of the Adam family,” arXiv preprint
arXiv:2112.03459, 2021. 2, 5

[32] Y. Wang, Y. Kang, C. Qin, H. Wang, Y. Xu, Y. Zhang et al., “Adapt-
ing stepsizes by momentumized gradients improves optimization
and generalization,” arXiv preprint arXiv:2106.11514, 2021. 2, 5

[33] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur, “Sharpness-
aware minimization for efficiently improving generalization,” in
International Conference on Learning Representations, 2021. 2, 3, 5, 6

[34] A. Cutkosky and H. Mehta, “Momentum improves normalized
sgd,” in International Conference on Machine Learning. PMLR, 2020,
pp. 2260–2268. 2, 5, 6

[35] M. Liu, W. Zhang, F. Orabona, and T. Yang, “Adam+: A stochas-
tic method with adaptive variance reduction,” arXiv preprint
arXiv:2011.11985, 2020. 2, 5, 6

[36] Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, A. Sekhari, and
K. Sridharan, “Second-order information in non-convex stochastic
optimization: Power and limitations,” in Conference on Learning
Theory. PMLR, 2020, pp. 242–299. 2, 5, 6, 14

[37] D. Zhou, J. Chen, Y. Cao, Y. Tang, Z. Yang, and Q. Gu, “On
the convergence of adaptive gradient methods for nonconvex
optimization,” arXiv preprint arXiv:1808.05671, 2018. 2, 5

[38] J. Chen, D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu, “Closing the
generalization gap of adaptive gradient methods in training deep
neural networks,” in Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence,
2021, pp. 3267–3275. 2, 3, 5, 6, 8, 9

[39] Z. Lin, H. Li, and C. Fang, Accelerated optimization for machine
learning. Springer, 2020. 2

[40] Y. Arjevani, Y. Carmon, J. C. Duchi, D. J. Foster, N. Srebro,
and B. Woodworth, “Lower bounds for non-convex stochastic
optimization,” Mathematical Programming, pp. 1–50, 2022. 2, 5, 14

[41] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, 2022. 3,
6, 8

[42] J. Schmidhuber, S. Hochreiter et al., “Long short-term memory,”
Neural Comput, vol. 9, no. 8, pp. 1735–1780, 1997. 3, 6, 8

[43] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. Le, and R. Salakhutdi-
nov, “Transformer-xl: Attentive language models beyond a fixed-
length context,” in Proceedings of the 57th Annual Meeting of the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 12

Association for Computational Linguistics, 2019, pp. 2978–2988. 3, 6,
10

[44] J. D. M.-W. C. Kenton and L. K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,”
in Proceedings of NAACL-HLT, 2019, pp. 4171–4186. 3, 6, 8

[45] R. Wightman, “Pytorch image models,” https://github.com/
rwightman/pytorch-image-models, 2019. 3

[46] I. Babuschkin, K. Baumli, A. Bell, S. Bhupatiraju, J. Bruce,
P. Buchlovsky et al., “The DeepMind JAX Ecosystem,” 2020.
[Online]. Available: http://github.com/deepmind 3

[47] M. Contributors, “OpenMMLab’s image classification toolbox and
benchmark,” https://github.com/open-mmlab/mmclassification,
2020. 3

[48] B. T. Polyak, “Some methods of speeding up the convergence of
iteration methods,” Ussr Computational Mathematics and Mathemati-
cal Physics, vol. 4, no. 5, pp. 1–17, 1964. 3, 4

[49] J. Kwon, J. Kim, H. Park, and I. K. Choi, “Asam: Adaptive
sharpness-aware minimization for scale-invariant learning of deep
neural networks,” in International Conference on Machine Learning.
PMLR, 2021, pp. 5905–5914. 3, 5

[50] J. Du, H. Yan, J. Feng, J. T. Zhou, L. Zhen, R. S. M. Goh
et al., “Efficient sharpness-aware minimization for improved
training of neural networks,” in International Conference on Learning
Representations, 2022. 3

[51] Z. Xie, X. Wang, H. Zhang, I. Sato, and M. Sugiyama, “Adaptive
inertia: Disentangling the effects of adaptive learning rate and
momentum,” in International Conference on Machine Learning.
PMLR, 2022, pp. 24 430–24 459. 3, 15

[52] T. Dozat, “Incorporating nesterov momentum into Adam,” in
International Conference on Learning Representations Workshops, 2016.
3, 4, 6

[53] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup:
Beyond empirical risk minimization,” in International Conference
on Learning Representations, 2018. 3, 7

[54] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 6023–6032. 3, 7

[55] Y. Guo, J. Chen, Q. Du, A. Van Den Hengel, Q. Shi, and M. Tan,
“Multi-way backpropagation for training compact deep neural
networks,” Neural networks, vol. 126, pp. 250–261, 2020. 3

[56] J. Wang, H. Chen, L. Ma, L. Chen, X. Gong, and W. Liu, “Sphere
loss: Learning discriminative features for scene classification in a
hyperspherical feature space,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 60, pp. 1–19, 2021. 3

[57] M. Hardt and T. Ma, “Identity matters in deep learning,” in
International Conference on Learning Representations, 2017. 4

[58] B. Xie, Y. Liang, and L. Song, “Diverse neural network learns true
target functions,” in Artificial Intelligence and Statistics. PMLR,
2017, pp. 1216–1224. 4

[59] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural
networks with ReLU activation,” Advances in Neural Information
Processing Systems, vol. 30, 2017. 4

[60] Z. Charles and D. Papailiopoulos, “Stability and generalization
of learning algorithms that converge to global optima,” in
International Conference on Machine Learning. PMLR, 2018, pp.
745–754. 4

[61] P. Zhou, H. Yan, X. Yuan, J. Feng, and S. Yan, “Towards un-
derstanding why Lookahead generalizes better than SGD and
beyond,” in Advances in Neural Information Processing Systems,
2021. 4

[62] Q. Nguyen, M. Mondelli, and G. F. Montufar, “Tight bounds on
the smallest eigenvalue of the neural tangent kernel for deep
ReLU networks,” in International Conference on Machine Learning,
2021, pp. 8119–8129. 4

[63] Q. N. Nguyen and M. Mondelli, “Global convergence of deep
networks with one wide layer followed by pyramidal topology,”
Advances in Neural Information Processing Systems, vol. 33, pp.
11 961–11 972, 2020. 4

[64] X. Xie, Q. Wang, Z. Ling, X. Li, G. Liu, and Z. Lin, “Optimization
induced equilibrium networks: An explicit optimization perspec-
tive for understanding equilibrium models,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022. 4

[65] X. Xie, J. Wu, G. Liu, and Z. Lin, “Sscnet: learning-based subspace
clustering,” Visual Intelligence, vol. 2, no. 1, p. 11, 2024. 4

[66] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and
Trends in optimization, vol. 1, no. 3, pp. 127–239, 2014. 5

[67] Z. Zhuang, M. Liu, A. Cutkosky, and F. Orabona, “Understanding
AdamW through proximal methods and scale-freeness,” Transac-
tions on Machine Learning Research, 2022. 5

[68] H. Li and Z. Lin, “Restarted nonconvex accelerated gradient
descent: No more polylogarithmic factor in the O

(
ϵ−7/4

)
com-

plexity,” in International Conference on Machine Learning. PMLR,
2022, pp. 12 901–12 916. 5

[69] C. Jin, P. Netrapalli, and M. I. Jordan, “Accelerated gradient
descent escapes saddle points faster than gradient descent,” in
Conference On Learning Theory. PMLR, 2018, pp. 1042–1085. 5

[70] R. Wightman, H. Touvron, and H. Jégou, “Resnet strikes back:
An improved training procedure in Timm,” arXiv preprint
arXiv:2110.00476, 2021. 6, 7, 18

[71] M. Zaheer, S. Reddi, D. Sachan, S. Kale, and S. Kumar, “Adap-
tive methods for nonconvex optimization,” Advances in Neural
Information Processing Systems, vol. 31, 2018. 5, 6, 9

[72] P. Zhou, X. Xie, Z. Lin, and S. Yan, “Towards understanding
convergence and generalization of adamw,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2024. 5

[73] N. Shi, D. Li, M. Hong, and R. Sun, “RMSProp converges with
proper hyper-parameter,” in International Conference on Learning
Representations, 2020. 5

[74] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
DETR: Deformable transformers for end-to-end object detection,”
in International Conference on Learning Representations, 2021. 6, 8, 9

[75] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2961–2969. 6, 8, 9

[76] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever
et al., “Language models are unsupervised multitask learners,”
OpenAI blog, vol. 1, no. 8, p. 9, 2019. 6, 9

[77] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033. 6, 10

[78] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Ima-
genet: A large-scale hierarchical image database,” in Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition,
2009, pp. 248–255. 7

[79] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment:
Practical automated data augmentation with a reduced search
space,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2020, pp. 702–703. 7

[80] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger,
“Deep networks with stochastic depth,” in European Conference
on Computer Vision, 2016, pp. 646–661. 7

[81] X. Chen, M. Ding, X. Wang, Y. Xin, S. Mo, Y. Wang et al., “Context
autoencoder for self-supervised representation learning,” arXiv
preprint arXiv:2202.03026, 2022. 8

[82] J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. Reddi, S. Kumar
et al., “Why are adaptive methods good for attention models?”
Advances in Neural Information Processing Systems, vol. 33, pp.
15 383–15 393, 2020. 7

[83] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009. 7

[84] X. Chen, C.-J. Hsieh, and B. Gong, “When vision transformers
outperform resnets without pre-training or strong data augmenta-
tions,” in International Conference on Learning Representation, 2022.
7

[85] K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li et al., “MMDe-
tection: Open MMLab detection toolbox and benchmark,” arXiv
preprint arXiv:1906.07155, 2019. 8, 9

[86] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan
et al., “Microsoft coco: Common objects in context,” in European
Conference on Computer Vision, 2014, pp. 740–755. 8

