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Abstract. The scarcity of class-labeled data is a ubiquitous bottleneck
in many machine learning problems. While abundant unlabeled data
typically exist and provide a potential solution, it is highly challenging
to exploit them. In this paper, we address this problem by leveraging
Positive-Unlabeled (PU) classification and the conditional generation with
extra unlabeled data simultaneously. We present a novel training frame-
work to jointly target both PU classification and conditional generation
when exposed to extra data, especially out-of-distribution unlabeled data,
by exploring the interplay between them: 1) enhancing the performance of
PU classifiers with the assistance of a novel Classifier-Noise-Invariant Con-
ditional GAN (CNI-CGAN) that is robust to noisy labels, 2) leveraging
extra data with predicted labels from a PU classifier to help the genera-
tion. Theoretically, we prove the optimal condition of CNI-CGAN and
experimentally, we conducted extensive evaluations on diverse datasets.

Keywords: PU Learning · Robust Generation · Unlabeled Data.

1 Introduction

Existing machine learning methods, particularly deep learning models, typically
require big data to pursue remarkable performance. For instance, conditional deep
generative models can generate high-fidelity and diverse images, but they have
to rely on vast amounts of labeled data [8]. Nevertheless, collecting large-scale,
accurate class-labeled data in real-world scenarios is often laborious or impracti-
cal; thus, label scarcity is ubiquitous. Under such circumstances, classification
performance and conditional generation [9] drops significantly [8]. At the same
time, diverse unlabeled data are available in enormous quantities, and therefore,
a key issue is how to take advantage of the extra data to enhance the conditional
generation or classification.
⋆ Equal contribution, † Corresponding author z.zhu@soton.ac.uk
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For the unlabeled data, both in-distribution and out-of-distribution data exist,
where out-of-distribution data does not conform to the distribution of the labeled
data. We aim at harnessing the out-of-distribution data to help classification and
conditional generation simultaneously. In the generation with extra data, most
related works focused on the in-distribution data [8]. For the out-of-distribution
data, most existing methods [16,17] attempted to forcibly train generative models
on a large amount of unlabeled data, and then transferred the learned knowledge of
the pre-trained generator to the in-distribution data. In classification, a common
setting to utilize unlabeled data is semi-supervised learning [10,12,2], but it
often assumes the same distribution between the unlabeled and labeled data,
ignoring their distributional mismatch. In contrast, Positive and Unlabeled (PU)
Learning [1,7] is an elegant way of handling this under-studied problem, where a
model has access to both positive samples and unlabeled data.

However, even with the assistance of PU learning to make predictions, it still
needs to be determined how to devise a robust conditional generative models
against the noisy predicted pseudo labels, posing multiple challenges to investigate
the interplay between classification and conditional generation in presence of
unlabeled data. Previous work [5] leveraged GANs to recover both positive and
negative data distribution to step away from overfitting of PU classifiers, but they
never considered the noise-invariant generation or their mutual improvement.
The generative-discriminative complementary learning [14] was studied in weakly
supervised learning, while we aim to tackle the (Multi-) Positive and Unlabeled
learning, developing the method of noise-invariant generation from noisy labels.

In this paper, we focus on the mutual benefits of conditional generation and
PU classification when we are only accessible to little class-labeled data, but
extra unlabeled data, including out-of-distribution data, can be available. Firstly,
a parallel non-negative multi-class PU estimator is derived to classify both the
positive data of all classes and the negative data. Then we design a Classifier-
Noise-Invariant Conditional Generative Adversarial Network (CNI-CGAN) that
can learn the clean data distribution on all unlabeled data with noisy labels
provided by the PU classifier. Simultaneously, we leverage our CNI-CGAN to
re-train the PU classifier to enhance its performance through data augmentation,
demonstrating a reciprocal benefit for both generation and classification. We
provide the theoretical analysis of the optimal condition for our CNI-CGAN and
conduct extensive experiments to verify the superiority of our approach.

