Governing Equation Discovery from Data Based on Differential Invariants

Lexiang Hu! YikangLi' Zhouchen Lin'?3

Abstract

The explicit governing equation is one of the sim-
plest and most intuitive forms for characterizing
physical laws. However, directly discovering par-
tial differential equations (PDEs) from data poses
significant challenges, primarily in determining
relevant terms from a vast search space. Sym-
metry, as a crucial prior knowledge in scientific
fields, has been widely applied in tasks such as de-
signing equivariant networks and guiding neural
PDE solvers. In this paper, we propose a pipeline
for governing equation discovery based on differ-
ential invariants, which can losslessly reduce the
search space of existing equation discovery meth-
ods while strictly adhering to symmetry. Specifi-
cally, we compute the set of differential invariants
corresponding to the infinitesimal generators of
the symmetry group and select them as the rel-
evant terms for equation discovery. Taking DI-
SINDy (SINDy based on Differential Invariants)
as an example, we demonstrate that its success
rate and accuracy in PDE discovery surpass those
of other symmetry-informed governing equation
discovery methods across a series of PDEs.

1. Introduction

Explicit equations, particularly partial differential equations
(PDEs), play a significant role in scientific fields due to
their concise and intuitive mathematical forms. Discovering
governing equations directly from observational data has
become an important topic, and its solutions may serve as
Al assistants to human scientists in uncovering new phys-
ical laws. Although neural PDE solvers also aim for data-
driven evolution prediction (Greydanus et al., 2019; Bar-
Sinai et al., 2019; Sanchez-Gonzalez et al., 2020; Li et al.,
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2020; Thuerey et al., 2021; Brandstetter et al., 2022b; Gupta
& Brandstetter, 2022; Takamoto et al., 2022; 2023; Lippe
etal., 2023; Kapoor et al., 2023; Cho et al., 2024; Musekamp
et al., 2024), their implicit learning approach, compared to
explicit equation discovery, suffers from limitations such
as lack of interpretability and weaker out-of-distribution
(OOD) generalization. In this paper, we formalize the prob-
lem as discovering the governing PDE F'(z, u(™)) = 0 from
trajectory data u(z), where x € R? represents the indepen-
dent variables, u© € R? denotes the dependent variables, and
u(™) signifies derivatives of u with respect to z up to order
n.

Some previous works have made progress on the data-driven
equation discovery problem. One category of search-based
methods (Schmidt & Lipson, 2009; Gaucel et al., 2014;
Petersen et al., 2019; Cranmer et al., 2019; 2020; Udrescu
& Tegmark, 2020; La Cava et al., 2021; Mundhenk et al.,
2021; Sun et al., 2022; Cranmer, 2023) explores the struc-
ture of equations interpretably, but their enormous search
space incurs high computational costs. Another category
of deep learning-based approaches (Brunton et al., 2016;
Champion et al., 2019; Biggio et al., 2021; Messenger &
Bortz, 2021; Kamienny et al., 2022) is generally more ef-
ficient and versatile, yet still requires pre-specifying key
relevant terms of the equation skeleton. To address the limi-
tations of these works, we need to leverage prior knowledge
of scientific problems to constrain the form of equations—in
other words, to narrow the search space of equations.

Symmetry is important prior knowledge in scientific prob-
lems, with each symmetry corresponding to a conserved
quantity. Recently, some studies have attempted to discover
symmetries from data for symmetry-dependent downstream
tasks (Benton et al., 2020; Dehmamy et al., 2021; Moskalev
etal., 2022; Desai et al., 2022; Yang et al., 2023b;a; Ko et al.,
2024; Shaw et al., 2024). Our goal is to leverage known
symmetries to guide the discovery of governing equations.
Although (Yang et al., 2024) achieve this by adding explicit
symmetry constraints or implicit symmetry regularization
terms, the governing equations they identify cannot strictly
adhere to general symmetries, and the manually specified
equation skeletons significantly affect accuracy.

In this paper, we implement symmetry-guided equation
discovery based on differential invariants. Given the in-
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Figure 1. Comparison between the existing equation discovery method and our differential invariant-based equation discovery method

_t . .
for the nKdV equation e *o uy + uty + Ugee = 0. The former struggles with selecting relevant terms, whereas our relevant terms are

directly determined by the symmetry group.

finitesimal generators of a symmetry group, we can derive
their prolongation forms and differential invariants. Then,
we directly select these differential invariants as the rele-
vant terms and plug them into any existing equation dis-
covery method, such as SINDy (Brunton et al., 2016). The
proposition cited in Section 4.2 will demonstrate that this
approach hard-embeds symmetry into the equation skeleton
without sacrificing its expressive power. In other words,
we “losslessly” compress the search space of equations. As
shown in Figure 1, for the relatively complex nKdV equa-
tione 0 U + Uy + Uz, = 0, existing equation discovery
methods struggle to identify the key relevant terms and con-
struct the correct equation skeleton from a large search space
of partial derivatives, whereas our method can accurately
determine it by leveraging the information of the symmetry

group.

In summary, our contributions are as follows: (1) we pro-
pose a method for equation discovery based on differential
invariants, which is guided by symmetry groups in the selec-
tion of key relevant terms; (2) using the existing proposition,
we substantiate that our method ensures the equation skele-
ton strictly adheres to symmetry without compromising its
expressive power; (3) taking SINDy based on Differential
Invariants (DI-SINDy) as an example, we demonstrate that
our method can be plug-and-play with existing equation dis-
covery approaches; (4) the experimental results on a series
of PDEs show that our DI-SINDy achieves higher success
rates and accuracy compared with baseline methods, while
also exhibiting greater stability in long-term predictions.

