
Journal of Machine Learning Research 25 (2024) 1-52 Submitted 5/21; Revised 12/23; Published 9/24

Accelerated Gradient Tracking over Time-varying Graphs for
Decentralized Optimization

Huan Li lihuanss@nankai.edu.cn
Institute of Robotics and Automatic Information Systems
College of Artificial Intelligence
Nankai University
Tianjin 300071, China

Zhouchen Lin B zlin@pku.edu.cn

Key Lab. of Machine Perception, School of Intelligence Science and Technology, Peking University

Department of Machine Intelligence, Peking University, Beijing 100871, China

Peng Cheng Laboratory, Shenzhen 518055, China

Editor: Pradeep Ravikumar

Abstract

Decentralized optimization over time-varying graphs has been increasingly common in
modern machine learning with massive data stored on millions of mobile devices, such as in
federated learning. This paper revisits the widely used accelerated gradient tracking and
extends it to time-varying graphs. We prove that the practical single loop accelerated gradient

tracking needs O((γ
1−σγ

)2
√

L
ϵ) and O((γ

1−σγ
)1.5
√

L
µ log 1

ϵ) iterations to reach an ϵ-optimal

solution over time-varying graphs when the problems are nonstrongly convex and strongly
convex, respectively, where γ and σγ are two common constants charactering the network
connectivity, L and µ are the smoothness and strong convexity constants, respectively, and
one iteration corresponds to one gradient oracle call and one communication round. Our
convergence rates improve significantly over the ones of O(1

ϵ5/7
) and O((Lµ)

5/7 1
(1−σ)1.5 log

1
ϵ),

respectively, which were proved in the original literature of accelerated gradient tracking
only for static graphs, where γ

1−σγ
equals 1

1−σ when the network is time-invariant. When

combining with a multiple consensus subroutine, the dependence on the network connectivity
constants can be further improved to O(1) and O(γ

1−σγ
) for the gradient oracle and

communication round complexities, respectively. When the network is static, by employing
the Chebyshev acceleration, our complexities exactly match the lower bounds without hiding
any poly-logarithmic factor for both nonstrongly convex and strongly convex problems.

Keywords: decentralized optimization, accelerated gradient tracking, time-varying graphs

1 Introduction

Distributed optimization has emerged as a promising framework in machine learning mo-
tivated by large-scale data being produced or stored in a network of nodes. Due to the
popularity of smartphones and their growing computational power, time-varying graphs are
increasingly common in modern distributed optimization, where the communication links
in the network may vary with time, and the devices may not be active all the time such
that the network may be even unconnected at each time. A typical example is federated

©2024 Huan Li and Zhouchen Lin.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v25/21-0475.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/21-0475.html

Li and Lin

learning (Li et al., 2020b; Kairouz et al., 2021), which involves training a global statistical
model from data stored on millions of mobile devices. The physical constraints on each
device typically result in only a small fraction of the devices being active at once, and it is
possible for an active device to drop out at a given time (Bonawitz et al., 2019). Although
centralized network is the predominant topology in most machine learning systems, such
as TensorFlow, decentralized network has been a potential alternative because it reduces
the high communication cost on the central server (Lian et al., 2017). This motivates us to
study decentralized optimization over time-varying graphs. In this paper, we consider the
following convex optimization problem:

min
x∈Rp

F (x) =
1

m

m∑
i=1

f(i)(x), (1)

where the local objective functions f(i) are distributed separately over a network of nodes.
The network is mathematically represented as a sequence of time-varying graphs {G0,G1, ...},
and each graph instance Gk consists of a fixed set of agents V = {1, ...,m} and a set of
time-varying edges Ek. Agents i and j can exchange information at time k if and only if
(i, j) ∈ Ek. Each agent i privately holds a local objective f(i), and makes its decision only
based on the local computations on f(i) and the local information received from its neighbors.
The local objective functions are assumed to be smooth. We consider both strongly convex
and nonstrongly convex objectives in this paper.

Although decentralized optimization over static graphs has been well studied, for example,
lower bounds on the number of communication rounds and gradient or stochastic gradient
oracle calls for strongly convex and smooth problems are well-known (Scaman et al., 2017,
2019; Hendrikx et al., 2021), and optimal accelerated algorithms with upper bounds exactly
matching the lower bounds are developed (Kovalev et al., 2020; Li et al., 2022), for the
time-varying graphs, the problem is more challenging. It is unclear how to design practical
accelerated methods with the optimal dependence on the precision ϵ and the condition
number of the objectives, exactly matching that of the classical centralized accelerated
gradient descent. In this paper, we aim to address this question.

1.1 Notations and Assumptions

Throughout this article, we denote x(i) to be the local variable for agent i. We use the
subscript (i) to distinguish the ith element of vector x. To write the algorithm in a
compact form, we introduce the aggregate objective function f(x) with its aggregate variable
x ∈ Rm×p and aggregate gradient ∇f(x) ∈ Rm×p as

f(x) =

m∑
i=1

f(i)(x(i)), x =

 x⊤(1)
...

x⊤(m)

 , ∇f(x) =

 ∇f(1)(x(1))
⊤

...
∇f(m)(x(m))

⊤

 . (2)

Denote xk to be the value at iteration k. For scalars, for example, θ, we use θk instead of θk

to denote the value at iteration k, while the latter represents its kth power. Specially, x⊤

means the transpose of x. We denote ∥ · ∥ to be the Frobenius norm for matrices and the ℓ2
Euclidean norm for vectors uniformly, and ∥ · ∥2 as the spectral norm of matrices. Denote I

2

Accelerated Gradient Tracking over Time-varying Graphs

as the identity matrix and 1 as the column vector of m ones. Assume that problem (1) has
a solution, and let x∗ be any one of them. Define the average variable across all the local
variables as

x =
1

m

m∑
i=1

x(i), y =
1

m

m∑
i=1

y(i), z =
1

m

m∑
i=1

z(i), s =
1

m

m∑
i=1

s(i), (3)

where x, y, z, and s will be used later in the development of the algorithm. Define operator
Π = I − 11⊤

m to measure the consensus violation such that

Πx =

 x⊤(1) − x⊤

· · ·
x⊤(m) − x⊤

 . (4)

We make the following assumptions for each local objective function in problem (1).

Assumption 1

1. Each f(i)(x) is µ-strongly convex: f(i)(y) ≥ f(i)(x) +
〈
∇f(i)(x), y − x

〉
+ µ

2∥y − x∥2.
Especially, we allow µ to be zero throughout this paper, and in this case we say f(i)(x)
is convex.

2. Each f(i)(x) is L-smooth, that is, f(i)(x) is differentiable and its gradient is L-Lipschitz
continuous: ∥∇f(i)(y)−∇f(i)(x)∥ ≤ L∥y − x∥.

A direct consequence of the smoothness and convexity assumptions is the following property
(Nesterov, 2004):

1

2L
∥∇f(i)(y)−∇f(i)(x)∥2 ≤ f(i)(y)− f(i)(x)−

〈
∇f(i)(x), y − x

〉
≤ L

2
∥y − x∥2. (5)

The information exchange between different agents in the network is realized through a
gossip matrix such that communication can be represented as a matrix multiplication with
the gossip matrix. When the network is static, we make the following standard assumptions
for the gossip matrix W ∈ Rm×m (Qu and Li, 2018):

Assumption 2

1. (Decentralized property) Wi,j > 0 if and only if (i, j) ∈ E or i = j. Otherwise, Wi,j = 0.

2. (Double stochasticity) W1 = 1 and 1⊤W = 1⊤.

Note that we do not assume that W is symmetric. If the network is connected, Assumption
2 implies that the second largest singular value σ of W is less than 1 (its largest one equals
1), that is, σ = ∥W − 1

m11⊤∥2 < 1. Moreover, we have the following classical consensus
contraction:

∥ΠWx∥ =

∥∥∥∥(W − 1

m
11⊤

)
x

∥∥∥∥ =

∥∥∥∥(W − 1

m
11⊤

)(
I − 1

m
11⊤

)
x

∥∥∥∥ ≤ σ∥Πx∥. (6)

We often use 1
1−σ as the condition number of the communication network.

3

Li and Lin

When the network is time-varying, each graph instance Gk associates with a gossip
matrix W k. Denote

W k,γ = W kW k−1 · · ·W k−γ+1, for any k ≥ γ − 1, (7)

W k,0 = I, and we follow (Nedić et al., 2017) to make the following standard assumptions for
the sequence of gossip matrices {W k}∞k=0.

Assumption 3

1. (Decentralized property) W k
i,j > 0 if and only if (i, j) ∈ Ek or i = j. Otherwise,

W k
i,j = 0.

2. (Double stochasticity) W k1 = 1 and 1⊤W k = 1⊤.

3. (Joint spectrum property) There exists a constant integer γ such that

σγ < 1, where σγ = sup
k≥γ−1

∥∥∥∥W k,γ − 1

m
11⊤

∥∥∥∥
2

.

Assumption 3 is weaker than the assumption that every graph Gk is connected. A typical
example of the gossip matrix satisfying Assumption 3 is the Metropolis weight over γ-
connected graphs. The former is defined as

W k
ij =

1/(1 + max{dki , dkj }), if (i, j) ∈ Ek,

0, if (i, j) ̸= Ek and i ̸= j,
1−

∑
l∈N k

(i)
W k

il , if i = j,
(8)

where N k
(i) is the set of neighbors of agent i at time k, and dki = |N k

(i)| is the degree. The

γ-connected graph sequence is defined as follows (Nedić et al., 2017).

Definition 1 The time-varying undirected graph sequence {V, Ek}∞k=0 is γ-connected if there
exists some positive integer γ such that the union of these γ consecutive undirected graphs
{V,∪k+γ−1

r=k Er} is connected for all k = 0, 1,

When Assumption 3 holds, we have the following γ-step consensus contraction:

∥ΠW k,γx∥ ≤ σγ∥Πx∥, for any k ≥ γ − 1. (9)

When the algorithm proceeds less than γ steps, we only have

∥ΠW k,tx∥ ≤ ∥Πx∥, for any 0 ≤ t < γ and k ≥ t− 1. (10)

In decentralized optimization, people often use communication round complexity and
gradient oracle complexity to measure the convergence speed. The former means the number
of communication rounds to reach an ϵ-optimal solution with F (x)− F (x∗) ≤ ϵ, while the
latter means the number of gradient oracle calls. In one communication round, all the agents
can receive O(1) vectors, such as xk(j), from each of its neighbors in parallel, which can be

represented as W kxk mathematically. In one gradient oracle call, all the agents call the
oracle to compute their local gradients ∇f(i)(x

k
(i)) in parallel.

4

Accelerated Gradient Tracking over Time-varying Graphs

1.2 Literature Review

In this section, we briefly review the decentralized algorithms over static graphs and time-
varying graphs, mainly focusing on the accelerated methods. We emphasize gradient tracking
(Nedić et al., 2017) and its acceleration (Qu and Li, 2020), which are mostly relevant for our
work. Tables 1 and 2 sum up the complexity comparisons of the state-of-the-art methods.

1.2.1 Decentralized Optimization over Static Graphs

Decentralized optimization has been studied for a long time (Bertsekas, 1983; Tsitsiklis et al.,
1986). The representative decentralized algorithms include distributed gradient/subgradient
descent (DGD) (Nedić and Ozdaglar, 2009; Nedić, 2011; Ram et al., 2010; Yuan et al., 2016),
EXTRA (Shi et al., 2015b,a), gradient tracking (Nedić et al., 2017; Qu and Li, 2018; Xu
et al., 2015; Xin et al., 2018), NIDS (Li et al., 2019), as well as the dual based methods,
such as dual ascent (Terelius et al., 2011), dual averaging (Duchi et al., 2012), ADMM
(Wei and Ozdaglar, 2013; Iutzeler et al., 2016; Makhdoumi and Ozdaglar, 2017), and the
primal-dual method (Lan et al., 2020; Scaman et al., 2018; Hong et al., 2017; Jakovetić,
2019). Among these methods, gradient tracking has the O((Lµ + 1

(1−σ)2
) log 1

ϵ) communication

round and gradient oracle complexities for strongly convex problems and the O(L
ϵ(1−σ)2

)

complexities for nonstrongly convex ones. Recently, accelerated decentralized methods have
gained significant attention due to their provable faster convergence rates.

Accelerated Methods for Strongly Convex and Smooth Decentralized Optimization. The
accelerated methods which can be applied to this scenario include the accelerated distributed
Nesterov gradient descent (Acc-DNGD) (Qu and Li, 2020), the robust distributed accelerated
stochastic gradient method (Fallah et al., 2022), the multi-step dual accelerated method
(Scaman et al., 2017, 2019), accelerated penalty method (APM) (Li et al., 2020a; Dvin-
skikh and Gasnikov, 2021), the multi-consensus decentralized accelerated gradient descent
(Mudag) (Ye et al., 2023, 2020), accelerated EXTRA (Li and Lin, 2020; Li et al., 2022), the
decentralized accelerated augmented Lagrangian method (Arjevani et al., 2020), and the
accelerated proximal alternating predictor-corrector method (APAPC) (Kovalev et al., 2020).

Scaman et al. (2017, 2019) proved the Ω(
√

L
µ(1−σ) log

1
ϵ) and Ω(

√
L
µ log 1

ϵ) lower bounds for

communication rounds and gradient oracle calls, respectively. To the best of our knowledge,
APAPC combined with the Chebyshev acceleration (CA) (Arioli and Scott, 2014) is the first
to exactly achieve these lower bounds without hiding any poly-logarithmic factor. Although
gradient tracking has been widely used in practice, its accelerated variant, Acc-DNGD, only
has the O((Lµ)

5/7 1
(1−σ)1.5

log 1
ϵ) communication round and gradient oracle complexities (Qu

and Li, 2020).

Accelerated Methods for Nonstrongly Convex and Smooth Decentralized Optimization.
The accelerated methods for this scenario are much scarcer. Examples include the distributed
Nesterov gradient with consensus (Jakovetić et al., 2014a), Acc-DNGD (Qu and Li, 2020),
APM (Li et al., 2020a; Dvinskikh and Gasnikov, 2021), accelerated EXTRA (Li and Lin,
2020), and the accelerated dual ascent (Uribe et al., 2021), where the last one adds a
small regularizer to translate the problem to a strongly convex and smooth one. Scaman

et al. (2019) proved the Ω(
√

L
ϵ(1−σ)) communication round complexity lower bound and

5

Li and Lin

Table 1: Comparisons among the state-of-the-art complexities of decentralized methods
over static graphs, as well as those of gradient tracking and its accelerated variant
Acc-DNGD. Double loop means the method needs to call a subroutine with multiple
steps at each iteration, such as the Chebyshev acceleration, the multiple consensus,
the gradient evaluation of Fenchel conjugate, or the minimization of a subproblem.

Methods
gradient oracle

complexity

communication round

complexity

single or

double loop

Nonstrongly convex and smooth functions

Gradient tracking

(Qu and Li, 2018)
O

(
L

ϵ(1−σ)2

)
O

(
L

ϵ(1−σ)2

)
single

Acc-DNGD

(Qu and Li, 2020)
O

(
1

ϵ5/7

)
O

(
1

ϵ5/7

)
single

APM

(Li et al., 2020a)

(Dvinskikh and Gasnikov, 2021)

O
(√

L
ϵ

)
O

(√
L

ϵ(1−σ)
log 1

ϵ

)
double

Acc-EXTRA

(Li and Lin, 2020)
O

(√
L

ϵ(1−σ)
log 1

ϵ

)
O

(√
L

ϵ(1−σ)
log 1

ϵ

)
double

Our results for Acc-GT O
(

1
(1−σ)2

√
L
ϵ

)
O

(
1

(1−σ)2

√
L
ϵ

)
single

Our results for Acc-GT+CA O
(√

L
ϵ

)
O

(√
L

ϵ(1−σ)

)
double

Lower bounds

(Scaman et al., 2019)
O

(√
L
ϵ

)
O

(√
L

ϵ(1−σ)

)
\

Strongly convex and smooth functions

Gradient tracking

(Alghunaim et al., 2021)
O

((
L
µ
+ 1

(1−σ)2

)
log 1

ϵ

)
O

((
L
µ
+ 1

(1−σ)2

)
log 1

ϵ

)
single

Acc-DNGD

(Qu and Li, 2020)
O

((
L
µ

)5/7
1

(1−σ)1.5
log 1

ϵ

)
O

((
L
µ

)5/7
1

(1−σ)1.5
log 1

ϵ

)
single

APAPC+CA

(Kovalev et al., 2020)
O

(√
L
µ
log 1

ϵ

)
O

(√
L

µ(1−σ)
log 1

ϵ

)
double

Our results for Acc-GT O
(√

L
µ(1−σ)3

log 1
ϵ

)
O

(√
L

µ(1−σ)3
log 1

ϵ

)
single

Our results for Acc-GT+CA O
(√

L
µ
log 1

ϵ

)
O

(√
L

µ(1−σ)
log 1

ϵ

)
double

Lower bounds

(Scaman et al., 2019)
O

(√
L
µ
log 1

ϵ

)
O

(√
L

µ(1−σ)
log 1

ϵ

)
\

the Ω(
√

L
ϵ) gradient oracle complexity lower bound. To the best of our knowledge, there

is no method matching these lower bounds exactly without hiding any poly-logarithmic
factor. APM comes close to this target, but with an additional O(log 1

ϵ) factor in the
communication round complexity. Acc-DNGD, acceleration of gradient tracking, only has
the O(1

ϵ5/7
) complexities of communication rounds and gradient oracles, originally proved

in (Qu and Li, 2020). Note that the dependence on 1 − σ, a small constant charactering

6

Accelerated Gradient Tracking over Time-varying Graphs

the network connectivity, was not explicitly given in (Qu and Li, 2020).. Xu et al. (2020)
proposed an accelerated primal dual method, however, their complexities remain O(1ϵ).

1.2.2 Decentralized Optimization over Time-varying Graphs

We review the decentralized algorithms over time-varying graphs in two scenarios. In the
first scenario, the network may not be connected at every time, but it is assumed to be
γ-connected. In the second scenario, the network is assumed to be connected at every time.