2 Our Method

2.1 Positive-Unlabeled Learning

Traditional Binary Positive-Unlabeled Problem Setting. Let X ∈ Rd and
Y ∈ {±1} be the input and output variables and p(x, y) is the joint distribution
with marginal distribution pp(x) = p(x|Y = +1) and pn(x) = p(x|Y = −1).
In particular, we denote p(x) as the distribution of unlabeled data. np, nn and
nu are the amount of positive, negative and unlabeled data, respectively. Like
most PU learning methods, our method also makes the mild Selected Completely
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At Random (SCAR) assumption [1], where the labeled samples are selected
completely random from the positive distribution.
Parallel Non-Negative PU Estimator. Vanilla PU learning [1,7,4,3] employs
unbiased and consistent estimator. Denote gθ : Rd → R as the score function pa-
rameterized by θ, and ℓ : R×{±1} → R as the loss function. The risk of gθ can be
approximated by its empirical version denoted as R̂pn(gθ): R̂pn(gθ) = πpR̂

+
p (gθ)+

πnR̂
−
n (gθ), where the probability πp = P (Y = +1) with πp + πn = 1 and πp

represents the class prior probability. Denote R̂+
p (gθ) =

1
np

∑np

i=1 ℓ (gθ (x
p
i ) ,+1)

and R̂−
n (gθ) =

1
nn

∑nn

i=1 ℓ (gθ (x
n
i ) ,−1). As negative data xn are unavailable, a

common way is to offset R−
n (gθ). We also know that πnpn(x) = p(x)− πppp(x),

and hence πnR̂
−
n (gθ) = R̂−

u (gθ)− πpR̂
−
p (gθ). The resulting unbiased risk estima-

tor R̂pu(gθ) is formulated as: R̂pu(gθ) = πpR̂
+
p (gθ)− πpR̂

−
p (gθ) + R̂−

u (gθ), where
R̂−

p (gθ) = 1
np

∑np

i=1 ℓ (gθ (x
p
i ) ,−1) and R̂−

u (gθ) = 1
nu

∑nu

i=1 ℓ (gθ (x
u
i ) ,−1). The

advantage of this unbiased risk minimizer is that the optimal solution is accessible
if g is linear in θ. However, in practice, more flexible models gθ, e.g., deep neural
networks, are preferred, push the estimator to suffer from overfitting. Hence, we de-
cide to utilize non-negative risk [7] for our PU learning, which has been verified in
[7] to allow deep neural networks to mitigate overfitting. The non-negative PU esti-
mator is formulated as: R̂pu(gθ) = πpR̂

+
p (gθ)+max

{
0, R̂−

u (gθ)− πpR̂
−
p (gθ)

}
. We

replace max
{
0, R̂−

u (gθ)− πpR̂
−
p (gθ)

}
for a parallel implementation of R̂pu(gθ),

with its lower bound 1
N

∑N
i=1 max

{
0, R̂−

u (gθ;X i
u)− πpR̂

−
p (gθ;X i

p)
}
, where X i

u

and X i
p denote as the unlabeled and positive data in the i-th mini-batch, and N

is the number of batches.
From Binary PU to Multi-PU Learning. Previous PU learning focuses on
learning a classifier from positive and unlabeled data and cannot easily be adapted
to K + 1 multi-classification tasks where K represents the number of classes in
the positive data. Multi-positive and Unlabeled learning [15] was ever developed,
but the proposed algorithm may not allow deep neural networks. Instead, we
extend binary PU learning to the multi-class version in a straightforward way by
additionally incorporating cross-entropy loss on all the positive data with labels
for different classes. More precisely, we consider the K + 1-class classifier fθ as a
score function fθ =

(
f1
θ (x), . . . , f

K+1
θ (x)

)
. After the softmax function, we select

the first K positive data to construct cross-entropy loss ℓCE, i.e., ℓCE(fθ(x), y) =

log
∑K+1

j=1 exp
(
f j
θ (x)

)
− fy

θ (x) where y ∈ [K]. For the PU loss, we consider the

composite function h(fθ(x)) : Rd → R where h(·) conducts a logit transformation
on the accumulative probability for the first K classes, i.e., h(fθ(x)) = ln( p

1−p ) in

which p =
∑K

j=1 exp
(
f j
θ (x)

)
/
∑K+1

j=1 exp
(
f j
θ (x)