2. Related Work

Symmetry discovery. The application of symmetry in
downstream tasks is based on the premise that we know it
in advance; otherwise, we first need to discover the symme-
try from the data. Some works discover symmetry based
on Lie group and Lie algebra representations (Dehmamy
et al., 2021; Moskalev et al., 2022; Desai et al., 2022; Yang
et al., 2023b), but they are limited to linear symmetries.
Subsequent works attempt to find more complex nonlinear
symmetries (Yang et al., 2023a; Ko et al., 2024; Shaw et al.,
2024). They utilize the discovered symmetries to guide
downstream tasks, achieving performance improvements,
which validates the effectiveness of the results. The tech-
niques in this paper can be combined with these symmetry
discovery methods to address scenarios where symmetries
are not known in advance.

Governing equation discovery. Automatically discover-
ing governing equations from data is an important topic at
the intersection of Al and science. One branch of methods
relies on search algorithms and has achieved interpretable
results. Deep Symbolic Regression (DSR) (Petersen et al.,
2019) employs a novel risk-seeking policy gradient to train
a recurrent neural network, which emits a distribution over
tractable mathematical expressions. Mundhenk et al. (2021)
utilize neural-guided search to generate starting popula-
tions for a random restart genetic programming compo-
nent, aiming to solve symbolic regression and other sym-
bolic optimization problems. Symbolic Physics Learner
(SPL) (Sun et al., 2022) machine leverages a Monte Carlo
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tree search (MCTS) agent to construct optimal expression
trees, which interpret mathematical operations and variables.
PySR (Cranmer, 2023) adopts a multi-population evolution-
ary algorithm and a unique evolve-simplify-optimize loop
to accelerate the discovery of symbolic models. However,
a limitation of such methods is their low computational
efficiency when the search space is large.

Another branch of methods leverages deep learning to im-
prove the efficiency of equation discovery. SINDy (Brunton
et al., 2016) employs sparse regression to identify equa-
tion forms that are both accurate and concise. Building
upon SINDy, Champion et al. (2019) further utilize a deep
autoencoder network to transform coordinates into a re-
duced space where the dynamics can be sparsely represented.
Weak SINDy (Messenger & Bortz, 2021) replaces pointwise
derivative approximations with linear transformations and
variance reduction techniques to enhance the robustness of
SINDy against noise. NeSymReS (Biggio et al., 2021) pre-
trains a Transformer to predict from an unbounded set of
equations. These methods still require assumptions about
key relevant terms of the equation skeleton and fail to incor-
porate scientific prior knowledge to narrow the search space
for equations.

Applications of symmetry. Symmetry plays an important
role in both traditional mathematical physics problems and
the field of deep learning. We summarize related works in
Appendix A.

3. Preliminary

Before introducing the method, we will first briefly present
some preliminary knowledge concerning partial differential
equations and their Lie point symmetries. For more details,
please refer to the textbook (Olver, 1993). We provide
concrete examples in Appendix B to help readers better
understand these concepts intuitively.

Partial differential equations. Let the independent vari-
able x € X = RP? and the dependent variable © € U = R9.
We denote the k-th order derivative of u with respect to

k, o
xasuf} == ém;ﬂigamﬂv S Uk, where o € {1,...7q},
J = (j1,---,Jx), and j; € {1,...,p}. Furthermore, all

derivatives of u with respect to x up to order n are de-
noted as u(® € U™ = U x Uy x --- x U,. Based
on the above concepts, we can define a system of n-th or-
der partial differential equations as F'(z,u(™) = 0, where
F: X x U™ — RY TIts solution is given by a smooth
function f : X — U.

Lie point symmetries. The solution to the system of par-
tial differential equations F'(z,u(™)) = 0 can also be rep-
resented by the graph I'y = {(z, f(z)) : « € X} of the

function f : X — U. Let the Lie group G acton X x U.
We say that G is a symmetry group of F(x,u(™) = 0 if,
for any solution f with its graph I'y and any group element
g€ G, g-Ty ={(z,u) =g (x,u) : (xr,u) € Ts}is the
graph I ; of another solution f .

The Lie point symmetries of partial differential equations
can be restated more simply if we introduce the concept
of the prolonged group action, which acts on X x U,
Denote the action of a group element g € G at a point
(z,u) € XxUas (Z,4) = g-(x,u). Then, we define the n-
th order prolongation of g at the point (z,u(™) € X x U™
as pr™g - (z,u(™) = (z,a™), where @™ consists of
all derivatives of @ with respect to Z up to order n. G
is a symmetry group of F(z,u(™) = 0 means that for
any solution v = f(z) and any group element g € G,
F(pr™g - (2,u™)) = 0 holds.

Infinitesimal criteria. Suppose the Lie group G corre-
sponds to the Lie algebra g, which can be associated via
the exponential map exp : g — G. The infinitesimal
group action v € g at the point (z,u) € X x U is de-
fined as v, ) = i’s:O [exp(ev) - (z,u)]. Note that v
is expressed in terms of the partial differential operator V
as its special basis, which indicates that it can directly act
on functions defined on X x U. Taking the SO(2) group
e-(z,u) = (x cos e—usin €, x sin e+u cos €) as an example,
its infinitesimal group actionis v|., ) = —ua% + xa%.

Similarly, we define the n-th order prolongation of v € g
at the point (z,u(™) € X x U™ as pr(”)v’(

zu(™)

d% —o {pr™ [exp(ev)] - (z,ul™)}. Then, according to
Theorem 2.31 in the textbook (Olver, 1993), G is a sym-
metry group of F(z,u(™) = 0 if, for every v € g,
pr(®v [F(z,u™)] = 0 whenever F(z,u(™) = 0.