[87] M. A. Marcinkiewicz, “Building a large annotated corpus of
english: The penn treebank,” Using Large Corpora, vol. 273, 1994. 8

[88] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi
et al., “Transformers: State-of-the-art natural language processing,”
in Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2020, pp. 38–45. 9

[89] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence
modeling,” in Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics
(Demonstrations), 2019, pp. 48–53. 8

[90] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A ro-

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
http://github.com/deepmind
https://github.com/open-mmlab/mmclassification

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 13

bustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019. 9

[91] D. Kocetkov, R. Li, L. Ben Allal, J. Li, C. Mou, C. Muñoz Ferrandis
et al., “The Stack: 3 tb of permissively licensed source code,”
Preprint, 2022. 10

[92] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan
et al., “Evaluating large language models trained on code,” arXiv
preprint arXiv:2107.03374, 2021. 10

[93] S. Kulal, P. Pasupat, K. Chandra, M. Lee, O. Padon, A. Aiken et al.,
“Spoc: Search-based pseudocode to code,” Advances in Neural
Information Processing Systems, vol. 32, 2019. 10

[94] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel,
“Benchmarking deep reinforcement learning for continuous con-
trol,” in International conference on machine learning. PMLR, 2016,
pp. 1329–1338. 10

[95] J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M. Zhang et al.,
“Tianshou: A highly modularized deep reinforcement learning
library,” Journal of Machine Learning Research, vol. 23, no. 267, pp.
1–6, 2022. 10

[96] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu et al., “Open
graph benchmark: Datasets for machine learning on graphs,” in
Advances in Neural Information Processing Systems, vol. 33, 2020, pp.
22 118–22 133. 10

[97] G. Li, M. Muller, A. Thabet, and B. Ghanem, “Deepgcns: Can
gcns go as deep as cnns?” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 9267–9276. 10

[98] G. Li, C. Xiong, A. Thabet, and B. Ghanem, “Deepergcn: All you
need to train deeper gcns,” arXiv preprint arXiv:2006.07739, 2020.
10

[99] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” Advances in neural information
processing systems, vol. 26, 2013. 14

[100] S. S. Du, W. Hu, and J. D. Lee, “Algorithmic regularization in
learning deep homogeneous models: Layers are automatically
balanced,” Advances in Neural Information Processing Systems,
vol. 31, 2018. 14

[101] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bam-
ford et al., “Mixtral of experts,” arXiv preprint arXiv:2401.04088,
2024. 14, 16, 17

[102] T. Computer, “Redpajama: an open dataset for training
large language models,” 2023. [Online]. Available: https:
//github.com/togethercomputer/RedPajama-Data 14, 17

[103] T. Xiao, M. Singh, E. Mintun, T. Darrell, P. Dollár, and R. Girshick,
“Early convolutions help transformers see better,” Advances in
Neural Information Processing Systems, vol. 34, pp. 30 392–30 400,
2021. 15

[104] H. Touvron, M. Cord, and H. Jégou, “Deit III: Revenge of the ViT,”
in European Conference on Computer Vision. Springer, 2022, pp.
516–533. 18

Xingyu Xie received his Ph.D. degree from
Peking University, in 2023. He is currently a Re-
search Fellow at the Department of Mathematics,
National University of Singapore. His current re-
search interests include large-scale optimization
and deep learning.

Pan Zhou received Master Degree at Peking
University in 2016 and obtained Ph.D. Degree
at National University of Singapore in 2019. Now
he is an assistant professor at Singapore Man-
agement University, Singapore. Before he also
worked as a research scientist at Salesforce and
Sea AI Lab, Singapore. His research interests
include computer vision, machine learning, and
optimization. He was the winner of the Microsoft
Research Asia Fellowship 2018.

Huan Li received his Ph.D. degree from Peking
University, in 2019. He is currently an Assistant
Researcher at the Institute of Robotics and Auto-
matic Information Systems, Nankai University. His
current research interests include optimization
and machine learning.

Zhouchen Lin (M’00–SM’08–F’18) received the
Ph.D. degree in applied mathematics from Peking
University in 2000. He is currently a Boya Special
Professor with the State Key Laboratory of Gen-
eral Artificial Intelligence, School of Intelligence
Science and Technology, Peking University. His
research interests include machine learning and
numerical optimization. He has published over
310 papers, collecting more than 35000 Google
Scholar citations. He is a Fellow of the IAPR, the
IEEE, the AAIA and the CSIG.

Shuicheng Yan is currently the Managing Direc-
tor of Kunlun 2050 Research and Chief Scientist
of Kunlun Tech & Skywork AI, and the former
Group Chief Scientist of Sea Group. He is a
Fellow of Singapore’s Academy of Engineering,
AAAI, ACM, IEEE, and IAPR. His research ar-
eas include computer vision, machine learning,
and multimedia analysis. Till now, Prof Yan has
published over 800 papers at top international
journals and conferences, with an H-index of
140+. He has also been named among the an-

nual World’s Highly Cited Researchers nine times.

https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 14

Adan: Adaptive Nesterov Momentum Algorithm
for Faster Optimizing Deep Models

(Supplementary Material)
The supplementary contains some additional experimental results and the technical proofs of the paper entitled “Adan:
Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models”. It is structured as follows.

Sec. A discuss why the lower bound for the convergence complexity is Ω(ϵ−3.5) instead of Ω(ϵ−3.0). And we also
compare more about the constants in the convergence bounds of various optimizers in this section.

Sec. B includes the implementation details and additional experimental results, which contain more detailed results on
ViTs for many representative optimizers in Sec. B.2 and the ablation study in Sec. B.5.

Sec. C.1 provides the proof of the equivalence between AGD and reformulated AGD, i.e., the proof of Lemma 1. And then,
given Lipschitz gradient condition, Sec. C.2 provides the convergence analysis in Theorem 1. Next, we show Adan’s faster
convergence speed with Lipschitz Hessian condition in Sec. C.3, by first reformulating our Algorithm 1 and introducing
some auxiliary bounds. Finally, we present some auxiliary lemmas in Sec. C.4.

APPENDIX A
DISCUSSION ON CONVERGENCE RESULTS

A.1 Discussion about Lower Bound
For the lower bound, as proven in [36], on the nonconvex problems with Lipschitz gradient and Hessian, for stochastic
gradient-based methods with 1) unbiased and variance-bounded stochastic gradient and 2) stochastic gradient queried on
the same point per iteration, their complexity lower bound is Ω(ϵ−3.5) to find an ϵ-accurate first-order stationary point. For
condition 2), it means that per iteration, the algorithm only queries the stochastic gradient at one point (e.g. SGD, Adam,
Adan) instead of multiple points (variance-reduced algorithms, e.g. SVRG [99]). Otherwise, the complexity lower bound
becomes Ω(ϵ−3.0) [36].

For the nonconvex problems with Lipschitz gradient but without Lipschitz Hessian, the complexity lower bound is Θ(ϵ−4)
as shown in [40]. Note, the above Lipschitz gradient and Hessian assumption are defined on the training loss w.r.t. the
variable/parameter instead of w.r.t. each datum/input ζ . We would like to clarify that our proofs are only based on the
above Lipschitz gradient and Hessian assumptions and do not require the Lipschitz gradient and Hessian w.r.t. the input ζ .

A.2 Discussion about Convergence Complexity
The constant-level difference among the complexities of compared optimizers is not incremental. Firstly, under the
corresponding assumptions, most compared optimizers already achieve the optimal complexity in terms of the dependence
on optimization accuracy ϵ, and their complexities only differ from their constant factors, e.g.c2, c∞ and d. For instance, with
Lipschitz gradient but without Lipschitz Hessian, most optimizers have complexity O

(
x
ϵ4

)
which matches the lower bound

O
(

1
ϵ4

)
in [40], where the constant factor x varies from different optimizers, e.g.x = c2∞d in Adam-type optimizer, x = c62

in Adabelief, x = c22d in LAMB, and x = c2.5∞ in Adan. So under the same conditions, one cannot improve the complexity
dependence on ϵ but can improve the constant factors which, as discussed below, is still significant, especially for DNNs.

Secondly, the constant-level difference may cause very different complexity whose magnitudes vary by several orders on
networks. This is because 1) the modern network is often large, e.g. 11 M parameters in the small ReNet18, leading a very
large d; 2) for network gradient, its ℓ2-norm upper bound c2 is often much larger than its ℓ∞-norm upper bound c∞ as
observed and proved in some work [100], because the stochastic algorithms can probably adaptively adjust the parameter
magnitude at different layers so that these parameter magnitudes are balanced.

Actually, we also empirically find c∞ = O(8.2), c2 = O(430), d = 2.2× 107 in the ViT-small across different optimizers,
e.g., AdamW, Adam, Adan, LAMB. In the extreme case, under the widely used Lipschitz gradient assumption, the complexity
bound of Adan is 7.6× 106 smaller than the one of Adam, 3.3× 1013 smaller than the one of AdaBlief, 2.1× 1010 smaller
than the one of LAMB, etc. For ResNet50, we also observe c∞ = O(78), c2 = O(970), d = 2.5 × 107 which also means a
large big improvement of Adan over other optimizers.

APPENDIX B
ADDITIONAL EXPERIMENTAL RESULTS

B.1 Pre-training Results on LLMs
To investigate the efficacy of the Adan optimizer for large-scale language tasks, we conducted pre-training experiments
using MoE models based on the architecture specified in a recent study [101]. Our experiments were designed as training
from scratch, a method known for its significant computational costs. This approach was selected to rigorously assess the
optimizer’s performance under demanding conditions. The experiments utilized the RedPajama-v2 dataset [102] with three
configurations, each consisting of 8 experts: 8× 0.1B (totaling 0.5B trainable parameters), 8× 0.3B (2B trainable parameters),

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 15

TABLE 15: Comparison of training loss for MoE with different data volumes and model sizes using Adan and AdamW.

