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Abstract

Although adaptive gradient methods have been extensively used in deep learning, their
convergence rates proved in the literature are all slower than that of SGD, particu-
larly with respect to their dependence on the dimension. This paper considers the
classical RMSProp and its momentum extension and establishes the convergence rate

of 1
T

∑T
k=1 E

[
∥∇f(xk)∥1

]
≤ O(

√
dC

T 1/4 ) measured by ℓ1 norm without the bounded gradient
assumption, where d is the dimension of the optimization variable, T is the iteration number,
and C is a constant identical to that appeared in the optimal convergence rate of SGD. Our
convergence rate matches the lower bound with respect to all the coefficients except the
dimension d. Since ∥x∥2 ≪ ∥x∥1 ≤

√
d∥x∥2 for problems with extremely large d, our con-

vergence rate can be considered to be analogous to the 1
T

∑T
k=1 E

[
∥∇f(xk)∥2

]
≤ O( C

T 1/4 )

rate of SGD in the ideal case of ∥∇f(x)∥1 = Θ(
√
d)∥∇f(x)∥2.
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1 Introduction

This paper considers adaptive gradient methods for the following nonconvex smooth stochastic
optimization problem:

min
x∈Rd

f(x) = Eξ∼P [h(x; ξ)], (1)

where ξ is a random variable and P is the data distribution.
When evaluating the convergence speed of an optimization method, traditional optimiza-

tion theories primarily focus on the dependence on the iteration number. For example, it
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is well known that SGD reaches the precision of O( 1
T 1/4 ) after T iterations for nonconvex

problem (1), disregarding the constants independent of T within O(·). However, this measure
is inadequate for high-dimensional applications, particularly in deep learning. Consider
GPT-3, which possesses 175 billion parameters. In other words, in the training model (1),

d = 1.75× 1011 in GPT-3.

If a method converges with a rate of O( d
T 1/4 ), it is unrealistic since we rarely train a deep

neural network for 1044 iterations. Therefore, it is desirable to study the explicit dependence
on the dimension d and the constants relying on d in O(·), and furthermore, to decrease this
dependence.

To compound the issue, although adaptive gradient methods, such as AdaGrad (Duchi
et al., 2011; McMahan and Streeter, 2010), RMSProp (Tieleman and Hinton, 2012), and
Adam (Kingma and Ba, 2015), have become dominant in training deep neural networks,
their convergence rates have not been thoroughly investigated, particularly with regard to
their dependence on the dimension. Current analyses of convergence rates indicate that
these methods often exhibit a strong dependence on the dimension. For example, recently,
Hong and Lin (2024a) (see Section 3 for the detailed literature reviews) proved the following
state-of-the-art convergence rate for AdaGrad with high probability

1

T

T∑
k=1

∥∇f(xk)∥2 ≤ O

(√
d lnT

T 1/4

(
4
√
σ2
sL(f(x

1)− f∗) + σs

))
(2)

under assumption ∥gk −∇f(xk)∥2 ≤ σ2
s , where gk represents the stochastic gradient at xk.

In contrast, the convergence rate of SGD (Bottou et al., 2018) can be as fast as

1

T

T∑
k=1

E
[
∥∇f(xk)∥2

]
≤ O

(
4
√
σ2
sL(f(x

1)− f∗)

T 1/4

)
(3)

with weaker assumption E
[
∥gk −∇f(xk)∥2

]
≤ σ2

s . We observe that the convergence rate

of SGD is
√
d lnT times faster than (2). It remains an open problem of how to establish

the convergence rate of adaptive gradient methods in a manner analogous to that of SGD,
in order to bridge the gap between their rapid convergence observed in practice and their
theoretically slower convergence rate compared to SGD.

Algorithm 1 RMSProp

Initialize x1, v0
i

for k = 1, 2, · · · , T do
vk = βvk−1 + (1− β)(gk)⊙2

xk+1 = xk − η√
vk

⊙ gk

end for

Algorithm 2 RMSProp with Momentum

Initialize x1, m0
i = 0, v0

i

for k = 1, 2, · · · , T do
vk = βvk−1 + (1− β)(gk)⊙2

mk = θmk−1 + (1− θ) 1√
vk

⊙ gk

xk+1 = xk − ηmk

end for

2
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1.1 Contribution

In this paper, we consider the classical RMSProp and its momentum extension (Tieleman
and Hinton, 2012), which are presented in Algorithms 1 and 2, respectively. Specifically, for
both methods, we prove the convergence rate of

1

T

T∑
k=1

E
[
∥∇f(xk)∥1

]
≤ Õ

( √
d

T 1/4
4
√
σ2
sL(f(x

1)− f∗) +

√
d√
T

√
L(f(x1)− f∗)

)

measured by ℓ1 norm under the assumption of coordinate-wise bounded noise variance, which
does not require the boundedness of the gradient or stochastic gradient. Our convergence
rate matches the lower bound established in (Arjevani et al., 2023) with respect to T ,
L, f(x1) − f∗, and σs. Since L(f(x1) − f∗) ≥ 1

2∥∇f(x1)∥2 = 1
2

∑d
i=1 |∇if(x

1)|2 and

σ2
s ≥

∑d
i=1 E

[
|gk

i −∇if(x
k)|2
]
, they could assume large values in high-dimensional settings1.

So it is significant to achieve the optimal dependence on L(f(x1)− f∗) and σs. The only
coefficient left unclear whether it is tight measured by ℓ1 norm is the dimension d.

Note that ∥x∥2 ≪ ∥x∥1 ≤
√
d∥x∥2 for any x ∈ Rd with extremely large d, and additionally,

∥x∥1 = Θ(
√
d)∥x∥2 when x is generated from uniform or Gaussian distribution. Therefore,

our convergence rate can be considered to be analogous to (3) of SGD in the ideal case of
∥∇f(x)∥1 = Θ(

√
d)∥∇f(x)∥2. Fortunately, as demonstrated in Figure 1, we have empirically

observed that in real deep neural networks, the relationship ∥∇f(x)∥1 = Θ(
√
d)∥∇f(x)∥2

holds true.

1.2 Notations and Assumptions

Denote xi and ∇if(x) as the ith element of vectors x and ∇f(x), respectively. Let xk

represent the value at iteration k. For scalars, such as v, we use vk instead of vk to denote
its value at iteration k, while the latter represents its kth power. Denote ∥ · ∥, or ∥ · ∥2
if emphasis is required, as the ℓ2 Euclidean norm and ∥ · ∥1 as the ℓ1 norm for vectors,
respectively. Denote f∗ = inf f(x). Denote ⊙ to stand for the Hadamard product between
vectors. Denote Fk = σ(g1,g2, · · · ,gk) to be the sigma field of the stochastic gradients up
to k. Let EFk

[·] denote the expectation with respect to Fk and Ek[·|Fk−1] the conditional
expectation with respect to gk conditioned on Fk−1. We use f = O(g), f = Ω(g), and
f = Θ(g) to denote f ≤ c1g, f ≥ c2g, and c2g ≤ f ≤ c1g for some constants c1 and c2,
respectively, and Õ to hide polylogarithmic factors. The base of natural logarithms is
denoted by e.

Throughout this paper, we make the following assumptions:

1. Smoothness: ∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥,

2. Unbiased estimator: Ek

[
gk
i

∣∣Fk−1

]
= ∇if(x

k),

3. Coordinate-wise bounded noise variance: Ek

[
|gk

i −∇if(x
k)|2
∣∣Fk−1

]
≤ σ2

i .