)
. The final mini-batch risk

of our PU learning can be presented as: R̃pu(fθ;X i) = πpR̂
+
p (h(fθ);X i

p) +

R̂CE
p (fθ;X i

p)+max
{
0, R̂−

u (h(fθ);X i
u)− πpR̂

−
p (h(fθ);X i

p)
}

, where R̂CE
p (fθ;X i

p) =
1
np

∑np

i=1 ℓ
CE (fθ (x

p
i ) , y).
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2.2 CNI-CGAN

To leverage extra data, i.e., all unlabeled data, to benefit the generation, we
deploy our conditional generative model on all data with pseudo labels predicted
by our PU classifier. However, these predicted labels tend to be noisy, reducing
the reliability of the supervision signals and thus worsening the performance of
the conditional generative model. Besides, the noise depends on the accuracy
of the given PU classifier. To address this issue, we focus on developing a novel
noise-invariant conditional GAN that is robust to noisy labels provided by a
specified classifier, e.g. a PU classifier. We call our method Classifier-Noise-
Invariant Conditional Generative Adversarial Network (CNI-CGAN) and the
architecture is depicted in Figure 1.

୥

PU

௥

௥

PU
୥

Fig. 1. Model architecture of our
CNI-CGAN.

Principle of the Design of CNI-CGAN.
Albeit being noisy, the pseudo labels given by
the PU classifier still provide rich information
that we can exploit. The key is to consider the
noise generation mechanism during the gener-
ation. We denote the real data as xr and the
predicted hard label through the PU classifier
as PUθ(xr), i.e., PUθ(xr) = argmaxi f

i
θ(xr),

as displayed in Figure 1. We let the genera-
tor “imitate” the noise generation mechanism
to generate pseudo labels for the labeled data.
With both pseudo and real labels, we can lever-
age the PU classifier fθ to estimate a confusion
matrix C̃ to model the label noise from the classifier. During the generation, a
real label y, while being fed into the generator G, will also be polluted by C̃
to compute a noisy label ỹ, which then will be combined with the generated
fake sample xg for the following discrimination. Finally, the discriminator D will
distinguish the real samples [xr, PUθ(xr)] out of fake samples [xg, ỹ]. Overall, the
noise “generation” mechanism from both sides is balanced.
Estimation of C̃. The key in the design of C̃ is to estimate the label noise of
the pre-trained PU classifier by considering all the samples of each class. More
specifically, the confusion matrix C̃ is k+1 by k+1 and each entry C̃ij represents
the probability of a generated sample xg, given a label i, being classified as class
j by the PU classifier. Mathematically, we denote C̃ij as:

C̃ij = P (PUθ(xg) = j|y = i) = Ez[I{PUθ(xg)=j|y=i}], (1)

where xg = G(z, y = i) and I is the indicator function. Owing to the stochastic
optimization nature when training deep neural networks, we incorporate the esti-
mation of C̃ in the processing of training by Exponential Moving Average (EMA)
method. This choice can balance the utilization of information from previous
training samples and the updated PU classifier to estimate C̃. We formulate the
update of C̃(l+1) in the l-th mini-batch as follows: C̃(l+1) = λC̃(l) + (1− λ)∆C̃

Xl
,

where ∆C̃
Xl

denotes the incremental change of C̃ on the current l-th mini-batch
data Xl via Eq. 1. λ is the averaging coefficient in EMA.
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Theoretical Guarantee of Clean Data Distribution. Firstly, we denote
O(x) as the oracle class of sample x from an oracle classifier O(·). Let πi, i =
1, ...,K+1, be the class-prior probability of the class i in the multi-positive
unlabeled setting. Theorem 1 proves the optimal condition of CNI-CGAN to
guarantee the convergence to the clean data distribution. The Proof is
provided in Appendix A.

Theorem 1 (Optimal Condition of CNI-CGAN) Given any PU classifier, let
P g be a probabilistic transition matrix where P g

ij = P (O(xg) = j|y = i) indicates
the probability of sample xg with the oracle label j generated by G with the initial
label i. We assume that the conditional sample space of each class is disjoint with
each other, then
(1) P g is a permutation matrix if the generator G in CNI-CGAN is optimal,
with the permutation, compared with an identity matrix, only happens on rows r
where corresponding πr, r ∈ r are equal.
(2) If P g is an identity matrix and the generator G in CNI-CGAN is optimal,
then pr(x, y) = pg(x, y) where pr(x, y) and pg(x, y) are the real and the generating
joint distribution, respectively.