Model Size 8 × 0.1B 8 × 0.3B 8 × 0.6B

Token Size 10B 30B 100B 30B 100B 300B 300B

AdamW 2.722 2.550 2.427 2.362 2.218 2.070 2.023

Adan 2.697 2.513 2.404 2.349 2.206 2.045 2.010

TABLE 16: Top-1 ACC. (%) of different optimizers for ViT-S on ImageNet trained under training setting II. * is from [18].

Epoch 100 150 200 300

AdamW [21] (default) 76.1 78.9 79.2 79.9∗
Adam [17] 62.0 64.0 64.5 66.7
Adai [51] 66.4 72.6 75.3 77.4
SGD-M [26], [27], [28] 64.3 68.7 71.4 73.9
LAMB [24] 69.4 73.8 75.9 77.7
Adan (ours) 77.5 79.6 80.0 80.9

TABLE 17: A comparison of peak memory and wall duration on single NVIDIA A800 GPU for different models. The
duration time is the total time of 200 iteration steps.

Model
Model 100 Steps Time (ms) Peak Memory (GB)

Size Adan AdamW LAMB AdaBelief Adan AdamW LAMB AdaBelief

ResNet-50 25M 127.6 127.5 154.2 130.4 13.8 13.8 13.8 13.8
ResNet-101 44M 211.3 207.1 251.1 214.4 19.5 19.4 19.4 19.4
ViT-B 86M 229.8 225.8 252.3 229.3 17.8 17.2 17.2 17.2
Swin-B 87M 454.3 443.4 495.1 454.5 32.2 31.5 31.5 31.5
ConvNext-B 88M 509.0 508.1 562.5 517.2 33.7 33.7 33.7 33.7
Swin-L 196M 706.1 695.9 747.8 705.6 49.6 47.4 47.4 47.4
ConvNext-L 197M 804.0 793.6 849.3 802.5 50.4 50.4 50.4 50.4
ViT-L 304M 700.1 684.6 728.6 691.2 48.1 45.8 45.8 45.8
GPT-2 670M 641.2 606.1 638.7 617.3 67.7 62.8 62.8 62.8
GPT-2 1024M 746.0 683.9 737.1 710.7 78.6 71.9 71.9 71.9

TABLE 18: Training speed (tokens/s on each GPU) investigation of different optimizers in prevalent Megatron-LM framework
for efficient multi-node LLMs training with different model sizes and GPU number.

32× NVIDIA A800 Speed (tokens/s/GPU) Peak Memory (GB)
Model Adan AdamW LAMB AdaBelief Adan AdamW LAMB AdaBelief

MoE (8 × 0.1B) 58644.6 58369.4 58488.3 58698.5 19.6 19.5 19.5 19.5
MoE (8 × 0.3B) 24123.2 23872.2 24018.3 24007.5 49.3 49.0 49.0 49.0

16× NVIDIA A800 Speed (tokens/s/GPU) Peak Memory (GB)
Model Adan AdamW LAMB AdaBelief Adan AdamW LAMB AdaBelief

MoE (8 × 0.1B) 63073.8 62933.5 63024.9 62835.3 20.0 19.8 19.8 19.8
MoE (8 × 0.3B) 24953.9 24961.4 24897.7 24924.4 50.8 49.8 49.8 49.8

and 8× 0.6B (4B trainable parameters). These models were trained with sampled data comprising 10B, 30B, 100B, and 300B
tokens, respectively. In line with conventional practices for LLMs, our training protocol processed each data point exactly
once. This approach, typical for evaluating optimizer performance, aligns training loss with validation loss, providing a
clear measure of efficiency.

The results, as summarized in Table 15, indicate that Adan consistently outperforms the AdamW optimizer across all
configurations and data volumes. This improvement underscores Adan’s capacity for efficient parameter updates and its
utility in large-scale distributed training setups.

B.2 Detailed Comparison on ViTs

Besides AdamW, we also compare Adan with several other popular optimizers, including Adam, SGD-M, and LAMB, on
ViT-S. Table 16 shows that SGD, Adam, and LAMB perform poorly on ViT-S, which is also observed in the works [103],
[29]. These results demonstrate that the decoupled weight decay in Adan and AdamW is much more effective than 1)
the vanilla weight decay, namely the commonly used ℓ2 regularization in SGD, and 2) the one without any weight decay,
since as shown in Eqn. (6), the decoupled weight decay is a dynamic regularization along the training trajectory and could
better regularize the loss. Compared with AdamW, Adan’s advantages mainly come from its faster convergence speed. This
empirical evidence solidifies Adan as a superior choice for training ViTs, particularly when rapid convergence is essential.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 16

0.98 0.94 0.92

1.0 1 = 0.98

0.96

0.94

0.90

1.
0

3

83.65 83.67 83.68

83.73 83.72 83.70

83.69 83.59 83.75

1.0 2
0.98 0.97 0.95

1.0 3 = 0.9

0.98

0.94

0.92

1.
0

2

83.69 83.64 83.57

83.59 83.54 83.51

83.75 83.72 83.60

1.0 1

83.4

83.5

83.6

83.7

83.8

A
cc. (%

)

0.98 0.97 0.95

1.0 2 = 0.92

0.96

0.94

0.90

1.
0

3

83.68 83.52 83.45

83.70 83.58 83.50

83.75 83.72 83.60

1.0 1

Fig. 3: Effects of momentum coefficients (β1, β2, β3) to top-1 accuracy (%) of Adan on ViT-B under MAE training framework
(800 pretraining and 100 fine-tuning epochs on ImageNet).

B.3 Memory and Computation Time Comparison for Single Step
To comprehensively validate the computational efficiency and memory usage of the Adan optimizer, we conduct a detailed
analysis of its performance during single and distributed multi-GPU training setups. The detailed results are presented in
Table 17 and Table 18 for single and multiple GPU setups, respectively.

Single GPU Analysis: On a single GPU, we evaluated Adan across a diverse set of over 10 different models, including
both CNNs and transformers. For this experiment, peak memory usage and computational time were recorded over 200
training iterations. Despite Adan’s slightly increased computational complexity, the time differences were negligible. This
minimal impact on timing can be attributed to the highly parallel nature of GPU computations. Independent calculations,
such as those required for maintaining and computing the gradient difference in Adan, are efficiently parallelized, effectively
’hiding’ any added computational cost under normal GPU operation loads.

From a memory standpoint, small models showed little difference in peak memory usage. This consistency is largely
due to PyTorch’s memory management, which includes preemptive reservation of memory blocks to accommodate sudden
demands from user codes. For instance, although AdamW and Adan might use 768 MB and 900 MB respectively, PyTorch
often rounds these up to the nearest whole memory page, such as 1024 MB. This effect is more pronounced in smaller
models. However, as model sizes increase to a point where single-page memory reservations are insufficient, PyTorch’s
dynamic memory allocation starts to work, which could lead to small observable differences in memory usage. Nonetheless,
forward pass activations generally govern peak memory demands, and the additional memory required by Adan does not
significantly exacerbate these peak demands.

Multi-GPU Distributed Training: In a more complex multi-GPU setting, where we employ an 8-expert MoE LLM
architecture [101] with each expert having 0.1 billion parameters (totaling 1.3 billion parameters), we observed small
differences in both time and memory across GPUs. This can be attributed to the distribution of optimizer states across
multiple GPUs, which minimizes the impact of any single GPU’s additional memory load. Furthermore, the slight increase
in computation due to Adan’s operations is marginal compared to the substantial computations involved in forward and
backward propagation, as well as communication overheads between GPUs.

Overall, regardless of model size, the additional overhead Adan introduced by Adan is minimal regardless of single or
multi-GPU settings. However, the performance enhancements it provides are significant and cannot be overlooked.

B.4 Implementation Details of Adan
For fairness, in all experiments, we only replace the optimizer with Adan and tune the step size, warm-up epochs, and weight
decay while fixing the other hyper-parameters, e.g. data augmentation, ϵ for adaptive optimizers, and model parameters.
Moreover, to make Adan simple, in all experiments except Table 22 in Sec. B.5.4, we do not use the restart strategy. For the

large-batch training experiment, we use the sqrt rule to scale the learning rate: lr=
√

batch size
256 × 6.25e-3, and respectively set

warmup epochs {20, 40, 60, 100, 160, 200} for batch size bs = {1k, 2k, 4k, 8k, 16k, 32k}. For other remaining experiments,
we use the hyper-parameters: learning rate 1.5e-2 for ViT/Swin/ResNet/ConvNext and MAE fine-tuning, and 2.0e-3 for
MAE pre-training according to the official settings. We set β1 = 0.02, β2 = 0.08 and β3 = 0.01, and let weight decay be
0.02 unless noted otherwise. We clip the global gradient norm to 5 for ResNet and do not clip the gradient for ViT, Swin,
ConvNext, and MAE. We utilize the de-bias strategy for Adan to keep consistent with Adam-type optimizers.

B.5 Ablation Study
B.5.1 Robustness to in momentum coefficients
Here we choose MAE to investigate the effects of the momentum coefficients (βs) to Adan, since as shown in MAE, its
pre-training is actually sensitive to momentum coefficients of AdamW. To this end, following MAE, we pretrain and fine tune
ViT-B on ImageNet for 800 pretraining and 100 fine-tuning epochs. We also fix one of (β1, β2, β3) and tune others. Figure 3
shows that by only pretraining 800 epochs, Adan achieves 83.7%+ in most cases and outperforms the official accuracy
83.6% obtained by AdamW with 1600 pretraining epochs, indicating the robustness of Adan to βs. We also observe 1) Adan
is not sensitive to β2; 2) β1 has a certain impact on Adan, namely the smaller the (1.0 − β1), the worse the accuracy; 3)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 17

TABLE 19: Ablation study examining the training loss (measured by next token prediction loss where lower is better)
across different moments’ parameters in an MoE architecture (8 × 0.1B) using 3B tokens from RedPajama dataset. For both
the Adan and AdamW optimizers, the first-order momentum is represented as 1 − β1. The second-order momentum is
represented as 1− β3 for Adan and 1− β2 for AdamW.