1. However, empirical observations in deep learning training indicate that each element of ∇f(x) tends to
be very small, with both ∥∇f(x1)∥ and f(x1)− f∗ typically being of order O(1).
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RMSProp Training Loss
RMSProp with Momentum Training Loss

RMSProp Gradient Norm Ratio
RMSProp with Momentum Gradient Norm Ratio
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(a) ResNet-50 training loss on Cifar-100
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(b) ResNet-50 gradient norm ratio (
√
d ≈ 4869)
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(c) ResNet-50 training loss on ImageNet
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(d) ResNet-50 gradient norm ratio (
√
d ≈ 5055)
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(e) GPT-2 training loss on OpenWebText
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(f) GPT-2 gradient norm ratio (
√
d ≈ 11148)

Figure 1: Illustration of the relationship ∥∇f(xk)∥1 = Θ(
√
d)∥∇f(xk)∥2. We use RMSProp

and RMSProp with momentum to train ResNet50 on CIFAR-100 and ImageNet, and train

GPT2 on the OpenWebText dataset. The gradient norm ratio shows ∥∇f(xk)∥1
∥∇f(xk)∥2

and the

average training loss shows the average loss over training samples.
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Denoting σ = [σ1, · · · , σd] and σs = ∥σ∥2 =
√∑

i σ
2
i , we have the standard bounded noise

variance assumption

Ek

[
∥gk −∇f(xk)∥2

∣∣Fk−1

]
≤ σ2

s ,

which is used in the analysis of SGD. Note that we do not assume the boundedness of
∇f(xk) or gk.

2 Convergence Rates of RMSProp and Its Momentum Extension

In this section, we prove the convergence rates of the classical RMSProp and its momentum
extension. Both methods are implemented in PyTorch by the following API with broad
applications in deep learning:

torch.optim.RMSprop(lr,...,momentum,...),

where momentum and lr equal θ and (1− θ)η in Algorithm 2, respectively. Specially, If we
set momentum=0 in default, it reduces to RMSProp.

We establish the convergence rate of RMSProp with momentum in the following theorem.
Additionally, if we set θ = 0, Theorem 1 also provides the convergence rate of RMSProp.
For brevity, we omit the details.

Theorem 1 Suppose that Assumptions 1-3 hold. Let η = γ√
dT

, β = 1 − 1
T , v0

i =

λmax
{
σ2
i ,

1
dT

}
, ∀i, and T ≥ e2

λ , where θ ∈ [0, 1), λ ≤ 1, and γ can be any constants
serving as hyper-parameters for tuning performance in practice. Then for Algorithm 2, we
have

1

T

T∑
k=1

E
[
∥∇f(xk)∥1

]
≤ d1/4

T 1/4

√
2F∥σ∥1

γ
+

√
d√
T

4F

γ
,

where

F

γ
= max

{
1, 3(2Lγ + 3) ln(2Lγ + 3),

3(f(x1)− f∗)

γ
,

3

(
6eσs√
λT

+
3Lγ

(1− θ)1.5
+ 3

)
ln

(
6eσs√
λT

+
3Lγ

(1− θ)1.5
+ 3

)
,(

6eσs√
λT

+
3Lγ

(1− θ)1.5

)
ln

(
4Lγe2

λmax{dmini σ2
i ,

1
T }

(
1 +

θ2

2T (1− θ)2

)
+

12

λ

)}
.

(4)

Since θ is a constant independent of T and d, we can simplify Theorem 1 in the following
corollary.

Corollary 2 Under the settings of Theorem 1, letting γ =

√
f(x1)−f∗

L and T ≥ σ2
s

λL(f(x1)−f∗) ,

we have F
γ = Õ

(√
L(f(x1)− f∗)

)
and

1

T

T∑
k=1

E
[
∥∇f(xk)∥1

]
≤Õ

(
d1/4

T 1/4
4

√
∥σ∥21L(f(x1)− f∗) +

√
d√
T

√
L(f(x1)− f∗)

)

≤Õ

( √
d

T 1/4
4
√
σ2
sL(f(x

1)− f∗) +

√
d√
T

√
L(f(x1)− f∗)

)
,

5
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where Õ hides ln(L(f(x1) − f∗)) and ln

( √
L(f(x1)−f∗)

λmax{dmini σ2
i ,

1
T
} + 1

λ

)
. If T ≥ dL(f(x1)−f∗)

∥σ∥21
, the

first term dominates and the convergence rate becomes

1

T

T∑
k=1

E
[
∥∇f(xk)∥1

]
≤Õ

(
d1/4

T 1/4
4

√
∥σ∥21L(f(x1)−f∗)

)
≤Õ

( √
d

T 1/4
4
√
σ2
sL(f(x

1)−f∗)

)
. (5)

On the other hand, if the noise variance is small, that is, ∥σ∥21 ≤
dL(f(x1)−f∗)

T , the second
term dominates and the convergence rate becomes

1

T

T∑
k=1

E
[
∥∇f(xk)∥1

]
≤ Õ

(√
d√
T

√
L(f(x1)− f∗)

)
.

In deep learning with extremely large d, it can be expected that dmini σ
2
i > 1

T , making it

unlikely for lnT to appear in Õ.

Tightness with respect to the coefficients. Arjevani et al. (2023) established the
lower bound of stochastic optimization methods under the assumptions of smoothness and
bounded noise variance. The convergence rate of SGD in (3) matches this lower bound.
By comparing our convergence rate (5) with (3), we observe that our convergence rate is
also tight up to logarithmic factors with respect to the smoothness coefficient L, the initial
function value gap f(x1)− f∗, the noise variance σs, and the iteration number T . The only
coefficient left unclear whether it is tight measured by ℓ1 norm is the dimension d.

Comparison to SGD. Our convergence rate (5) can be considered to be analogous
to (3) of SGD in the ideal case of ∥∇f(x)∥1 = Θ(

√
d)∥∇f(x)∥2. Fortunately, we have

empirically observed that the relationship ∥∇f(x)∥1 = Θ(
√
d)∥∇f(x)∥2 holds true in

common deep neural networks, as shown in Figures 1. On the other hand, our theory relies
on slightly stronger assumption of coordinate-wise bounded noise variance compared to SGD.

Consequently, the constant σs =
√∑

i σ
2
i is larger than the one used in SGD. Nonetheless,

if each Ek

[
∥gk

i −∇if(x
k)∥2|Fk−1

]
does not oscillate intensely during iterations, we may

expect the two constants not to differ greatly.
Two key points in our proof. To establish the tight dependence on L(f(x1)− f∗), we

should upper bound
∑d

i=1

∑T
k=1 EFk−1

[√
ṽk
i

]
(see the definition in (10)) by σs (or ∥σ∥1)

predominantly instead of L(f(x1)− f∗). To address this issue, we provide a simple proof in

Lemma 8 to bound
∑d

i=1

∑T
k=1 EFk−1

[√
ṽk
i

]
by O

(
T∥σ∥1 + F

γ

√
dT
)
, with the first term

dominating. Additionally, to ensure the tight dependence on σs, we give a sharper upper
bound for the error term in Lemma 4, such that F

γ in (4) includes σs√
λT

instead of just σs,

where the former can be relaxed as σs√
λT

≤
√
L(f(x1)− f∗) by setting T ≥ σ2

s
λL(f(x1)−f∗) .

ℓ1 norm or ℓ2 norm. The choice to utilize the ℓ1 norm is motivated by SignSGD (Bern-
stein et al., 2018), which is closely related to Adam (Balles and Hennig, 2018). Technically,
if we were to use the ℓ2 norm as conventionally done, we would need to make the right hand
side of the convergence rate criteria independent of d while remaining the other coefficients
tight, as shown in (3), to make it no slower than SGD. However, achieving this target presents

6
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a challenge with current techniques. Instead, by using the ℓ1 norm, we can maintain the
term

√
d on the right hand side, as demonstrated in (5), since ∥∇f(x)∥1 = Θ(

√
d)∥∇f(x)∥2

in the ideal case.
Relation to AdaGrad. From the parameter settings in Corollary 2, we have η = γ√

dT
,

1− β = 1
T , v

0
i ≥ λσ2

i ≥ Ω(
σ2
i
T ), and 1

e2
≤ βt ≤ 1 for any t ≤ T from (19). So for the update

direction of xk
i , we have

η
gk
i√
vk
i

= η
gk
i√

βkv0
i +(1−β)

∑k
t=1β

k−t|gt
i|2

≈ γ√
dT

gk
i√

v0
i +

∑k
t=1|gt

i |2
T

≈ γ√
d

gk
i√

σ2
i +
∑k

t=1|gt
i|2

.