Not Connected at Every Time but γ-connected. In this scenario, DIGing (that is, gradient
tracking over time-varying graphs) (Nedić et al., 2017), PANDA (Maros and Jalden, 2018,
2019), the time-varying AB/push-pull method (Saadatniaki et al., 2020), the decentralized
stochastic gradient descent (SGD) (Koloskova et al., 2020), and the push-sum based methods
(Nedić and Olshevsky, 2016, 2015; Nedić et al., 2017) are the representative non-accelerated
methods over time-varying graphs for convex problems, as well as NEXT (Lorenzo and
Scutari, 2016) and SONATA (Scutari and Sun, 2019) for nonconvex problems. When combing
with Nesterov’s acceleration, to the best of our knowledge, the decentralized accelerated
gradient descent with consensus subroutine (DAGD-C) (Rogozin et al., 2021b,a) is the only
accelerated method for strongly convex and smooth objectives with explicit complexities in
this general time-varying setting. However, the communication round complexity of DAGD-
C has an additional O(log 1

ϵ) factor compared with the classical centralized accelerated
gradient method. For nonstrongly convex and smooth problems, no literature studies the
accelerated methods over time-varying graphs. While APM (Li et al., 2020a) was originally
designed for static graphs, it can be easily extended to the time-varying case. However,
as introduced in the previous section, APM also has an additional O(log 1

ϵ) factor in the
communication round complexity. Both DAGD-C and APM are double-loop methods, where
one gradient is computed at each iteration of the outer loop, and multiple rounds of consensus
communications follow up in the inner loop. The multiple consensus double loop may limit
the applications of DAGD-C and APM. See the discussions in Remark 16.

Connected at Every Time. In this scenario, the literature is rich and many distributed
methods originally designed over static graphs, such as Acc-DNGD, can be directly used.
Kovalev et al. (2021b,a) proposed a dual based method named ADOM and its primal-only

extension ADOM+, where the latter has the state-of-the-art O(1
1−σ

√
L
µ log 1

ϵ) communication

round complexity and the O(
√

L
µ log 1

ϵ) gradient oracle complexity for strongly convex and

smooth problems. Kovalev et al. (2021a) also established the lower bounds showing that

their ADOM+ is optimal. Rogozin et al. (2020) gave the complexity of O(
√

L
µ(1−σ) log

1
ϵ)

under a stronger assumption that the network changes slowly in the sense that the number
of network changes cannot exceed some percentage of the number of total iterations. Nguyen
et al. (2024) studied the accelerated AB/push-pull method over directed graphs, but no
accelerated rate is proved.

1.3 Contributions

In this paper, we study accelerated gradient tracking over time-varying graphs with sharper
complexities. We give our analysis over static graphs and time-varying graphs in a uni-

7

Li and Lin

Table 2: Comparisons among the state-of-the-art complexities of decentralized methods over
time-varying graphs. We only compare with the methods working over γ-connected
graphs.

Methods
gradient oracle

complexity

communication round

complexity

single or

double loop

Nonstrongly convex and smooth functions

DGD1

(Koloskova et al., 2020)
O

(
γζ

√
L

(1−σγ)ϵ3/2
+ γ

1−σγ

L
ϵ

)
O

(
γζ

√
L

(1−σγ)ϵ3/2
+ γ

1−σγ

L
ϵ

)
single

APM

(Li et al., 2020a)
O

(√
L
ϵ

)
O

(
γ

1−σγ

√
L
ϵ
log 1

ϵ

)
double

Our results for Acc-GT O
(

γ2

(1−σγ)2

√
L
ϵ

)
O

(
γ2

(1−σγ)2

√
L
ϵ

)
single

Our results for Acc-GT+

multiple consensus
O

(√
L
ϵ

)
O

(
γ

1−σγ

√
L
ϵ

)
double

Strongly convex and smooth functions

DGD

(Koloskova et al., 2020)
O

(
γζ

√
L

µ(1−σγ)
√
ϵ
+ γ

1−σγ

L
µ
log 1

ϵ

)
O

(
γζ

√
L

µ(1−σγ)
√
ϵ
+ γ

1−σγ

L
µ
log 1

ϵ

)
single

DIGing

(Nedić et al., 2017)
O

(
√
m

(
L
µ

)1.5
γ3

(1−σγ)2
log 1

ϵ

)
O

(
√
m

(
L
µ

)1.5
γ3

(1−σγ)2
log 1

ϵ

)
single

DAGD-C

(Rogozin et al., 2021b)
O

(√
L
µ
log 1

ϵ

)
O

(
γ

1−σγ

√
L
µ

(
log 1

ϵ

)2)
double

Our results for Acc-GT O
((

γ
1−σγ

)1.5 √
L
µ
log 1

ϵ

)
O

((
γ

1−σγ

)1.5 √
L
µ
log 1

ϵ

)
single

Our results for Acc-GT+

multiple consensus
O

(√
L
µ
log 1

ϵ

)
O

(
γ

1−σγ

√
L
µ
log 1

ϵ

)
double

fied framework. The former scenario provides the basis and insights for the latter. Our
contributions are summarized as follows:

1. For time-varying graphs, our contributions include:

(a) When the local objective functions are nonstrongly convex and smooth, we prove

the O(γ2

(1−σγ)2

√
L
ϵ) complexities of communication rounds and gradient oracle

calls for the practical single loop accelerated gradient tracking (Acc-GT). When
combing with a multiple consensus subroutine, our complexities can be improved

to O(γ
1−σγ

√
L
ϵ) for communication rounds and O(

√
L
ϵ) for gradient oracles. The

number of our communication rounds is less than that of the state-of-the-art
APM (Li et al., 2020a) by a O(log 1

ϵ) factor, while that of our gradient oracle
calls is the same as that of APM.

1. The method in (Koloskova et al., 2020) was designed for stochastic decentralized optimization. We recover
the complexities for deterministic optimization by setting the variance of the stochastic gradient to be
zero. On the other hand, ζ = 1

m

∑m
i=1 ∥∇f(i)(x

∗)∥2.

8

Accelerated Gradient Tracking over Time-varying Graphs

(b) When the local objective functions are strongly convex and smooth, we prove

the O((γ
1−σγ

)1.5
√

L
µ log 1

ϵ) communication round and gradient oracle complex-

ities for the practical single loop Acc-GT. When combing with the multiple
consensus subroutine, we can improve the communication round complexity to

O(γ
1−σγ

√
L
µ log 1

ϵ) and the gradient oracle complexity to O(
√

L
µ log 1

ϵ). The num-

ber of our communication rounds is less than that of the state-of-the-art DAGD-C
(Rogozin et al., 2021b) by a O(log 1

ϵ) factor, while our gradient oracle calls remain
the same as that of DAGD-C.

(c) To the best of our knowledge, this is the first time that the communication
round upper bound with the optimal dependence on the precision ϵ and condition
number L/µ is given for both nonstrongly convex and strongly convex problems.
More importantly, they are established for a practical single loop algorithm.

2. For static graphs as a special case, our contributions include:

(a) When the local objective functions are nonstrongly convex and smooth, we prove

the O(1
(1−σ)2

√
L
ϵ) complexities of communication rounds and gradient oracles for

the practical single loop Acc-GT, which significantly improve over the existing
O(1

ϵ5/7
) ones originally proved in (Qu and Li, 2020). When combing with the

Chebyshev acceleration, we can improve the complexities to O(
√

L
ϵ(1−σ)) for

communication rounds and O(
√

L
ϵ) for gradient oracles, which exactly match the

complexity lower bounds. As far as we know, we are the first to establish the
optimal upper bounds for nonstrongly convex and smooth problems, which exactly
match the corresponding lower bounds without hiding any poly-logarithmic factor.

(b) When the local objective functions are strongly convex and smooth, we prove the

O(
√

L
µ(1−σ)3

log 1
ϵ) communication round and gradient oracle complexities for the

practical single loop Acc-GT, which improves over the existingO((Lµ)
5/7 1

(1−σ)1.5
log 1

ϵ)

ones originally given in (Qu and Li, 2020). When combing with the Chebyshev
acceleration, the complexities can be further improved to match the corresponding
lower bounds and existing optimal upper bounds.

2 Accelerated Gradient Tracking over Time-varying Graphs

We first review the gradient tracking and its accelerated variant, where the latter was only
designed over static graphs, and then give our extensions of the accelerated gradient tracking
to time-varying graphs with sharper complexities.

2.1 Review of Gradient Tracking and Its Acceleration

Gradient tracking (Nedić et al., 2017; Qu and Li, 2018; Xu et al., 2015; Xin et al., 2018)
keeps an auxiliary variable sk(i) at each iteration for each agent i to track the average of the

gradients ∇f(j)(x
k
(j)) for all j = 1, ...,m, such that if xk(i) converges to some point x∞, sk(i)

9

Li and Lin

converges to 1
m

∑m
i=1∇f(i)(x

∞). The auxiliary variable is updated recursively as follows:

sk(i) =
∑

j∈N(i)

Wijs
k−1
(j) +∇f(i)(x

k
(i))−∇f(i)(x

k−1
(i)),

and each agent uses this auxiliary variable as the descent direction in the general distributed
gradient descent framework:

xk+1
(i) =

∑
j∈N(i)

Wijx
k
(j) − αsk(i),

where α is the step size. Writing gradient tracking in the compact form, it reads as follows:

sk = W sk−1 +∇f(xk)−∇f(xk−1),

xk+1 = Wxk − αsk.

Gradient tracking can be used over both static graphs and time-varying graphs (Nedić et al.,
2017).

To further accelerate gradient tracking, Qu and Li (2020) employed Nesterov’s acceleration
technique (Nesterov, 2004) and proposed the following accelerated distributed Nesterov
gradient descent for nonstrongly convex problems:

yk = θkz
k + (1− θk)x

k, (12a)

sk = W sk−1 +∇f(yk)−∇f(yk−1), (12b)

xk+1 = Wyk − αsk, (12c)

zk+1 = Wzk − α

θk
sk. (12d)

It can be checked that step (12c) is equivalent to the following one:

xk+1 = θkz
k+1 + (1− θk)Wxk.

When strong convexity is assumed, Qu and Li (2020) fixed θk at each iteration and replaced
steps (12a) and (12d) by the following two steps:

yk =
xk + θzk

1 + θ
, zk+1 = (1− θ)Wzk + θWyk − α

θ
sk.

The main idea behind the development of the above accelerated algorithms is to relate it to
the inexact accelerated gradient descent (Devolder et al., 2014) by taking average of the
local variables over all i = 1, ...,m. See Section 3.1 for the details. Tables 1 and 2 list the
complexities of gradient tracking and its accelerated variant.

2.2 Extension of Accelerated Gradient Tracking to Time-varying Graphs

10

Accelerated Gradient Tracking over Time-varying Graphs

Algorithm 1 Accelerated Gradient Tracking (Acc-GT)

Initialize: x0(i) = y0(i) = z0(i) = xint, s
0
(i) = ∇f(i)(y

0
(i)), z

1
(i) =

∑
j∈N(i)

W 0
ijz

0
(j) −

α
θ0+µαs

0
(i),

and x1(i) = θ0z
1
(i) + (1− θ0)

∑
j∈N(i)

W 0
ijx

0
(j).

for k = 1, 2, ... do

yk(i) = θkz
k
(i) + (1− θk)x

k
(i),

sk(i) =
∑

j∈N(i)

W k
ijs

k−1
(j) +∇f(i)(y

k
(i))−∇f(i)(y

k−1
(i)),

zk+1
(i) =

1

1 + µα
θk

 ∑
j∈N(i)

W k
ij

(
µα

θk
yk(j) + zk(j)

)
− α

θk
sk(i)

 ,

xk+1
(i) = θkz

k+1
(i) + (1− θk)

∑
j∈N(i)

W k
ijx

k
(j).

end for

In this paper, we study the following accelerated gradient tracking with time-varying
gossip matrices:

yk = θkz
k + (1− θk)x

k, (13a)

sk = W ksk−1 +∇f(yk)−∇f(yk−1), (13b)

zk+1 =
1

1 + µα
θk

(
W k

(
µα

θk
yk + zk

)
− α

θk
sk
)
, (13c)

xk+1 = θkz
k+1 + (1− θk)W

kxk, (13d)

where we initialize x0 such that Πx0 = 0. We give the specific descriptions of the method in
Algorithm 1 in a distributed way. Step (13b) is the standard gradient tracking, while steps
(13a), (13c), and (13d) come from Nesterov’s classical accelerated gradient descent (Nesterov,
2004), except that one round of consensus communication is performed by multiplying the
aggregate variables with a gossip matrix. We see that algorithm (13a)-(13d) is equivalent
to (12a)-(12d) when the gossip matrix is fixed and µ = 0. However, when µ > 0, it is not
equivalent to the method proposed in (Qu and Li, 2020). In fact, Nesterov’s accelerated
gradient methods have several variants, and we choose the one in the form of (13a)-(13d)
due to its simple convergence proof.

We follow the proof idea in (Jakovetić et al., 2014a; Qu and Li, 2020) to rewrite the
distributed algorithm in the form of inexact accelerated gradient descent. However, we use
a different proof framework from (Qu and Li, 2020) with much simpler proofs, and give
sharper complexities. See Remark 23 for the differences and the reasons of the convergence
rates improvement. On the other hand, for time-varying graphs, unlike the classical analysis
relying on the small gain theorem (Nedić et al., 2017), we construct a different way to bound
the consensus errors such that the proof framework over static graphs can be extended to
time-varying graphs. See the proof of Lemma 25 and the remark following it. Our proof
technique may shed new light to decentralized optimization over time-varying graphs, and

11

Li and Lin

gives an alternative to the small gain theorem. There are two advantages of our proof
technique: it can be embedded into many algorithm frameworks from the perspective of error
analysis, and it can be applied to both strongly convex and nonstrongly convex problems,
while the small gain theorem only applies to strongly convex ones.

Our main technical results concerning the convergence rates of the accelerated gradient
tracking are summarized in the following two theorems for nonstrongly convex and strongly
convex problems, respectively.

Theorem 2 Suppose that Assumption 1 holds with µ = 0 and Assumption 3 holds for
the sequence {W k}Tγ

k=0. Let the sequence {θk}Tγ
k=0 satisfy 1−θk

θ2k
= 1

θ2k−1
with θ0 = 1, let

α ≤ (1−σγ)4

21675Lγ4 . Then for algorithm (13a)-(13d), we have for any T ≥ 1,

F (xTγ+1)− F (x∗) ≤ 2C

α(Tγ + 1)2
,

and

1

m
∥ΠxTγ∥2 ≤ 9C

αL(Tγ + 1)2
,

where C = ∥z0 − x∗∥2 + α(1−σγ)
10mLγ maxr=0,...,γ ∥Πsr∥2.

Theorem 3 Suppose that Assumption 1 holds with µ > 0 and Assumption 3 holds for the

sequences {W k}Tγ
k=0. Let α ≤ (1−σγ)3

4244Lγ3 and θk ≡ θ =
√
µα
2 . Then for algorithm (13a)-(13d),

we have for any T ≥ 1,

F (xTγ+1)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥zTγ+1 − x∗∥2 ≤ (1− θ)Tγ+1C,

and

1

m
∥ΠxTγ∥2 ≤ (1− θ)Tγ+1 4C

L
,

where C = F (x0)−F (x∗) +
(

θ2

2α + µθ
2

)
∥z0 − x∗∥2 + 1−σγ

49mLγ(1−θ)M
γ,γ
s + 1459Lγ3

m(1−θ)(1−σγ)3
Mγ,γ

z +
6.6Lγ

m(1−θ)(1−σγ)
Mγ,γ

x , Mγ,γ
s = maxr=1,...,γ ∥Πsr∥2, and similarly for Mγ,γ

z and Mγ,γ
x .

When the local objectives are nonstrongly convex, we see from Theorem 2 that algorithm

(13a)-(13d) needs O((γ
1−σγ

)2
√

LC
ϵ) communication rounds and gradient oracle calls to find

an ϵ-optimal averaged solution (see Remark 31). When strong convexity is assumed, we see
from Theorem 3 that both the communication round and gradient oracle complexities are

O((γ
1−σγ

)1.5
√

L
µ log 1

ϵ). Our complexities have the optimal dependence on the precision ϵ and

the condition number L/µ, matching that of the classical centralized accelerated gradient
method. As illustrated in Table 2, our communication round complexities improve over
the state-of-the-art APM (Li et al., 2020a) and DAGD-C (Rogozin et al., 2021b) on the
dependence of ϵ since they have an additional O(log 1

ϵ) factor. However, our dependence on
γ

1−σγ
is not state-of-the-art. We will improve it in Section 2.4.

12

Accelerated Gradient Tracking over Time-varying Graphs

Remark 4 In order to establish the proof, we use very small stepsizes with huge constants
in the theorems, which is impractical. We suggest to tune the best stepsize in practice, rather
than the ones used in the theorems.

Remark 5 We measure the convergence rates at the averaged solution, which can be ob-
tained by an additional consensus average routine ut+1 = W tut initialized at u0 = xTγ+1,
and O(γ

1−σγ
log 1

ϵ) rounds of communications are enough. So the total complexities are

O((γ
1−σγ

)2
√

LC
ϵ)+O(γ

1−σγ
log 1

ϵ) and O((γ
1−σγ

)1.5
√

L
µ log 1

ϵ)+O(γ
1−σγ

log 1
ϵ) for nonstrongly

convex and strongly convex problems, respectively, and they are dominated by the first parts.

Remark 6 For nonstrongly convex problems, we can also prove the convergence rate mea-
sured at the point xTγ+1

(i) for any i:

F (xTγ+1
(i))− F (x∗) ≤ 2C

α(Tγ + 1)2
max

{√
m(1− σγ)

Lαγ
, 8m

}
.

However, the complexities increase to O(max{
√
m, 4

√
m(γ

1−σγ
)1.5}(γ

1−σγ
)2
√

L
ϵ). For strongly

convex problems, the complexities stay the same no matter measured at xTγ+1 or xTγ+1
(i)

because the additional terms, such as max{
√
m, 4

√
m(γ

1−σγ
)1.5} in the nonstrongly convex

case, appear in the constant C ′ in O((γ
1−σγ

)1.5
√

L
µ log C′

ϵ).

Remark 7 In Theorems 2 and 3, we measure the convergence rates at the (Tγ + 1)th
iteration for simplicity. In fact, the same rates hold for any K = Tγ + r with 1 ≤ r ≤ γ
by regarding the (r − 1)th iteration as the virtual initialization, which only influences the
constant C in Theorems 2 and 3. In addition, since θr−1 < 1, the constant C in Theorem 2

contains an additional term α(1−θr−1)
θ2r−1

(F (xr−1)− F (x∗)).