Optimizer First-order
Momentum

Second-order
Momentum Training Loss Variance

AdamW 0.90 0.95 2.859

1.73e-3

AdamW 0.94 0.95 2.847
AdamW 0.98 0.95 2.972
AdamW 0.90 0.99 2.888
AdamW 0.94 0.99 2.870
AdamW 0.98 0.99 2.911

Adan 0.90 0.95 2.845

1.29e-3

Adan 0.94 0.95 2.835
Adan 0.98 0.95 2.857
Adan 0.90 0.99 2.861
Adan 0.94 0.99 2.870
Adan 0.98 0.99 2.858

TABLE 20: Ablation study investigating the components of the Adan optimizer. We report the training loss, measured by
next token prediction where a lower score indicates better performance, for an MoE architecture (8 × 0.1B) trained using 10B
tokens from the RedPajama dataset.

Optimizer Heavy-ball
Acceleration

Nesterov
Acceleration

Weight Decay
by Proximation Restart Training

Loss Improvement

AdamW " % % % 2.646 —
Adan % " % % 2.630 0.016
Adan % " " % 2.628 0.018
Adan % " " " 2.622 0.024

TABLE 21: Top-1 accuracy (%) of ViT-S on ImageNet trained
under Training Setting I and II. ∗ is reported in [18].

Training Training Setting I Training Setting II
epochs AdamW [21] Adan AdamW [21] Adan

150 76.4 80.2 78.3 79.6
300 77.9 81.1 79.9∗ 80.7

TABLE 22: Top-1 accuracy (%) of ViT-S and
ConvNext-T on ImageNet under Training Setting
II trained by 300 epochs.

ViT Small ConvNext Tiny

Adan w/o restart 80.71 81.38
Adan w/ restart 80.87 81.62

similar to findings of MAE, a small second-order coefficient (1.0− β3) can improve the accuracy. The smaller the (1.0− β3),
the more current landscape information the optimizer would utilize to adjust the coordinate-wise learning rate. Maybe the
complex pre-training task of MAE is preferred over local geometric information.

In addition, we also conduct an ablation study on large-language models to assess the robustness of the Adan optimizer
to variations in momentum coefficients. This study focus on examining the training loss, specifically next token prediction
loss where a lower value indicates better performance, across different momentum parameters in a Mixture of Experts (MoE)
architecture [101]. The architecture employed is an 8-expert head, each head with 0.1 billion parameters, and the dataset
used comprises 3 billion tokens from the RedPajama dataset [102]. For this study, the first-order momentum coefficient for
both Adan and AdamW optimizers was denoted as 1− β1, while the second-order momentum was represented as 1− β3

for Adan and 1− β2 for AdamW.
The results are shown in Table 19. Adan consistently achieved lower training loss compared to the default optimizer,

AdamW, in nearly all cases tested. This indicates not only superior performance but also a lower sensitivity to fluctuations in
the β parameters. Notably, since the epoch is set to 1 for the language model under consideration, the training loss effectively
represents the validation loss. The smaller variance in loss across different β’s settings with Adan further underscores its
robustness to changes in these parameters, highlighting its suitability for large model training.

B.5.2 Ablation Study on Adan’s Components
In efforts to understand the individual contributions of the components within the Adan optimizer, we conducted an
ablation study focused on an LLM with a Mixture of Experts (MoE) architecture [101]. This study employed an 8-expert
network, each with 0.1B parameters, trained using 10B tokens from the RedPajama dataset [102]. The objective was to
measure the training loss, utilizing next token prediction as the metric, where a lower score signifies improved performance.

The results of this study are presented in Table 20. Notably, the most significant performance improvement is observed
with our proposed reformulated Nesterov acceleration in Lemma 1, which outperformed the heavy-ball acceleration
employed by AdamW. The reduction in training loss with our reformulated Nesterov acceleration was 0.016, a substantial
enhancement compared to other components. The implementation of weight decay by proximation and the restart strategy

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 18

yielded improvements of 0.002 and 0.006 in training loss, respectively. It is important to note that, by default, Adan does
not employ the restart strategy. This observation allows us to conclude that the primary contribution to Adan’s performance
enhancement stems from the use of the improved Nesterov acceleration. This finding further validates the significance of the
Nesterov momentum component that we have introduced in our optimizer design.

B.5.3 Robustness to Training Settings
Many works [19], [4], [104], [70], [18] often preferably chose LAMB/Adam/SGD for Training Setting I and AdamW for
Training Setting II. Table 21 investigates Adan under both settings and shows its consistent improvement. Moreover, one can
also observe that Adan under Setting I largely improves the accuracy of Adan under Setting II. It actually surpasses the
best-known accuracy 80.4% on ViT-small in [104] trained by advanced layer scale strategy and stronger data augmentation.

B.5.4 Discussion on Restart Strategy
Here we investigate the performance Adan with and without restart strategy on ViT and ConvNext under 300 training
epochs. From the results in Table 22, one can observe that restart strategy slightly improves the test performance of Adan.
Thus, to make our Adan simple and avoid hyper-parameter tuning of the restart strategy (e.g., restart frequency), in all
experiments except Table 20 and Table 22, we do not use this restart strategy.

APPENDIX C
TECHNICAL PROOFS

We provide some notations that are frequently used throughout the paper. The scale c is in normal font. And the vector
is in bold lowercase. Give two vectors x and y, x ≥ y means that (x− y) is a non-negative vector. x/y or x

y represents
the element-wise vector division. x ◦ y means the element-wise multiplication, and (x)

2
= x ◦ x. ⟨·, ·⟩ is the inner product.

Given a non-negative vector n ≥ 0, we let ∥x∥2√n :=
〈
x,
(√

n+ ε
)
◦ x
〉
. Unless otherwise specified, ∥x∥ is the vector ℓ2

norm. Note that E(x) is the expectation of random vector x. For the functions f(·) and g(·), the notation f(ϵ) = O(g(ϵ))

means that ∃a > 0, such that f(ϵ)
g(ϵ) ≤ a,∀ϵ > 0. The notation f(ϵ) = Ω(g(ϵ)) means that ∃a > 0, such that f(ϵ)

g(ϵ) ≥ a,∀ϵ > 0.

And f(ϵ) = Θ(g(ϵ)) means that ∃b ≥ a > 0, such that a ≤ f(ϵ)
g(ϵ) ≤ b,∀ϵ > 0.

C.1 Proof of Lemma 1: equivalence between the AGD and AGD II

In this section, we show how to get AGD II from AGD. For convenience, we omit the noise term ζk. Note that, let α := 1−β1:

AGD:


gk = ∇f(θk − ηαmk−1)

mk = αmk−1 + gk

θk+1 = θk − ηmk

.

We can get:
θk+1 − ηαmk =θk − ηmk − ηαmk = θk − η(1 + α)(αmk−1 +∇f(θk − ηαmk−1))

=θk − ηαmk−1 − ηα2mk−1 − η(1 + α)(∇f(θk − ηαmk−1)).
(8)

Let {
θ̄k+1 := θk+1 − ηαmk,

m̄k := α2mk−1 + (1 + α)∇f(θk − ηαmk−1) = α2mk−1 + (1 + α)∇f(θ̄k)

Then, by Eq.(8), we have:
θ̄k+1 = θ̄k − ηm̄k. (9)

On the other hand, we have m̄k−1 = α2mk−2 + (1 + α)∇f(θ̄k−1) and :

m̄k − αm̄k−1 = α2mk−1 + (1 + α)∇f(θ̄k)− αm̄k−1

= (1 + α)∇f(θ̄k) + α2
(
αmk−2 +∇f(θ̄k−1)

)
− αm̄k−1

= (1 + α)∇f(θ̄k) + α
(
α2mk−2 + α∇f(θ̄k−1)− m̄k−1

)
= (1 + α)∇f(θ̄k) + α

(
α2mk−2 + α∇f(θ̄k−1)

)
− αm̄k−1

= (1 + α)∇f(θ̄k)− α∇f(θ̄k−1)

= ∇f(θ̄k) + α
(
∇f(θ̄k)−∇f(θ̄k−1)

)
.

(10)

Finally, due to Eq.(9) and Eq.(10), we have:{
m̄k = αm̄k−1 +

(
∇f(θ̄k) + α

(
∇f(θ̄k)−∇f(θ̄k−1)

))
θ̄k+1 = θ̄k − ηm̄k

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 19

C.2 Convergence Analysis with Lipschitz Gradient

We first provide several notations. Let Fk(θ) := Eζ [f(θ, ζ)] +
λk

2 ∥θ∥2√nk
, f(θ) := Eζ [f(θ, ζ)], and µ :=

√
2β3c∞/ε,

∥x∥2√nk
:= ⟨x, (

√
nk + ε) ◦ x⟩ , λk = λ(1− µ)

k
, θ̃k := (

√
nk + ε) ◦ θk.

Lemma 2. Assume that f(θ) := Eζ [f(θ, ζ)] is L-smooth. For

θk+1 = argmin
θ

(
λk

2
∥θ∥2√nk

+ f(θk) + ⟨uk,θ − θk⟩+
1

2η
∥θ − θk∥2√nk

)
.