On the other hand, the update direction of xk
i in AdaGrad is η

gk
i√∑k

t=1 |gt
i |2+ε

. So in our

parameter settings, RMSProp can be regarded as a refined variant of AdaGrad.

3 Literature Comparisons

It is not easy to compare convergence rates in the literature due to variations in assumptions.
Furthermore, most literature does not state explicit dependence on the dimension in their
theorems, and instead hides it within the proofs. In this section, we attempt to compare our
convergence rate with the representative ones in the literature. Particularly, we primarily
compare with the ones without the bounded gradient assumption.

3.1 Convergence Rate of AdaGrad in (Hong and Lin, 2024a)

Hong and Lin (2024a, Corollay 1) studied AdaGrad under the relaxed noise assumption of
∥gk −∇f(xk)∥2 ≤ A(f(xk)− f∗)+B∥∇f(xk)∥2+C with probability 1, and their result can

be extended to the sub-Gaussian assumption where E
[
exp( ∥gk−∇f(xk)∥2

A(f(xk)−f∗)+B∥∇f(xk)∥2+C
)
]
≤ e.

We compare with their convergence rate by setting C = σ2
s and A = B = 0. They proved

the following convergence rate with high probability,

1

T

T∑
k=1

∥∇f(xk)∥22 ≤ O
(
△1

(
△1 +

√
Lη△1

T
+

σs√
T

))
= O

(
σs△1√

T

)
,

where △1 = O
(
f(x1)− f∗

η
+ dσs lnT + Lηd2 ln2 T

)
.

△1 is minimized to be Õ
((√

L(f(x1)− f∗) + σs

)
d lnT

)
by letting η =

√
f(x1)−f∗

L
1

d lnT .

Accordingly, their convergence rate is

1

T

T∑
k=1

∥∇f(xk)∥2 ≤ O

(√
d lnT

T 1/4

(
4
√

σ2
sL(f(x

1)− f∗) + σs

))
,

which is
√
d lnT times slower than (3) of SGD. It is also inferior to our convergence rate (5) due

to ∥x∥2 ≪ ∥x∥1 ≤
√
d∥x∥2. Additionally, their dependence on σs is not optimal, especially

when σs ≥
√
L(f(x1)− f∗). Hong and Lin also studied Adam in (Hong and Lin, 2024b, 2023),

7
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but the convergence rate is not superior to that of Adagrad. It should be noted that Hong and
Lin (2024a) established this result based on the assumption that ∥gk −∇f(xk)∥2 ≤ σ2

s with

probability 1, or the sub-Gaussian assumption of E
[
exp(∥g

k−∇f(xk)∥2
σ2
s

)
]
≤ e. In contrast, our

assumption is Ek

[
∥gk

i −∇if(x
k)∥2

∣∣Fk−1

]
≤ σ2

i in the coordinate-wise manner. Determining
which assumption is stronger is difficult.

3.2 Convergence Rate of AdaGrad in (Liu et al., 2023)

Liu et al. (2023, Theorem 4.6) studied AdaGrad under the coordinate-wise sub-Gaussian
assumption of E

[
exp(λ2|gi−∇if(x)|2)

]
≤ exp(λ2σ2

i ), ∀|λ| ≤ 1
σi
. Liu et al. (2023) also used ℓ1

norm to measure the convergence rate. Specifically, from Theorem 4.6 and the corresponding
proof on page 42 in (Liu et al., 2023), they proved the following convergence rate with
probability at least 1− δ,

1

T

T∑
k=1

∥∇f(xk)∥21 ≤ g(δ)O
(
∥σ∥1√

T
+

r(δ)

T

)
,

where g(δ) = O

(
f(x1)−f∗

η
+

(
d∥σ∥∞+

d∑
i=1

ci(δ)

)√
log

dT

δ
+dLη log

(
∥σ∥1

√
T+r(δ)

))
,

ci(δ) = O
(
σ3
i log

d

δ
+ σi log

(
1 + σ2

i T + σ2
i log

d

δ

)
+ ∥σ∥1 log(∥σ∥1

√
T + r(δ))

)
,

r(δ) = O

(
f(x1)− f∗ + ∥σ2∥1 log

d

δ
+ ∥σ∥1

√
log

d

δ
+ Ld logL

)
.

It is not easy to simplify the above convergence rate and the dependence on σ is not optimal
due to the second term in g(δ). Ignoring

∑d
i=1 ci(δ) and the logarithmic term in g(δ), their

1
T

∑T
k=1∥∇f(xk)∥1 is upper bounded by a constant not less than

√
d∥σ∥∞∥σ∥1+ 4

√
∥σ∥21dL(f(x1)−f∗)

T 1/4 ,
which is inferior to our convergence rate (5).

3.3 Convergence Rate of RMSProp in (Shi et al., 2020)

Shi et al. (2020, Theorem 4.3) studied problem minx f(x) =
∑n−1

j=0 fj(x) and they assumed∑n−1
j=0 ∥∇fj(x)∥22 ≤ D1∥∇f(x)∥22 +D0. They did not give the explicit dependence on the

dimension in their theorem 4.3 and we try to recover it from their proof. On page 37 in (Shi
et al., 2020), the authors gave

min
k∈[tinit,T ]

min

{
∥∇f(xk,0)∥1, ∥∇f(xk,0)∥22

√
D1d

D0

}
≤ Q1,3 +Q2,3 log T√

T −
√
tinit − 1

+
√
D0Q3,3,

where Q1,3 =
f(xtinit,0)− f∗ − C6 log tinit

2η1

√
10dnD1d, Q2,3 =

C6

√
10dnD1d

2η1
,

C6 = Lη21

(
nd

2(1− β2)
+

C4

√
d

n
√
1− β2

)
, C4 ≥

dn2

(1− β2)1.5
, 1− β2 ≤ O

(
1

n3.5

)
,

8
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and the other notations can be found in their proof. Since

Q1,3 +Q2,3 log T ≥ Ω

((
f(xtinit,0)− f∗

η1
+

Lη1nd
1.5

(1− β2)2
(log T − log tinit)

)√
dnD1d

)
≥ Ω

(√
D1L(f(xtinit,0)− f∗)d9/4

)
.

We see that their mink ∥∇f(xk,0)∥22 is upper bounded by a constant not less than Θ̃
(
D0Q3,3√

dD1
+

d7/4
√

D0L(f(x
tinit,0 )−f∗)√

T

)
. That is, mink ∥∇f(xk,0)∥2 is upper bounded by a constant not less

than Õ
(√

D0Q3,3

4√dD1
+

d7/8
4
√

D0L(f(x
tinit,0 )−f∗)

T 1/4

)
, which is at least d3/8 times slower than our

convergence rate (5).

3.4 Convergence Rate of RMSProp in (Défossez et al., 2022)

Défossez et al. (2022, Theorem 2) studied the convergence rate of RMSProp under the
bounded stochastic gradient assumption, that is, there is R ≥

√
ε so that ∥gk∥∞ ≤ R−

√
ε

almost surely. They proved the following bound for RMSProp

E
[
∥∇f(xτ )∥22

]
≤ O

(
R
f(x1)− f∗

ηT
+

(
dR2

√
1− β

+
ηdRL

1− β

)(
1

T
ln

(
1 +

R2

(1− β)ε

)
− lnβ

))
.