Remark 8 Due to the physical constraints such as the battery dies, the device shuts down,
or the WiFi network is unavailable, the agents may not be active all the time. Most literature
let the agents wait and use the old iterates when rejoining the network. Alternatively, we can
formulate this case by local updates (Stich, 2019; Koloskova et al., 2020) and use our analysis
framework to ensure the convergence. Mathematically, letting W k

ii = 1 and W k
ij = 0 for all

j ̸= i and k = t+ 1, t+ 2, ..., t′, which means that agent i drops out from the communication
network during the time [t+ 1, t′], algorithm (13a)-(13d) reduces to the following steps for
agent i at iterations k = t+ 1, t+ 2, ..., t′:

yk(i) = θkz
k
(i) + (1− θk)x

k
(i), (14a)

sk(i) = sk−1
(i) +∇f(i)(y

k
(i))−∇f(i)(y

k−1
(i)), (14b)

zk+1
(i) =

1

1 + µα
θk

((
µα

θk
yk(i) + zk(i)

)
− α

θk
sk(i)

)
, (14c)

xk+1
(i) = θkz

k+1
(i) + (1− θk)x

k
(i), (14d)

which are a serious of local updates without communications. When joining the network
again, we require agent i to make up the delayed computations by performing (14a)-(14d)

13

Li and Lin

for t′ − t iterations. Note that (14a)-(14d) has much lower cost than the same number of
iterations (13a)-(13d) because the CPU speed is much faster than the communication speed
over TCP/IP or the slow WiFi (Lan et al., 2020).

2.3 Special Cases over Static Graphs

When we fix W k = W , algorithm (13a)-(13d) can be applied to static graphs. As a special
case of Theorems 2 and 3, we have the following theorems over static graphs.

Theorem 9 Suppose that Assumptions 1 and 2 hold with connected graphs and µ = 0. Let

the sequence {θk}Kk=0 satisfy 1−θk
θ2k

= 1
θ2k−1

with θ0 = 1, let α ≤ (1−σ)4

537L . Then for algorithm

(13a)-(13d) with fixed gossip matrix W , we have for any K ≥ 1

F (xK+1)− F (x∗) ≤ 1

α(K + 1)2

(
2∥z0 − x∗∥2 + α(1− σ)

2L

1

m
∥Πs0∥2

)
,

and

1

m
∥ΠxK∥2 ≤ 1

αL(K + 1)2

(
5∥z0 − x∗∥2 + 9α(1− σ)

4L

1

m
∥Πs0∥2

)
.

Theorem 10 Suppose that Assumptions 1 and 2 hold with connected graphs and µ > 0. Let

α ≤ (1−σ)3

119L and θk ≡ θ =
√
µα
2 . Then for algorithm (13a)-(13d) with fixed gossip matrix W ,

we have for any K ≥ 1

F (xK+1)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥zK+1 − x∗∥2 ≤ (1− θ)K+1C,

and

1

m
∥ΠxK∥2 ≤ (1− θ)K+1 4C

L
,

where C = F (x0)− F (x∗) +
(

θ2

2α + µθ
2

)
∥z0 − x∗∥2 + 4(1−σ)

59L(1−θ)
1
m∥Πs0∥2.

The above theorems give the O(1
(1−σ)2

√
L
ϵ) and O(

√
L

µ(1−σ)3
log 1

ϵ) convergence rates for

nonstrongly convex and strongly convex problems, respectively. As illustrated in Table 1, our
convergence rates significantly improve over the ones of O(1

ϵ5/7
) and O((Lµ)

5/7 1
(1−σ)1.5

log 1
ϵ),

respectively, which were originally proved in (Qu and Li, 2020).

Remark 11 In our Theorem 10, we require each f(i)(x) to be strongly convex. Some
literatures study the weaker assumptions where only F (x) is required to be strongly convex
and each f(i) can be convex and smooth. Sun et al. (2022) established the O((L

µ(1−σ))
2 log 1

ϵ)
complexity for gradient tracking over general undirected graphs. As a comparison, when
each f(i) is strongly convex, the state-of-the-art complexity of gradient tracking is O((Lµ +

1
(1−σ)2

) log 1
ϵ) (Alghunaim et al., 2021). Currently, it is unclear how to combine our techniques

with those in (Sun et al., 2022) and we conjecture that the complexity would be higher than the
one given in Theorem 10. On the other hand, for some algorithms relying on multi-consensus
(Ye et al., 2023, 2020), the weaker assumptions have no influence on the complexity.

14

Accelerated Gradient Tracking over Time-varying Graphs

2.4 Improved Dependence on the Network Connectivity Constants

As shown in Tables 1 and 2, the dependence on the network connectivity constants in our
complexities is not optimal. We improve it over static graphs and time-varying graphs in
the next two sections, respectively.

2.4.1 Chebyshev Acceleration over Static Graphs

Chebyshev acceleration was first used to accelerate distributed algorithms by Scaman et al.
(2017), and it has become a standard technique now. Define the Chebyshev polynomials
as T0(x) = 1, T1(x) = x, and Tk+1(x) = 2xTk(x) − Tk−1(x) for all k ≥ 1. For symmetric
W , define A = I −W with 2 ≥ λ1 ≥ λ2 ≥ ... ≥ λm−1 > λm = 0 being its eigenvalues. We

know λm−1 = 1 − σ. Define ν = λm−1

λ1
, c1 = 1−

√
ν

1+
√
ν
, c2 = 1+ν

1−ν , c3 = 2
λ1+λm−1

, and Pt(x) =

1−Tt(c2(1−x))
Tt(c2)

. Then, Pt(c3A) is a symmetric matrix satisfying Pt(c3A)1 = 0 with its spectrum

in [1− 2ct1
1+c2t1

, 1 +
2ct1

1+c2t1
] ∪ 0 (Auzinger and Melenk, 2017). Let t = 1√

ν
so to have ct1 ≤ 1

e and

[1− 2ct1
1+c2t1

, 1+
2ct1

1+c2t1
] ⊆ [0.35, 1.65]. Thus, we can replace the fixed gossip matrixW in algorithm

(13a)-(13d) by I − Pt(c3A) because its second largest singular value σ′ satisfies σ′ ≤ 0.65,
which is independent of 1− σ. From Theorems 9 and 10 with σ replaced by σ′, we see that

the algorithm needs O(
√

L
ϵ) iterations for nonstrongly convex problems and O(

√
L
µ log 1

ϵ)

iterations for strongly convex ones to find an ϵ-optimal solution, which corresponds to the
gradient oracle complexity. On the other hand, we can compute (I − Pt(c3A))x by the
following procedure (Scaman et al., 2017):

Input: x. Initialize: a0 = 1, a1 = c2, z
0 = x, z1 = c2(I − c3A)x.

for s = 1, 2, ..., t− 1 do
as+1 = 2c2as − as−1,
zs+1 = 2c2(I − c3A)zs − zs−1.

end for
Output: (I − Pt(c3A))x = zt

at
.

Thus, the communication round complexities for nonstrongly convex and strongly convex

problems are O(
√

L
ϵ(1−σ)) and O(

√
L

µ(1−σ) log
1
ϵ), respectively.

Corollary 12 Under the settings of Theorem 9 with symmetric and fixed gossip matrix W ,

algorithm (13a)-(13d) with Chebyshev acceleration requires time of O(
√

L
ϵ(1−σ)) communica-

tion rounds and O(
√

L
ϵ) gradient oracle calls to find an ϵ-optimal averaged solution such

that F (x)− F (x∗) ≤ ϵ.

Corollary 13 Under the settings of Theorem 10 with symmetric and fixed gossip matrix

W , algorithm (13a)-(13d) with Chebyshev acceleration requires time of O(
√

L
µ(1−σ) log

1
ϵ)

communication rounds and O(
√

L
µ log 1

ϵ) gradient oracle calls to find an ϵ-optimal averaged

solution such that F (x)− F (x∗) ≤ ϵ.

15

Li and Lin

2.4.2 Multiple Consensus over Time-varying Graphs

Although Chebyshev acceleration has been widely used in decentralized optimization, it is
unclear how to extend it to time-varying graphs. In this section, we use a multiple consensus
subroutine as an alternative to improve the dependence on the network connectivity constants.
Motivated by Chebyshev acceleration, our idea is to replace W k in (13a)-(13d) by virtual
gossip matrices W k,ζ with carefully designed ζ such that

∥ΠW k,ζx∥ ≤ 1

e
∥Πx∥, r = 1, 2, 3.

Here, 1
e can be replaced by any constant not close to 1. Then, it can be regarded as running

the resultant algorithm over time-varying graphs with each graph instance being connected
at every time, and moreover, σ = 1

e . Note that we do not require the symmetry of the gossip
matrices in Assumptions 2 and 3, thus our theorems apply to the virtual gossip matrices

W k,ζ . From Theorems 2 and 3 with γ = 1 and σγ = 1
e , we see that O(

√
L
ϵ) iterations for

nonstrongly convex problems and O(
√

L
µ log 1

ϵ) for strongly convex problems suffice to find

an ϵ-optimal solution, which correspond to the gradient oracle complexity. Next, we consider
the communication round complexity. Letting ζ = ⌈ γ

1−σγ
⌉, it follows from (9) that

∥ΠW k,ζx∥ ≤ σ
1

1−σγ
γ ∥Πx∥ = (1− (1− σγ))

1
1−σγ ∥Πx∥ ≤ 1

e
∥Πx∥,

where we use the fact that (1 − x)1/x ≤ 1/e for any x ∈ (0, 1). Since W k,ζx can be
implemented by the multiple consensus subroutine

ut+1 = W tut

with ζ rounds of communications initialized at u0 = x, the communication round complexity

is O(γ
1−σγ

√
L
ϵ) for nonstrongly convex problems and O(γ

1−σγ

√
L
µ log 1

ϵ) for strongly convex

ones, respectively.

Corollary 14 Under the settings of Theorem 2, algorithm (13a)-(13d) combined with the

multiple consensus subroutine requires time of O(γ
1−σγ

√
L
ϵ) communication rounds and

O(
√

L
ϵ) gradient oracle calls to find an ϵ-optimal averaged solution such that F (x)−F (x∗) ≤

ϵ.

Corollary 15 Under the settings of Theorem 3, algorithm (13a)-(13d) combined with the

multiple consensus subroutine requires time of O(γ
1−σγ

√
L
µ log 1

ϵ) communication rounds

and O(
√

L
µ log 1

ϵ) gradient oracle calls to find an ϵ-optimal averaged solution such that

F (x)− F (x∗) ≤ ϵ.

Remark 16 The multiple consensus subroutine is only for the theoretical purpose. It may
be impractical in a realistic time-varying network because communication has been recognized
as the major bottleneck in distributed optimization. The multiple consensus may place a

16

Accelerated Gradient Tracking over Time-varying Graphs

larger communication burden in practice, although it gives theoretically lower communication
round complexities. A similar issue also happens in APM (Li et al., 2020a) and DAGD-C
(Rogozin et al., 2021b), which also need a multiple consensus subroutine.

On the other hand, decentralized optimization over time-varying graphs is important
because of two reasons. Firstly, in many applications, the communication network varies
with time, and algorithms for this scenario are needed. Secondly, many other scenarios can
be reformulated as optimization over time-varying graphs, such as asynchrony (Spiridonoff
et al., 2020), local SGD (Koloskova et al., 2020), and sparsification (Chen et al., 2022). In
these scenarios, the real network may be fixed, and the time-varying graphs are only used for
analysis. So the single loop methods are much more favored.

Remark 17 Unlike the scenario over static graphs, the communication round complexity
lower bounds over γ-connected time-varying graphs have not been established, and it is

unclear whether the O(γ
1−σγ

√
L
ϵ) and O(γ

1−σγ

√
L
µ log 1

ϵ) communication round complexities

can be further improved. We leave it as an open problem. On the other hand, Kovalev et al.

(2021a) established the O(1
1−σ

√
L
µ log 1

ϵ) communication round complexity lower bound and

the O(
√

L
µ log 1

ϵ) gradient oracle complexity lower bound for the special scenario of connected

graphs at every time. That is, γ = 1 in our scenario.

3 Proofs of Theorems

In this section, we prove the theorems in Sections 2.2 and 2.3. We first reformulate algorithm
(13a)-(13d) as the inexact accelerated gradient descent and give its convergence rates in
Section 3.1, and then bound the consensus errors. To help the readers get a quick start on
our proof framework, we first bound the consensus errors over static graphs in Sections 3.2,
and then extend it to the time-varying graphs in Section 3.3. The former scenario provides
some basis and insights for the complex proofs of the latter.

3.1 Convergence Rates of the Inexact Accelerated Gradient Descent

Following the proof framework in (Jakovetić et al., 2014a; Qu and Li, 2020), we multiply
both sides of (13a)-(13d) by 1

m1⊤ and use the definitions in (3) and (2) to yield

yk = θkz
k + (1− θk)x

k, (15a)

sk − 1

m

m∑
i=1

∇f(i)(y
k
(i)) = sk−1 − 1

m

m∑
i=1

∇f(i)(y
k−1
(i)), (15b)

zk+1 =
1

1 + µα
θk

(
µα

θk
yk + zk − α

θk
sk
)
, (15c)

xk+1 = θkz
k+1 + (1− θk)x

k, (15d)

where we use the column stochasticity of 1⊤W k = 1⊤. From the initialization s0 = ∇f(y0)
and (15b), we have the following standard but important property in gradient tracking:

sk =
1

m

m∑
i=1

∇f(i)(y
k
(i)). (16)

17

Li and Lin

Iterations (15a)-(15d) can be regarded as the inexact accelerated gradient descent (Devolder
et al., 2014) in the sense that we use 1

m

∑m
i=1∇f(i)(y

k
(i)) as the descent direction, rather than

the true gradient 1
m

∑m
i=1∇f(i)(y

k). In fact, when we replace sk in step (15c) by the true
gradient, steps (15a), (15c), and (15d) reduce to the updates of the standard accelerated
gradient descent, see (Nesterov, 2004; Lin et al., 2020) for example.

The next lemma demonstrates the analogy properties of convexity and smoothness with
the inexact gradients. The proof can be found in (Jakovetić et al., 2014a; Qu and Li, 2020).
For the completeness and the readers’ convenience, we give the proof in the appendix.

Lemma 18 Define

f(yk,yk) =
1

m

m∑
i=1

(
f(i)(y

k
(i)) +

〈
∇f(i)(y

k
(i)), y

k − yk(i)

〉)
. (17)

Suppose that Assumption 1 holds. Then, we have for any w,

F (w) ≥ f(yk,yk) +
〈
sk, w − yk

〉
+

µ

2
∥w − yk∥2, (18)

F (w) ≤ f(yk,yk) +
〈
sk, w − yk

〉
+

L

2
∥w − yk∥2 + L

2m
∥Πyk∥2. (19)

Especially, we allow µ to be zero.

Define the Bregman divergence as follows:

Df (x,y
k) =

1

m

m∑
i=1

(
f(i)(x)− f(i)(y

k
(i))−

〈
∇f(i)(y

k
(i)), x− yk(i)

〉)
. (20)

The next lemma gives the convergence rates of the inexact accelerated gradient descent.
The techniques in this proof are standard, see (Lin et al., 2020) for example. The crucial
difference is that we keep the Bregman divergence term Df (x

k,yk) in (21) and (22), which
is motivated by (Tseng, 2008).

Compared with the standard accelerated gradient descent, for example, see (Nesterov,
2004; Lin et al., 2020), there are two additional error terms (a) and (c) in our lemma due to
the inexact gradients. In the next two sections, we bound the two terms carefully by (b) and
(d), respectively, such that the convergence rates of the accelerated gradient tracking match
those of the classical centralized accelerated gradient descent, which is the main technical
contribution of this paper compared with the existing work on accelerated gradient tracking
in (Qu and Li, 2020).

Lemma 19 Suppose that Assumption 1 with µ = 0 and part 2 of Assumption 3 hold. Let
the sequence {θk}Kk=0 satisfy 1−θk

θ2k
= 1

θ2k−1
with θ0 = 1. Then for algorithm (13a)-(13d), we

have

F (xK+1)− F (x∗)

θ2K
+

1

2α
∥zK+1 − x∗∥2 ≤ 1

2α
∥z0 − x∗∥2

+

K∑
k=0

L

2mθ2k
∥Πyk∥2︸ ︷︷ ︸

term (a)

−
K∑
k=0

((
1

2α
− L

2

)
∥zk+1 − zk∥2 + 1

θ2k−1

Df (x
k,yk)

)
︸ ︷︷ ︸

term (b)

.
(21)

18

Accelerated Gradient Tracking over Time-varying Graphs

Suppose that Assumption 1 with µ > 0 and part 2 of Assumption 3 hold. Let θk = θ =
√
αµ
2

for all k and assume that αµ ≤ 1. Then for algorithm (13a)-(13d), we have

1

(1− θ)K+1

(
F (xK+1)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥zK+1 − x∗∥2

)
≤ F (x0)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥z0 − x∗∥2 +

K∑
k=0

L

2m(1− θ)k+1
∥Πyk∥2︸ ︷︷ ︸

term (c)

−
K∑
k=0

(
1

(1− θ)k+1

(
θ2

2α
− Lθ2

2

)
∥zk+1 − zk∥2 + 1

(1− θ)k
Df (x

k,yk)

)
︸ ︷︷ ︸

term (d)

.