With η ≤ min{ ε
3L ,

1
10λ}, define gfull

k := ∇f(θk), then we have:

Fk+1(θk+1) ≤ Fk(θk)−
η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2 + η

2ε

∥∥∥gfull
k − uk

∥∥∥2.
Proof. We denote pk := uk/

(√
nk + ε

)
. By the optimality condition of θk+1, we have

λkθk + pk =
λkθ̃k + uk√

nk + ε
=

1 + ηλk

η
(θk − θk+1). (11)

Then for η ≤ ε
3L , we have:

Fk+1(θk+1) ≤ f(θk) + ⟨∇f(θk),θk+1 − θk⟩+
L

2
∥θk+1 − θk∥2 +

λk+1

2
∥θk+1∥2√nk+1

(a)

≤f(θk) + ⟨∇f(θk),θk+1 − θk⟩+
L

2
∥θk+1 − θk∥2 +

λk

2
∥θk+1∥2√nk

(b)

≤Fk(θk) +

〈
θk+1 − θk, λkθk +

gfull
k√

nk + ε

〉
√
nk

+
L/ε+ λk

2
∥θk+1 − θk∥2√nk

=Fk(θk) +
L/ε+ λk

2
∥θk+1 − θk∥2√nk

+

〈
θk+1 − θk, λkθk + pk +

gfull
k − uk√
nk + ε

〉
√
nk

(c)
=Fk(θk) +

(
L/ε+ λk

2
− 1 + ηλk

η

)
∥θk+1 − θk∥2√nk

+

〈
θk+1 − θk,

gfull
k − uk√
nk + ε

〉
√
nk

(d)

≤Fk(θk) +

(
L/ε

2
− 1

η

)
∥θk+1 − θk∥2√nk

+
1

2η
∥θk+1 − θk∥2√nk

+
η

2ε

∥∥∥gfull
k − uk

∥∥∥2
≤Fk(θk)−

1

3η
∥θk+1 − θk∥2√nk

+
η

2ε

∥∥∥gfull
k − uk

∥∥∥2
≤Fk(θk)−

η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2 + η

2ε

∥∥∥gfull
k − uk

∥∥∥2,
where (a) comes from the fact λk+1(1− µ)−1 = λk and Proposition 3:

(√
nk+ε√

nk+1+ε

)
i
≥ 1− µ, which implies:

λk+1∥θk+1∥2√nk+1
≤ λk+1

1− µ
∥θk+1∥2√nk

= λk∥θk+1∥2√nk
,

and (b) is from:
∥θk+1∥2√nk

=
(
∥θk∥2√nk

+ 2 ⟨θk+1 − θk,θk⟩√nk
+ ∥θk+1 − θk∥2√nk

)
,

(c) is due to Eqn. (11), and for (d), we utilize:〈
θk+1 − θk,

gfull
k − uk√
nk + ε

〉
√
nk

≤ 1

2η
∥θk+1 − θk∥2√nk

+
η

2ε

∥∥∥gfull
k − uk

∥∥∥2,
the last inequality comes from the fact in Eqn. (11) and η ≤ 1

10λ , such that:

1

3η
∥(θk+1 − θk)∥2√nk

=
η

3(1 + ηλk)
2

〈
uk + λkθ̃k,

uk + λkθ̃k√
nk + ε

〉
≥ η

4c∞

∥∥∥uk + λkθ̃k

∥∥∥2.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 20

Theorem 1. Suppose Assumptions 1 and 2 hold. Let cl := 1
c∞

and cu := 1
ε . With

√
2β3c∞/ε ≪ 1,

η2 ≤ clβ
2
1

8c3uL
2
, max {β1, β2} ≤ clϵ

2

96cuσ2
, T ≥ max

{
24∆0

ηclϵ2
,
24cuσ

2

β1clϵ2

}
,

where ∆0 := F (θ0)− f∗ and f∗ := minθ Eζ [∇f(θ, ζ)], then we let uk := mk + (1− β1)vk and have:

1

T + 1

T∑
k=0

E
(∥∥∥uk + λkθ̃k

∥∥∥2) ≤ ϵ2,

and
1

T + 1

T∑
k=0

E
(∥∥∥mk − gfull

k

∥∥∥2) ≤ ϵ2

4
,

1

T + 1

T∑
k=0

E
(
∥vk∥2

)
≤ ϵ2

4
,

where gfull
k := Eζ [∇f(θk, ζ)]. Hence, we have:

1

T + 1

T∑
k=0

E

(∥∥∥∥∇θk

(
λk

2
∥θ∥2√nk

+ Eζ [∇f(θ, ζ)]

)∥∥∥∥2
)

≤ 4ϵ2.

Proof. We have: ∥∥∥uk − gfull
k

∥∥∥2 ≤ 2
∥∥∥mk − gfull

k

∥∥∥2 + 2(1− β1)
2∥vk∥2.

By Lemma 2, Lemma 5, and Lemma 6, we already have:

Fk+1(θk+1) ≤ Fk(θk)−
ηcl
4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcu

∥∥∥gfull
k −mk

∥∥∥2 + ηcu(1− β1)
2∥vk∥2, (12)

E
(∥∥∥mk+1 − gfull

k+1

∥∥∥2) ≤ (1− β1)E
(∥∥∥mk − gfull

k

∥∥∥2)+
(1− β1)

2
L2

β1
E
(
∥θk+1 − θk∥2

)
+ β2

1σ
2 (13)

E
(
∥vk+1∥2

)
≤ (1− β2)E

(
∥vk∥2

)
+ 2β2E

(∥∥∥gfull
k+1 − gfull

k

∥∥∥2)+ 3β2
2σ

2 (14)

Then by adding Eq.(12) with ηcu
β1

× Eq.(13) and ηcu(1−β1)
2

β2
× Eq.(14), we can get:

E(Φk+1) ≤ E

(
Φk − ηcl

4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcu
β1

(
(1− β1)

2
L2

β1
∥θk+1 − θk∥2 + β2

1σ
2

))

+
ηcu(1− β1)

2

β2

(
2β2L

2∥θk+1 − θk∥2 + 3β2
2σ

2
)

≤E

(
Φk − ηcl

4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcuL
2

(
(1− β1)

2

β2
1

+ 2(1− β1)
2

)
∥θk+1 − θk∥2

)
+ (β1 + 3β2)ηcuσ

2

(a)

≤E
(
Φk − ηcl

4

∥∥∥uk + λkθ̃k

∥∥∥2 + ηcuL
2

β2
1

∥θk+1 − θk∥2
)
+ 4βmηcuσ

2

(b)

≤E
(
Φk +

(
(ηcu)

3L2

β2
1

− ηcl
4

)∥∥∥uk + λkθ̃k

∥∥∥2)+ 4βmηcuσ
2

≤E
(
Φk − ηcl

8

∥∥∥uk + λkθ̃k

∥∥∥2)+ 4βmηcuσ
2,

where we let:

Φk := Fk(θk)− f∗ +
ηcu
β1

∥∥∥mk − gfull
k

∥∥∥2 + ηcu(1− β1)
2

β2
∥vk∥2,

βm = max {β1, β2} ≤ 2

3
, η2 ≤ clβ

2
1

8c3uL
2
,

and for (a), when β1 ≤ 2
3 , we have:

(1− β1)
2

β2
1

+ 2(1− β1)
2
<

1

β2
1

,

and (b) is due to Eq.(11) from Lemma 2. And hence, we have:

T∑
k=0

E(Φk+1) ≤
T∑

k=0

E(Φk)−
ηcl
8

T∑
k=0

∥∥∥uk + λkθ̃k

∥∥∥2 + (T + 1)4ηcuβmσ2.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 21

Hence, we can get:

1

T + 1

T∑
k=0

E
(∥∥∥uk + λkθ̃k

∥∥∥2) ≤ 8Φ0

ηclT
+

32cuβσ
2

cl
=

8∆0

ηclT
+

8cuσ
2

β1clT
+

32cuβmσ2

cl
≤ ϵ2,

where

∆0 := F (θ0)− f∗, βm ≤ clϵ
2

96cuσ2
, T ≥ max

{
24∆0

ηclϵ2
,
24cuσ

2

β1clϵ2

}
.

We finish the first part of the theorem. From Eq.(13), we can conclude that:

1

T + 1

T∑
k=0

E
(∥∥∥mk − gfull

k

∥∥∥2) ≤ σ2

βT
+

L2η2c2uϵ
2

β2
1

+ β1σ
2 <

ϵ2

4
.

From Eq.(14), we can conclude that:

1

T + 1

T∑
k=0

E
(
∥vk∥2

)
≤ 2L2η2c2uϵ

2 + 3β2σ
2 <

ϵ2

4
.

Finally we have:
1

T + 1

T∑
k=0

E

(∥∥∥∥∇θk

(
λk

2
∥θ∥2√nk

+ Eζ [f(θk, ζ)]

)∥∥∥∥2
)

≤ 1

T + 1

(
T∑

k=0

E
(
2
∥∥∥uk + λkθ̃k

∥∥∥2 + 4
∥∥∥mk − gfull

k

∥∥∥2 + 4∥vk∥2
))

≤ 4ϵ2.

Now, we have finished the proof.

C.3 Faster Convergence with Lipschitz Hessian

For convenience, we let λ = 0, β1 = β2 = β and β3 = β2 in the following proof. To consider the weight decay term in the
proof, we refer to the previous section for more details. For ease of notation, we denote x instead of θ the variable needed to
be optimized in the proof, and abbreviate Eζ [f(θk, ζ)] as f(θk).

C.3.1 Reformulation

Algorithm 2: Nesterov Adaptive Momentum Estimation Reformulation
Input: initial point θ0, stepsize η, average coefficients β, and ε.