Note that this optimal condition of CNI-CGAN holds for any PU classifier. The
assumption of the disjoint conditional sample space allows tractable theoretical
results, although it may be violated in practice, potentially degrading the per-
formance of CNI-CGAN. Despite this gap between theory and practice, briefly
speaking, CNI-CGAN can learn the clean data distribution if P g is an identity
matrix. More importantly, the method we elaborate on has already guaranteed
Pg as a permutation matrix, where the permutation happens only when the same
class-prior probabilities exist. While the resulting Pg is nearly close to an identity,
we still need an extra constraint to push Pg to be an identity exactly.
The Auxiliary Loss. The optimal G in CNI-CGAN can only guarantee that
pg(x, y) is close to pr(x, y) as the optimal permutation matrix P g is close to the
identity matrix. Hence in practice, to ensure that we can exactly learn an identity
matrix for P g and thus achieve the clean data distribution, we introduce an
auxiliary loss to encourage a larger trace of P g, i.e.,

∑K+1
i=1 P (O(xg) = i)|y = i).

As O(·) is intractable, we approximate it by the current PU classifier PUθ(xg).
Then we obtain the auxiliary loss ℓaux:

ℓaux(z, y) = max{κ− 1

K + 1

K+1∑
i=1

Ez(I{PUθ(xg)=i|y=i}), 0},

where κ ∈ (0, 1) is a hyper-parameter. With the support of auxiliary loss, P g

tends to converge to the identity matrix where CNI-CGAN can learn the clean
data distribution even in the presence of noisy labels.
Comparison with RCGAN [13,6]. The theoretical property of CNI-CGAN
has a major advantage over existing Robust CGAN (RCGAN) [13,6], for which
the optimal condition can only be achieved when the label confusion matrix is
known a priori. Although heuristics can be employed, such as RCGAN-U [13], to
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handle the unknown label noise setting, these approaches still lack the theoretical
guarantee to converge to the clean data distribution.

2.3 Algorithm

To guarantee the efficacy of our approach, one implicit and mild assumption is
that our PU classifier will not overfit on the training data, while our non-negative
estimator helps to ensure that it as explained in the previous Section 2.1. To
clarify the optimization process of CNI-CGAN further, we elaborate on the
training steps of D and G, respectively.
D-Step: We train D on an adversarial loss from both real data and generated
(xg, ỹ), where ỹ is corrupted by C̃. C̃y denotes the y-th row of C̃. We formulate
the loss of D as:

max
D∈F

E
x∼p(x)

[ϕ(D(x, PUθ(x)))] + E
z∼PZ,y∼PY

ỹ|y∼C̃y

[ϕ(1−D(G(z, y), ỹ))], (2)

where F is a family of discriminators and PZ is the distribution of latent space
vector z, e.g., a Normal distribution. PY is a discrete uniform distribution on
[K + 1] and ϕ is the measuring function.
G-Step: We train G additionally on the auxiliary loss ℓaux(z, y) as follows:

min
G∈G

E
z∼PZ,y∼PY

ỹ|y∼C̃y

[ϕ(1−D(G(z, y), ỹ)) + βℓaux(z, y)] , (3)

where β controls the strength of auxiliary loss and G is a family of generators. In
summary, our CNI-CGAN conducts K +1 class generation, which can be further
leveraged to benefit the K + 1 PU classification via data augmentation.
Procedure. Firstly, we train a PU classifier fθ on a multi-positive and unlabeled
dataset with the parallel non-negative estimator. Then, we train our CNI-CGAN,
described in the previous Section 2.2, on all data with pseudo labels predicted
by the pre-trained PU classifier. As CNI-CGAN is robust to noisy labels, we
leverage the data generated by CNI-CGAN to conduct data augmentation to
improve the PU classifier. Finally, we implement the joint optimization for the
training of CNI-CGAN and the data augmentation of the PU classifier.