Letting β = 1− 1
T and η = 1√

dT

√
f(x1)−f∗

L , the above convergence rate can be simplified to

E
[
∥∇f(xτ )∥22

]
≤ O

((√
d√
T
R
√

L(f(x1)− f∗) +
dR2

√
T

)
ln(RT )

)
,

where dR2 ≥ ∥gk∥22, ∀k. Due to the bounded stochastic gradient assumption, comparing
their convergence rate with ours is unfair. Our proof follows the analytical framework in

(Défossez et al., 2022). However, unlike their work, we cannot lower bound |∇if(x
k)|2√

ṽk
i

by

|∇if(x
k)|2

R without the bounded stochastic gradient assumption. Instead, we use

(
K∑
k=1

E
[
∥∇f(xk)∥1

])2

≤

 K∑
k=1

d∑
i=1

E

 |∇if(x
k)|2√

ṽk
i

( K∑
k=1

d∑
i=1

E
[√

ṽk
i

])

and rigorously derive a tight upper bound for
∑K

k=1

∑d
i=1 E

[√
ṽk
i

]
. Furthermore, in the

absence of the bounded stochastic gradient assumption, we cannot use vk
i ≤ R2 to upper

bound
∑K

k=1 E
[
|gk

i |2
vk
i

]
. To address this, we employ mathematical induction to establish the

bound in (14). Additionally, we provide a sharper upper bound for the error term in Lemma
4 to ensure the tight dependence on σs.

9
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3.5 Convergence Rate of Adam in (Li et al., 2023)

Li et al. (2023, Theorem 4.1) introduced a new proof of boundedness of gradients along the
optimization trajectory. Although their Theorem 4.1 has no explicit dependence on d, it
has a higher dependence on L(f(x1)− f∗), σs and the constant λ as a compromise, where
λ appears in the adaptive step-size η√

vk+λ
, which is usually small in practice, for example,

λ = 10−8 in PyTorch implementation. Specifically, they assumed ∥gk −∇f(xk)∥ ≤ σs with
probability 1 and proved 1

T

∑T
k=1 ∥∇f(xk)∥22 ≤ ϵ2 with high probability by letting

T = max

{
1

β2
,
G(f(x1)− f∗)

ηϵ2

}
, η ≤ min

{
σsλβ

LG
,
λ3/2β

L
√
G

}
, β ≤ O

(
λϵ2

σ2
sG

)
,

and G to be a large constant satisfying G ≥ max{λ, σs,
√

L(f(x1)− f∗)}. From their setting,

we see that T ≥ G2.5σ2
sL(f(x

1)−f∗)
λ2.5ϵ4

. Consequently, their 1
T

∑T
k=1 ∥∇f(xk)∥2 is upper bounded

by a constant not less than (Gλ )
5/8

4
√

σ2
sL(f(x

1)−f∗)

T 1/4 , which is at least (Gλ )
5/8 times slower than

SGD. It is not easy to compare with our convergence rate (5) due to different measurement.
When ∥∇f(x)∥1 ≥ Ω(( λG)5/8

√
d)∥∇f(x)∥2, our convergence rate is superior, and in the ideal

case of ∥∇f(x)∥1 = Θ(
√
d)∥∇f(x)∥2, our convergence rate is also (Gλ )

5/8 times faster.

3.6 Other works

There are other literature that analyze adaptive gradient methods, including (Ward et al.,
2020; Kavis et al., 2022; Faw et al., 2022; Wang et al., 2023b; Attia and Koren, 2023) for
AdaGrad-norm, (Wang et al., 2023b) for AdaGrad, (Zou et al., 2019; Défossez et al., 2022)
for RMSProp, (Reddi et al., 2018; Zou et al., 2019; Défossez et al., 2022; Guo et al., 2021;
Chen et al., 2022; Zhang et al., 2022; Wang et al., 2023a; Hong and Lin, 2023, 2024b; Zhang
et al., 2025) for Adam, and (Zaheer et al., 2018; Loshchilov and Hutter, 2018; Chen et al.,
2019; Luo et al., 2019; You et al., 2019; Zhuang et al., 2020; Chen et al., 2021; Savarese
et al., 2021; Crawshaw et al., 2022; Xie et al., 2024) for other variants. However, none have
established a convergence rate comparable to that of SGD.

4 Proof of Theorem 1

Denote x0 = x1, which corresponds to m0 = 0. The second and third steps of Algorithm 2
can be rewritten in the heavy-ball style equivalently as follows,

xk+1 = xk − η(1− θ)√
vk

⊙ gk + θ(xk − xk−1), ∀k ≥ 1, (6)

which leads to

xk+1 − θxk = xk − θxk−1 − η(1− θ)√
vk

⊙ gk.

We follow (Liu et al., 2020) to define

zk =
1

1− θ
xk − θ

1− θ
xk−1, ∀k ≥ 1. (7)

10
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Specially, we have z1 = x1 since x1 = x0. Thus, we have

zk+1 = zk − η√
vk

⊙ gk, (8)

and

zk − xk =
θ

1− θ
(xk − xk−1). (9)

We follow (Défossez et al., 2022; Faw et al., 2022) to define

ṽk
i = βvk−1

i + (1− β)
(
|∇if(x

k)|2 + σ2
i

)
. (10)

Then with the supporting lemmas in Section 4.1 we can prove Theorem 1.

Proof As the gradient is L-Lipschitz, we have

Ek

[
f(zk+1)

∣∣Fk−1

]
− f(zk) ≤Ek

[〈
∇f(zk), zk+1 − zk

〉
+

L

2
∥zk+1 − zk∥2

∣∣∣Fk−1

]

=Ek

−η
d∑

i=1

〈
∇if(z

k),
gk
i√
vk
i

〉
+

Lη2

2

d∑
i=1

|gk
i |2

vk
i

∣∣∣Fk−1

 ,

where we use (8). Decomposing the first term into

−

〈
∇if(x

k),
gk
i√
ṽk
i

〉
+

〈
∇if(x

k),
gk
i√
ṽk
i

− gk
i√
vk
i

〉
+

〈
∇if(x

k)−∇if(z
k),

gk
i√
vk
i

〉

and using Assumption 2, we have

Ek

[
f(zk+1)

∣∣Fk−1

]
− f(zk) ≤− η

d∑
i=1

|∇if(x
k)|2√

ṽk
i

+
Lη2

2

d∑
i=1

Ek

[
|gk

i |2

vk
i

∣∣∣Fk−1

]

+ η
d∑

i=1

Ek

〈∇if(x
k),

gk
i√
ṽk
i

− gk
i√
vk
i

〉∣∣∣Fk−1


︸ ︷︷ ︸

term (a)

+ η

d∑
i=1

Ek

〈∇if(x
k)−∇if(z

k),
gk
i√
vk
i

〉∣∣∣Fk−1


︸ ︷︷ ︸

term (b)

.

(11)

11
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We can use Lemma 4 to bound term (a). For term (b), we have

η

d∑
i=1

〈
∇if(x

k)−∇if(z
k),

gk
i√
vk
i

〉

≤(1− θ)0.5

2Lθ0.5

d∑
i=1

|∇if(x
k)−∇if(z

k)|2 + Lθ0.5η2

2(1− θ)0.5

d∑
i=1

|gk
i |2

vk
i

=
(1− θ)0.5

2Lθ0.5
∥∇f(xk)−∇f(zk)∥2 + Lθ0.5η2

2(1− θ)0.5

d∑
i=1

|gk
i |2

vk
i

(1)

≤ Lθ1.5η2

2(1− θ)0.5

k−1∑
t=1

θk−1−t
d∑

i=1

|gt
i|2

vt
i

+
Lθ0.5η2

2(1− θ)0.5

d∑
i=1

|gk
i |2

vk
i

=
L
√
θη2

2
√
1− θ

(
k−1∑
t=1

θk−t
d∑

i=1

|gt
i|2

vt
i

+
d∑

i=1

|gk
i |2

vk
i

)
=

L
√
θη2

2
√
1− θ

k∑
t=1

θk−t
d∑

i=1

|gt
i|2

vt
i

,

where we use Lemma 5 in
(1)

≤ . Plugging the above inequality and Lemma 4 into (11), taking
expectation on Fk−1, and rearranging the terms, we have

EFk

[
f(zk+1)

]
− EFk−1

[
f(zk)

]
+

η

2

d∑
i=1

EFk−1

 |∇if(x
k)|2√

ṽk
i


≤2ηe(1− β)√

λ

d∑
i=1

σiEFk

[
|gk

i |2

vk
i

]
+

Lη2√
1− θ

k∑
t=1

θk−t
d∑

i=1

EFt

[
|gt

i|2

vt
i

]
.