4. Method

In short, we explore the use of prior knowledge about
the symmetry group G to guide the discovery of gov-
erning PDEs F(x,u(™) = 0 from the dataset D =
{(z[d],u[i])}}¥,. In Section 4.1, we prolong the infinites-
imal generators of the symmetry group and compute the
corresponding differential invariants. In Section 4.2, we
discuss integrating differential invariants with existing equa-
tion discovery methods and provide a proposition to demon-
strate that our approach is both correct and complete. In
Section 4.3, we take SINDy (Brunton et al., 2016) as an ex-
ample to showcase the theoretical advantages of our method
over other symmetry-guided equation discovery approaches,
such as EquivSINDy-c and EquivSINDy-r (Yang et al.,
2024). Figure 2 provides an intuitive summary of our differ-
ential invariant-based equation discovery pipeline.



Governing Equation Discovery from Data Based on Differential Invariants

Section 4.1

Section 4.2

known in advance .
’ > infir

prolonged infinitesimal generators differential invariants
{pr(")vl ..... pr(")vr} {n'(z, u(”)) ----- ﬂk(mv“(n))}

[symmetry group G of dlfferenhal ‘

equations F'(z,u(™) =0
>‘ symmetry discovery ]<::[
unknown

dataset D = {(z[i, u[i]) }¥,

existing equation discovery
method

Figure 2. Pipeline of our differential invariant-based equation discovery method.

4.1. Calculation of Differential Invariants

Differential invariants refer to quantities that remain un-
changed under the action of a prolonged group. Definition
2.51 in the textbook (Olver, 1993) provides a formal defi-
nition of differential invariants, which we briefly restate as
follows.

Definition 4.1. Let GG be a Lie group acting on X x U. An
n-th order differential invariant of GG is a smooth function
n: X x U™ — R such that 7 is an invariant under the
prolonged group action pr(™ G-

Vg e G, (z,u™) e X x UM

n(pr™g - (z,u™)) = n(z,u™). )

We now discuss how to find the differential invariants
of a Lie group . This problem can be formalized as
follows: given the infinitesimal generators {vy,...,v,}
of the Lie group G, we seek a complete set of func-
tionally independent n-th order differential invariants
{n (@, u™), ... 0P (z,u™)} for pr(™ G (functionally in-
dependent: they cannot be expressed as combinations of
each other).

The first thing we need to do is derive the n-th order
prolongation {pr(™v;,... pr(®v,} of the infinitesimal
generators. Consider an infinitesimal group action on
X x U = RP x RY in the form:

8 q
u)% + O;Qﬁa(fvu)aia

Then, according to Theorem 2.36 in the textbook (Olver,
1993), its n-th order prolongation is:

@

pr v—v—i—ZZ(bJﬂ?U(n)aa’ S
a=1 J
where the coefficients are determined by:
¢ (x,u™) =D, (% Z&Z “) +Zfluf;z. )

Here, J = (j1,...,4k) with j;, = 1,...,p and k =
a _ ou” a _ Ouy _ 9Ft1y>
L...,m, Uy = Jgi» and Ui = Bzt = 9ziozi.. 0wk

Note that D ; denotes the total derivative. For a smooth
function P(z,u(™), its relationship with partial derivatives
. . oP .

is given by D;P = ML + 30 ZJ“CLW Taking
the infinitesimal group action v = —ua% + m% of the
SO(2) group as an example, its first-order prolongation
is priVv = v + ¢*(z, u, ul)ﬁ, where ¢%(z,u,u,) =
D, (z + uuy)

— UlUgy = 1 +u§.

Next, we derive the n-th order differential invariants based
on the prolonged infinitesimal generators. According to the
infinitesimal criteria introduced in Section 3, Equation (1)
is equivalent to:

i [ =

D q q
PIIIIRVLNE SENERIEL N 3 SYACRID
i=1 =1 a=1 J
(5)
Then, we construct the characteristic equations:
dz’ du® dug
— = - — . ®
iz, u)  dalz,u)  ¢f(z,u)
foralli = 1,...,p,« = 1,...,q, and J = (j1,...,Jk)
with j; = 1,...,pand k = 1,...,n. The integration con-

stants of the general solution to the characteristic equations
yield the differential invariants:
nl(xau(n)):Clu"wnk(xvu(n))zck' @)
In the case of multiple prolonged infinitesimal genera-
tors, we solve the corresponding characteristic equations
jointly. Taking the SO(2) group as an example again,
the first-order prolongation of its infinitesimal generator

is priv = —ue + o + (14 u2) 5% We construct
the characteristic equation as % = %“ = 1‘1‘“ The con-

stants obtained by integration are n*(z, u, u,) = Va2 + u?
and 7*(x, u, u,) = L4222, which constitute the first-order

differential invariants of the SO(2) group.
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Table 1. The complete set of functionally independent differential invariants corresponding to different numbers of provided infinitesimal

generators. For detailed calculation steps, refer to Appendix C.1.

Provided infinitesimal generators

Complete set of functionally independent differential invariants

@ {taxvuvutvumvumzaumzmauzzrm}

{0}
{61E7 at}
{ala 8t; taw + au}

{tv U, Ut, Uy, Uz, Uzzx, urxmx}
{ua Uty Ugy Uy Uzza, umzwm}
{ut + Uy, Uy, Uz, Ugzax, uwwwax}

4.2. Governing Equation Discovery Based on
Differential Invariants

Existing equation discovery methods typically follow the
paradigm of first specifying the equation skeleton and then
optimizing the parameters. When manually specifying the
equation skeleton, the challenge lies in selecting the rele-
vant terms. Including too many irrelevant terms leads to
excessive computational costs and reduced accuracy, while
omitting key terms makes it theoretically impossible for the
algorithm to achieve the correct solution. This limitation
becomes even more pronounced in partial differential equa-
tion discovery, as compared to X x U, X x U™ usually
constitutes a much larger search space with more candidate
terms to choose from.