(22)

Proof From the inexact smoothness (19), we have

F (xk+1) ≤f(yk,yk) +
〈
sk, xk+1 − yk

〉
+

L

2
∥xk+1 − yk∥2 + L

2m
∥Πyk∥2

a
=f(yk,yk) + θk

〈
sk, zk+1 − zk

〉
+

Lθ2k
2

∥zk+1 − zk∥2 + L

2m
∥Πyk∥2

=f(yk,yk) + θk

〈
sk, x∗ − zk

〉
+ θk

〈
sk, zk+1 − x∗

〉
+

Lθ2k
2

∥zk+1 − zk∥2 + L

2m
∥Πyk∥2,

(23)

where we use (15a) and (15d) in
a
=. Next, we bound the two inner product terms. For the

first inner product, we have

f(yk,yk) + θk

〈
sk, x∗ − zk

〉
b
= f(yk,yk) +

〈
sk, θkx

∗ + (1− θk)x
k − yk

〉
= θk

(
f(yk,yk) +

〈
sk, x∗ − yk

〉)
+ (1− θk)

(
f(yk,yk) +

〈
sk, xk − yk

〉)
c
≤ θkF (x∗)− µθk

2
∥yk − x∗∥2 + 1− θk

m

m∑
i=1

(
f(i)(y

k
(i)) +

〈
∇f(i)(y

k
(i)), x

k − yk(i)

〉)
= θkF (x∗)− µθk

2
∥yk − x∗∥2 + (1− θk)F (xk)

− 1− θk
m

m∑
i=1

(
f(i)(x

k)− f(i)(y
k
(i))−

〈
∇f(i)(y

k
(i)), x

k − yk(i)

〉)
= θkF (x∗)− µθk

2
∥yk − x∗∥2 + (1− θk)F (xk)− (1− θk)Df (x

k,yk),

19

Li and Lin

where we use (15a) in
b
=, (18), (17), and (16) in

c
≤. For the second inner product, we have

θk

〈
sk, zk+1 − x∗

〉
d
=−

θ2k
α

〈
zk+1 − zk +

µα

θk
(zk+1 − yk), zk+1 − x∗

〉
=
θ2k
2α

(
∥zk − x∗∥2 − ∥zk+1 − x∗∥2 − ∥zk+1 − zk∥2

)
+

µθk
2

(
∥yk − x∗∥2 − ∥zk+1 − x∗∥2 − ∥zk+1 − yk∥2

)
,

where we use (15c) in
d
=. Plugging into (23) and rearranging the terms, it gives

F (xk+1)− F (x∗) +

(
θ2k
2α

+
µθk
2

)
∥zk+1 − x∗∥2

≤ (1− θk)(F (xk)− F (x∗)) +
θ2k
2α

∥zk − x∗∥2

−
(
θ2k
2α

−
Lθ2k
2

)
∥zk+1 − zk∥2 − (1− θk)Df (x

k,yk) +
L

2m
∥Πyk∥2.

(24)

Case 1: Each f(i) is nonstrongly convex. In this case, (24) holds with µ = 0. Dividing

both sides of (24) by θ2k, summing over k = 0, 1, ...,K, using 1−θk
θ2k

= 1
θ2k−1

and θ0 = 1, we

have (21).

Case 2: Each f(i) is µ-strongly convex. Letting θk = θ =
√
αµ
2 for all k, we know

θ2

2α ≤
(

θ2

2α + µθ
2

)
(1 − θ) holds if αµ ≤ 1. Dividing both sides of (24) by (1 − θ)k+1 and

summing over k = 0, 1, ...,K, it gives (22).

3.2 Bounding the Consensus Errors over Static Graphs

In this section, we bound the term (a) by (b) appeared in (21), and the term (c) by (d)
in (22) over static graphs. We first bound ∥Πyk∥2 in the next lemma. The crucial trick is
to construct a linear combination of the consensus errors with carefully designed weights
such that it shrinks geometrically with an additional error term. Moreover, the step size α
remains to be a constant of the order O(1L) as large as possible. Another trick is that we
use a constant τ to balance Df (x

r+1,yr+1) and ∥zr+1 − zr∥2 in Φr, which is generated by
Young’s inequality and will be specified later.

Lemma 20 Suppose that Assumptions 1 and 2 hold with µ ≥ 0. Let α ≤ (1−σ)3

80L
√

1+ 1
τ

and the

sequence {θk}Kk=0 satisfy θk+1 ≤ θk ≤ 1. Then for algorithm (13a)-(13d) with fixed gossip
matrix W , we have

max
{
∥Πyk+1∥2, ∥Πxk+1∥2

}
≤ C1ρ

k+1 + C2

k∑
r=0

ρk−rθ2rΦ
r, (25)

20

Accelerated Gradient Tracking over Time-varying Graphs

where ρ = 1− 1−σ
4 , C1 =

(1−σ)2

18(1+ 1
τ
)L2 ∥Πs0∥2, C2 =

1−σ
9(1+ 1

τ
)L2 ,

Φr =
2mL(1 + τ)

θ2r
Df (x

r+1,yr+1) + 2mL2

(
1 +

1

τ

)
∥zr+1 − zr∥2, (26)

and τ can be any positive constant.

Proof Multiplying both sides of (13a)-(13d) by Π, using (6) and ∥Πx∥ ≤ ∥x∥, we have

∥Πyk∥ ≤ θk∥Πzk∥+ (1− θk)∥Πxk∥ ≤ θk∥Πzk∥+ ∥Πxk∥, (27)

∥Πsk+1∥ ≤ σ∥Πsk∥+ ∥∇f(yk+1)−∇f(yk)∥, (28)

∥Πzk+1∥ ≤σ

(
µα

θk + µα
∥Πyk∥+ θk

θk + µα
∥Πzk∥

)
+

α

θk + µα
∥Πsk∥

a
≤σ(µα+ 1)θk

θk + µα
∥Πzk∥+ σµα

θk + µα
∥Πxk∥+ α

θk + µα
∥Πsk∥

b
≤σ∥Πzk∥+ µα

θk
∥Πxk∥+ α

θk
∥Πsk∥,

(29)

∥Πxk+1∥ ≤ θk∥Πzk+1∥+ σ∥Πxk∥, (30)

where
a
≤ uses (27),

b
≤ uses σ < 1 and (µα+1)θk

θk+µα ≤ 1 with θk ≤ 1. Next, we bound ∥∇f(yk+1)−
∇f(yk)∥.

∥∇f(yk+1)−∇f(yk)∥2 =
m∑
i=1

∥∇f(i)(y
k+1
(i))−∇f(i)(y

k
(i))∥

2

c
≤

m∑
i=1

(1 + τ)∥∇f(i)(y
k+1
(i))−∇f(i)(x

k+1)∥2

+
m∑
i=1

(
1 +

1

τ

)
2
(
∥∇f(i)(x

k+1)−∇f(i)(y
k)∥2 + ∥∇f(i)(y

k)−∇f(i)(y
k
(i))∥

2
)

d
≤ 2mL(1 + τ)Df (x

k+1,yk+1) + 2L2

(
1 +

1

τ

) m∑
i=1

(
∥xk+1 − yk∥2 + ∥yk − yk(i)∥

2
)

e
= 2mL(1 + τ)Df (x

k+1,yk+1) + 2L2

(
1 +

1

τ

)(
mθ2k∥zk+1 − zk∥2 + ∥Πyk∥2

)
= θ2kΦ

k + 2L2

(
1 +

1

τ

)
∥Πyk∥2

f
≤ θ2kΦ

k + 4L2

(
1 +

1

τ

)(
θ2k∥Πzk∥2 + ∥Πxk∥2

)
,

(31)

where
c
≤ uses Young’s inequality of ∥a − b∥2 ≤ (1 + τ)∥a∥2 + (1 + 1

τ)∥b∥
2 for any τ > 0,

d
≤ uses (5), the smoothness of f(i), and the definition of Df in (20),

e
= uses (15a), (15d),

and the definition of Πy in (4),
f
≤ uses (27). Denote c0 = 4L2

(
1 + 1

τ

)
for simplicity in the

remaining proof of this lemma.

21

Li and Lin

Squaring both sides of (28), it follows that

∥Πsk+1∥2 ≤
(
1 +

1− σ

2σ

)
σ2∥Πsk∥2 +

(
1 +

2σ

1− σ

)
∥∇f(yk+1)−∇f(yk)∥2

=
σ + σ2

2
∥Πsk∥2 + 1 + σ

1− σ
∥∇f(yk+1)−∇f(yk)∥2

g
≤1 + σ

2
∥Πsk∥2 + 2

1− σ

(
θ2kΦ

k + c0θ
2
k∥Πzk∥2 + c0∥Πxk∥2

)
,

(32)

where we use σ < 1 and (31) in
g
≤. Similarly, for (29) and (30), we also have

∥Πzk+1∥2 ≤ 1 + σ

2
∥Πzk∥2 + 4

1− σ

(
µ2α2

θ2k
∥Πxk∥2 + α2

θ2k
∥Πsk∥2

)
, (33)

∥Πxk+1∥2 ≤ 1 + σ

2
∥Πxk∥2 +

2θ2k
1− σ

∥Πzk+1∥2. (34)

Adding (32), (33), and (34) together with the weights c1, c2θ
2
k+1, and c3, respectively, we

have

c1∥Πsk+1∥2 + c2θ
2
k+1∥Πzk+1∥2 + c3∥Πxk+1∥2

h
≤ c1∥Πsk+1∥2 +

(
c2θ

2
k +

2c3θ
2
k

1− σ

)
∥Πzk+1∥2 + c3(1 + σ)

2
∥Πxk∥2

≤
(
c1(1 + σ)

2
+

(
c2 +

2c3
1− σ

)
4α2

1− σ

)
∥Πsk∥2

+

(
2c0c1
1− σ

+

(
c2 +

2c3
1− σ

)
1 + σ

2

)
θ2k∥Πzk∥2

+

(
2c0c1
1− σ

+

(
c2 +

2c3
1− σ

)
4µ2α2

1− σ
+

c3(1 + σ)

2

)
∥Πxk∥2 + 2c1

1− σ
θ2kΦ

k,

where we use θk+1 ≤ θk and (34) in
h
≤. Letting c3 =

9c0c1
(1−σ)2

, c2 =
80c0c1
(1−σ)4

≥ 8c0c1
(1−σ)2

+ 8c3
(1−σ)2

,

and α2 ≤ min
{

(1−σ)6

1600c0
, (1−σ)4

1600µ2

}
such that

c1(1 + σ)

2
+

(
c2 +

2c3
1− σ

)
4α2

1− σ
≤ c1(1 + σ)

2
+

400c0c1α
2

(1− σ)5
≤ c1(3 + σ)

4
,

2c0c1
1− σ

+

(
c2 +

2c3
1− σ

)
1 + σ

2
≤ 2c0c1

1− σ
+

c2(1 + σ)

2
+

2c3
1− σ

≤ c2(3 + σ)

4
,

2c0c1
1−σ

+

(
c2+

2c3
1−σ

)
4µ2α2

1−σ
+

c3(1+σ)

2
≤ 2c0c1

1−σ
+

400c0c1µ
2α2

(1−σ)5
+

c3(1+σ)

2
≤ c3(3+σ)

4
,

we have

c1∥Πsk+1∥2 + c2θ
2
k+1∥Πzk+1∥2 + c3∥Πxk+1∥2

≤ 3 + σ

4

(
c1∥Πsk∥2 + c2θ

2
k∥Πzk∥2 + c3∥Πxk∥2

)
+

2c1
1− σ

θ2kΦ
k

≤
(
3 + σ

4

)k+1 (
c1∥Πs0∥2 + c2θ

2
0∥Πz0∥2 + c3∥Πx0∥2

)
+

2c1
1− σ

k∑
r=0

(
3 + σ

4

)k−r

θ2rΦ
r.

22

Accelerated Gradient Tracking over Time-varying Graphs

From (27), c2 > c3, and the initialization such that Πx0 = Πy0 = Πz0 = 0, we have

∥Πyk+1∥2 ≤ 2

c3

(
c1∥Πsk+1∥2 + c2θ

2
k+1∥Πzk+1∥2 + c3∥Πxk+1∥2

)
≤
(
3 + σ

4

)k+1 2c1
c3

∥Πs0∥2 + 4c1
c3(1− σ)

k∑
r=0

(
3 + σ

4

)k−r

θ2rΦ
r

=

(
3 + σ

4

)k+1 (1− σ)2

18(1 + 1
τ)L

2
∥Πs0∥2 + 1− σ

9(1 + 1
τ)L

2

k∑
r=0

(
3 + σ

4

)k−r

θ2rΦ
r,

which is exactly (25).

Having (25) at hand, we are ready to bound the term (a) by (b) appeared in (21). The
remaining challenge is to upper bound the weighted cumulative consensus errors.

Lemma 21 Suppose that Assumptions 1 and 2 hold with µ = 0. Let the sequence {θk}Kk=0

satisfy 1−θk
θ2k

= 1
θ2k−1

with θ0 = 1, let α ≤ (1−σ)3

80L
√

1+ 1
τ

. Then for algorithm (13a)-(13d) with

fixed gossip matrix W , we have

max

{
K∑
k=0

L

2mθ2k
∥Πyk∥2,

K∑
k=0

L

2mθ2k
∥Πxk∥2

}

≤ 16

3mL(1 + 1
τ)(1− σ)

∥Πs0∥2 + 11

mL(1 + 1
τ)(1− σ)2

K−1∑
r=0

Φr,

(35)

where τ and Φr are defined in Lemma 20.

Proof We first give some properties of the sequence {θk}Kk=0. From
1−θk
θ2k

= 1
θ2k−1

and θ0 = 1,

we have θk ≤ θk−1,
1
θk

− 1 ≤ 1
θk−1

, and 1
θk

− 1
2 ≥ 1

θk−1
, which further give

1

θk
− 1

θk−1
≤ 1,

1

k + 1
≤ θk ≤ 2

k + 1
. (36)

From (25), we get

K∑
k=1

L

2mθ2k
∥Πyk∥2 ≤

K∑
k=1

C1Lρ
k

2mθ2k
+

K∑
k=1

C2L

2mθ2k

k−1∑
r=0

ρk−1−rθ2rΦ
r

=
C1L

2m

K∑
k=1

ρk

θ2k
+

C2L

2mρ

K∑
k=1

ρk

θ2k

k−1∑
r=0

θ2r
ρr

Φr

=
C1L

2m

K∑
k=1

ρk

θ2k
+

C2L

2mρ

K−1∑
r=0

θ2r
ρr

Φr
K∑

k=r+1

ρk

θ2k
.

(37)

23

Li and Lin

Recall that for scalars, θk means the value at iteration k, while ρk is its kth power. Next,

we compute
∑K

k=r+1
ρk

θ2k
for any r ≥ 0. Denote S =

∑K
k=r+1

ρk

θ2k
for simplicity. We have

ρS =
K∑

k=r+1

ρk+1

θ2k
=

K∑
k=r+1

ρk

θ2k−1

− ρr+1

θ2r
+

ρK+1

θ2K
,

and

S − ρS =

K∑
k=r+1

ρk

(
1

θ2k
− 1

θ2k−1

)
+

ρr+1

θ2r
− ρK+1

θ2K

a
=

K∑
k=r+1

ρk

θk
+

ρr+1

θ2r
− ρK+1

θ2K
,

where we use 1−θk
θ2k

= 1
θ2k−1

in
a
=. It further gives

ρ(1− ρ)S =
K∑

k=r+1

ρk+1

θk
+

ρr+2

θ2r
− ρK+2

θ2K
=

K∑
k=r+1

ρk

θk−1
− ρr+1

θr
+

ρK+1

θK
+

ρr+2

θ2r
− ρK+2

θ2K
,

and

(1− ρ)2S =(1− ρ)S − ρ(1− ρ)S

=
K∑

k=r+1

ρk
(

1

θk
− 1

θk−1

)
+

ρr+1

θ2r
− ρK+1

θ2K
+

ρr+1

θr
− ρK+1

θK
− ρr+2

θ2r
+

ρK+2

θ2K

=
K∑

k=r+1

ρk
(

1

θk
− 1

θk−1

)
+

(1− ρ)ρr+1

θ2r
− (1− ρ)ρK+1

θ2K
+

ρr+1

θr
− ρK+1

θK

b
≤

K∑
k=r+1

ρk +
(1− ρ)ρr+1

θ2r
+

ρr+1

θr
≤ ρr+1

1− ρ
+

2ρr+1

θ2r
,

where we use (36) in
b
≤. Thus, we get

K∑
k=r+1

ρk

θ2k
≤ 1

(1− ρ)2

(
ρr+1

1− ρ
+

2ρr+1

θ2r

)
≤ 3ρr+1

(1− ρ)3θ2r
. (38)

Plugging into (37), it follows from Πy0 = 0 and θ0 = 1 that

K∑
k=0

L

2mθ2k
∥Πyk∥2 ≤ 3C1Lρ

2m(1− ρ)3
+

3C2L

2m(1− ρ)3

K−1∑
r=0

Φr

≤ 16

3mL(1 + 1
τ)(1− σ)

∥Πs0∥2 + 11

mL(1 + 1
τ)(1− σ)2

K−1∑
r=0

Φr,

where the last inequality uses the definitions of C1, C2, and ρ given in Lemma 20. Replac-
ing ∥Πyk∥ by ∥Πxk∥ in the above analysis, we have the same bound for

∑K
k=0

L
2mθ2k

∥Πxk∥2.

In the next lemma, we bound the term (c) by (d) appeared in (22) in a similar way to
the proof of Lemma 21.

24

Accelerated Gradient Tracking over Time-varying Graphs

Lemma 22 Suppose that Assumptions 1 and 2 hold with µ > 0. Let α ≤ (1−σ)3

80L
√

1+ 1
τ

and

θk ≡ θ =
√
µα
2 . Then for algorithm (13a)-(13d) with fixed gossip matrix W , we have

max

{
K∑
k=0

L

2m(1− θ)k+1
∥Πyk∥2,

K∑
k=0

L

2m(1− θ)k+1
∥Πxk∥2

}

≤ 4(1− σ)

27mL(1 + 1
τ)(1− θ)

∥Πs0∥2 + 8θ2

27mL(1 + 1
τ)

K−1∑
r=0

Φr

(1− θ)r+1
,

(39)

where τ and Φr are defined in Lemma 20.

Proof From (25), we get

K∑
k=1

L

2m(1− θ)k+1
∥Πyk∥2

≤
K∑
k=1

C1Lρ
k

2m(1− θ)k+1
+

K∑
k=1

C2L

2m(1− θ)k+1

k−1∑
r=0

ρk−1−rθ2Φr

=
C1L

2m(1− θ)

K∑
k=1

(
ρ

1− θ

)k

+
θ2C2L

2mρ(1− θ)

K∑
k=1

(
ρ

1− θ

)k k−1∑
r=0

Φr

ρr

=
C1L

2m(1− θ)

K∑
k=1

(
ρ

1− θ

)k

+
θ2C2L

2mρ(1− θ)

K−1∑
r=0

Φr

ρr

K∑
k=r+1

(
ρ

1− θ

)k

.

From the settings of θ and α, we know θ ≤ 1−σ
16 . Thus we have ρ

1−θ < 1, 1− θ − ρ ≥ 3(1−σ)
16 ,

and
∑K

k=r+1

(
ρ

1−θ

)k
≤
(

ρ
1−θ

)r
ρ

1−θ−ρ with ρ = 1− 1−σ
4 . It follows from Πy0 = 0 that

K∑
k=0

L

2m(1− θ)k+1
∥Πyk∥2 ≤ C1L

2m(1− θ)

ρ

1− θ − ρ
+

θ2C2L

2m(1− θ − ρ)

K−1∑
r=0

Φr

(1− θ)r+1

≤ 4(1− σ)

27mL(1 + 1
τ)(1− θ)

∥Πs0∥2 + 8θ2

27mL(1 + 1
τ)

K−1∑
r=0

Φr

(1− θ)r+1
,

where the last inequality uses the definitions of C1 and C2 given in Lemma 20 and
1 − θ − ρ ≥ 3(1−σ)

16 . Replacing ∥Πyk∥ by ∥Πxk∥ in the above analysis, we have the same
bound for Πxk.