1 begin
2 while k < K do
3 get stochastic gradient estimator gk at xk;
4 m̂k = (1− β)m̂k−1 + β(gk + (1− β)(gk − gk−1));
5 nk =

(
1− β2

)
nk−1 + β2(gk−1 + (1− β)(gk−1 − gk−2))

2;
6 ηk = η/

(√
nk + ε

)
;

7 yk+1 = xk − ηkβgk;
8 xk+1 = yk+1 + (1− β)[(yk+1 − yk) + (ηk−1 − ηk)(m̂k−1 − βgk−1)];

9 if (k + 1)
∑k

t=0

∥∥∥(√nt + ε
)1/2 ◦ (yt+1 − yt)

∥∥∥2 ≥ R2 then
10 get stochastic gradient estimator g0 at xk+1;
11 m̂0 = g0, n0 = g2

0, x0 = y0 = xk+1, x1 = y1 = x0 − η m̂0√
n0+ε , k = 1;

12 end if
13 end while

14 K0 = argmin⌊K
2 ⌋≤k≤K−1

∥∥∥(√nk + ε
)1/2 ◦ (yk+1 − yk)

∥∥∥;

15 end
Output: x̄ := 1

K0

∑K0

k=1 xk

We first prove the equivalent form between Algorithm 1 and Algorithm 2. The main iteration in Algorithm 1 is:
mk = (1− β)mk−1 + βgk,

vk = (1− β)vk−1 + β((gk − gk−1)),

xk+1 = xk − ηk ◦ (mk + (1− β)vk).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 22

Let m̂k := mk + (1− β)vk, we can simplify the variable:{
m̂k = (1− β)m̂k−1 + β(gk + (1− β)(gk − gk−1)),

xk+1 = xk − ηk ◦ m̂k.

We let yk+1 := xk+1 + ηk(m̂k − βgk), then we can get:

yk+1 = xk+1 + ηkm̂k − βηkgk = xk+1 + xk − xk+1 − βηkgk = xk − βηkgk.

On one hand, we have: xk+1 = xk − ηkm̂k = yk+1 − ηk(m̂k − βgk). On the other hand:

ηk(m̂k − βgk) =(1− β)ηk(m̂k−1 + β(gk − gk−1)) = (1− β)ηk(m̂k−1 + β(gk − gk−1))

=(1− β)ηk

(
xk−1 − xk

ηk−1
+ β(gk − gk−1)

)
=(1− β)

ηk

ηk−1
(xk−1 − xk + βηk−1(gk − gk−1))

=(1− β)
ηk

ηk−1
(yk − xk + βηk−1gk)

=(1− β)

[
ηk

ηk−1
(yk − yk+1 − β(ηk − ηk−1)gk)

]
=(1− β)

[
(yk − yk+1) +

ηk − ηk−1

ηk−1
(yk − yk+1 − βηkgk)

]
=(1− β)

[
(yk − yk+1) +

ηk − ηk−1

ηk−1
(yk − xk)

]
=(1− β)[(yk − yk+1) + (ηk − ηk−1)(mk−1 − βgk−1)].

Hence, we can conclude that:

xk+1 = yk+1 + (1− β)[(yk+1 − yk) + (ηk−1 − ηk)(m̂k−1 − βgk−1)].

The main iteration in Algorithm 1 becomes:
yk+1 = xk − βηkgk,

xk+1 = yk+1 + (1− β)

[
(yk+1 − yk) +

ηk−1 − ηk

ηk−1
(yk − xk)

]
.

(15)

C.3.2 Auxiliary Bounds

We first show some interesting property. Define K to be the iteration number when the ’if condition’ triggers, that is,

K := min
k

{
k

∣∣∣∣∣k
k−1∑
t=0

∥∥∥(√nt + ε)1/2 ◦ (yt+1 − yt)
∥∥∥2 > R2

}
.

Proposition 1. Given k ≤ K and β ≤ ε/
(√

2c∞ + ε
)
, we have:∥∥∥(√nk + ε)

1/2 ◦ (xk − yk)
∥∥∥ ≤ R.

Proof. First of all, we let n̂k :=
(√

nk + ε
)1/2

. Due to Proposition 3, we have:(√
nk−1 + ε
√
nk + ε

)
i

∈

[
1−

√
2βc∞
ε

, 1 +

√
2βc∞
ε

]
,

then, we get:

n̂k ≤

(
1−

√
2βc∞
ε

)−1/2

n̂k−1 ≤ (1− β)
−1/4

n̂k−1,

where we use the fact β ≤ ε/
(
2
√
2c∞ + ε

)
.For any 1 ≤ k ≤ K, we have:

∥n̂k ◦ (yk − yk−1)∥2 ≤ (1− β)
−1/2∥n̂k−1 ◦ (yk − yk−1)∥2 ≤ (1− β)

−1
k−1∑
t=1

∥n̂t ◦ (yt+1 − yt)∥2 ≤ R2

k(1− β)
,

hence, we can conclude that:

∥n̂k ◦ (yk − yk−1)∥2 ≤ R2

k(1− β)
. (16)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 23

On the other hand, by Eq.(15), we have:

xk+1 − yk+1 = (1− β)

[
(yk+1 − yk) +

ηk − ηk−1

ηk−1
(xk − yk)

]
,

and hence,

∥n̂k ◦ (xk − yk)∥ ≤ (1− β)

[
∥n̂k ◦ (yk − yk−1)∥+

∥∥∥∥ηk−1 − ηk−2

ηk−2

∥∥∥∥
∞
∥n̂k ◦ (xk−1 − yk−1)∥

]
(a)

≤
√
1− β

R√
k
+ (1− β)

√
2β2c∞
ε

(
1−

√
2β2c∞
ε

)−1/2

∥n̂k−1 ◦ (xk−1 − yk−1)∥

≤
√
1− β

R√
k
+ β(1− β)

3/4∥n̂k−1 ◦ (xk−1 − yk−1)∥

≤
√
1− βR

(
1√
k
+

β(1− β)
3/4

√
k − 1

+ · · ·+
(
β(1− β)

3/4
)k−1

)
(b)

≤
√
1− βR

(
k−1∑
t=1

1

t2

)1/4(k∑
t=0

(
β(1− β)

3/4
)4t/3)3/4

(c)
< R,

where (a) comes from Eq.(16) and the proposition 3, (b) is the application of Hölder’s inequality and (c) comes from the facts
when β ≤ 1/2:

∞∑
t=1

1

t2
=

π2

6
,
√
1− β

(
k∑

t=0

(
β(1− β)

3/4
)4t/3)3/4

≤
(

(1− β)2/3

1− β4/3(1− β)

)3/4

.

C.3.3 Decrease of One Restart Cycle

Lemma 3. Suppose that Assumptions 1-2 hold. Let R = O
(
ϵ0.5
)
, β = O

(
ϵ2
)
, η = O

(
ϵ1.5
)
, K ≤ K = O

(
ϵ−2
)
. Then we have:

E (f(yK)− f(x0)) = −O
(
ϵ1.5
)
. (17)

Proof. Recall Eq.(15) and denote gfull
k := ∇f(θk) for convenience:

yk+1 = xk − βηk ◦
(
gfull
k + ξk

)
xk+1 − yk+1 = (1− β)

[
(yk+1 − yk) +

(
ηk − ηk−1

ηk−1
◦ (xk − yk)

)]
,

(18)

In this proof, we let n̂k :=
(√

nk + ε
)1/2

, and hence ηk = η/n̂2
k. On one hand, we have:

E(f(xk)− f(yk)) ≤ E
(
⟨∇f(yk),xk − yk⟩+

L

2
∥xk − yk∥2

)
=E

(
⟨gk,xk − yk⟩+ ⟨∇f(yk)−∇f(xk),xk − yk⟩+

L

2
∥xk − yk∥2

)
≤E

(
⟨gk,xk − yk⟩+

1

2L
∥∇f(yk)−∇f(xk)∥2 +

L

2
∥xk − yk∥2 +

L

2
∥xk − yk∥2

)
≤E

(
⟨gk,xk − yk⟩+

3L

2
∥xk − yk∥2

)
=E

(
−
〈
yk+1 − xk

βηk
+ ξk,xk − yk

〉
+

3L

2
∥xk − yk∥2

)
=E

(
1

ηβ

〈
n̂2
k ◦ (yk+1 − xk),yk − xk

〉
+

3L

2
∥xk − yk∥2

)
(a)

≤ E
(

1

2ηβ

(
∥n̂k ◦ (yk+1 − xk)∥2 + ∥n̂k ◦ (yk − xk)∥2 − ∥n̂k ◦ (yk+1 − yk)∥2

)
+

3L

2
∥xk − yk∥2

)
(b)

≤ E
(

1

2ηβ

(
∥n̂k ◦ (yk+1 − xk)∥2 − ∥n̂k ◦ (yk+1 − yk)∥2

)
+

1 + β/2

2ηβ
∥n̂k ◦ (yk − xk)∥2

)

(19)

where (a) comes from the following facts, and in (b), we use 3Lη ≤ ε
2 :

2
〈
n̂2
k ◦ (yk+1 − xk),yk − xk

〉
= ∥n̂k ◦ (yk+1 − xk)∥2 + ∥n̂k ◦ (yk − xk)∥2 − ∥n̂k ◦ (yk+1 − yk)∥2.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 24

On the other hand, by the L-smoothness condition, for 1 ≤ k ≤ K, we have:

E (f(yk+1)− f(xk)) ≤E
(
⟨gk,yk+1 − xk⟩+

L

2
∥yk+1 − xk∥2

)
=E

(
−
〈
yk+1 − xk

βηk
+ ξk,yk+1 − xk

〉
+

L

2
∥yk+1 − xk∥2

)
(a)

≤ E
(
− 1

ηβ
∥n̂k ◦ (yk+1 − xk)∥2 +

L

2
∥yk+1 − xk∥2

)
+

ηβσ2

ε

≤E
(
− 1

ηβ
∥n̂k ◦ (yk+1 − xk)∥2 +

L

2ε
∥n̂k ◦ (yk+1 − xk)∥2

)
+

ηβσ2

ε

≤E
(
− 1

2ηβ
∥n̂k ◦ (yk+1 − xk)∥2

)
+

ηβσ2

ε
,

(20)

where (a) comes from the facts: E (⟨ξk,yk+1 − xk⟩) = E (⟨ξk,xk − βηk ◦ (gk + ξk)⟩) = E (⟨ξk, βηk ◦ ξk⟩) ≤ ηβσ2