Our method aims to use symmetry to guide the selection of
relevant terms. We hope that this selection approach, while
respecting symmetry, can provide a relatively concise search
space without losing expressive power. Proposition 2.56 in
the textbook (Olver, 1993) provides the inspiration, which
we briefly restate as follows.

Proposition 4.2. Let G be a Lie group acting on X X
U, and n* (z,u™), ... n*(xz,u™) be a complete set of
functionally independent n-th order differential invariants.
An n-th order differential equation F(x,u™) = 0 admits
G as a symmetry group if and only if there is an equivalent
equation

F(n'(z,u™),... 0 (z,u™)) =0 ®)

involving only the differential invariants of G.

Therefore, we first use the procedure in Section 4.1 to com-
pute differential invariants based on the symmetry group,
which serve as all the relevant terms. Then, we can choose
any existing equation discovery method (Brunton et al.,
2016; Champion et al., 2019; Messenger & Bortz, 2021;
Biggio et al., 2021) to explicitly solve for F'. Our approach
does not interfere with the core of these methods, except for
providing the selection of relevant terms, which means it
is plug-and-play. Proposition 4.2 theoretically guarantees
that this substitution approach strictly adheres to the sym-
metry prior while ensuring that the equation skeleton is not
missing potential solutions due to the omission of relevant

terms. When the symmetry is unknown, we can first em-
ploy symmetry discovery methods (Yang et al., 2023a; Ko
et al., 2024; Shaw et al., 2024) to obtain infinitesimal gener-
ators from the data and then implement the aforementioned
equation discovery process.

Note that we do not need to exhaustively provide all in-
finitesimal generators of the symmetry group. In most cases,
we might miss some infinitesimal generators due to reasons
such as errors in symmetry detection, but this does not af-
fect the correctness of the equation discovery results. This
is because if a Lie group G is the symmetry group of a
differential equation, so is any subgroup G C G. In fact,
each additional correct infinitesimal generator we provide
reduces the complete set of functionally independent differ-
ential invariants, which leads to a smaller and more accurate
search space for the governing equation. In Table 1, we
use the Lie point symmetries of the KdV, KS, and Burgers
equations mentioned by Ko et al. (2024) as examples to
demonstrate the complete set of functionally independent
differential invariants corresponding to different numbers of
infinitesimal generators.

4.3. Example Algorithm: DI-SINDy

Now our method can be summarized as follows. First, we
use symmetry discovery methods to obtain infinitesimal
generators from the dataset if the symmetries are not known
a priori. Then, we derive the prolonged infinitesimal gener-
ators and compute the differential invariants based on them.
Finally, we select the relevant terms of the equation skeleton
from the differential invariants and employ existing equation
discovery methods to obtain the explicit governing equation.
Taking SINDy (Brunton et al., 2016) based on Differential
Invariants (DI-SINDy) as an example, we outline the overall
workflow in Algorithm 1.

The EquivSINDy-c and EquivSINDy-r methods proposed
by Yang et al. (2024) also attempt to use symmetry to
guide SINDy in discovering governing equations of the form
h(x) = WO(z). However, for EquivSINDy-c, it cannot
handle nonlinear cases, and Proposition 4.2 in the original
paper (Yang et al., 2024) specifies that ©(z) can only be
chosen as polynomials. Additionally, the constrained pa-
rameter space of W reduces the expressive power of the
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Algorithm 1 DI-SINDy (SINDy based on Differential Invariants)

Input: Dataset D = {(z[i], u[i])}2_,, prolongation order n, infinitesimal generators of the symmetry group V (g) =

{vi,..., v, }.
Output: Explicit governing equation F'(z,u(™) = 0.
Execute:

Estimate the derivatives of u with respect to = using the central difference method, resulting in the prolonged dataset

prD = {(afd], u™[]) L.
if V(g) = () then

Use the method of symmetry discovery to obtain the infinitesimal generators V (g) = {v1, ..

group from pr(™D.
end if

Derive the prolonged infinitesimal generators {pr(")vl, e

Compute differential invariants {n*(z, (™), ...
n*(z,u™) = WO (n!(z,u™),...

Return F(z,u™) = ¥ (z,u™) - WO (n' (z,u™),...

., vy} of the symmetry

,pr(”)v,,} according to Equations (2) to (4).

, (2, u™)} according to Equations (5) to (7). For the equation skeleton
,n* =1 (z,u™)), optimize the coefficient matrix 1/ using SINDy based on pr(")D.
,nFHz,u™)) = 0.

equation skeleton. On the other hand, the necessity and
sufficiency of Proposition 4.2 in this paper guarantee that
DI-SINDy’s skeleton can fully express all equations satisfy-
ing the symmetry, and ©(x) can be freely selected, thereby
addressing the limitations of EquivSINDy-c. Compared to
EquivSINDy-r, which incorporates symmetry loss as a regu-
larization term into SINDy’s loss function, DI-SINDy en-
sures that the equation skeleton strictly adheres to symmetry
without requiring hyperparameter tuning for regularization
coefficients. Overall, DI-SINDy holds significant theoret-
ical advantages over related works, thanks to its intrinsic
ability to “losslessly” compress the equation search space
based on symmetry.