Summing over k = 1, · · · ,K, we have

EFK

[
f(zK+1)

]
− f∗ +

η

2

d∑
i=1

K∑
k=1

EFk−1

 |∇if(x
k)|2√

ṽk
i


≤f(z1)− f∗ +

2ηe(1− β)√
λ

d∑
i=1

σi

K∑
k=1

EFk

[
|gk

i |2

vk
i

]
+

Lη2√
1− θ

d∑
i=1

K∑
k=1

k∑
t=1

θk−tEFt

[
|gt

i|2

vt
i

]

≤f(z1)− f∗ +
2ηe(1− β)√

λ

d∑
i=1

σi

K∑
k=1

EFk

[
|gk

i |2

vk
i

]
︸ ︷︷ ︸

term (c)

+
Lη2

(1− θ)1.5

d∑
i=1

K∑
t=1

EFt

[
|gt

i|2

vt
i

]
︸ ︷︷ ︸

term (d)

,

(12)

where we use

d∑
i=1

K∑
k=1

k∑
t=1

θk−tEFt

[
|gt

i|2

vt
i

]
=

d∑
i=1

K∑
t=1

K∑
k=t

θk−tEFt

[
|gt

i|2

vt
i

]
≤ 1

1− θ

d∑
i=1

K∑
t=1

EFt

[
|gt

i|2

vt
i

]
.

12
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Using Lemmas 6 and 7 to bound terms (c) and (d), respectively, letting η = γ√
dT

and

β = 1− 1
T , we have

EFK

[
f(zK+1)

]
− f∗ +

η

2

d∑
i=1

K∑
k=1

EFk−1

 |∇if(x
k)|2√

ṽk
i


≤f(z1)−f∗+

(
2ηe

√
dσs√
λ

+
Lη2d

(1−θ)1.5(1−β)

)
ln

(
4Le2(1− β)

λmax{dmini σ2
i ,

1
T }

EFK

[
K∑
k=1

(f(zk)−f∗)

+
Lθ2η2

2(1− θ)2

K−1∑
t=1

d∑
i=1

|gt
i|2

vt
i

]
+

e2

λ
+ e+ 1

)

=f(z1)− f∗ +

(
2eγσs√

λT
+

Lγ2

(1− θ)1.5

)
ln

(
4Le2(1− β)

λmax{dmini σ2
i ,

1
T }

EFK

[
K∑
k=1

(f(zk)− f∗)

+
Lθ2γ2

2(1− θ)2
1− β

d

K−1∑
t=1

d∑
i=1

|gt
i|2

vt
i

]
+

e2

λ
+ e+ 1

)
.

(13)

Next, we bound the right hand side of (13) by the constant F defined in (4). Specifically,
we will prove

EFk−1

[
f(zk)

]
− f∗ ≤ F and

1− β

d

d∑
i=1

k−1∑
t=1

EFk−1

[
|gt

i|2

vt
i

]
≤ F

Lγ2
(14)

by induction. (14) holds for k = 1 from the definition of F in (4), x1 = z1, and∑d
i=1

∑k−1
t=1

|gt
i |2
vt
i

= 0 when k = 1 given in Lemma 5. Suppose that the two inequalities hold

for all k = 1, 2, · · · ,K. Now, we consider k = K + 1. From Lemma 7, we have

1− β

d

d∑
i=1

K∑
t=1

EFK

[
|gt

i|2

vt
i

]
≤ ln

(
4Le2(1− β)

λmax{dmini σ2
i ,

1
T }

EFK

[
K∑
k=1

(f(zk)− f∗)

+
Lθ2γ2

2(1− θ)2
1− β

d

d∑
i=1

K−1∑
t=1

|gt
i|2

vt
i

]
+

e2

λ
+ e+ 1

)

≤ ln

(
4Le2(1− β)

λmax{dmini σ2
i ,

1
T }

(
KF+

θ2

2(1− θ)2
F

)
+
e2

λ
+e+1

)

≤ ln

(
4Lγe2

λmax{dmini σ2
i ,

1
T }

(
1 +

θ2

2T (1− θ)2

)
F

γ
+

12

λ

F

γ

)
(2)

≤ F

Lγ2
,

(15)

13
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where we use (1− β)K = K
T ≤ 1 and let F

γ ≥ 1. Inequality
(2)

≤ will be verified later. Using
the similar proof to (15), we derive from (13) that

EFK

[
f(zK+1)

]
− f∗ +

η

2

d∑
i=1

K∑
k=1

EFk−1

 |∇if(x
k)|2√

ṽk
i


≤f(z1)−f∗+

(
2eγσs√

λT
+

Lγ2

(1−θ)1.5

)
ln

(
4Lγe2

λmax{dmini σ2
i ,

1
T }

(
1+

θ2

2T (1−θ)2

)
F

γ
+
12

λ

F

γ

)
(3)

≤F.

(16)

We construct F for
(2)

≤ and
(3)

≤ to hold by letting

1 ≤ F

γ
, ln

(
4Lγe2

λmax{dmini σ2
i ,

1
T }

(
1 +

θ2

2T (1− θ)2

)
+

12

λ

)
≤ F

2Lγ2
,

ln
F

γ
≤ F

2Lγ2
, f(z1)− f∗ ≤ F

3
,

(
2eγσs√

λT
+

Lγ2

(1− θ)1.5

)
ln

F

γ
≤ F

3
,(

2eγσs√
λT

+
Lγ2

(1− θ)1.5

)
ln

(
4Lγe2

λmax{dmini σ2
i ,

1
T }

(
1 +

θ2

2T (1− θ)2

)
+

12

λ

)
≤ F

3
,

which are satisfied by setting of F in (4), where we use x1 = z1 and c lnx ≤ x for all
x ≥ 3c ln c and c ≥ 3 proved in Appendix B. So (14) also holds for k = K + 1. Thus, (14)
holds for all k = 1, 2, · · · , T by induction.

Using Holder’s inequality, Lemma 8, and (16), we have(
K∑
k=1

EFk−1

[
∥∇f(xk)∥1

])2

=

(
K∑
k=1

d∑
i=1

EFk−1

[
|∇if(x

k)|
])2

≤

 K∑
k=1

d∑
i=1

EFk−1

 |∇if(x
k)|2√

ṽk
i

( K∑
k=1

d∑
i=1

EFk−1

[√
ṽk
i

])

≤

 K∑
k=1

d∑
i=1

EFk−1

 |∇if(x
k)|2√

ṽk
i

K∥σ∥1 +
√
dT + 2

K∑
k=1

d∑
i=1

EFk−1

 |∇if(x
k)|2√

ṽk
i


≤2F

η

(
K∥σ∥1 +

F

η
+

4F

η

)
=

2F

η

(
K∥σ∥1 +

5F

η

)
for all K ≤ T , where we use η = γ√

dT
and F

γ ≥ 1. So we have

1

T

T∑
k=1

EFk−1

[
∥∇f(xk)∥1

]
≤ 1

T

(√
2FT∥σ∥1

η
+

4F

η

)
=

d1/4

T 1/4

√
2F∥σ∥1

γ
+

√
d√
T

4F

γ
.

14
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4.1 Supporting Lemmas

In this section, we give some technical lemmas that will be used in our analysis.

Lemma 3 (Défossez et al., 2022) Let vt = βvt−1 + (1− β)g2t . Then we have

(1− β)

k∑
t=1

g2t
vt

≤ ln
vk

βkv0
.