Now, we are ready to prove Theorems 9 and 10. We first prove Theorem 9. The crucial
trick in this proof is to make the constant before Df (x

k,yk) positive by setting the constant
τ small, and make the constant before ∥zt+1 − zt∥2 positive by setting the step size α small.
This is the reason why we introduce the constant τ in the definition of Ψr in (26).

25

Li and Lin

Proof Plugging (35) into (21) and using the definition of Φr in (26), we obtain

F (xK+1)− F (x∗)

θ2K
+

1

2α
∥zK+1 − x∗∥2

≤ 1

2α
∥z0 − x∗∥2 + 16

3mL(1 + 1
τ)(1− σ)

∥Πs0∥2

−
K∑
k=0

((
1

2α
− L

2
− 22L

(1− σ)2

)
∥zt+1 − zt∥2 + 1

θ2k−1

(
1− 22(1 + τ)

(1 + 1
τ)(1− σ)2

)
Df (x

k,yk)

)
a
≤ 1

2α
∥z0 − x∗∥2 + 16

3mL(1 + 1
τ)(1− σ)

∥Πs0∥2 −
K∑
k=0

(
1

4α
∥zt+1 − zt∥2 + 1

2θ2k−1

Df (x
k,yk)

)

≤ 1

2α
∥z0 − x∗∥2 + 1− σ

8mL
∥Πs0∥2 − 1

5mL

K−1∑
r=0

Φr,

where in
a
≤ we let τ = (1−σ)2

44 so to have 22(1+τ)

(1+ 1
τ
)(1−σ)2

= 1
2 , α ≤ (1−σ)4

537L ≤ (1−σ)3

80L
√

1+ 1
τ

, and

1
4α ≥ L

2 + 22L
(1−σ)2

. So we have

F (xK+1)− F (x∗) ≤ θ2K

(
1

2α
∥z0 − x∗∥2 + 1− σ

8mL
∥Πs0∥2

)
,

1

5mL

K−1∑
r=0

Φr ≤ 1

2α
∥z0 − x∗∥2 + 1− σ

8mL
∥Πs0∥2.

It follows from (35) that

max

{
K∑
k=0

L

2mθ2k
∥Πyk∥2,

K∑
k=0

L

2mθ2k
∥Πxk∥2

}

≤ 16

3mL(1 + 1
τ)(1− σ)

∥Πs0∥2 + 11

mL(1 + 1
τ)(1− σ)2

K−1∑
r=0

Φr

≤ 1− σ

8mL
∥Πs0∥2 + 1

4mL

K−1∑
r=0

Φr

≤ 5

8α
∥z0 − x∗∥2 + 9(1− σ)

32mL
∥Πs0∥2.

From (36), we have the conclusions.

Next, we prove Theorem 10.

26

Accelerated Gradient Tracking over Time-varying Graphs

Proof Plugging (39) into (22) and using the definition of Φr in (26), we have

1

(1− θ)K+1

(
F (xK+1)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥zK+1 − x∗∥2

)
≤ F (x0)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥z0 − x∗∥2 + 4(1− σ)

27mL(1 + 1
τ)(1− θ)

∥Πs0∥2

−
K∑
k=0

(
1

(1− θ)k

(
1− 16(1 + τ)

27(1 + 1
τ)

)
Df (x

k,yk)

+
1

(1− θ)k+1

(
θ2

2α
− Lθ2

2
− 16Lθ2

27

)
∥zk+1 − zk∥2

)
a
≤ F (x0)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥z0 − x∗∥2 + 4(1− σ)

27m(1 + 1
τ)L(1− θ)

∥Πs0∥2

−
K∑
k=0

(
1

2(1− θ)k
Df (x

k,yk) +
θ2

4α(1− θ)k+1
∥zk+1 − zk∥2

)

≤ F (x0)−F (x∗)+

(
θ2

2α
+

µθ

2

)
∥z0−x∗∥2+ 4(1− σ)

59mL(1− θ)
∥Πs0∥2− 8θ2

59mL

K−1∑
r=0

Φr

(1− θ)r+1
,

where in
a
≤ we let τ = 27

32 so to have 16(1+τ)

27(1+ 1
τ
)
= 1

2 , α ≤ (1−σ)3

119L ≤ (1−σ)3

80L
√

1+ 1
τ

, and 1
4α ≥ L

2 + 16L
27 .

Thus, we have the first conclusion and

8θ2

59mL

K−1∑
r=0

Φr

(1− θ)r+1
≤ F (x0)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥z0 − x∗∥2 + 4(1− σ)

59mL(1− θ)
∥Πs0∥2.

It follows from (39) that

K∑
k=0

L

2m(1− θ)k+1
∥Πxk∥2

≤ 4(1− σ)

27mL(1 + 1
τ)(1− θ)

∥Πs0∥2 + 8θ2

27mL(1 + 1
τ)

K−1∑
r=0

Φr

(1− θ)r+1

=
4(1− σ)

59mL(1− θ)
∥Πs0∥2 + 8θ2

59mL

K−1∑
r=0

Φr

(1− θ)r+1

≤ 2

(
F (x0)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥z0 − x∗∥2 + 4(1− σ)

59mL(1− θ)
∥Πs0∥2

)
.

Thus, we have the second conclusion.

We end this section by summarizing the differences from (Qu and Li, 2020) and the
reasons of the convergence rates improvement.

27

Li and Lin

Remark 23 As shown in Lemmas 19 and 20, we keep the Bregman divergence term
Df (x

k,yk), and use a constant τ to balance this divergence term and ∥zk+1 − zk∥2. As
shown in the proofs of Theorems 9 and 10, we make the constant before Df (x

k,yk) positive
by setting τ small. As a comparison, Qu and Li (2020) did not use this Bregman divergence
term, and they bounded the term ∥xk − yk∥2, which is generated by the consensus errors and
is an analogy to our term Df (x

k,yk) generated in (31), by setting much smaller step sizes
than ours. See (32) and (53) in (Qu and Li, 2020) for the details. To make the constant
A4 in their (32) positive, Qu and Li (2020) set the step size of the order α = O(1L(

µ
L)

3/7).
Since

√
µα dominates the convergence rate for strongly convex problems, Qu and Li (2020)

only got the slower convergence rate of O((1− (µL)
5/7)k). For nonstrongly convex problems,

Qu and Li (2020) set the step size of the order O(1
k0.6+ϵ) to bound the corresponding term in

their (53), which gives the slower convergence rate of O(1
k1.4−ϵ).

As shown in Lemma 20, to bound the consensus errors, we construct a linear combination
of the consensus errors such that it shrinks geometrically with an additional error term. As
a comparison, Qu and Li (2020) used the linear system inequality, which needs to upper
bound the spectral radius of a system matrix and thus it is quite involved. See the proofs of
Lemmas 7 and 13-15 in (Qu and Li, 2020). Our proof is much simpler than those in (Qu
and Li, 2020), and it can be extended to the time-varying graphs in a unified framework.

3.3 Bounding the Consensus Errors over Time-varying Graphs

In this section, we consider algorithm (13a)-(13d) over time-varying graphs. Our analysis
follows the same proof framework in the previous section for static graphs, but with more
involved details. In the next lemma, we first give the analogy counterparts of (32)-(34).

Lemma 24 Suppose that Assumptions 1 and 3 hold with µ ≥ 0. Let the sequence {θk}Kk=0

satisfy θk
1.62 ≤ θk+1 ≤ θk ≤ 1. Then, we have for any k ≥ γ − 1,

∥Πsk+1∥2 ≤ 1 + σγ
2

∥Πsk−γ+1∥2 + 2γ

1− σγ

k∑
r=k−γ+1

(
θ2rΦ

r + c0θ
2
r∥Πzr∥2 + c0∥Πxr∥2

)
, (40)

∥Πxk+1∥2 ≤ 1 + σγ
2

∥Πxk−γ+1∥2 + 5.5γ

1− σγ

k+1∑
r=k−γ+2

θ2r∥Πzr∥2, (41)

θ2k+1∥Πzk+1∥2 ≤ 1 + σγ
2

θ2k−γ+1∥Πzk−γ+1∥2 + 4γ

1− σγ

k∑
r=k−γ+1

(
µ2α2∥Πxr∥2 + α2∥Πsr∥2

)
,

(42)

where we denote c0 = 4L2
(
1 + 1

τ

)
, and τ and Φr are defined in Lemma 20.

Proof From (13b) and the definition of W k,γ in (7), we have for any k ≥ γ − 1,

sk+1 =W k+1sk +∇f(yk+1)−∇f(yk)

=

 k+1∏
t=k−γ+2

W t

 sk−γ+1 +
k∑

r=k−γ+1

(
k∏

t=r+1

W t+1

)
(∇f(yr+1)−∇f(yr))

28

Accelerated Gradient Tracking over Time-varying Graphs

=W k+1,γsk−γ+1 +
k∑

r=k−γ+1

W k+1,k−r(∇f(yr+1)−∇f(yr)),

where we denote
∏k

t=k+1W
t+1 = I. Multiplying both sides by Π, using (9) and (10), it gives

∥Πsk+1∥ ≤ σγ∥Πsk−γ+1∥+
k∑

r=k−γ+1

∥∇f(yr+1)−∇f(yr)∥. (43)

Similar to (32), squaring both sides of (43) yields

∥Πsk+1∥2 ≤1 + σγ
2

∥Πsk−γ+1∥2 + 2

1− σγ

 k∑
r=k−γ+1

∥∇f(yr+1)−∇f(yr)∥

2

≤1 + σγ
2

∥Πsk−γ+1∥2 + 2γ

1− σγ

k∑
r=k−γ+1

∥∇f(yr+1)−∇f(yr)∥2.

(44)

From (31), we have (40). It follows from (13d) that

xk+1 =(1− θk)W
kxk + θkz

k+1

=

 k∏
t=k−γ+1

(1− θt)W
t

xk−γ+1 +
k∑

r=k−γ+1

(
k∏

t=r+1

(1− θt)W
t

)
θrz

r+1

=W k,γxk−γ+1
k∏

t=k−γ+1

(1− θt) +

k∑
r=k−γ+1

W k,k−rθrz
r+1

k∏
t=r+1

(1− θt).

Similar to (43) and (44), we also have

∥Πxk+1∥ ≤ σγ∥Πxk−γ+1∥+
k∑

r=k−γ+1

θr∥Πzr+1∥ = σγ∥Πxk−γ+1∥+
k+1∑

r=k−γ+2

θr−1∥Πzr∥,

and

∥Πxk+1∥2 ≤1 + σγ
2

∥Πxk−γ+1∥2 + 2γ

1− σγ

k+1∑
r=k−γ+2

θ2r−1∥Πzr∥2.

Using θr−1 ≤ 1.62θr, we obtain (41). Similarly, for (13c), we have

zk+1 =
θk

θk + µα
W kzk +

µα

θk + µα
W kyk − α

θk + µα
sk

a
=
θk(1 + µα)

θk + µα
W kzk +

µα(1− θk)

θk + µα
W kxk − α

θk + µα
sk

=

 k∏
t=k−γ+1

θt(1 + µα)

θt + µα
W t

 zk−γ+1

+
k∑

r=k−γ+1

(
k∏

t=r+1

θt(1 + µα)

θt + µα
W t

)(
µα(1− θr)

θr + µα
W rxr − α

θr + µα
sr
)

29

Li and Lin

=W k,γzk−γ+1
k∏

t=k−γ+1

θt(1 + µα)

θt + µα

+

k∑
r=k−γ+1

W k,k−r

(
µα(1− θr)

θr + µα
W rxr − α

θr + µα
sr
) k∏

t=r+1

θt(1 + µα)

θt + µα
,

and

∥Πzk+1∥
b
≤σγ∥Πzk−γ+1∥+

k∑
r=k−γ+1

(
µα(1− θr)

θr + µα
∥Πxr∥+ α

θr + µα
∥Πsr∥

)

≤σγ∥Πzk−γ+1∥+
k∑

r=k−γ+1

(
µα

θr
∥Πxr∥+ α

θr
∥Πsr∥

)
,

where we use (13a) in
a
=, θt(1+µα)

θt+µα ≤ 1 with θt ≤ 1 in
b
≤. Similar to (44), squaring both sides

yields

∥Πzk+1∥2 ≤ 1 + σγ
2

∥Πzk−γ+1∥2 + 4γ

1− σγ

k∑
r=k−γ+1

(
µ2α2

θ2r
∥Πxr∥2 + α2

θ2r
∥Πsr∥2

)
.

Multiplying both sides by θ2k+1 and using the non-increasing of {θk}, it further gives (42)

Motivated by the proof of Lemma 20, we want to construct a linear combination of the
consensus errors. However, due to the time-varying graphs and the γ-step joint spectrum
property in Assumption 3, we see from (40)-(42) that they shrink every γ iterations, rather
than every iteration. By exploiting the special structures in (40)-(42), we define the following
quantities:

Mk+γ,γ
s = max

r=k+1,...,k+γ
∥Πsr∥2, Mk+γ,γ

x = max
r=k+1,...,k+γ

∥Πxr∥2,

Mk+γ,γ
y = max

r=k+1,...,k+γ
∥Πyr∥2, Mk+γ,γ

z = max
r=k+1,...,k+γ

θ2r∥Πzr∥2.

Motivated by (25), we define the following quantity in the form of summation, instead of
the maximum, and we sum up to k + γ − 1, rather than k + γ,

Sk+γ−1,γ
ϕ =

k+γ−1∑
r=k

θ2rΦ
r.

The next lemma is an analogy counterpart of Lemma 20. Unlike the classical analysis relying
on the small gain theorem (Nedić et al., 2017), which is unclear how to be used to the
accelerated methods, and especially for nonstrongly convex problems, our main idea is to
construct a linear combination of Mk+γ,γ

s , Mk+γ,γ
x , and Mk+γ,γ

z with carefully designed
weights such that it shrinks geometrically with the additional error term Sk+γ−1,γ

ϕ , which
is crucial to extend our analysis over static graphs to time-varying graphs in a unified

30

Accelerated Gradient Tracking over Time-varying Graphs

framework, both for nonstrongly convex and strongly convex problems. Moreover, our proof
technique to bound the consensus errors can be embedded into many algorithm frameworks,
because it is separated from the analysis of the inexact accelerated gradient descent in
Lemma 19.

Lemma 25 Under the settings of Lemma 24, letting α ≤ (1−σγ)3

3385Lγ3
√

1+ 1
τ

, we have for any

t ≥ 0,

max
{
M(t+1)γ,γ

y ,M(t+1)γ,γ
x

}
≤ C3ρ

tγ + C4

(t+1)γ−1∑
s=0

ρ(t−1)γ−sθ2sΦ
s. (45)

where ρ = γ

√
1− 1−σγ

5 , C3 =
(

(1−σγ)2

162L2γ2(1+ 1
τ
)
Mγ,γ

s + 442γ2

(1−σγ)2
Mγ,γ

z + 2Mγ,γ
x

)
, and C4 =

1−σγ

38L2γ(1+ 1
τ
)
.

Proof For any t satisfying k ≤ t ≤ k + γ − 1 with k ≥ γ, we can relax (40) to

∥Πst+1∥2 ≤1 + σγ
2

∥Πst−γ+1∥2 + 2γ

1− σγ

t∑
r=t−γ+1

(
θ2rΦ

r + c0θ
2
r∥Πzr∥2 + c0∥Πxr∥2

)
≤1+σγ

2
∥Πst−γ+1∥2+ 2γ

1−σγ

k+γ−1∑
r=k−γ

θ2rΦ
r+

2γ

1−σγ

k+γ∑
r=k−γ+1

(
c0θ

2
r∥Πzr∥2+ c0∥Πxr∥2

)
≤1 + σγ

2
∥Πst−γ+1∥2 + 2γ

1− σγ

(
Sk−1,γ
ϕ + Sk+γ−1,γ

ϕ

)
+

2γ

1− σγ

k+γ∑
r=k−γ+1

(
c0Mk,γ

z + c0Mk+γ,γ
z + c0Mk,γ

x + c0Mk+γ,γ
x

)
=
1 + σγ

2
∥Πst−γ+1∥2 + 2γ

1− σγ

(
Sk−1,γ
ϕ + Sk+γ−1,γ

ϕ

)
+

4γ2

1− σγ

(
c0Mk,γ

z + c0Mk+γ,γ
z + c0Mk,γ

x + c0Mk+γ,γ
x

)
.

Taking the maximum over t = k, k + 1, ..., k + γ − 1 on both sides, we have

Mk+γ,γ
s ≤1 + σγ

2
Mk,γ

s +
2γ

1− σγ

(
Sk−1,γ
ϕ + Sk+γ−1,γ

ϕ

)
+

4γ2

1− σγ

(
c0Mk,γ

z + c0Mk+γ,γ
z + c0Mk,γ

x + c0Mk+γ,γ
x

)
.

Similarly, for (42) and (41), we also have

Mk+γ,γ
z ≤1 + σγ

2
Mk,γ

z +
8γ2

1− σγ

(
µ2α2Mk,γ

x + µ2α2Mk+γ,γ
x + α2Mk,γ

s + α2Mk+γ,γ
s

)
,

Mk+γ,γ
x ≤1 + σγ

2
Mk,γ

x +
11γ2

1− σγ

(
Mk,γ

z +Mk+γ,γ
z

)
,

31

Li and Lin

where for the second one, the relaxation of
∑t+1

r=t−γ+2 θ
2
r∥Πzr∥2 ≤

∑k+γ
r=k−γ+1 θ

2
r∥Πzr∥2 also

holds for any t satisfying k ≤ t ≤ k + γ − 1.
Adding the above three inequalities together with weights c1, c2, and c3, respectively, we

have

c1Mk+γ,γ
s + c2Mk+γ,γ

z + c3Mk+γ,γ
x

≤ 8c2γ
2α2

1− σγ
Mk+γ,γ

s +

(
4c1c0γ

2

1− σγ
+

11c3γ
2

1− σγ

)
Mk+γ,γ

z +

(
4c1c0γ

2

1− σγ
+

8c2γ
2µ2α2

1− σγ

)
Mk+γ,γ

x

+

(
c1(1 + σγ)

2
+

8c2γ
2α2

1− σγ

)
Mk,γ

s +

(
c2(1 + σγ)

2
+

4c1c0γ
2

1− σγ
+

11c3γ
2

1− σγ

)
Mk,γ

z

+

(
c3(1 + σγ)

2
+

4c1c0γ
2

1− σγ
+

8c2γ
2µ2α2

1− σγ

)
Mk,γ

x +
2c1γ

1− σγ

(
Sk−1,γ
ϕ + Sk+γ−1,γ

ϕ

)
.