5. Experiment
5.1. Experimental Setup

We evaluate our method using the Korteweg-de Vries (KdV)
equation, the Kuramoto-Shivashinsky (KS) equation, the
Burgers equation, and the nKdV equation from Ko et al.
(2024). In Table 2, we present their explicit equations, the
infinitesimal generators of their symmetry groups, and the
corresponding differential invariants (detailed calculation
steps are provided in Appendix C), where the prolongation
order is specified as fourth-order. We assume the symme-
tries are known a priori, and the experimental task is to
automatically discover the governing equations from the
generated data. The infinitesimal generators provided here
are all sufficiently simple to be easily obtained by existing
symmetry discovery methods. We provide the data genera-
tion process in Appendix D.

Taking DI-SINDy presented in Algorithm 1 as an exam-
ple, we compare it with SINDy (Brunton et al., 2016) and
EquivSINDy-r (Yang et al., 2024). The Lie point symmetry
of PDEs is typically nonlinear, which renders EquivSINDy-
¢ inapplicable—hence we exclude it from the comparison.

The idea behind EquivSINDy-r is to incorporate the infinites-
imal criterion of the symmetry group as a regularization
term into the objective function of SINDy, thereby softly
constraining the equation skeleton to adhere to the symme-
try. The original paper (Yang et al., 2024) only provides the
form of the regularization term for ODE cases. To extend it
to PDE scenarios for comparison, we adopt the infinitesimal
criterion of Lie point symmetry introduced in Section 3 as
the regularization term:

o [ 1. ©)

['symm = Ez,u Z ‘

veVi(g)

where V(g) is the set of infinitesimal generators of the
symmetry group, and F' represents the equation skeleton of
SINDy. Then, the overall objective function of EquivSINDy-
ris:

L:total = ['SINDy +A- ['symm~ (10)

For a comprehensive comparison, we will traverse the regu-
larization weight hyperparameter A = {1073,1072,1071}.

As described in Algorithm 1, the relevant terms of DI-
SINDy are selected as the set of differential invariants
shown in Table 2, and the function library © is speci-
fied as linear terms. For SINDy and EquivSINDy-r, we
define the equation skeleton of the KdV, KS, and Burg-
ers equations as uy = WO(u, g, Uy, Uzaz, Ugzrs ), and
the equation skeleton of the nKdV equation as e_%ut =
WO(u, Uy, Uz, Upza, Urzes ), Where © contains terms up
to second order. It can be observed that the baseline methods
require strong prior assumptions about the equation skeleton
during the experimental preparation phase, even though we
have manually specified relatively simple forms for them
that include the ground truth. More implementation details
can be found in Appendix E.
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Table 2. Explicit expressions, infinitesimal generators of symmetry groups, and corresponding differential invariants for the KdV, KS,
Burgers, and nKdV equations (Ko et al., 2024).

Name Equation Infinitesimal generators Differential invariants
Kdv U + Uy + Ugge = 0
KS Ut + Ugg + U tuu, =0 {2 240 4 0 {ur + }
t xrx TXITT xr ox’ Ot " Ox ou t uufl)i uCL‘7 ’u’ﬁﬁﬂi ul‘fl)l‘? uxazxz
Burgers w4+ uuy, — vy, =0
_t _t t P _ ot
nKdV e U + Uy + Ugge =0 a%,e it>%7t0(et0 —1)8%—#-6%} {e" 0 us + Uty Uz, Ugs s Uzzz, Upzas b

Table 3. Success rates and RMSE of different equation discovery methods for the KdV, KS, Burgers, and nKdV equations. All experimental
results are averaged over 50 runs. RMSE is presented in the format of mean =+ std.

Name Method Success rate (1) RMSE (successful) (]) RMSE (all) ()
SINDy 72% (2.244+0.51) x 107 (4.42+£3.51) x 107!
EquivSINDy-r (A = 1073)  72% (2.234£0.51) x 107+ (4.41£3.51) x 107!

Kdv EquivSINDy-r (A = 1072)  74% (2.18 £0.50) x 1071 (9.28 £14.01) x 1072
EquivSINDy-r (A = 1071)  82% (1.66 £0.37) x 107*  (3.16 £3.22) x 107!
DI-SINDy (Ours) 100% (2.71+£2.44) x 1072 (2.714+2.44) x 1072
SINDy 0% N/A 1.00 £ 0.00
EquivSINDy-r (A = 107%) 0% N/A 1.00 £ 0.00

KS EquivSINDy-r (A = 1072) 0% N/A 1.00 £ 0.00
EquivSINDy-r (A = 1071) 0% N/A 1.00 +0.00
DI-SINDy (Ours) 100% (6.184+0.37) x 102 (6.18 £0.37) x 10~ 2
SINDy 4% (2114£0.14) x 1072 (1.52+£2.34) x 107!
EquivSINDy-r (A = 1073)  16% (2.59+0.42) x 1072 (1.86 £4.12) x 107!