3 Experiment

We first show the reciprocal performance of robust generation and classification via
CNI-CGAN. Next, we suggest our proposal is robust against the initial accuracy
of PU classifiers as well as the data distribution of the unlabeled dataset.
Experimental Setup. We perform our approaches and several baselines on
MNIST, Fashion-MNIST, and CIFAR-10. We select the first five classes on
MNIST and five non-clothes classes on Fashion-MNIST, respectively, for K + 1
classification (K = 5). To verify the consistent effectiveness of our method in the
standard binary PU setting, we pick the four categories of transportation tools
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in CIFAR-10 as the one-class positive dataset. As for the baselines, the first is
CGAN-P, where a Vanilla CGAN [9] is trained only on limited positive data.
Another natural baseline is CGAN-A where a Vanilla CGAN is trained on all
data with labels given by the PU classifier. The last baseline is RCGAN-U [13],
where the confusion matrix is learnable while training. For fair comparisons, we
choose the same GAN architecture. Through a line search of hyper-parameters,
we choose κ as 0.75, β as 5.0, and λ = 0.99 across all the datasets.
Evaluation Metrics. For MNIST and Fashion-MNIST, we mainly use Genera-
tor Label Accuracy [13] and Increased PU Accuracy to evaluate the quality
of generated images. Generator Label Accuracy compares specified y from CGANs
to the true class of the generated examples through a pre-trained (almost) oracle
classifier f . In experiments, we pre-trained two K+1 classifiers with 99.28% and
98.23% accuracy on the two datasets, respectively. Additionally, the increased
PU Accuracy measures the closeness between generated data distribution and
test (almost real) data distribution for the PU classification, serving as a key
indicator to reflect the quality of generated images. For CIFAR 10, we use both
Inception Score [11] to evaluate the quality of the generated samples and the
increased PU Accuracy to quantify the improvement of generated samples on
the PU classification.

3.1 Generation and Classification
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Fig. 2. Generation and classification performance
of CGAN-P, CGAN-A, and Ours on three datasets.
Results of CGAN-P (blue lines) on PU accuracy do
not exist since CGAN-P generates only K rather
than K + 1 class.

We set the whole training
dataset as the unlabeled data
and select certain amount of
positive data with the ratio
of Positive Rate. Figure 2
presents the trend of Gener-
ator Label Accuracy, Incep-
tion Score, and PU Accu-
racy as the Positive Rate in-
creases. It showcases that CNI-
CGAN outperforms CGAN-P
and CGAN-A consistently, es-
pecially when the positive rate
is small, i.e., there is little positive data. Remarkably, our approach enhances the
PU accuracy greatly when exposed to low positive rates, while CGAN-A even
worsens the original PU classifier sometimes in this scenario due to the existence
of too much label noise given by a less accurate PU classifier. Meanwhile, when
more supervised positive data are given, the PU classifier generalizes better
and then provides more accurate labels, conversely leading to more consistent
and better performance for all methods. While CGAN-P achieves comparable
generator label accuracy on MNIST, it results in a lower Inception Score.

To verify the advantage of theoretical property for our CNI-CGAN, we further
compare it with RCGCN-U [13,6], the heuristic version of robust generation
against unknown noisy labels setting without the theoretical guarantee of optimal
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condition. As observed in Table 1, our method outperforms RCGAN-U especially
when the positive rate is low. When the amount of positive labeled data is
relatively large, e.g., 10.0%, both our approach and RCGAN-U can obtain
comparable performance.

Table 1. PU classification accuracy of RCGAN-U
and Ours across three datasets. Final PU accuracy
represents the accuracy of PU classifier after the data
augmentation.

Final PU Accuracy \ Positive Rates (%) 0.2% 0.5% 1.0% 10.0%

MNIST
Original PU 68.86 76.75 86.94 95.88
RCGAN-U 87.95 95.24 95.86 97.80

Ours 96.33 96.43 96.71 97.82

Fashion-MNIST
Original PU 80.68 88.25 93.05 95.99
RCGAN-U 89.21 92.05 94.59 97.24

Ours 89.23 93.82 95.16 97.33

CIFAR-10
Original PU 76.79 80.63 85.53 88.43
RCGAN-U 83.13 86.22 88.22 90.45

Ours 87.64 87.92 88.60 90.69

Visualization. To further
demonstrate the superiority
of CNI-CGAN compared with
the other baselines, we present
some generated images within
K + 1 classes from CGAN-A,
RCGAN-U, and CNI-CGAN
on MNIST, and high-quality
images from CNI-CGAN on
Fashion-MNIST and CIFAR-
10, in Figure 3. In particular,
we choose the positive rate as 0.2% on MNIST, yielding the initial PU classifier
with 69.14% accuracy. Given the noisy labels on all data, our CNI-CGAN can
generate more accurate images of each class visually compared with CGAN-A
and RCGAN-U.