The next lemma is motivated by (Défossez et al., 2022). However, the key distinction is

that following the proof in (Défossez et al., 2022), we can only get σi
√
1− βEk

[
|gk

i |2
vk
i

∣∣∣Fk−1

]
in the last component of (17), where 1− β = 1

T . We strengthen the constant from
√
1− β

to 1− β, which is crucial to achieve the tight dependence on σs in our theory.

Lemma 4 Suppose that Assumption 3 holds. Define ṽk
i as in (10). Let v0

i = λmax{σ2
i ,

1
dT },

β = 1− 1
T , and T ≥ e2

λ ≥ 2. Then we have

Ek

〈∇if(x
k),

gk
i√
ṽk
i

− gk
i√
vk
i

〉∣∣∣Fk−1

 ≤ |∇if(x
k)|2

2
√
ṽk
i

+
2σie(1− β)√

λ
Ek

[
|gk

i |2

vk
i

∣∣∣Fk−1

]
. (17)

Proof From the definition of ṽk
i , the recursion of vk

i , and the setting of v0
i , we have

ṽk
i ≥ βvk−1

i = β

(
βk−1v0

i + (1− β)
k−1∑
t=1

βk−1−t|gt
i|2
)

≥ βkv0
i ≥ λσ2

i

e2
, (18)

where we use βk ≥ 1
e2

for any k ≤ T from

k lnβ = −k ln
1

β
≥ −T

1− β

β
= −T

1
T

1− 1
T

≥ −2, (19)

since lnx ≤ x− 1 for any x > 0. So we have∣∣∣∣∣∣ 1√
ṽk
i

− 1√
vk
i

∣∣∣∣∣∣ =
∣∣vk

i − ṽk
i

∣∣√
ṽk
i

√
vk
i

(√
vk
i +

√
ṽk
i

) = (1− β)

∣∣|gk
i |2 − |∇if(x

k)|2 − σ2
i

∣∣√
ṽk
i

√
vk
i

(√
vk
i +

√
ṽk
i

)
≤ (1− β)

∣∣gk
i −∇if(x

k)
∣∣ ∣∣gk

i +∇if(x
k)
∣∣+ σ2

i√
ṽk
i

√
vk
i

(√
vk
i +

√
ṽk
i

)
(1)

≤
√
1− β

|gk
i −∇if(x

k)|√
ṽk
i

√
vk
i

+
e(1− β)√

λ

σi√
ṽk
i

√
vk
i

,

and

Ek

〈∇if(x
k),

gk
i√
ṽk
i

− gk
i√
vk
i

〉∣∣∣Fk−1


≤
√
1− βEk

|gk
i −∇if(x

k)||∇if(x
k)||gk

i |√
ṽk
i

√
vk
i

∣∣∣Fk−1

+ σie(1− β)√
λ

Ek

|∇if(x
k)||gk

i |√
ṽk
i

√
vk
i

∣∣∣Fk−1

,
(20)
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where we use the definitions of ṽk
i and vk

i and (18) in
(1)

≤ . For the first term, we have

√
1− βEk

 |gk
i −∇if(x

k)||∇if(x
k)||gk

i |√
ṽk
i

√
vk
i

∣∣∣Fk−1


≤|∇if(x

k)|2

4σ2
i

√
ṽk
i

Ek

[
|gk

i −∇if(x
k)|2
∣∣Fk−1

]
+

σ2
i (1− β)√

ṽk
i

Ek

[
|gk

i |2

vk
i

∣∣∣Fk−1

]
(2)

≤ |∇if(x
k)|2

4
√
ṽk
i

+
σie(1− β)√

λ
Ek

[
|gk

i |2

vk
i

∣∣∣Fk−1

]
,

where we use Assumption 3 and (18) in
(2)

≤ . For the second term, we have

σie(1− β)√
λ

Ek

 |∇if(x
k)||gk

i |√
ṽk
i

√
vk
i

∣∣∣Fk−1

 ≤|∇if(x
k)|2

4
√

ṽk
i

+
σ2
i e

2(1− β)2

λ
√
ṽk
i

Ek

[
|gk

i |2

vk
i

∣∣∣Fk−1

]
(3)

≤ |∇if(x
k)|2

4
√

ṽk
i

+
σie

3(1− β)2

λ1.5
Ek

[
|gk

i |2

vk
i

∣∣∣Fk−1

]

≤|∇if(x
k)|2

4
√

ṽk
i

+
σie(1− β)√

λ
Ek

[
|gk

i |2

vk
i

∣∣∣Fk−1

]
,

where we use (18) again in
(3)

≤ . Plugging the above two inequalities into (20), we have the
conclusion.

The next lemma is used to bound the norm of the gradient by the function value gap

and the second order term, where the latter corresponds to
|gt

i |2
vt
i

from the second order term

in Taylor expansion.

Lemma 5 Suppose that Assumption 1 holds. Letting m0 = 0, we have

∥∇f(xk)−∇f(zk)∥2 ≤ L2θ2η2

1− θ

k−1∑
t=1

θk−1−t
d∑

i=1

|gt
i|2

vt
i

,

∥∇f(xk)∥2 ≤ 4L(f(zk)− f∗) +
2L2θ2η2

1− θ

k−1∑
t=1

θk−1−t
d∑

i=1

|gt
i|2

vt
i

,

K∑
k=1

∥∇f(xk)∥2 ≤ 4L

(
K∑
k=1

(f(zk)− f∗) +
Lθ2η2

2(1− θ)2

K−1∑
t=1

d∑
i=1

|gt
i|2

vt
i

)
.

Specially, denote
∑K−1

t=1

∑d
i=1

|gt
i |2
vt
i

= 0 when K = 1.
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Proof For the first part, as the gradient is L-Lipschitz, we have

∥∇f(xk)−∇f(zk)∥2 ≤ L2∥xk − zk∥2 (1)
=

L2θ2

(1− θ)2
∥xk − xk−1∥2 (2)

=
L2θ2η2

(1− θ)2
∥mk−1∥2,

where we use (9) in
(1)
= and the update of x in

(2)
=. From the update of mk in Algorithm 2,

we have

mk
i = θkm0

i + (1− θ)
k∑

t=1

θk−t gt
i√
vt
i

= (1− θ)
k∑

t=1

θk−t gt
i√
vt
i

.

Using the convexity of (·)2, we have

|mk
i |2 ≤ (1− θ)2

(
k∑

t=1

θk−t

)(
k∑

t=1

θk−t |gt
i|2

vt
i

)
≤ (1− θ)

k∑
t=1

θk−t |gt
i|2

vt
i

.

For the second part, we have

∥∇f(xk)∥2 ≤2∥∇f(zk)∥2 + 2∥∇f(xk)−∇f(zk)∥2

≤4L(f(zk)− f∗) +
2L2θ2η2

1− θ

k−1∑
t=1

θk−1−t
d∑

i=1

|gt
i|2

vt
i

,

where we use

f∗ ≤ f

(
zk − 1

L
∇f(zk)

)
≤ f(zk)− 1

L

〈
∇f(zk),∇f(zk)

〉
+

L

2

∥∥∥∥ 1L∇f(zk)

∥∥∥∥2
= f(zk)− 1

2L
∥∇f(zk)∥2.

For the third part, we have

K∑
k=1

∥∇f(xk)∥2 ≤
K∑
k=1

(
4L(f(zk)− f∗) +

2L2θ2η2

1− θ

k−1∑
t=1

θk−1−t
d∑

i=1

|gt
i|2

vt
i

)
.

Using

K∑
k=1

k−1∑
t=1

θk−1−t
d∑

i=1

|gt
i|2

vt
i

=
K−1∑
t=1

K∑
k=t+1

θk−1−t
d∑

i=1

|gt
i|2

vt
i

≤ 1

1− θ

K−1∑
t=1

d∑
i=1

|gt
i|2

vt
i

,

we have the conclusion. Specially, when K = 1, we have
∑K

k=1 ∥∇f(xk)∥2 = ∥∇f(x1)∥2 =
∥∇f(z1)∥2 ≤ 2L(f(z1)− f∗). So we can denote

∑K−1
t=1

∑d
i=1

|gt
i |2
vt
i

= 0 when K = 1 such that

the third part holds for all K ≥ 1.