Burgers EquivSINDy-r (A = 1072)  68% (8.06 +£3.38) x 1072 (9.78 £ 38.08) x 1072
EquivSINDy-r (A = 1071)  78% (9.68 £3.89) x 107*  (7.03 £ 35.62) x 1072
DI-SINDy (Ours) 98% (2.66 £1.32) x 107% (4.02+9.62) x 1074
SINDy 20% (3.77+£0.14) x 1071 (8.75 £2.49) x 107!
EquivSINDy-r (A = 1073)  20% (3.76 +£0.14) x 10~*  (8.75+£2.50) x 10~}

nKdV  EquivSINDy-r (A =1072) 22% (3.624+0.13) x 1071 (8.60 +2.64) x 1071
EquivSINDy-r (A = 1071)  44% (2.70£0.19) x 107*  (6.79£3.63) x 107!
DI-SINDy (Ours) 100% (5.0543.84) x 1072 (5.05 + 3.84) x 10~ 2

5.2. Quantitative Metrics and Result Analysis

After training with SINDy and its variant methods, we get
explicit equations such as u; = WO(u, uy, ... ) (for KdV,
KS, and Burgers equations) or efﬁut =WO(u,ug,...)
(for the nKdV equation). In practice, the coefficient matrix
is obtained via element-wise multiplication W = C © M,
where C' represents the values of each term’s coefficient,
and the binary mask matrix M indicates whether each term
is retained (1 for retained, O for discarded). We follow
the quantitative metrics introduced by Yang et al. (2024),
which we restate as follows. We consider the discovery
of an equation successful if the retained terms in the final
result are correct and complete (formally, M = M*, where
M* is the ground truth of the binary mask matrix). We run
each experiment 50 times and calculate its success rate,

which is the most important quantitative metric for explicit
equation discovery, as it reflects whether the model can
correctly identify the interaction relationships between vari-
ables. Furthermore, we use the RMSE of the coefficient

matrix, \/ LS L [W = W12, to evaluate the accuracy

of equation discovery, where n is the number of runs, and
W* is the ground truth of the coefficient matrix. We report
RMSE (successful) and RMSE (all), which represent the
RMSE for successful runs and all runs, respectively.

The success rates and RMSE of different equation discovery
methods are presented in Table 3. For the KdV, Burgers,
and nKdV equations, EquivSINDy-r, with its soft symmetry
constraints, significantly improves both the success rate
and accuracy compared to SINDy, while our DI-SINDy
further increases the success rate to nearly 100%. Notably,



Governing Equation Discovery from Data Based on Differential Invariants

both SINDy and EquivSINDy-r fail for the KS equation,
as the KS equation involves a fourth-order derivative term,
making finite difference methods prone to large errors in the
presence of noise. In contrast, DI-SINDy, benefiting from a
smaller search space, can still accurately identify the correct
equation form, demonstrating stronger robustness.

Beyond quantitative advantages, as discussed in Section 5.1,
DI-SINDy employs differential invariants as candidate
terms, unlike SINDy and EquivSINDy-r, which rely on
manually specified equation skeletons (e.g., for the nKdV
equation, the term e_%ut is difficult to guess, whereas
differential invariants naturally guide its inclusion). Addi-
tionally, the performance of EquivSINDy-r is sensitive to
the regularization weight A\, while DI-SINDy eliminates the
need for hyperparameter tuning.

Long-term prediction error for KdV equation

Ground truth
DI-SINDy (urs)
v

Time Time

Long-term prediction error for nKdV equation

Ground truth
DI-SINDy (Ours)
— siny

— EquivSINDy-r (A =1073)
—— EqUIVSINDy-r (1 =1077)
— EquivSINDy-r (A =107)

Figure 3. Long-term prediction errors of different equation discov-
ery methods for the KdV, KS, Burgers, and nKdV equations. The
MSE at each time step is averaged over 4 initial conditions and 50
runs, with the shaded area representing the standard deviation.

We further numerically integrate the discovered explicit
equations for the 4 initial conditions in the test dataset and
calculate the MSE against their corresponding true trajecto-
ries, which we refer to as the long-term prediction error.
In Figure 3, we visualize the long-term prediction errors
of all methods for the KdV, KS, Burgers, and nKdV equa-
tions as a function of the integration time steps. We use the
ground-truth equation form as the benchmark (blue lines),
for which the long-term prediction error primarily stems
from finite differences and numerical integration. For the
KdV and nKdV equations, the error curves of SINDy and
EquivSINDy-r (A = 10~?) almost overlap, while for the
KS equation, the error curves of SINDy and EquivSINDy-r
with all X values nearly coincide. This is due to the minimal
differences in their discovered explicit equations, which can
be verified by the numerical results in Table 3. For all PDEs,
our DI-SINDy achieves significantly lower long-term pre-

diction errors than baselines, further validating the accuracy
of its equation discovery results.

6. Conclusion and Limitation

Overall, our method addresses several pain points in exist-
ing equation discovery approaches. For the large search
space of PDEs, most methods struggle to identify the cor-
rect relevant terms, whereas we overcome this limitation
by employing differential invariants. The necessity and suf-
ficiency of Proposition 4.2 show that our method neither
loses expressiveness like symmetry-constrained approaches
such as EquivSINDy-c, nor violates symmetry principles
like regularization-based methods such as EquivSINDy-r.
However, our approach relies on prior knowledge of the cor-
rect symmetry group. Although we claim that our approach
can be combined with data-driven symmetry discovery tech-
niques, inaccuracies in automatically identified symmetries
may affect the precision of equation discovery results. As
more robust symmetry discovery methods emerge in the
future, we believe this limitation will be resolved.
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A. Applications of Symmetry

Symmetry plays an important role in both traditional mathematical physics problems and the field of deep learning. For the
mathematical solution of differential equations, symmetry can guide variable substitutions to reduce their order (Olver, 1993;
McLachlan, 1995; Ibragimov, 1999; Hydon, 2000; Bluman & Anco, 2008; Bluman, 2010). In recent years, equivariant
networks have incorporated symmetry into network architectures, significantly improving performance and generalization in
specific scientific and computer vision tasks (Zaheer et al., 2017; Weiler et al., 2018b;a; Kondor & Trivedi, 2018; Wang
et al., 2020; Finzi et al., 2021; Satorras et al., 2021; Ruhe et al., 2023). Additionally, symmetry has been introduced into
Physics-Informed Neural Networks (PINNs) or used to guide data augmentation to enhance the accuracy of neural PDE
solvers (Arora et al., 2024; Lagrave & Tron, 2022; Shumaylov et al., 2024; Li et al., 2022; Zhang et al., 2023; Wang et al.,
2025; Akhound-Sadegh et al., 2023; Brandstetter et al., 2022a). Notably, our goal is to discover explicit equations rather
than using PINNS to learn the evolution process of PDEs, which means the problem we focus on differs from that of neural
PDE solvers.