MNIST: Positive Rate 0.2%, Initial PU: 69.14%

Generator Label Accuracy
39.67%                           81.58%                             96.33% 

CGAN-A                    RCGAN-U                   CNI-CGAN                        
CNI-CGAN

Fashion-MNIST                       CIFAR-10                       

Fig. 3. Visualization of generated samples on three datasets. The rows below the red
line represent the negative class. We highlight the erroneously generated images with
red boxes on MNIST.

3.2 Robustness of Our Approach
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Fig. 4. Robustness against the Initial PU accuracy.
The tendency of generation performance as the train-
ing iterations increases on three datasets.

We show that our proposed al-
gorithm is robust against the
initial accuracy of PU classi-
fiers as well as the typical data
distribution of the unlabeled
dataset.
Robustness against the
Initial PU accuracy. The
auxiliary loss can help the
CNI-CGAN to learn the clean
data distribution regardless of the initial accuracy of PU classifiers. To verify
that, we select distinct positive rates, yielding the pre-trained PU classifiers with
different initial accuracies. Then, we perform our method based on these PU
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classifiers. Figure 4 suggests that our approach can still attain similar generation
quality under different initial PU accuracies after sufficient training, although
better initial PU accuracy can be beneficial to the generation performance in the
early phase.
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Fig. 5. Robustness against the Unlabeled data. PU
Classification accuracy of CGAN-A, RCGAN-U, and
Ours after joint optimization across different amounts
and distribution types of unlabeled data.

Robustness against the
Unlabeled data. In real sce-
narios, we are more likely to
have little knowledge about
the extra data we have. To
further verify the Robustness
of CNI-CGAN against the
unknown distribution of ex-
tra data, we test different
approaches across different
amounts and distributions of
the unlabeled data. Particu-
larly, we consider two different
types of distributions for unlabeled data. Type 1 is [ 1

K+1 , ...,
1

K+1 ,
1

K+1 ] where
the number of data in each class, including the negative data, is even, while
type 2 is [ 1

2K , ... 1
2K , 1

2 ] where the negative data makes up half of all unlabeled
data. In experiments, we focus on PU Accuracy to evaluate both the generation
quality and the improvement of PU learning. For MNIST, we choose 1% and
0.5% for two settings while we opt for 0.5% and 0.2% on both Fashion-MNIST
and CIFAR-10. Figure 5 manifests that the accuracy of the PU classifier exhibits
a slight ascending tendency with the increasing number of unlabeled data. More
importantly, our CNI-CGAN almost consistently outperforms other baselines
across different amounts of unlabeled data as well as distinct distributions of
unlabeled data. This verifies that the Robustness of our proposal for the distri-
bution of extra data can potentially be maintained. We leave the investigation
on robustness against more imbalanced situations as future work.

4 Discussion and Conclusion
Due to the computation cost, we leave the efficacy demonstration of our approach
on larger datasets, such as ImageNet, as future works. Since our CNI-CGAN
approach is agnostic to the estimator choice of PU classification and thus is
beneficial to general PU classifiers, we mainly focus on the most typical multi-PU
non-negative estimator we elaborated in our work, while leaving the further
investigation on more PU estimators as the extension of our work in the future.

In this paper, we proposed CNI-CGAN that breaks the ceiling of class-
label scarcity by combining two promising yet separate methodologies to gain
massive mutual improvements. CNI-CGAN can learn the clean data distribution
from noisy labels given by a PU classifier and then enhance the performance
of PU classification through data augmentation in various settings. We have
demonstrated, both theoretically and experimentally, the superiority of our
proposal on diverse benchmark datasets exhaustively and comprehensively.
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A Proof of Theorem 1

Firstly, we recall some definitions. Denote xr, xg as the real training and generated
samples, respectively. x are the population of all data, and xr are sampled from
p(x). yg represents the initial labels for the generator G, while ỹ indicates the labels
perturbed by C̃ from yg. The class-prior πi meets πi = P (yg = i) = P (O(xr) = i).
For a rigorous proof of Theorem 1, we elaborate it again in the appendix.