ε . and the
last inequality is due to Lη ≤ ε. By combing Eq.(19) and Eq.(20), we have:

E (f(yk+1)− f(yk)) ≤ E
(
− 1

2ηβ
∥n̂k ◦ (yk+1 − yk)∥2 +

1 + β/2

2ηβ
∥n̂k ◦ (yk − xk)∥2

)
+

ηβσ2

ε
(a)

≤ E
(
− 1

2ηβ
∥n̂k ◦ (yk+1 − yk)∥2 +

1− β/2− β2/2

2ηβ
∥n̂k−1 ◦ (yk − yk−1)∥2

)
+

4β2R2c2∞
ηε2

+
ηβσ2

ε
,

where (a) comes from the following fact, and note that by Proposition 1 we already have n̂k ≤ (1− β)
−1/4

n̂k−1:

∥n̂k ◦ (xk − yk)∥2 ≤ (1− β)
2

[
(1 + α)∥n̂k ◦ (yk − yk−1)∥2 + (1 +

1

α
)β̂2∥n̂k ◦ (xk−1 − yk−1)∥2

]
≤(1− β)

3/2

[
(1 + α)∥n̂k−1 ◦ (yk − yk−1)∥2 + (1 +

1

α
)β̂2∥n̂k−1 ◦ (xk−1 − yk−1)∥2

]
≤(1− β)∥n̂k−1 ◦ (yk − yk−1)∥2 +

β̂2(1− β)3/2

1− (1− β)1/2
∥n̂k−1 ◦ (xk−1 − yk−1)∥2

≤(1− β)∥n̂k−1 ◦ (yk − yk−1)∥2 +
2β̂2

β
∥n̂k−1 ◦ (xk−1 − yk−1)∥2

≤(1− β)∥n̂k−1 ◦ (yk − yk−1)∥2 + 4β3R2c2∞/ε2,

(21)

where we let β̂ :=
√
2β2c∞/ε, α = (1− β)−1/2 − 1, and the last inequality we use the results in Proposition 1. Summing

over k = 2, · · · ,K − 1, and note that y1 = x1, and hence we have E (f(y2)− f(x1)) = E (f(y2)− f(y1)) ≤ ηβσc∞/
√
ε

due to Eq. (20), then we get:

E (f(yK)− f(y1)) ≤ E

(
− 1

4η

K−1∑
t=1

∥n̂k ◦ (yt+1 − yt)∥2
)

+
4Kβ2R2c2∞

ηε2
+

Kηβσ2

ε
.

On the other hand, similar to the results given in Eq.(20), we have:

E (f(y1)− f(y0)) = E (f(x1)− f(x0)) ≤ E
(
− 1

2η
∥n̂k ◦ (y1 − y0)∥2

)
+

ησ2

ε
.

Therefore, using βK = O(1) and the restart condition K
∑K−1

t=0

∥∥(√nt + ε)1/2 ◦ (yt+1 − yt)
∥∥2 ≥ R2, we can get:

E (f(yK)− f(y0)) ≤ E

(
− 1

4η

K−1∑
t=0

∥n̂k ◦ (yk+1 − yk)∥2
)

+
4Kβ2R2c2∞

ηε2
+

(Kβ + 1)ησ2

ε

≤− R2

4Kη
+

4Kβ2R2c2∞
ηε2

+
(Kβ + 1)ησ2

ε
= −O

(
R2

Kη
− βR2

η
− η

)
= −O

(
ϵ1.5
)
.

Now, we finish the proof of this claim.

C.3.4 Gradient in the last Restart Cycle

Before showing the main results, we first provide several definitions. Note that, for any k < K we already have:

(ε)1/2∥yk − y0∥ ≤ (ε)1/2

√√√√k

k−1∑
t=0

∥yt+1 − yt∥2 ≤ R.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 25

and we have:
E (∥xk − x0∥) ≤ E (∥yk − xk∥+ ∥yk − x0∥) ≤

2R

ε1/2
, (22)

where we utilize the results from Proposition 1. For each epoch, denote H := ∇2f(x0). We then define:

h(y) :=
〈
gfull
0 ,y − x0

〉
+

1

2
(y − x0)

⊤
H(y − x0).

Recall the Eq. (15): 
yk+1 = xk − βηk ◦

(
gfull
k + ξk

)
= xk − βηk ◦ (∇h(xk) + δk + ξk)

xk+1 − yk+1 = (1− β)

[
(yk+1 − yk) +

(
ηk − ηk−1

ηk−1
◦ (xk − yk)

)]
,

(23)

where we let δk := gfull
k −∇h(xk), and we can get that:

E (∥δk∥) = E
(∥∥∥gfull

k − gfull
0 −H(xk − x0)

∥∥∥)
=E

(∥∥∥∥(∫ 1

0

∇2h(x0 + t(xk − x0))−H

)
(xk − x0)dt

∥∥∥∥) ≤ ρ

2
E
(
∥xk − x0∥2

)
≤ 2ρR2

ε
.

(24)

Iterations in Eq.(23) can be viewed as applying the proposed optimizer to the quadratic approximation h(x) with the
gradient error δk, which is in the order of O

(
ρR2/ε

)
.

Lemma 4. Suppose that Assumptions 1-3 hold. Let B = O
(
ϵ0.5
)
, β = O

(
ϵ2
)
, η = O

(
ϵ1.5
)
, K ≤ K = O

(
ϵ−2
)
. Then we have:

E (∥∇f(x̄)∥) = O(ϵ), where x̄ :=
1

K0 − 1

K0∑
k=1

xk.

Proof. Since h(·) is quadratic, then we have:

E (∥∇h(x̄)∥) = E

(∥∥∥∥∥ 1

K0 − 1

K0∑
k=1

∇h(xk)

∥∥∥∥∥
)

=
1

K0 − 1
E

∥∥∥∥∥
K0∑
k=1

(βηk)
−1 ◦ (yk+1 − xk) + ξk + δk

∥∥∥∥∥
≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

(βηk)
−1 ◦ (yk+1 − xk)

∥∥∥∥∥+ 1

(K0 − 1)
E

∥∥∥∥∥
K0∑
k=1

ξk

∥∥∥∥∥+ 1

(K0 − 1)
E

∥∥∥∥∥
K0∑
k=1

δk

∥∥∥∥∥
(a)

≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

(ηk)
−1 ◦ (yk+1 − xk)

∥∥∥∥∥+ σ√
K0 − 1

+
2ρR2

ε

=
1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

yk+1 − yk − (1− β)(yk − yk−1)

ηk
−(1−β)

ηk−1 − ηk−2

ηk−2ηk
(xk−1 − yk−1)

∥∥∥∥∥
+

σ√
K0 − 1

+
2ρR2

ε

(b)

≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

yk+1 − yk − (1− β)(yk − yk−1)

ηk

∥∥∥∥∥+ 2βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

(c)

≤ 1

(K0 − 1)β
E

∥∥∥∥∥
K0∑
k=1

(
yk+1 − yk

ηk
− (1− β)(yk − yk−1)

ηk−1

)∥∥∥∥∥+ 4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

≤ 1

(K0 − 1)β
E
∥∥∥∥yK0

− yK0−1

ηK0

∥∥∥∥+ 1

(K0 − 1)
E

∥∥∥∥∥
K0−1∑
k=1

yk+1 − yk

ηk

∥∥∥∥∥+ 4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

(d)

≤ 1

(K0 − 1)
E

∥∥∥∥∥
K0∑
k=1

yk+1 − yk

ηk

∥∥∥∥∥+ 4R
√
c∞

βηK2
+

4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

≤
√
2c∞
ηK

E

∥∥∥∥∥
K0∑
k=1

(
√
nk + ε)

1/2 ◦ (yk+1 − yk)

∥∥∥∥∥+ 4R
√
c∞

βηK2
+

4βc1.5∞ B

ηε
+

σ√
K0 − 1

+
2ρR2

ε

≤
√
2c∞R

ηK
+

4R
√
c∞

βηK2
+

4βc1.5∞ R

ηε
+

σ√
K0 − 1

+
2ρR2

ε

=O
(

R

ηK
+

βR

η
+

1√
K

+R2

)
= O(ϵ),

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 26

where (a) is due to the independence of ξk’s and Eq.(24), (b) comes from Propositions 1 and 2:∥∥∥∥ηk−1 − ηk−2

ηk−2ηk
(xk−1 − yk−1)

∥∥∥∥ ≤
√
nk + ε

η
(√

nk−1 + ε
)1/2 ∥∥∥∥ηk−1 − ηk−2

ηk−2

∥∥∥∥
∞
∥n̂k−1 ◦ (xk−1 − yk−1)∥

≤
(√

nk + ε
)1/2

η

√
2β2c∞
ε

(
1−

√
2β2c∞
ε

)−1/2

R ≤ (c∞ + ε)
1/2

η

√
2β2c∞
ε

R

(1− β)1/4
≤
(

1

1− β

)1/4
2β2c1.5∞ R

ηε
,

we use the following bounds in (c):∥∥∥∥ (yk − yk−1)

ηk−1
− (yk − yk−1)

ηk

∥∥∥∥ =

∥∥∥∥ηk − ηk−1

ηk−1ηk
(yk − yk−1)

∥∥∥∥
≤
(√

nk−1 + ε
)1/2

η

∥∥∥∥ηk − ηk−1

ηk

∥∥∥∥
∞

∥∥∥(√nk−1 + ε)
1/2 ◦ (yk − yk−1)

∥∥∥
≤
(√

nk−1 + ε
)1/2

η

√
2β2c∞
ε

R

k
≤ (c∞ + ε)

1/2

η

√
2β2c∞
ε

R

k
≤ 2β2c1.5∞ R

ηεk
,

(d) is implied by K0 = argmin⌊K
2 ⌋≤k≤K−1

∥∥∥(√nk + ε
)1/2 ◦ (yk+1 − yk)

∥∥∥ and restart condition:∥∥∥∥yK0
− yK0−1

ηK0

∥∥∥∥2 ≤
√
nK0

+ ε

η2

∥∥∥(√nK0
+ ε
)1/2 ◦ (yK0

− yK0−1)
∥∥∥2

∥∥∥(√nK0
+ ε
)1/2 ◦ (yK0

− yK0−1)
∥∥∥2 ≤ 1

K − ⌊K/2⌋

K−1∑
k=⌊K/2⌋

∥∥∥(√nk + ε)
1/2 ◦ (yk+1 − yk)

∥∥∥2
≤ 1

K − ⌊K/2⌋

K∑
k=1

∥∥∥(√nk + ε)
1/2 ◦ (yk+1 − yk)

∥∥∥2 ≤ 1

K − ⌊K/2⌋
R2

K
≤ 2R2

K2
.