B. Example

We take the KdV equation u; + uu, + u.,, = 0 as an example to intuitively understand the concepts introduced in Section 3.
In this case, the independent variables are (x,t) € X = R, and the dependent variable is u € U = R. Consider the group
G acting on X x U, which includes three types of group actions:

€1 (z,t,u) = (z + €1,t,u),
€ (z,t,u) = (z,t + €, u), (11)
€3 - (z,t,u) = (x + est, t,u + €3).

According to the definition v|, ,, = % L:O [exp(ev) - (z, )], the infinitesimal generators are:

1o}

Vi = 59

V2= (12)
9 9

Assuming u = f(z,t) is a solution to the KdV equation, then under the aforementioned three types of group actions, the
graph 'y = {(z,¢, f(x,t)) : (z,t) € X} is transformed into the graphs of the following three functions, respectively:

u(l) = f(l’ - elat)7
u® = f(x,t — ), (13)
u® = f(l‘ — €3t,t) + €3.

It is easy to verify that if u = f(x,t) satisfies the KdV equation, then u("), u(?) () are also solutions of the equation.
Therefore, we call G the symmetry group of the KdV equation.

Note that u§3) = —e3f.(x — e3t, t) + fi(x — est,t). The forms of the other transformed derivatives remain unchanged.
Then, we can provide the prolongation of group actions:

(SU tvuautvuxv"') = (x+617t7uautvur7"')a
€2 (z,t,u,up, Ugy ... ) = (2, + €2, U, Up, Uy, . . . ), (14)

pr(")63 (x,t,u, ug, Uy, ... ) = (T + €3t t,u+ €3, —€3Uy + Ug, Uy, - . . ).

According to the definition pr(”)v|($ uny = 4 |e:0 {pr(™ [exp(ev)] - (z,ul™)}, the prolongation of the infinitesimal
generators are: 7

prlvy = 2,
privy = % (15

pr(")v;; —ta + 8u uzaiut

Then, we can observe that the infinitesimal criteria pr(")vi (ut + vty + Ugqry) = 0 hold fori = 1,2, 3.
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C. Detailed Calculation Steps of Differential Invariants

Consider the case where X x U = R? x R, with (z,t) € X as the independent variables and u € U as the depen-
dent variable. We specify the highest prolongation order as n = 4, so the initial search space consists of the terms
{t, @, u, Uty Uy, Ugsy Uga, Uzmas  (FOr simplicity, we assume the dynamical system is first-order, meaning the highest-order
partial derivative of u with respect to ¢ is first-order).

C.1. KdV, KS, and Burgers Equations
As shown in Table 2, the infinitesimal generators of the symmetry groups for the KdV, KS, and Burgers equations are:

0 0 0 0
%, VQZE, V3:t%+% (]6)

V] =

We first compute their fourth-order prolongations. For pr(* v, we calculate its coefficients from Equation (4):

@' = Dy(—uy) + uge = 0,

¢* = Dy(—ug) + Uge = 0,

67 = Doa(—tta) + s = 0, an
G55 = Dya (1) + hges = O,

Therefore, we have:

pI'(4)V1 =V ==. (18)
ox
Similarly, it can be obtained that:
0
Dy, — - . 19
privve = vy = o (19)

The coefficients of pr(¥)vs are calculated as follows:

@' =Dy(1 — tug) + tugy = —ug,

¢ = Dy (1 — tug) + tuge =0,

¢ = Daga(1 — tug) + tuges = 0, (20)
""" = Dype (1 — tuy) + tugpre = 0,

A" = Dy (1 — tug) + tUpgpze = 0.

This means: 5 9 9 9
Bye = Vo — U — e f — g —— 21
PEIVE = Vs = e Ouy ox + ou e Oouy D
Substitute pr(4)v1 and pr(4)vQ into Equation (5):
on _ On
— -1 . 22
ox ot @2)

Therefore, the differential invariants do not contain the terms = and ¢. The search space can be narrowed down to
{’LL, Uty Ugy Uz y Uz, uzma::z:}

For pr®vs;, we can construct the characteristic equation as shown in Equation (6) (Note that the term z has already been
excluded, so the t% in pI‘(4)V3 can be ignored):

dy = ——. (23)
By integrating it, we get:

U + uu, = c. (24)
Replacing v and u; in the search space with the integration constant u; + uu,, we obtain the final differential invariants

{ut + Ulgy Ugy Ugg s Uz, uza::r:v}
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C.2. nKdV Equation

The infinitesimal generators of the symmetry group for the nKdV equation are shown in Table 2 as:

0 _t 0 t 0 0
3. Vz=e o —, vg=tgolefo —1)—+

o’ dr ' Ou’ =

Vi1 =
The form of pr(4)v1 is shown in Equation (18). For pr(4)vQ, we calculate its coefficients based on Equation (4):

ot = Dt(_e’%ut) + eiiutt = %67%7

67 = Dy~ ur) + ¢ Hug =0,

67 = Daa(—e” 0ur) + € Wttggr =0, =
¢m$ﬂ: — ijx(—eiﬁut) —+ eiiuta:mm = 07

t t
TTTT __ i ~ig —
¢ - waww(_e to ut) + e ‘o Utrrer = O

Then, we have:
(1) ut_%a 0 u _t O

4
r'/vog = vo + —e =€ ' — —e to .
PV = Ve ¢ o, ot 1" ou

27
For pr(Yvg, its coefficients are:

o' = Dyl — toe™s — 1)uy] +to(e™ — Dy = —uge™,

¢ = Dall — tofe™ — Dug] + to(es — Dtzs =0,

977 = Dy [1 = toe = 1)us] + to(€™ — Dty =0, (28)
e D Y to(e% — Dug] + to(e% — Dtgzaz =0,

¢zmzm = D‘Llll[l — to(e% - 1)“1] + tO(G% - 1)”-L.LLIJ, = 0

Then, we get:
. 0 0 0

+ + 0
prvs = vy — ugeto = to(e;o )=+ — - ugeo

Ouy or Ou Ouy

(29)

Similarly to Equation (22), we exclude the variable z based on pr(¥v; and update the search space as
{t7u7uhuxaua::raua:mxaumxzm}-

Construct the characteristic equation as shown in Equation (6) based on pr(4)vQ:

t to t
efodt = et dug. (30)
Ut
Integrating it yields the general solution:
e Touy = c. 31)

_t
By replacing the terms ¢ and u; with integral constants, we update the search space as {€~ o ug, U, Uy, Uzy, Uzze, Yzzrs }-

For pI'(4)V3, we construct the characteristic equation as:

1 _:
du = ——e Toduy. (32)
Uy

Integral yields:

ef%ut + uuy, = c. (33)

-t . . P . _t
Introducing it into the search space to replace e % u; and u, we obtain the final differential invariants as {e” fou; +
Uum uwa Uzw7 Uzww7 uwa:a:w}
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D. Data Generation

For the generation of the dataset, we follow the setup of Ko et al. (2024), which we restate as follows. In the Burgers
equation, ¥ = 0.01, and in the nKdV equation, ¢y = 50. For a one-dimensional PDE u; = f(z,t, u, Uy, Uz, . . . ) defined
on z € [0, L], the initial condition u(x,¢ = 0) is generated by randomly sampling the coefficients A4,, l,,, ¢, of the Fourier
series u(z,t = 0) = 25:1 Apsin(2nl,z/L + ¢,). Then, the spatial derivatives of u with respect to x are estimated
using the pseudospectral method, and the temporal evolution u; is computed from the explicit expression of the equation.
After numerically integrating the PDE over ¢ € [0,7] using an ODE solver, we obtain N, x Ny discrete grid points
on [0, L] x [0,T], where N, = 256 and N; = 140. Specifically, the dataset u(z,t) for the Burgers equation is solved
indirectly via the heat equation ¢; = ¢, which are related through the Cole-Hopf transformation u = QVa% In ¢. We add
multiplicative noise ' = u - (1 + ¢€) to the vector field u to simulate real-world perturbations, where € ~ N(0, 02). We
set the noise level ¢ = 102 for the KdV and nKdV equations, o = 10~ for Burgers equation, and o = 10~* for the KS
equation.

E. Implementation Detail

We select trajectory samples generated from 4 initial conditions in the training dataset for equation discovery and use the
L-BFGS optimizer with a learning rate of 0.1 for training. During sparse regression, parameters smaller than the threshold
are masked to 0 upon convergence, and the optimizer is reset. For the KdV, KS, and nKdV equations, we set the threshold to
0.5, while for Burgers equation, we set it to 5 x 1073, All methods share the above experimental settings to ensure a fair
comparison. We perform experiments on a single-core NVIDIA GeForce RTX 3090 GPU with available memory of 24, 576
MiB.

F. Additional Experiment

Taking the Burgers equation as an example, we evaluate the robustness of DI-SINDy under increasing noise levels. Note
that, as mentioned in Appendix D, the main results of the Burgers equation in Section 5.2 are obtained under a noise level of
o = 1073. Here, we further increase the noise level to o = {3 x 1073,5 x 1073}. The corresponding success rates and
RMSE of DI-SINDy and SINDy are shown in Table 4, while the long-term prediction errors are illustrated in Figure 4. As
the noise level increases, SINDy fails completely, whereas our DI-SINDy maintains a certain success rate and high accuracy,
which demonstrates its stronger robustness against real-world disturbances.

Table 4. Success rates and RMSE of SINDy and DI-SINDy (Ours) for the Burgers equation with different noise levels. All experimental
results are averaged over 50 runs. RMSE is presented in the format of mean =+ std.

Noise Method Success rate (1) RMSE (successful) () RMSE (all) (1)

o — 10-3 SINDy 4% (2114£0.14) x 1072 (1.52+£2.34) x 107!
N DI-SINDy (Ours) 98% (2.66 +1.32) x 107* (4.02+9.62) x 1074

o —3x10-3 SINDy 0% N/A (3.13+2.23) x 1071
- DI-SINDy (Ours) 100% (2.144+0.50) x 1073 (2.14+0.50) x 103

o —5x10-3 SINDy 0% N/A (3.07 £ 1.86) x 107!
N DI-SINDy (Ours) 28% (3.18 £0.28) x 1073 (5.98 +1.75) x 1073
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Figure 4. Long-term prediction errors of SINDy and DI-SINDy (Ours) for the Burgers equation with different noise levels. The MSE at
each time step is averaged over 4 initial conditions and 50 runs, with the shaded area representing the standard deviation.
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