We want to choose c1, c2, c3, and α such that the following inequalities hold,

8c2γ
2α2

1− σγ
≤ c1(1− σγ)

20
,

c1(1 + σγ)

2
+

8c2γ
2α2

1− σγ
≤ c1(3 + σγ)

4
,

4c1c0γ
2

1− σγ
+

11c3γ
2

1− σγ
≤ c2(1− σγ)

20
,

c2(1 + σγ)

2
+

4c1c0γ
2

1− σγ
+

11c3γ
2

1− σγ
≤ c2(3 + σγ)

4
,

4c1c0γ
2

1− σγ
+

8c2γ
2µ2α2

1− σγ
≤ c3(1− σγ)

20
,

c3(1 + σγ)

2
+

4c1c0γ
2

1− σγ
+

8c2γ
2µ2α2

1− σγ
≤ c3(3 + σγ)

4
,

which are satisfied if the three inequalities in the left column hold. Accordingly, we can choose

c3 = 81c1c0γ2

(1−σγ)2
, c2 = 17900c1c0γ4

(1−σγ)4
≥ 80c1c0γ2

(1−σγ)2
+ 220c3γ2

(1−σγ)2
, and α2 ≤ min

{
(1−σγ)6

2864000c0γ6 ,
(1−σγ)4

2864000µ2γ4

}
.

Thus, we have for any k ≥ γ,

19 + σγ
20

(
c1Mk+γ,γ

s + c2Mk+γ,γ
z + c3Mk+γ,γ

x

)
≤ 3 + σγ

4

(
c1Mk,γ

s + c2Mk,γ
z + c3Mk,γ

x

)
+

2c1γ

1− σγ

(
Sk−1,γ
ϕ + Sk+γ−1,γ

ϕ

)
≤ 19 + σγ

20

(
1− 1− σγ

5

)(
c1Mk,γ

s + c2Mk,γ
z + c3Mk,γ

x

)
+

2c1γ

1− σγ

(
Sk−1,γ
ϕ + Sk+γ−1,γ

ϕ

)
,

and

c1M(t+1)γ,γ
s + c2M(t+1)γ,γ

z + c3M(t+1)γ,γ
x

≤
(
1− 1− σγ

5

)t

(c1Mγ,γ
s + c2Mγ,γ

z + c3Mγ,γ
x)

+
40c1γ

19(1− σγ)

t∑
r=1

(
1− 1− σγ

5

)t−r (
Srγ−1,γ
ϕ + S(r+1)γ−1,γ

ϕ

)
.

(46)

It follows from (27) and c2 > c3 that

c3
2
max

{
M(t+1)γ,γ

y ,M(t+1)γ,γ
x

}
≤ c1M(t+1)γ,γ

s + c2M(t+1)γ,γ
z + c3M(t+1)γ,γ

x .

32

Accelerated Gradient Tracking over Time-varying Graphs

On the other hand, denoting ρ = γ

√
1− 1−σγ

5 , we have

t∑
r=1

ργ(t−r)
(
Srγ−1,γ
ϕ + S(r+1)γ−1,γ

ϕ

)

= ργt
t∑

r=1

(
1

ργ

)r
 rγ−1∑

s=(r−1)γ

θ2sΦ
s +

(r+1)γ−1∑
s=rγ

θ2sΦ
s

= ργt

tγ−1∑
s=0

(
1

ργ

)⌊ s
γ
⌋+1

θ2sΦ
s + ργt

(t+1)γ−1∑
s=γ

(
1

ργ

)⌊ s
γ
⌋
θ2sΦ

s

≤ 2ργt
(t+1)γ−1∑

s=0

(
1

ργ

) s
γ
+1

θ2sΦ
s = 2

(t+1)γ−1∑
s=0

ρ(t−1)γ−sθ2sΦ
s.

Plugging the above two inequalities and the settings of c3 and c0 into (46), we have the
conclusion.

Remark 26 We briefly demonstrate the advantage of introducing the quantities of Mk+γ,γ
s ,

Mk+γ,γ
x , Mk+γ,γ

y , and Mk+γ,γ
z . As discussed in Remark 23, researchers in the control com-

munity often use linear system inequality to prove the convergence, which is quite challenging
to use over time-varying graphs. For example, Saadatniaki et al. (2020) constructed a γth
order linear system inequality in the form of

αk+γ

αk+γ−1

αk+γ−2

...
αk+1

 ≤

M1 M2 · · · Mγ−1 Mγ

I
I

. . .

I

αk+γ−1

αk+γ−2

αk+γ−3

...
αk

 (47)

for the AB/push-pull method, which is an extension of gradient tracking to time-varying
directed graphs. They only proved that the spectral radius of the system matrix is strictly less
than 1 without any explicit upper bound. Thus, no explicit convergence rate was given in
(Saadatniaki et al., 2020).

On the other hand, the system (47) can be simplified by defining similar quantities of

Mk+γ,γ
s , Mk+γ,γ

x , Mk+γ,γ
y , and Mk+γ,γ

z . Moreover, the proof can be further simplified
by avoiding analyzing the spectral radius if our technical trick of constructing the linear
combination is used.

Following the same proof framework over static graphs, our next step is to bound the
weighted cumulative consensus errors. However, the details are much more complex. The
proof of Lemma 21 provides some insights.

33

Li and Lin

Lemma 27 Suppose that Assumptions 1 and 3 hold with µ = 0. Let the sequence {θk}Tγ
k=0

satisfy 1−θk
θ2k

= 1
θ2k−1

with θ0 = 1, let α ≤ (1−σγ)3

3385Lγ3
√

1+ 1
τ

. Then for algorithm (13a)-(13d), we

have

max

{
Tγ∑
k=0

L

2mθ2k
∥Πyk∥2,

Tγ∑
k=0

L

2mθ2k
∥Πxk∥2

}

≤ 235γ3C3L

m(1− σγ)3
+

10γ2

mL(1 + 1
τ)(1− σγ)2

Tγ−1∑
s=0

Φs,

(48)

where τ and Φr are defined in Lemma 20, and C3 is defined in Lemma 25.

Proof We first verify θk ≤ 1.62θk+1 for all k ≥ 0, which is required in Lemmas 24 and 25.

In fact, from
1−θk+1

θ2k+1
= 1

θ2k
and θ0 = 1, we have θk

θk+1
= 1√

1−θk+1
∈ (1, 1√

1−θ1
] ∈ (1, 1.62] for

any k ≥ 0. Next, we upper and lower bound ρ. From the definition of ρ = γ

√
1− 1−στ

5 and

the fact that (1− x
γ)

γ ≥ 1− x for any x ∈ (0, 1) and γ ≥ 1, we know

ρ ≤ 1− 1− σγ
5γ

, ργ ≥ 4

5
. (49)

The remaining proof is similar to that of Lemma 21. From the definition of Mtγ+γ,γ
y and

(45), we have

Tγ∑
k=1

L

2mθ2k
∥Πyk∥2 =

T−1∑
t=0

γ∑
r=1

L

2mθ2tγ+r

∥Πytγ+r∥2 ≤
T−1∑
t=0

γ∑
r=1

L

2mθ2tγ+r

M(t+1)γ,γ
y

≤
T−1∑
t=0

γ∑
r=1

C3Lρ
tγ

2mθ2tγ+r

+

T−1∑
t=0

γ∑
r=1

C4L

2mθ2tγ+r

(t+1)γ−1∑
s=0

ρ(t−1)γ−sθ2sΦ
s

≤ C3L

2m

T−1∑
t=0

γ∑
r=1

ρtγ+r

ργθ2tγ+r

+
C4L

2m

T−1∑
t=0

γ∑
r=1

ρtγ+r

ρ2γθ2tγ+r

(t+1)γ−1∑
s=0

θ2s
ρs

Φs

a
=

C3L

2mργ

Tγ∑
k=1

ρk

θ2k
+

C4L

2mρ2γ

Tγ∑
k=1

ρk

θ2k

⌈ k
γ
⌉γ−1∑
s=0

θ2s
ρs

Φs,

(50)

where (t+ 1)γ − 1 = ⌈kγ ⌉γ − 1 in
a
= comes from the variable substitution k = tγ + r with

r = 1, 2, ..., γ. Next, we compute the second part in
a
=. It gives

Tγ∑
k=1

ρk

θ2k

⌈ k
γ
⌉γ−1∑
s=0

θ2s
ρs

Φs

≤
Tγ−γ∑
k=1

ρk

θ2k

k+γ−1∑
s=0

θ2s
ρs

Φs +

Tγ∑
k=Tγ−γ+1

ρk

θ2k

Tγ−1∑
s=0

θ2s
ρs

Φs

=

(
Tγ−γ∑
k=1

ρk

θ2k

γ−1∑
s=0

θ2s
ρs

Φs +

Tγ−γ∑
k=1

ρk

θ2k

k+γ−1∑
s=γ

θ2s
ρs

Φs

)
+

Tγ−1∑
s=0

θ2s
ρs

Φs
Tγ∑

k=Tγ−γ+1

ρk

θ2k

(51)

34

Accelerated Gradient Tracking over Time-varying Graphs

=

γ−1∑
s=0

θ2s
ρs

Φs
Tγ−γ∑
k=1

ρk

θ2k
+

Tγ−1∑
s=γ

θ2s
ρs

Φs
Tγ−γ∑

k=s−γ+1

ρk

θ2k

+

γ−1∑
s=0

θ2s
ρs

Φs
Tγ∑

k=Tγ−γ+1

ρk

θ2k
+

Tγ−1∑
s=γ

θ2s
ρs

Φs
Tγ∑

k=Tγ−γ+1

ρk

θ2k

=

γ−1∑
s=0

θ2s
ρs

Φs
Tγ∑
k=1

ρk

θ2k
+

Tγ−1∑
s=γ

θ2s
ρs

Φs
Tγ∑

k=s−γ+1

ρk

θ2k
.

Plugging (51) into (50), it follows from Πy0 = 0 that

Tγ∑
k=0

L

2mθ2k
∥Πyk∥2

≤ C3L

2mργ

Tγ∑
k=1

ρk

θ2k
+

C4L

2mρ2γ

γ−1∑
s=0

θ2s
ρs

Φs
Tγ∑
k=1

ρk

θ2k
+

Tγ−1∑
s=γ

θ2s
ρs

Φs
Tγ∑

k=s−γ+1

ρk

θ2k

b
≤ C3L

2mργ
3ρ

(1− ρ)3
+

C4L

2mρ2γ

(
3ρ

(1− ρ)3

γ−1∑
s=0

θ2s
ρs

Φs +

Tγ−1∑
s=γ

θ2s
ρs

Φs 3ρs−γ+1

(1− ρ)3θ2s−γ

)
c
≤ 3C3L

2mργ−1(1− ρ)3
+

C4L

2mρ2γ

(
3ρ

(1− ρ)3ργ−1

γ−1∑
s=0

Φs +
3ρ−γ+1

(1− ρ)3

Tγ−1∑
s=γ

Φs

)

≤ 3C3L

2mργ−1(1− ρ)3
+

3C4L

2mρ3γ−1(1− ρ)3

Tγ−1∑
s=0

Φs

d
≤ 235γ3C3L

m(1− σγ)3
+

10γ2

mL(1 + 1
τ)(1− σγ)2

Tγ−1∑
s=0

Φs,

where
b
≤ uses (38),

c
≤ uses θs ≤ 1 for s ≤ γ − 1 and θs ≤ θs−γ for s ≥ γ,

d
≤ uses (49) and the

definition of C4 given in Lemma 25. Replacing ∥Πyk∥ by ∥Πxk∥ in the above analysis, we
have the same bound for ∥Πxk∥2.

The next lemma is an analogy counterpart of Lemma 22, and the proof is similar to that
of the above Lemma 27.

Lemma 28 Suppose that Assumptions 1 and 3 hold with µ > 0. Let α ≤ (1−σγ)3

3385Lγ3
√

1+ 1
τ

and

θk ≡ θ =
√
µα
2 . Then for algorithm (13a)-(13d), we have

max

{
Tγ∑
k=0

L

2m(1− θ)k+1
∥Πyk∥2,

Tγ∑
k=0

L

2m(1− θ)k+1
∥Πxk∥2

}

≤ 3.3C3Lγ

m(1− θ)(1− σγ)
+

θ2

7mL(1 + 1
τ)

Tγ−1∑
s=0

Φs

(1− θ)s+1
,

(52)

35

Li and Lin

where τ and Φr are defined in Lemma 20, and C3 is defined in Lemma 25.

Proof From the definition of Mtγ,γ
y and (45), we have

Tγ∑
k=1

L

2m(1− θ)k+1
∥Πyk∥2

=
T−1∑
t=0

γ∑
r=1

L

2m(1− θ)tγ+r+1
∥Πytγ+r∥2 ≤

T−1∑
t=0

γ∑
r=1

L

2m(1− θ)tγ+r+1
M(t+1)γ,γ

y

≤
T−1∑
t=0

γ∑
r=1

C3Lρ
tγ

2m(1− θ)tγ+r+1
+

T−1∑
t=0

γ∑
r=1

C4L

2m(1− θ)tγ+r+1

(t+1)γ−1∑
s=0

ρ(t−1)γ−sθ2Φs

≤ C3L

2m(1− θ)

T−1∑
t=0

γ∑
r=1

ρtγ+r

ργ(1− θ)tγ+r
+

C4Lθ
2

2m(1− θ)

T−1∑
t=0

γ∑
r=1

ρtγ+r

ρ2γ(1− θ)tγ+r

(t+1)γ−1∑
s=0

Φs

ρs

=
C3L

2mργ(1− θ)

Tγ∑
k=1

(
ρ

1− θ

)k

+
C4Lθ

2

2mρ2γ(1− θ)

Tγ∑
k=1

(
ρ

1− θ

)k
⌈ k
γ
⌉γ−1∑
s=0

Φs

ρs
.

Similar to (51), we have

Tγ∑
k=1

(
ρ

1− θ

)k
⌈ k
γ
⌉γ−1∑
s=0

Φs

ρs
≤

γ−1∑
s=0

Φs

ρs

Tγ∑
k=1

(
ρ

1− θ

)k

+

Tγ−1∑
s=γ

Φs

ρs

Tγ∑
k=s−γ+1

(
ρ

1− θ

)k

.

From the settings of θ and α, we know θ ≤ 1−σγ

116γ . From (49), we further have ρ
1−θ < 1

and 1 − ρ − θ ≥ 0.19(1−σγ)
γ . So we have

∑K
k=r+1

(
ρ

1−θ

)k
≤
(

ρ
1−θ

)r
ρ

1−θ−ρ . It follows from

∥Πy0∥ = 0 that

Tγ∑
k=0

L

2m(1− θ)k+1
∥Πyk∥2 ≤ C3L

2mργ−1(1− θ)(1− θ − ρ)

+
C4Lθ

2

2mρ2γ−1(1− θ)(1− θ − ρ)

(
γ−1∑
s=0

Φs

(1− θ)s

(
1− θ

ρ

)s

+

(
ρ

1− θ

)−γ Tγ−1∑
s=γ

Φs

(1− θ)s

)
a
≤ C3L

2mργ−1(1− θ)(1− θ − ρ)
+

C4Lθ
2(1− θ)γ

2mρ3γ−1(1− θ − ρ)

Tγ−1∑
s=0

Φs

(1− θ)s+1

b
≤ 3.3C3Lγ

m(1− θ)(1− σγ)
+

θ2

7mL(1 + 1
τ)

Tγ−1∑
s=0

Φs

(1− θ)s+1
.

where
a
≤ uses 1−θ

ρ > 1 such that
(
1−θ
ρ

)s
≤
(
1−θ
ρ

)γ
for all s ≤ γ − 1,

b
≤ uses (49),

1 − ρ − θ ≥ 0.19(1−σγ)
γ , and the definition of C4 given in Lemma 25. Replacing ∥Πyk∥

by ∥Πxk∥ in the above analysis, we have the same bound for ∥Πxk∥2.

36

Accelerated Gradient Tracking over Time-varying Graphs

Now, we are ready to prove Theorems 2 and 3. We first prove Theorem 2.
Proof Plugging (48) into (21) and using the definition of Φr in (26), we have

F (xTγ+1)− F (x∗)

θ2Tγ

+
1

2α
∥zTγ+1 − x∗∥2

≤ 1

2α
∥z0 − x∗∥2 + 235γ3C3L

m(1− σγ)3
−

Tγ∑
k=0

((
1

2α
− L

2
− 20Lγ2

(1− σγ)2

)
∥zt+1 − zt∥2

+
1

θ2k−1

(
1− 20(1 + τ)γ2

(1 + 1
τ)(1− σγ)2

)
Df (x

k,yk)

)
a
≤ 1

2α
∥z0 − x∗∥2 + 235γ3C3L

m(1− σγ)3
−

Tγ∑
k=0

(
1

4α
∥zt+1 − zt∥2 + 1

2θ2k−1

Df (x
k,yk)

)

≤ 1

2α
∥z0 − x∗∥2 + 235γ3C3L

m(1− σγ)3
− 1

5mL

Tγ−1∑
r=0

Φr,

where in
a
≤ we let τ =

(1−σγ)2

40γ2 so to have 20(1+τ)γ2

(1+ 1
τ
)(1−σγ)2

= 1
2 , α =

(1−σγ)4

21675Lγ4 ≤ (1−σγ)3

3385Lγ3
√

1+ 1
τ

,

and 1
4α ≥ L

2 + 20Lγ2

(1−σγ)2
. So we have

F (xTγ+1)− F (x∗) ≤ θ2Tγ

(
1

2α
∥z0 − x∗∥2 + 235γ3C3L

m(1− σγ)3

)
, (53)

1

5mL

Tγ−1∑
r=0

Φr ≤ 1

2α
∥z0 − x∗∥2 + 235γ3C3L

m(1− σγ)3
. (54)

It follows from (48) that

max

{
Tγ∑
k=0

L

2mθ2k
∥Πyk∥2,

Tγ∑
k=0

L

2mθ2k
∥Πxk∥2

}

≤ 235γ3C3L

m(1− σγ)3
+

10γ2

mL(1 + 1
τ)(1− σγ)2

Tγ−1∑
s=0

Φs

≤ 235γ3C3L

m(1− σγ)3
+

1

4mL

Tγ−1∑
s=0

Φs

≤ 9

4

(
1

2α
∥z0 − x∗∥2 + 235γ3C3L

m(1− σγ)3

)
.