Finally, we have:

E (∥∇f(x̄)∥) = E (∥∇h(x̄)∥) + E (∥∇f(x̄)−∇h(x̄)∥) = O(ϵ) +
2ρR2

ε
= O(ϵ),

where we use the results from Eq.(24), namely:

E (∥∇f(x̄)−∇h(x̄)∥) = E
(∥∥∥∇f(x̄)− gfull

0 −H(x̄− x0)
∥∥∥) ≤ ρ

2
E
(
∥x̄− x0∥2

)
,

and we also note that, by Eq.(22):

E ∥x̄− x0∥ ≤ 1

K0 − 1

K0∑
k=1

E ∥xk − x0∥ ≤ 2R

ε1/2
.

C.3.5 Proof for Main Theorem

Theorem 2. Suppose that Assumptions 1-3 hold. Let B = O
(
ϵ0.5
)
, β = O

(
ϵ2
)
, η = O

(
ϵ1.5
)
, K ≤ K = O

(
ϵ−2
)
. Then Algorithm

1 find an ϵ-approximate first-order stationary point within at most O
(
ϵ−3.5

)
iterations. Namely, we have:

E (f(yK)− f(x0)) = −O
(
ϵ1.5
)
, E (∥∇f(x̄)∥) = O(ϵ).

Proof. Note that at the beginning of each restart cycle in Algorithm 2, we set x0 to be the last iterate xK in the previous
restart cycle. Due to Lemma 3, we already have:

E (f(yK)− f(x0)) = −O
(
ϵ1.5
)
.

Summing this inequality over all cycles, say N total restart cycles, we have:

min
x

f(x)− f(xinit) = −O
(
Nϵ1.5

)
,

Hence, the Algorithm 2 terminates within at most O
(
ϵ−1.5∆f

)
restart cycles, where ∆f := f(xinit)−minx f(x). Note that

each cycle contain at most K = O
(
ϵ−2
)

iteration step, therefore, the total iteration number must be less than O
(
ϵ−3.5∆f

)
.

On the other hand, by Lemma 4, in the last restart cycle, we have:

E (∥∇f(x̄)∥) = O(ϵ).

Now, we obtain the final conclusion for the theorem.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 27

C.4 Auxiliary Lemmas

Proposition 2. If Assumption 2 holds. We have:

∥mk∥∞ ≤ c∞, ∥nk∥∞ ≤ c2∞.

Proof. By the definition of mk, we can have that:

mk =

k∑
t=0

ck,tgt,

where

ck,t =


β1(1− β1)

(k−t) when t > 0,

(1− β1)
k when t = 0.

Similar, we also have:

nk =

k∑
t=0

c′k,t(gt + (1− β2)(gt − gt−1))
2
,

where

c′k,t =


β3(1− β3)

(k−t) when t > 0,

(1− β3)
k when t = 0.

If is obvious that:
k∑

t=0

ck,t = 1,

k∑
t=0

c′k,t = 1,

hence, we get:

∥mk∥∞ ≤
k∑

t=0

ck,t∥gt∥∞,

∥nk∥∞ ≤
k∑

t=0

c′k,t∥gt + (1− β2)(gt − gt−1)∥2∞ ≤ c2∞.

Proposition 3. If Assumption 2 holds, we have: ∥∥∥∥ηk − ηk−1

ηk−1

∥∥∥∥
∞

≤
√
2β3c∞
ε

.

Proof. Give any index i ∈ [d] and the definitions of ηk, we have:∣∣∣∣(ηk − ηk−1

ηk−1

)
i

∣∣∣∣ = ∣∣∣∣(√
nk−1 + ε
√
nk + ε

)
i

− 1

∣∣∣∣ = ∣∣∣∣(√
nk−1 −

√
nk√

nk + ε

)
i

∣∣∣∣.
Note that, by the definition of nk, we have:∣∣∣∣(√

nk−1 −
√
nk√

nk + ε

)
i

∣∣∣∣ ≤
∣∣∣∣∣
(√

|nk−1 − nk|√
nk + ε

)
i

∣∣∣∣∣
=
√

β3


√∣∣∣nk−1 − (gk + (1− β2)(gk − gk−1))

2
∣∣∣

√
nk + ε


i

≤
√
2β3c∞
ε

,

hence, we have: ∣∣∣∣(ηk − ηk−1

ηk−1

)
i

∣∣∣∣ ∈ [0, √2β3c∞
ε

]
.

We finish the proof.

Lemma 5. Consider a moving average sequence:

mk = (1− β)mk−1 + βgk,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 28

where we note that:
gk = Eζ [∇f(θk, ζ)] + ξk,

and we denote gfull
k := Eζ [∇f(θk, ζ)] for convenience. Then we have:

E
(∥∥∥mk − gfull

k

∥∥∥2) ≤ (1− β)E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+
(1− β)

2
L2

β
E
(
∥θk−1 − θk∥2

)
+ β2σ2.

Proof. Note that, we have:

mk − gfull
k =(1− β)

(
mk−1 − gfull

k−1

)
+ (1− β)gfull

k−1 − gfull
k + βgk

=(1− β)
(
mk−1 − gfull

k−1

)
+ (1− β)

(
gfull
k−1 − gfull

k

)
+ β

(
gk − gfull

k

)
.

Then, take expectation on both sides:

E
(∥∥∥mk − gfull

k

∥∥∥2)
=(1− β)

2E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+ (1− β)
2E
(∥∥∥gfull

k−1 − gfull
k

∥∥∥2)+ β2σ2+

2(1− β)
2E
(〈

mk−1 − gfull
k−1,g

full
k−1 − gfull

k

〉)
≤
(
(1− β)

2
+ (1− β)

2
a
)
E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+(
1 +

1

a

)
(1− β)

2E
(∥∥∥gfull

k−1 − gfull
k

∥∥∥2)+ β2σ2

(a)

≤ (1− β)E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+
(1− β)

2

β
E
(∥∥∥gfull

k−1 − gfull
k

∥∥∥2)+ β2σ2

≤(1− β)E
(∥∥∥mk−1 − gfull

k−1

∥∥∥2)+
(1− β)

2
L2

β
E
(
∥θk−1 − θk∥2

)
+ β2σ2,

where for (a), we set a = β
1−β .

Lemma 6. Consider a moving average sequence:

vk = (1− β)vk−1 + β(gk − gk−1),

where we note that:
gk = Eζ [∇f(θk, ζ)] + ξk,

and we denote gfull
k := Eζ [f(θk, ζ)] for convenience. Then we have:

E
(
∥vk∥2

)
≤ (1− β)E

(
∥vk−1∥2

)
+ 2βE

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 3β2σ2.

Proof. Take expectation on both sides:

E
(
∥vk∥2

)
= (1− β)

2E
(
∥vk−1∥2

)
+ β2E

(
∥gk − gk−1∥2

)
+ 2β(1− β)E(⟨vk−1,gk − gk−1⟩)

(a)
=(1− β)

2E
(
∥vk−1∥2

)
+ β2E

(
∥gk − gk−1∥2

)
+ 2β(1− β)E

(〈
vk−1,g

full
k − gk−1

〉)
(b)

≤(1− β)
2E
(
∥vk−1∥2

)
+ 2β2E

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 2β(1− β)E
(〈

vk−1,g
full
k − gk−1

〉)
+ 3β2σ2

(c)

≤(1− β)
2E
(
∥vk−1∥2

)
+ 2β2E

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 2β(1− β)E
(〈

vk−1,g
full
k − gfull

k−1

〉)
+ 3β2σ2

(d)

≤ (1− β)E
(
∥vk−1∥2

)
+ 2βE

(∥∥∥gfull
k − gfull

k−1

∥∥∥2)+ 3β2σ2,

where for (a), we utilize the independence between gk and vk−1, while for (b):

E
(
∥gk − gk−1∥2

)
≤ E

(∥∥∥gk − gfull
k

∥∥∥2)+ 2E
(∥∥∥gfull

k−1 − gk−1

∥∥∥2)+ 2E
(∥∥∥gfull

k − gfull
k−1

∥∥∥2),

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024 29

for (c), we know:

E
(〈

vk−1,g
full
k−1 − gk−1

〉)
= E

(〈
(1− β)vk−2 + β(gk−1 − gk−2),g

full
k−1 − gk−1

〉)
=E
(〈

(1− β)vk−2 − βgk−2,g
full
k−1 − gk−1

〉)
+ βE

(〈
gk−1 − gfull

k−1 + gfull
k−1,g

full
k−1 − gk−1

〉)
=− βE

(∥∥∥gfull
k−1 − gk−1

∥∥∥2),
and thus E

(〈
vk−1,g

full
k − gk−1

〉)
= E

(〈
vk−1,g

full
k − gfull

k−1

〉)
− βE

(∥∥∥gfull
k−1 − gk−1

∥∥∥2). Finally, for (d), we use:

2E
(〈

vk−1,g
full
k − gfull

k−1

〉)
≤ E

(
∥vk−1∥2

)
+ E

(∥∥∥gfull
k − gfull

k−1

∥∥∥2).