Theorem 1 We assume that the following three mild assumptions can be met: (a)
PU classifier is not overfitting on the training data, (b) P (PUθ(xg)|O(xg), yg) =
P (PUθ(xg)|O(xg)), (c) the conditional sample space is disjoint from each other
class. Then,
(1) P g is a permutation matrix if the generator G in CNI-CGAN is optimal, with
the permutation, compared with an identity matrix, only happens on rows r
where corresponding πr, r ∈ r are equal.
(2) If P g is an identity matrix and the generator G in CNI-CGAN is optimal,
then pr(x, y) = pg(x, y) where pr(x, y) and pg(x, y) are the real and generating
joint distribution, respectively.

Proof of (1) For a general setting, the oracle class of xg given by label yg is not
necessarily equal to PUθ(xg). Thus, we consider the oracle class of xg, i.e., O(xg)
in the Proof.

Optimal G. In CNI-CGAN, G is optimal if and only if

pr(xr, PUθ(xr)) = pg(xg, ỹ). (4)

The equivalence of joint probability distribution can further derive the equivalence
of marginal distribution, i.e., pr(xr) = pg(xg). We define a probability matrix
C where Cij = P (PUθ(x) = j|O(x) = i) where x are the population data.
According to (c), we can apply O(·) on both xr and xg in Eq. 4. Then we have:

P (O(xr) = i, PUθ(xr) = j)
(c)
=P (O(xg) = i, ỹ = j)

P (O(xr) = i)P (PUθ(xr) = j|O(xr) = i) =

K+1∑
k=1

P (yg = k,O(xg) = i)P (ỹ = j|yg = k,O(xg) = i)

πiCij
(a)
=

K+1∑
k=1

P (O(xg) = i|yg = k)P (yg = k)P (ỹ = j|yg = k)

πiCij =

K+1∑
k=1

P g⊤
ik πkC̃kj ,

(5)
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where assumption (a) indicates that PUθ(xr) is close to PUθ(x) so that
P (PUθ(xr) = j|O(xr) = i) = P (PUθ(x) = j|O(x) = i). Then the corresponding
matrix form follows as

ΠC = P g⊤ΠC̃ (6)

Definition. According to the definition of C̃ and Law of Total Probability, we
have:

P (yg = i)P (PUθ(xg) = j|yg = i) =πi

K+1∑
k=1

P (O(xg) = k|yg = i)P (PUθ(xg) = j|O(xg) = k, yg = i)

πiC̃ij
(b)
=πi

K+1∑
k=1

P g
ikP (PUθ(xg) = j|O(xg) = k)

πiC̃ij =πi

K+1∑
k=1

P g
ikCkj ,

(7)
where the last equation is met as p(xg) is close to p(x) when G is optimal, and
thus P (PUθ(xg) = j|O(xg) = k) = P (PUθ(x) = j|O(x) = k). Then we consider
the corresponding matrix form as follows

ΠC̃ = ΠP gC (8)

where Π is the diagonal matrix of prior vector π. Combining Eq. 8 and 6, we have
P g⊤ΠP g = Π, which indicates P g is a general orthogonal matrix. In addition,
the element of P g is non-negative and the sum of each row is 1. Therefore, we have
P g as a permutation matrix with permutation compared with the identity matrix
only happens on rows r where corresponding πr, r ∈ r are equal. Particularly, if
all πi are different from each other, then permutation operation will not happen,
indicating the optimal conditional of P g is the identity matrix.

Proof of (2) We additionally denote yr as the real label of real sample xr,
i.e., yr = O(xr). According to the optimal condition of G in Eq. 4, we have
pr(xr) = pg(xg). Since we have P g is an identity matrix, then O(xg) = yg a.e.
Thus, we have pg(xg|yg = i) = pg(xg|O(xg) = i),∀i = 1, ..,K + 1. According
the assumption (c) and Eq. 4, we have pr(xr|O(xr) = i) = pg(xg|O(xg) = i).
In addition, we know that pr(xr|O(xr) = i) = pr(xr|yr = i), thus we have
pr(xr|yr = i) = pg(xg|yg = i). Further, we consider the identical class-prior πi.
Finally, we have

pr(xr|yr = i)πi = pg(xg|yg = i)πi

pr(xr|yr = i)p(O(xr) = i) = pg(xg|yg = i)p(yg = i)

pr(xr|yr = i)p(yr = i) = pg(xg|yg = i)p(yg = i)

pr(xr, yr) = pg(xg, yg).

(9)
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