The next two lemmas are used to bound the second order terms in (12).

17



Li, Dong, and Lin

Lemma 6 Suppose that Assumptions 1-3 hold. Let v0
i = λmax

{
σ2
i ,

1
dT

}
and β = 1 − 1

T .
Then for all K ≤ T , we have

1− β√
d

d∑
i=1

σi

K∑
k=1

EFK

[
|gk

i |2

vk
i

]

≤σsln

(
4Le2(1− β)

λmax{dmini σ2
i ,

1
T }

EFK

[
K∑
k=1

(f(zk)− f∗) +
Lθ2η2

2(1− θ)2

K−1∑
t=1

d∑
i=1

|gt
i|2

vt
i

]
+

e2

λ
+ e+ 1

)
.

Proof From Lemma 3, the concavity of lnx, Holder’s inequality, and the definition of

σs =
√∑

i σ
2
i , we have

1− β√
d

d∑
i=1

σi

K∑
k=1

EFK

[
|gk

i |2

vk
i

]
≤ 1√

d

d∑
i=1

σiEFK

[
ln

vK
i

βKv0
i

]
≤ 1√

d

d∑
i=1

σi lnEFK

[
vK
i

βKv0
i

]

≤

√√√√1

d

d∑
i=1

σ2
i

d∑
i=1

(
lnEFK

[
vK
i

βKv0
i

])2

= σs

√√√√1

d

d∑
i=1

(
lnEFK

[
vK
i

βKv0
i

])2

.

(21)

From the recursion of vk, we have vK
i ≥ βKv0

i , which leads to lnEFK

[
vK
i

βKv0
i

]
≥ 0. From

the concavity of (lnx)2 for x ≥ e, we have

1

d

d∑
i=1

(
lnEFK

[
vK
i

βKv0
i

])2

≤1

d

d∑
i=1

(
ln

(
EFK

[
vK
i

βKv0
i

]
+ e

))2

≤

(
ln

(
1

d

d∑
i=1

EFK

[
vK
i

βKv0
i

]
+ e

))2

.

(22)

Using the recursive update of vk, Assumptions 2 and 3, (19), v0
i = λmax

{
σ2
i ,

1
dT

}
, and

Lemma 5, we have

1

d

d∑
i=1

EFK

[
vK
i

βKv0
i

]

=
1

d

d∑
i=1

(1− β)
∑K

k=1 β
K−kEFK

[
|gk

i |2
]
+ βKv0

i

βKv0
i

≤1

d

d∑
i=1

(1− β)
∑K

k=1 β
K−kEFK

[
|∇if(x

k)|2 + σ2
i

]
βKv0

i

+ 1

≤e2

d

d∑
i=1

(1− β)
∑K

k=1 β
K−kEFK

[
|∇if(x

k)|2
]
+ σ2

i

λmax
{
σ2
i ,

1
dT

} + 1

≤ e2(1− β)

λmax{dmini σ2
i ,

1
T }

K∑
k=1

βK−kEFK

[
∥∇f(xk)∥2

]
+

e2

λ
+ 1

≤ 4Le2(1− β)

λmax{dmini σ2
i ,

1
T }

EFK

[
K∑
k=1

(f(zk)− f∗) +
Lθ2η2

2(1− θ)2

K−1∑
t=1

d∑
i=1

|gt
i|2

vt
i

]
+

e2

λ
+ 1.
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Plugging into (22) and (21), we have the conclusion.

Specially, replacing each σi by 1 and σs by
√
d in the derivation of (21), we have the

following lemma.

Lemma 7 Suppose that Assumptions 1-3 hold. Let v0
i = λmax

{
σ2
i ,

1
dT

}
and β = 1 − 1

T .
Then for all K ≤ T , we have

1− β

d

d∑
i=1

K∑
k=1

EFK

[
|gk

i |2

vk
i

]

≤ ln

(
4Le2(1− β)

λmax{dmini σ2
i ,

1
T }

EFK

[
K∑
k=1

(f(zk)− f∗) +
Lθ2η2

2(1− θ)2

K−1∑
t=1

d∑
i=1

|gt
i|2

vt
i

]
+

e2

λ
+ e+ 1

)
.

In the next lemma, the key point is that the dominant part on the right hand side of (23)
only depends on ∥σ∥1 instead of L(f(x1)− f∗), which is crucial to give tight dependence on
L(f(x1)− f∗) in our theoretical analysis. From (16), the third part on the right hand side of
(23) is in fact of order O(

√
dT ), confirming that the first term indeed dominates the bound.

Lemma 8 Suppose that Assumptions 1-3 hold. Let 0 ≤ β ≤ 1 and v0
i = λmax

{
σ2
i ,

1
dT

}
with λ ≤ 1. Then for all K ≤ T , we have

d∑
i=1

K∑
k=1

EFk−1

[√
ṽk
i

]
≤ K∥σ∥1 +

√
dT + 2

K∑
t=1

d∑
i=1

EFt−1

[
|∇if(x

t)|2√
ṽt
i

]
. (23)

Proof From the definition of ṽk
i , we have

EFk−1

[√
ṽk
i

]
=EFk−1

[√
βvk−1

i + (1− β)
(
|∇if(xk)|2 + σ2

i

)]

=EFk−1

 βvk−1
i + (1− β)σ2

i√
βvk−1

i + (1− β)
(
|∇if(xk)|2 + σ2

i

) + (1− β)|∇if(x
k)|2√

βvk−1
i + (1− β)

(
|∇if(xk)|2 + σ2

i

)


≤EFk−1

[√
βvk−1

i + (1− β)σ2
i

]
+ (1− β)EFk−1

 |∇if(x
k)|2√

ṽk
i

 .

Consider the first part in the general case. From the recursion of vk
i , we have

EFk−t

[√
βtvk−t

i + (1− βt)σ2
i

]
=EFk−t

[√
βt+1vk−t−1

i + βt(1− β)|gk−t
i |2 + (1− βt)σ2

i

]
=EFk−t−1

[
Ek−t

[√
βt+1vk−t−1

i + βt(1− β)|gk−t
i |2 + (1− βt)σ2

i

∣∣∣Fk−t−1

]]
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(1)

≤EFk−t−1

[√
βt+1vk−t−1

i + βt(1− β)Ek−t

[
|gk−t

i |2|Fk−t−1

]
+ (1− βt)σ2

i

]
(2)

≤EFk−t−1

[√
βt+1vk−t−1

i + βt(1− β)
(
|∇if(xk−t)|2 + σ2

i

)
+ (1− βt)σ2

i

]
=EFk−t−1

[√
βt+1vk−t−1

i + βt(1− β)|∇if(xk−t)|2 + (1− βt+1)σ2
i

]

=EFk−t−1

 βt+1vk−t−1
i + (1− βt+1)σ2

i√
βt+1vk−t−1

i + βt(1− β)|∇if(xk−t)|2 + (1− βt+1)σ2
i


+ EFk−t−1

 βt(1− β)|∇if(x
k−t)|2√

βt+1vk−t−1
i + βt(1− β)|∇if(xk−t)|2 + (1− βt+1)σ2

i


≤EFk−t−1

[√
βt+1vk−t−1

i + (1− βt+1)σ2
i

]

+ EFk−t−1

 βt(1− β)|∇if(x
k−t)|2√

βt+1vk−t−1
i + βt(1− β)|∇if(xk−t)|2 + (βt − βt+1)σ2

i


=EFk−t−1

[√
βt+1vk−t−1

i + (1− βt+1)σ2
i

]
+
√
βt(1− β)EFk−t−1

 |∇if(x
k−t)|2√

ṽk−t
i

 ,

where we use the concavity of
√
x in

(1)