(55)

From the definition of C3 given in Lemma 25, we have

1

2α
∥z0 − x∗∥2 + 235γ3C3L

m(1− σγ)3

≤ 1

2α
∥z0 − x∗∥2 + 1− σγ

27mLγ
Mγ,γ

s +
103870Lγ5

m(1− σγ)5
Mγ,γ

z +
470Lγ3

m(1− σγ)3
Mγ,γ

x ≡ C5.

(56)

37

Li and Lin

The conclusion follows from Lemma 29.

The next lemma gives a sharper bound of the constant C5 appeared in the above proof.

Lemma 29 Under the settings of Theorem 2, we can further bound C5 by

C5 ≤
1

2α
∥z0 − x∗∥2 + 1− σγ

20mLγ
max

r=0,...,γ
∥Πsr∥2. (57)

Proof From step (13c) with µ = 0, we have for any k ≤ γ − 1,

θk+1∥Πzk+1∥ ≤θk∥Πzk+1∥ ≤ θk∥Πzk∥+ α∥Πsk∥

≤θ0∥Πz0∥+ α

k∑
t=0

∥Πst∥ ≤ α

γ−1∑
t=0

∥Πst∥

where we use Πz0 = 0. Squaring both sides gives

θ2k+1∥Πzk+1∥2 ≤ α2γ

γ−1∑
t=0

∥Πst∥2 ≤ α2γ2 max
r=0,...,γ

∥Πsr∥2.

From the setting of α and the definition of Mγ,γ
z , we have

103870Lγ5

m(1− σγ)5
Mγ,γ

z ≤ 1− σγ
4523mLγ

max
r=0,...,γ

∥Πsr∥2.

On the other hand, it follows from step (13d) that

∥Πxk+1∥ ≤ θk∥Πzk+1∥+ ∥Πxk∥ ≤
k∑

t=0

θt∥Πzt+1∥ ≤ 1.62

γ−1∑
t=0

θt+1∥Πzt+1∥.

Squaring both sides gives

∥Πxk+1∥2 ≤ 2.63γ

γ−1∑
t=0

θ2t+1∥Πzt+1∥2 ≤ 2.63γ4α2 max
r=0,...,γ

∥Πsr∥2.

From the setting of α and the definition of Mγ,γ
x , we have

470Lγ3

m(1− σγ)3
Mγ,γ

x ≤ 1− σγ
380070mLγ

max
r=0,...,γ

∥Πsr∥2.

So we have the conclusion.

In the next lemma, we measure the convergence rate at xtγ+1
(i) for any i = 1, ...,m.

Lemma 30 Under the settings of Theorem 2, we have for any t ≤ T − 1,

F (xtγ+1
(i))− F (x∗)

≤ 1

(tγ + 1)2
max

{√
m(1− σγ)

Lαγ
, 8m

}(
2

α
∥z0 − x∗∥2 + 1− σγ

5mLγ
max

r=0,...,γ
∥Πsr∥2

)
.

38

Accelerated Gradient Tracking over Time-varying Graphs

Proof We first bound F (xk(i))− F (xk) for any i. From Lemma 18, we have

F (xk(i)) ≤f(yk−1,yk−1) +
〈
sk−1, xk(i) − yk−1

〉
+

L

2
∥xk(i) − yk−1∥2 + L

2m
∥Πyk−1∥2

≤F (xk) +
〈
sk−1, xk(i) − xk

〉
+ L∥xk(i) − xk∥2 + L∥xk − yk−1∥2 + L

2m
∥Πyk−1∥2

a
≤F (xk)+

θk−1

α
∥zk− zk−1∥∥Πxk∥+L∥Πxk∥2+Lθ2k−1∥zk− zk−1∥2+ L

2m
∥Πyk−1∥2,

where we use (15c) with µ = 0, (15a), and (15d) in
a
≤. From the definition of Φr in (26), it

follows from (54) that for any k ≤ Tγ,

∥zk − zk−1∥2 ≤ Φk−1

2mL2(1 + 1
τ)

b
≤ 5(1− σγ)

2

80Lγ2

(
1

2α
∥z0 − x∗∥2 + 235γ3C3L

m(1− σγ)3

)
,

where
b
≤ uses the setting of τ =

(1−σγ)2

40γ2 given in the proof of Theorem 2. From (53) and

(55), we have for any tγ + 1 with t ≤ T − 1

F (xtγ+1
(i))− F (x∗) ≤ θ2tγ max

{√
m(1− σγ)

Lαγ
, 8m

}(
1

2α
∥z0 − x∗∥2 + 235γ3C3L

m(1− σγ)3

)
.

From (56), (57), and (36), we have the conclusion.

Next, we prove Theorem 3.

Proof Plugging (52) into (22) and using the definition of Φr in (26), we have

1

(1− θ)Tγ+1

(
F (xTγ+1)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥zTγ+1 − x∗∥2

)
≤ F (x0)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥z0 − x∗∥2 + 3.3C3Lγ

m(1− θ)(1− σγ)

−
Tγ∑
k=0

(
1

(1− θ)k

(
1− 2(1 + τ)

7(1 + 1
τ)

)
Df (x

k,yk)

+
1

(1− θ)k+1

(
θ2

2α
− Lθ2

2
− 2Lθ2

7

)
∥zk+1 − zk∥2

)
a
≤ F (x0)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥z0 − x∗∥2 + 3.3C3Lγ

m(1− θ)(1− σγ)

−
Tγ∑
k=0

(
1

2(1− θ)k
Df (x

k,yk) +
θ2

4α(1− θ)k+1
∥zk+1 − zk∥2

)

≤ F (x0)− F (x∗)+

(
θ2

2α
+

µθ

2

)
∥z0−x∗∥2+ 3.3C3Lγ

m(1− θ)(1− σγ)
− θ2

11mL

Tγ−1∑
r=0

Φr

(1− θ)r+1
,

39

Li and Lin

where in
a
≤ we let τ = 7

4 so to have 2(1+τ)

7(1+ 1
τ
)
= 1

2 , α =
(1−σγ)3

4244Lγ3 ≤ (1−σγ)3

3385Lγ3
√

1+ 1
τ

, and 1
4α ≥ L

2 +
2L
7 .

Thus, we have the first conclusion and

θ2

11mL

Tγ−1∑
r=0

Φr

(1− θ)r+1
≤ F (x0)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥z0 − x∗∥2 + 3.3C3Lγ

m(1− θ)(1− σγ)
.

It follows from (52) that

Tγ∑
k=0

L

2m(1− θ)k+1
∥Πxk∥2

≤ 3.3C3Lγ

m(1− θ)(1− σγ)
+

θ2

7mL(1 + 1
τ)

Tγ−1∑
s=0

Φs

(1− θ)s+1

≤ 2

(
F (x0)− F (x∗) +

(
θ2

2α
+

µθ

2

)
∥z0 − x∗∥2 + 3.3C3Lγ

m(1− θ)(1− σγ)

)
.

Thus, we have the second conclusion by plugging the definition of C3 in Lemma 25.

Remark 31 We rewrite the convergence rates in Theorems 2 and 3 in the form of com-
plexities. For the nonstrongly convex case, letting F (xTγ+1) − F (x∗) ≤ 2C

α(Tγ+1)2
= ϵ, we

have Tγ + 1 =
√

2C
αϵ = O((γ

1−σγ
)2
√

LC
ϵ). Each iteration only requires O(1) communication

round and gradient oracle call. For the strongly convex case, letting F (xTγ+1)− F (x∗) ≤
(1− θ)Tγ+1C = ϵ, we have Tγ + 1 = O(1θ log

C
ϵ) = O((γ

1−σγ
)1.5
√

L
µ log 1

ϵ).

4 Numerical Experiments

In this section, we test the performance of the accelerated gradient tracking (Acc-GT) over
time-varying graphs. The performance of Acc-GT over static graphs has already been
verified in (Qu and Li, 2020). Moreover, Qu and Li (2020) reported in their experiment that
algorithm (12a)-(12d) with fixed step size (our theoretical setting) performs faster than the
one with vanishing step sizes (their theoretical setting). Thus, we omit the comparisons over
static graphs.

We consider the following decentralized regularized logistic regression problem:

min
x∈Rp

m∑
i=1

f(i)(x), where f(i)(x) =
µ

2
∥x∥2 + 1

n

n∑
j=1

log
(
1 + exp(−y(i),jA

⊤
(i),jx)

)
,

where (A(i),j , y(i),j) ∈ Rp × {1,−1} is the data point with A(i),j being the feature vector,
and y(i),j the label. We use the cifar10 dataset with p = 3072, n = 50, and m = 1000.
Each feature vector is normalized to have unit norm, and the data are divided into two

classes to fit the logistic regression model. We observe that L = maxi
∥A(i)∥22

4n ≈ 0.215. We
consider both strongly convex (µ = 10−6) and nonstrongly convex (µ = 0) problems. We

40

Accelerated Gradient Tracking over Time-varying Graphs

test the performance on the 2D grid graphs, where at each iteration, m nodes are uniformly
placed in a ⌈5

√
m⌉ × ⌈5

√
m⌉ region in random, and each node is connected with the nodes

around it within the distance of d. We test on d = 20 and d = 2, which correspond to
(γ, σγ) ≈ (1, 0.9858) and (γ, σγ) ≈ (32, 0.9471), respectively. When d = 20, the network is
connected almost every time. When d = 2, we observe that at each iteration, almost 61
percent of the nodes drop out from the communication network in average, which means
that they have no connection with the other nodes. We use the Metropolis gossip matrix
given in (8).

For strongly convex problem, we compare Acc-GT and Acc-GT-C (Acc-GT with multiple
consensus) with DIGing (Nedić et al., 2017), DAGD-C (Rogozin et al., 2021b), as well as
the classical non-distributed accelerated gradient descent (AGD), where AGD runs on a
single machine, and it gives the upper limit of the practical performance of the distributed
algorithms. We do not compare with the time-varying AB/push-pull method (Saadatniaki
et al., 2020) and the push-sum based methods (Nedić and Olshevsky, 2016, 2015; Nedić et al.,
2017) because they are designed for directed graphs. We tune the step sizes α = 0.1

L for
Acc-GT and Acc-GT-C, α = 0.5

L for DIGing, and α = 1
L for AGD. For DAGD-C, when d = 2,

we test on the number of inner iterations sa T = γ
3(1−σγ)

≈ 201 and T = γ
2(1−σγ)

≈ 302,

and name the methods DAGD-C1 and DAGD-C2, respectively. When d = 20, we test
on T = γ

5(1−σγ)
≈ 14 and T = γ

4(1−σγ)
≈ 17, respectively. For Acc-GT-C, we set the

number of inner iterations as T = γ
50(1−σγ)

≈ 12 and T = γ
10(1−σγ)

≈ 7 for d = 2 and d = 20,

respectively. The other parameter settings follow the corresponding theorems of each method.
For nonstrongly convex problem, we compare Acc-GT and Acc-GT-C with DIGing (Nedić
et al., 2017), APM (Li et al., 2020a), and AGD, and set the same step sizes as above. We

tune the step size α = 1
L for APM, and set the number of inner iterations as Tk = γ log(k+1)

100(1−σγ)

and Tk = γ log(k+1)
10(1−σγ)

at each outer loop iteration for d = 2 and d = 20, respectively. Although

the convergence of DIGing was only proved for strongly convex problem in (Nedić et al.,
2017), it also converges for nonstrongly convex ones by using our proof techniques.

Figures 1-4 plot the results, where the objective function error is measured by F (xk)−

F (x∗), and the consensus error is measured by

√∑m
i=1 ∥xk

(i)
−xk∥2

m∥xk∥2 . Since F (x∗) is unknown,

we approximate it by the output of the classical non-distributed AGD with 50000 iterations
for strongly convex problem, and 200000 iterations for nonstrongly convex one. One round
of communications means that all the nodes, if they are active, receive information from
their neighbors once, and one round of gradient computations means that all the nodes
compute their gradient ∇f(i)(x) once in parallel. Especially, for AGD, one round of gradient
computations means computing the full gradient

∑m
i=1∇f(i)(x) once. We have the following

observations:

1. Acc-GT converges faster than DIGing, both on the decrease of the objective function
errors and consensus errors. This verifies the efficiency of the acceleration technique.
Moreover, for strongly convex problem, Acc-CT is only three times slower than the
classical non-distributed AGD.

2. Acc-GT-C needs more communication rounds than Acc-GT to reach the same precision
of the objective function error, although Acc-GT-C has lower theoretically communi-

41

Li and Lin

cation round complexity. Thus, Acc-GT-C is only for the theoretical interest, and it is
not suggested in practice.

3. DAGD-C and APM need less gradient computation rounds than Acc-GT to reach the
same precision of the objective function error, but they require more communication
rounds. This supports that the multiple consensus subroutine places more communica-
tion burdens in practice. But on the other hand, DAGD-C and APM have almost the
same computation cost as the classical non-distributed AGD. Comparing DAGD-C1
with DAGD-C2, we see that less inner iterations give larger consensus errors, and our
settings of the inner iteration numbers are fair to DAGD-C.

4. The network connectivity, that is, the different settings of d in our experiment, has
little influence on the decrease of the objective function errors for both DIGing and
Acc-GT3. We think this is because we set the same step sizes for d = 2 and d = 20.
From Theorems 2 and 3, we see that the network connectivity constants impact on the
step sizes, and the step sizes impact on the decrease speed of the objective function
errors. On the other hand, from the proofs of Theorems 2 and 3, we see that the
decrease speed of the consensus errors given in the two theorems is not tight, and we
observe in the experiment that the consensus errors decrease faster when d = 20 for
both DIGing and Acc-GT.

5 Conclusion

This paper extends the widely used accelerated gradient tracking to time-varying network,
which was originally proposed in (Qu and Li, 2020) only for static network. We prove the
state-of-the-art complexities for both nonstrongly convex and strongly convex problems with
the optimal dependence on the precision ϵ and the condition number L/µ, matching that
of the classical centralized accelerated gradient descent. When the network is static, our
complexities improve significantly over the previous ones proved in (Qu and Li, 2020). When
combing with the Chebyshev acceleration, Our complexities exactly match the lower bounds
for both nonstrongly convex and strongly convex problems over static graphs.

This paper only considers the γ-connectivity of time-varying graphs. Some researchers
formulate the time-varying graphs as random graphs (Hong and Chang, 2017; Jakovetić
et al., 2014b; Ananduta et al., 2020) and use the mean connectivity in expectation. It
is an interesting future work to extend our proof techniques to random graphs. Another
interesting direction is to study the acceleration over time-varying unbalanced directed
graphs (Nedić et al., 2017). Besides gradient tracking, EXTRA is another important family
of decentralized optimization algorithms. However, it remains an open problem to extend
EXTRA to time-varying graphs.

3. This phenomenon depends on the data. We also test on the simulated data with p = 100, n = 50, and
m = 1000, where each element of the feature vectors is generated randomly in [0, 1] from the uniform
distribution, we observe that Acc-GT with d = 20 performs about 1.1 times as fast as that with d = 2.
The difference is not significant.

42

Accelerated Gradient Tracking over Time-varying Graphs

0 1 2 3 4 5

of communication rounds 104

10-15

10-10

10-5

100
O

b
je

c
ti
v
e
 f
u
n

c
ti
o
n
 e

rr
o
r

DAGD-C2

DAGD-C1

DIGing

Acc-GT-C

Acc-GT

0 1 2 3 4 5

of communication rounds 10
4

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

C
o
n
s
e
n
s
u
s
 e

rr
o
r

DIGing

Acc-GT-C

Acc-GT

DAGD-C1

DAGD-C2

0 1 2 3 4 5

of gradient computation rounds 104

10-15

10-10

10-5

100

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 e

rr
o
r

DIGing

Acc-GT

Acc-GT-C

DAGD-C1

DAGD-C2

AGD

0 1 2 3 4 5

of gradient computation rounds 104

10-14

10-12

10-10

10-8

10-6

10-4

C
o
n
s
e
n
s
u
s
 e

rr
o
r

DIGing

Acc-GT

Acc-GT-C

DAGD-C1

DAGD-C2

Figure 1: Comparisons of the objective function errors (left) and consensus errors (right)
with respect to the number of communication (top) and computation (bottom)
rounds for strongly convex problem with d = 2.

Appendix A. Proof of Lemma 18

Proof From the µ-strong convexity and L-smoothness of f(i), we have

F (w) =
1

m

m∑
i=1

f(i)(w)

≥ 1

m

m∑
i=1

(
f(i)(y

k
(i)) +

〈
∇f(i)(y

k
(i)), w − yk(i)

〉
+

µ

2
∥w − yk(i)∥

2
)

43

Li and Lin

0 1 2 3 4 5

of communication rounds 104

10-15

10-10

10-5

100
O

b
je

c
ti
v
e
 f
u
n

c
ti
o
n
 e

rr
o
r

DIGing

Acc-GT-C

DAGD-C2

DAGD-C1

Acc-GT

0 1 2 3 4 5

of communication rounds 10
4

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

C
o
n
s
e
n
s
u
s
 e

rr
o
r

Acc-GT-C

DIGing

Acc-GT

DAGD-C1

DAGD-C2

0 1 2 3 4 5

of gradient computation rounds 104

10-15

10-10

10-5

100

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 e

rr
o
r

DIGing

Acc-GT

Acc-GT-C

DAGD-C1

DAGD-C2

AGD

0 1 2 3 4 5

of gradient computation rounds 104

10-14

10-12

10-10

10-8

10-6

10-4

C
o
n
s
e
n
s
u
s
 e

rr
o
r

DIGing

Acc-GT

Acc-GT-C

DAGD-C1

DAGD-C2

Figure 2: Comparisons of the objective function errors (left) and consensus errors (right)
with respect to the number of communication (top) and computation (bottom)
rounds for strongly convex problem with d = 20.