≤ and Assumptions 2 and 3 in
(2)

≤ . Applying the above
inequality recursively for t = 1, 2, · · · , k − 1, we have

EFk−1

[√
βvk−1

i + (1− β)σ2
i

]
≤
√

βkv0
i + (1− βk)σ2

i +
k−1∑
t=1

√
βk−t(1− β)EFt−1

[
|∇if(x

t)|2√
ṽt
i

]

and

EFk−1

[√
ṽk
i

]
≤
√

βkv0
i + (1− βk)σ2

i +
k∑

t=1

√
βk−t(1− β)EFt−1

[
|∇if(x

t)|2√
ṽt
i

]

≤
√

σ2
i +

1

dT
+

k∑
t=1

√
βk−t(1− β)EFt−1

[
|∇if(x

t)|2√
ṽt
i

]
,

where we use v0
i = λmax

{
σ2
i ,

1
dT

}
≤ σ2

i + 1
dT . Summing over i = 1, 2, · · · , d and k =

1, 2, · · · ,K, we have

d∑
i=1

K∑
k=1

EFk−1

[√
ṽk
i

]
≤K

d∑
i=1

(
σi +

1√
dT

)
+

K∑
k=1

k∑
t=1

√
βk−t(1− β)

d∑
i=1

EFt−1

[
|∇if(x

t)|2√
ṽt
i

]
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=K∥σ∥1 +
√
dT +

K∑
t=1

K∑
k=t

√
βk−t(1− β)

d∑
i=1

EFt−1

[
|∇if(x

t)|2√
ṽt
i

]

≤K∥σ∥1 +
√
dT +

1− β

1−
√
β

K∑
t=1

d∑
i=1

EFt−1

[
|∇if(x

t)|2√
ṽt
i

]

=K∥σ∥1 +
√
dT + (1 +

√
β)

K∑
t=1

d∑
i=1

EFt−1

[
|∇if(x

t)|2√
ṽt
i

]
.

5 Experimental Details

We conduct experiments on both computer vision and natural language processing tasks
to verify the relationship ∥∇f(xk)∥1 = Θ(

√
d)∥∇f(xk)∥2 during the training of RMSProp

and its momentum variant. We call the torch.optim.RMSprop API in PyTorch for both
optimizers. Code is released at https://github.com/adonis-dym/Convergence-Rate-RMSProp .

For computer vision experiments, we train ResNet-50 on both CIFAR-100 and ImageNet
datasets. In the CIFAR-100 training task, we set the initial learning rate to 10−5 and employ
a cosine decay scheduler over all 100 training epochs. We set the batch size to 64 and the
weight decay to 0.1. For the ImageNet training task, we utilize the timm library protocol
(Wightman, 2019). The training process spans 200 epochs with a 20-epoch linear warm-up
period to increase the learning rate to 10−4, a 170-epoch cosine decay period to decreases
the learning rate to 10−5, and 10 final epochs with a constant learning rate 10−5. We set
the batchsize to 2048. We maintain identical settings for both optimizers and configure
the other parameters using the default settings in the PyTorch API, including assigning
the momentum parameter to 0.9 for RMSProp with momentum. At the end of each epoch,
we compute the full training loss and gradient by traversing the entire training dataset to

accurately measure the gradient norm ratio ∥∇f(xk)∥1
∥∇f(xk)∥2

.

For natural language processing tasks, we train the classic GPT-2 model from scratch on
the OpenWebText dataset using the Megatron-LM framework. Setting the batchsize to 640,
we train the model for 50000 steps, equivalent to approximately 3.5 epochs. The training
schedule includes a 2000-step linear warm-up period increasing the learning rate to 10−5

and a cosine decay period for the remaining steps. In our training setting, we employ a
decoupled weight decay of 0.05 in the AdamW style, rather than the vanilla implementation
of ℓ2 regularization in the PyTorch API. Given the computational constraints inherent in
large-scale language model training, we approximate full gradients by aggregating over a
subset of 100 batches, providing an efficient yet representative estimate of the full gradients.

Our experimental results, as compiled in Figure 1 in Section 1, demonstrate that the

gradient norm ratio ∥∇f(xk)∥1
∥∇f(xk)∥2

consistently scales as Θ(
√
d). This empirical observation

confirms that the convergence rate derived in this study is in accordance with that of SGD
with respect to the problem dimension d.
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Conclusion and Future Work

This paper studies the classical RMSProp and its momentum extension. We establish the

convergence rate of 1
T

∑T
k=1 E

[
∥∇f(xk)∥1

]
≤ Õ

( √
d

T 1/4

(
4
√
σ2
sL(f(x

1)− f∗)
))

measured by

ℓ1 norm without the bounded gradient condition. Our convergence rate can be considered to

be analogous to the 1
T

∑T
k=1 E

[
∥∇f(xk)∥2

]
≤ O

(
1

T 1/4
4
√

σ2
sL(f(x

1)− f∗)
)
one of SGD in the

ideal case of ∥∇f(x)∥1 = Θ(
√
d)∥∇f(x)∥2 for high-dimensional problems. One interesting

future work is to establish the lower bound of adaptive gradient methods measured by ℓ1

norm. We conjecture that the lower bound is O
( √

d
T 1/4

(
4
√
σ2
sL(f(x

1)− f∗)
))

.

Appendix A. Proof of Lemma 3

Proof From ln(1− x) ≤ −x for any x < 1, we have

(1− β)
g2t
vt

≤ − ln

(
1− (1− β)

g2t
vt

)
= − ln

vt − (1− β)g2t
vt

= − ln
βvt−1

vt
= ln

vt
βvt−1

and

(1− β)
k∑

t=1

g2t
vt

≤ ln
vk

βkv0
.

Appendix B. Proof of c lnx ≤ x for all x ≥ 3c ln c and c ≥ 3

Proof Denote f(x) = lnx
x . Since f ′(x) = 1

x2 − lnx
x2 ≤ 0 when x ≥ e, f(x) is decreasing

when x ≥ e and lnx
x ≤ ln(3c ln c)

3c ln c = 1
c
ln c+ln(3 ln c)

3 ln c ≤ 1
c
ln c+ln c2

3 ln c = 1
c , where we use ln c ≤ c and

3 ln c ≤ c2 for c ≥ 3.

Acknowledgments and Disclosure of Funding

H. Li was supported by NSF China (No. 62476142) and Z. Lin was supported by the Beijing
Natural Science Foundation (No. L257007) and the NSF China (No. 62276004). Li and Lin
are the corresponding authors.

References

Yossi Arjevani, Yair Carmon, John C. Duchi, Dylan J. Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. Mathematical Pro-
gramming, 199:165–214, 2023.

22



Convergence Rate of RMSProp and Its Momentum Extension Measured by ℓ1 Norm

Amit Attia and Tomer Koren. SGD with AdaGrad stepsizes: full adaptivity with high prob-
ability to unknown parameters, unbounded gradients and affine variance. In International
Conference on Machine Learning (ICML), 2023.

Lukas Balles and Philipp Hennig. Dissecting Adam: The sign, magnitude and variance of
stochastic gradients. In International Conference on Machine Learning (ICML), 2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anandkumar.
SignSGD: Compressed optimisation for non-convex problems. In International Conference
on Machine Learning (ICML), 2018.

Leon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. SIAM Review, 60(2):223–311, 2018.

Congliang Chen, Li Shen, Fangyu Zou, and Wei Liu. Towards practical Adam: Non-convexity,
convergence theory, and mini-batch acceleration. Journal of Machine Learning Research,
23(229):1–47, 2022.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing
the generalization gap of adaptive gradient methods in training deep neural networks. In
International Joint Conferences on Artificial Intelligence (IJCAI), 2021.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class
of Adam-type algorithms for non-convex optimization. In International Conference on
Learning Representations (ICLR), 2019.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang.
Robustness to unbounded smoothness of generalized signSGD. In Advances in Neural
Information Processing Systems (NeurIPS), 2022.
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