=
1

m

m∑
i=1

(
f(i)(y

k
(i)) +

〈
∇f(i)(y

k
(i)), w − yk(i)

〉
+

µ

2
∥w − yk∥2

+
µ

2
∥yk − yk(i)∥

2 + µ
〈
w − yk, yk − yk(i)

〉)
a
=

1

m

m∑
i=1

(
f(i)(y

k
(i)) +

〈
∇f(i)(y

k
(i)), w − yk(i)

〉
+

µ

2
∥w − yk∥2 + µ

2
∥yk − yk(i)∥

2
)

≥ 1

m

m∑
i=1

(
f(i)(y

k
(i)) +

〈
∇f(i)(y

k
(i)), w − yk(i)

〉
+

µ

2
∥w − yk∥2

)
b
=f(yk,yk) +

〈
sk, w − yk

〉
+

µ

2
∥w − yk∥2,

44

Accelerated Gradient Tracking over Time-varying Graphs

0 1 2 3 4 5

of communication rounds 104

10-4

10-3

10-2

10-1
O

b
je

c
ti
v
e
 f
u
n

c
ti
o
n
 e

rr
o
r

DIGing

APM

Acc-GT-C

Acc-GT

0 1 2 3 4 5

of communication rounds 10
4

10
-10

10
-8

10
-6

10
-4

C
o
n
s
e
n
s
u
s
 e

rr
o
r

APM

DIGing

Acc-GT

Acc-GT-C

0 1 2 3 4 5

of gradient computation rounds 104

10-4

10-3

10-2

10-1

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 e

rr
o
r

DIGing

Acc-GT

Acc-GT-C

APM

AGD

0 1 2 3 4 5

of gradient computation rounds 104

10-10

10-8

10-6

10-4
C

o
n
s
e
n
s
u
s
 e

rr
o
r

DIGing

Acc-GT

APM

Acc-GT-C

Figure 3: Comparisons of the objective function errors (left) and consensus errors (right)
with respect to the number of communication (top) and computation (bottom)
rounds for nonstrongly convex problem with d = 2.

and

F (w) ≤ 1

m

m∑
i=1

(
f(i)(y

k
(i)) +

〈
∇f(i)(y

k
(i)), w − yk(i)

〉
+

L

2
∥w − yk(i)∥

2

)

=
1

m

m∑
i=1

(
f(i)(y

k
(i)) +

〈
∇f(i)(y

k
(i)), w − yk(i)

〉
+

L

2
∥w − yk∥2

+
L

2
∥yk − yk(i)∥

2 + L
〈
w − yk, yk − yk(i)

〉)
c
=

1

m

m∑
i=1

(
f(i)(y

k
(i)) +

〈
∇f(i)(y

k
(i)), w − yk(i)

〉
+

L

2
∥w − yk∥2 + L

2
∥yk − yk(i)∥

2

)
d
=f(yk,yk) +

〈
sk, w − yk

〉
+

L

2
∥w − yk∥2 + L

2m
∥Πyk∥2,

45

Li and Lin

0 1 2 3 4 5

of communication rounds 104

10-4

10-3

10-2

10-1
O

b
je

c
ti
v
e
 f
u
n

c
ti
o
n
 e

rr
o
r

DIGing

APM

Acc-GT-C

Acc-GT

0 1 2 3 4 5

of communication rounds 104

10-10

10-8

10-6

10-4

C
o
n

s
e
n

s
u

s
 e

rr
o
r

APM

Acc-GT-C

DIGing

Acc-GT

0 1 2 3 4 5

of gradient computation rounds 104

10-4

10-3

10-2

10-1

O
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 e

rr
o
r

DIGing

Acc-GT

Acc-GT-C

APM

AGD

0 1 2 3 4 5

of gradient computation rounds 104

10-10

10-8

10-6

10-4
C

o
n
s
e
n
s
u
s
 e

rr
o
r

DIGing

APM

Acc-GT

Acc-GT-C

Figure 4: Comparisons of the objective function errors (left) and consensus errors (right)
with respect to the number of communication (top) and computation (bottom)
rounds for nonstrongly convex problem with d = 20.

where
a
= and

c
= use the definition of yk in (3),

b
= and

d
= use the definition of f(yk,yk) in

(17), (16), and the definition of Πy in (4).

Acknowledgments and Disclosure of Funding

The authors were supported by National Key R&D Program of China (2022ZD0160300),
NSF China (grant no.s 62476142, 62006116, 62276004), and Qualcomm.

46

Accelerated Gradient Tracking over Time-varying Graphs

References

Sulaiman A. Alghunaim, Ernest K. Ryu, Kun Yuan, and Ali H.Sayed. Decentralized proximal
gradient algorithms with linear covnergence rates. IEEE Transactions on Automatic
Control, 66(6):2787–2794, 2021.

Wicak Ananduta, Carlos Ocampo-Martinez, and Angelia Nedić. Accelerated multi-agent
optimization method over stochastic networks. In IEEE Conference on Decision and
Control (CDC), pages 14–18, 2020.

Mario Arioli and Jennifer Scott. Chebyshev acceleration of iterative refinement. Numerical
Algorithms, 66(3):591–608, 2014.

Yossi Arjevani, Joan Bruna, Bugra Can, Mert Gürbüzbalaban, Stefanie Jegelka, and
Hongzhou Lin. Ideal: Inexact decentralized accelerated augmented lagrangian method. In
Advances in Neural Information Processing Systems (NeurIPS), pages 20648–20659, 2020.

Winfried Auzinger and Jens Markus Melenk. Iterative solution of large linear systems.
Lecture notes, TU Wien, 2017.

Dimitri P. Bertsekas. Distributed asynchromous computation of fixed points. Mathmatical
Programming, 27:107–120, 1983.

Keith Bonawitz, Hubert Eichner, and et al. Towards federated learning at scale: System
design. In Conference on Machine Learning and Systems (MLSys), 2019.

Yiyue Chen, Abolfazl Hashemi, and Haris Vikalo. Communication-efficient variance-reduced
decentralized stochastic optimization over time-varying directed graphs. IEEE Transactions
on Automatic Control, 67(12):6583–6594, 2022.

Olivier Devolder, Francois Glineur, and Yurii Nesterov. First-order methods of smooth
convex optimization with inexact oracle. Mathematical Programming, 146:37–75, 2014.

John Duchi, Alekh Agarwal, and Martin Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Transactions on Automatic
Control, 57(3):592–606, 2012.

Darina Dvinskikh and Alexander Gasnikov. Decentralized and parallelized primal and dual
accelerated methods for stochastic convex programming problems. Journal of Inverse and
Ill-posed Problems, 29(3):385–405, 2021.

Alireza Fallah, Mert Gurbuzbalaban, Asuman Ozdaglar, Umut Simsekli, and Lingjiong
Zhu. Robust distributed accelerated stochastic gradient methods for multi-agent networks.
Journal of Machine Learning Research, 23(220):1–96, 2022.

Hadrien Hendrikx, Francis Bach, and Laurent Massoulié. An optimal algorithm for de-
centralized finite sum optimization. SIAM Journal on Optimization, 31(4):2753–2783,
2021.

Mingyi Hong and Tsung-Hui Chang. Stochastic proximal gradient consensus over random
networks. IEEE Transactions on Signal Processing, 65(11):2933–2948, 2017.

47

Li and Lin

Mingyi Hong, Davood Hajinezhad, and Ming-Min Zhao. Prox-PDA: The proximal primal-
dual algorithm for fast distributed nonconvex optimization and learning over networks. In
International Conference on Machine Learning (ICML), pages 1529–1538, 2017.

Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem. Explicit convergence
rate of a distributed alternating direction method of multipliers. IEEE Transactions on
Automatic Control, 61(4):892–904, 2016.

Dusan Jakovetić. A unification and generatliztion of exact distributed first order methods.
IEEE Transactions on Signal and Information Processing over Networks, 5(1):31–46, 2019.

Dusan Jakovetić, Joao Xavier, and José M. F. Moura. Fast distributed gradient methods.
IEEE Transactions on Automatic Control, 59(5):1131–1146, 2014a.

Dusan Jakovetić, Joao Xavier, and Jose M. F. Moura. Convergence rates of distributed
nesterov-like gradient methods on random networks. IEEE Transactions on Signal
Processing, 62(4):868–882, 2014b.

Peter Kairouz, H. Brendan McMahan, and et al. Advances and open problems in federated
learning. Foundations and Trends in Machine Learning, 14:1–210, 2021.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U. Stich.
A unified theory of decentralized SGD with changing topology and local updates. In
International Conference on Machine Learning (ICML), pages 5381–5393, 2020.

Dmitry Kovalev, Adil Salim, and Peter Richtárik. Optimal and practical algorithms for
smooth and strongly convex decentralized optimization. In Advances in Neural Information
Processing Systems (NeurIPS), pages 18342–18352, 2020.

Dmitry Kovalev, Elnur Gasanov, Alexander Gasnikov, and Peter Richtarik. Lower bounds
and optimal algorithms for smooth and strongly convex decentralized optimization over
time-varying networks. In Advances in Neural Information Processing Systems (NeurIPS),
pages 22325–22335, 2021a.

Dmitry Kovalev, Egor Shulgin, Peter Richtarik, Alexander Rogozin, and Alexander Gasnikov.
ADOM: accelerated decentralized optimization method for time-varying networks. In
International Conference on Machine Learning (ICML), pages 5784–5793, 2021b.

Guanghui Lan, Soomin Lee, and Yi Zhou. Communication-efficient algorithms for decentral-
ized and stochastic optimization. Mathematical Programming, 180:237–284, 2020.

Huan Li and Zhouchen Lin. Revisiting EXTRA for smooth distributed optimization. SIAM
Journal Optimization, 30(3):1795–1821, 2020.

Huan Li, Cong Fang, Wotao Yin, and Zhouchen Lin. Decentralized accelerated gradient
methods with increasing penalty parameters. IEEE transactions on Signal Processing, 68:
4855–4870, 2020a.

Huan Li, Zhouchen Lin, and Yongchun Fang. Variance reduced EXTRA and DIGing and
their optimal acceleration for strongly convex decentralized optimization. Journal of
Machine Learning Research, 23(222):1–41, 2022.

48

Accelerated Gradient Tracking over Time-varying Graphs

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):
50–60, 2020b.

Zhi Li, Wei Shi, and Ming Yan. A decentralized proximal-gradient method with network
independent step-sizes and separated convergence rates. IEEE Transactions on Signal
Processing, 67(17):4494–4506, 2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can
decentralized algorithms outperform centralized algorithms? A case study for decentralized
parallel stochastic gradient descent. In Advances in Neural Information Processing Systems
(NIPS), pages 5330–5340, 2017.

Zhouchen Lin, Huan Li, and Cong Fang. Accelerated Optimization in Machine Learning:
First-Order Algorithms. Springer, 2020.

Paolo Di Lorenzo and Gesualdo Scutari. NEXT: In-network nonconvex optimization. IEEE
Transactions on Signal and Information Processing over Networks, 2(2):120–136, 2016.

Ali Makhdoumi and Asuman Ozdaglar. Convergence rate of distributed ADMM over
networks. IEEE Transactions on Automatic Control, 62(10):5082–5095, 2017.

Marie Maros and Joakim Jalden. PANDA: A dual linearly converging method for distributed
optimization over time-varying undirected graphs. In IEEE Conference on Decision and
Control (CDC), pages 6520–6525, 2018.

Marie Maros and Joakim Jalden. Eco-panda: A computationally economic, geometrically
converging dual optimization method on time-varying undirected graphs. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5257–5261, 2019.

Agelia Nedić and Asuman Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Angelia Nedić. Asynchronous broadcast-based convex optimization over a network. IEEE
Transactions on Automatic Control, 56(6):1337–1351, 2011.

Angelia Nedić and Alex Olshevsky. Distributed optimization over time-varying directed
graphs. IEEE Transactions on Automatic Control, 60(3):601–615, 2015.

Angelia Nedić and Alex Olshevsky. Stochastic gradient-push for strongly convexfunctions on
time-varying directed graphs. IEEE Transactions on Automatic Control, 61(12):3936–3947,
2016.

Angelia Nedić, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633,
2017.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer
Academic, Boston, 2004.

49

Li and Lin

Duong Thuy Anh Nguyen, Duong Tung Nguyen, and Angelia Nedić. Accelerated ab/push-
pull methods for distributed optimization over time-varying directed networks. IEEE
Transactions on Control of Network Systems. DOI: 10.1109/TCNS.2023.3338236, 2024.

Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization.
IEEE Transactions on Control of Network Systems, 5(3):1245–1260, 2018.

Guannan Qu and Na Li. Accelerated distributed Nesterov gradient descent. IEEE Transac-
tions on Automatic Control, 65(6):2566–2581, 2020.

S. Sundhar Ram, Angelia Nedić, and Venugopal V. Veeravalli. Distributed stochastic
subgradient projection algorithms for convex optimization. Journal of Optimization
Theory and Applications, 147:516–545, 2010.

Alexander Rogozin, César A. Uribe, Alexander V. Gasnikov, Nikolay Malkovsky, and Angelia
Nedić. Optimal distributed convex optimization on slowly time-varying graphs. IEEE
Transactions on Control of Network Systems, 7(2):829–841, 2020.

Alexander Rogozin, Mikhail Bochko, Pavel Dvurechensky, Alexander Gasnikov, and Vladislav
Lukoshkin. An accelerated method for decentralized distributed stochastic optimization
over time-varying graphs. In IEEE Conference on Decision and Control (CDC), pages
3367–3373, 2021a.

Alexander Rogozin, Vladislav Lukoshkin, Alexander Gasnikov, Dmitry Kovalev, and Egor
Shulgin. Towards accelerated rates for distributed optimization over time-varying networks.
In OPTIMA 2021: Optimization and Applications, pages 258–272, 2021b.

Fakhteh Saadatniaki, Ran Xin, and Usman A. Khan. Decentralized optimization over time-
varying directed graphs with row and column-stochastic matrices. IEEE Transactions on
Automatic Control, 65(11):4769–4780, 2020.

Kevin Scaman, Francis Bach, Sebastien Bubeck, Yin Tat Lee, and Laurent Massoulié.
Optimal algorithms for smooth and strongly convex distributed optimization in networks.
In International Conference on Machine Learning (ICML), pages 3027–3036, 2017.

Kevin Scaman, Francis Bach, Sebastien Bubeck, Yin Tat Lee, and Laurent Massoulié.
Optimal algorithms for non-smooth distributed optimization in networks. In Advances in
Neural Information Processing Systems (NeurIPS), pages 2740–2749, 2018.

Kevin Scaman, Francis Bach, Sebastien Bubeck, Yin Tat Lee, and Laurent Massoulié.
Optimal convergence rates for convex distributed optimization in networks. Journal of
Machine Learning Research, 20(159):1–31, 2019.

Gesualdo Scutari and Ying Sun. Distributed nonconvex constrained optimization over
time-varying digraphs. Mathematical Programming, 176:497–544, 2019.

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. A proximal gradient algorithm for decentral-
ized composite optimization. IEEE Transactions on Signal Processing, 63(23):6013–6023,
2015a.

50

Accelerated Gradient Tracking over Time-varying Graphs

Wei Shi, Qing Ling, Gang Wu, and Wotao Yin. EXTRA: An exact first-order algorithm
for decentralized consensus optimization. SIAM Journal on Optimization, 25(2):944–966,
2015b.

Artin Spiridonoff, Alex Olshevsky, and Ioannis Ch. Paschalidis. Robust asynchronous
stochastic gradient push: Asymptotically optimal and network independent performance
for strongly convex functions. Journal of Machine Learning Research, 21:1–47, 2020.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International
Conference on Learning Representations (ICLR), 2019.

Ying Sun, Gesualdo Scutari, and Amir Daneshmand. Distributed optimization based on
gradient-tracking revisited: Enhancing convergence rate via surrogation. SIAM Journal
Optimization, 32(2):354–385, 2022.

H̊akan Terelius, Ufuk Topcu, and Richard M. Murray. Decentralized multi-agent optimization
via dual decomposition. IFAC proceedings volumes, 44(1):11245–11251, 2011.

Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization.
Technical report, University of Washington, Seattle, 2008.

John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael Athans. Distributed asynchronous
deterministic and stochastic gradient optimization algorithms. IEEE Transaction on
Automatic Control, 31(9):803–812, 1986.

César A. Uribe, Soomin Lee, Alexander Gasnikov, and Angelia Nedić. A dual approach for
optimal algorithms in distributed optimization over networks. Optimization Methods and
Software, 36(1):171–210, 2021.

Ermin Wei and Asuman Ozdaglar. On the o(1/k) convergence of asynchronous distributed
alternating direction method of multipliers. In IEEE Global Conference on Signal and
Information Processing (GlobalSIP), pages 551–554, 2013.

Ran Xin, Usman A. Khan, and Soummya Kar. A linear algorithm for optimization over
directed graphs with geometric convergence. IEEE Control Systems Letters, 2(3):315–320,
2018.

Jinming Xu, Shanying Zhu, Yeng Chai Soh, and Lihua Xie. Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant stepsizes. In IEEE
Conference on Decision and Control (CDC), pages 2055–2060, 2015.

Jinming Xu, Ye Tian, Ying Sun, and Gesualdo Scutari. Accelerated primal-dual algorithms
for distributed smooth convex optimization over networks. In International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 2381–2391, 2020.

Haishan Ye, Ziang Zhou, Luo Luo, and Tong Zhang. Decentralized accelerated proximal
gradient descent. In Advances in Neural Information Processing Systems (NeurIPS), pages
18308–18317, 2020.

51

Li and Lin

Haishan Ye, Luo Luo, Ziang Zhou, and Tong Zhang. Multi-consensus decentralized acceler-
ated gradient descent. Journal of Machine Learning Research, 24(306):1–50, 2023.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent.
SIAM Journal Optimization, 26(3):1835–1854, 2016.

52

	Introduction
	Notations and Assumptions
	Literature Review
	Decentralized Optimization over Static Graphs
	Decentralized Optimization over Time-varying Graphs

	Contributions

	Accelerated Gradient Tracking over Time-varying Graphs
	Review of Gradient Tracking and Its Acceleration
	Extension of Accelerated Gradient Tracking to Time-varying Graphs
	Special Cases over Static Graphs
	Improved Dependence on the Network Connectivity Constants
	Chebyshev Acceleration over Static Graphs
	Multiple Consensus over Time-varying Graphs

	Proofs of Theorems
	Convergence Rates of the Inexact Accelerated Gradient Descent
	Bounding the Consensus Errors over Static Graphs
	Bounding the Consensus Errors over Time-varying Graphs

	Numerical Experiments
	Conclusion
	Proof of Lemma 18

