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Abstract
Heterogeneous treatment effect (HTE) estimation from observa-

tional data poses significant challenges due to treatment selection

bias. Existing methods address this bias by minimizing distribution

discrepancies between treatment groups in latent space, focusing

on global alignment. However, the fruitful aspect of local proximity,

where similar units exhibit similar outcomes, is often overlooked.

In this study, we propose Proximity-enhanced CounterFactual
Regression (CFR-Pro) to exploit proximity for enhancing represen-

tation balancing within the HTE estimation context. Specifically,

we introduce a pair-wise proximity regularizer based on optimal

transport to incorporate the local proximity in discrepancy calcula-

tion. However, the curse of dimensionality renders the proximity

measure and discrepancy estimation ineffective—exacerbated by

limited data availability for HTE estimation. To handle this problem,

we further develop an informative subspace projector, which trades

off minimal distance precision for improved sample complexity. Ex-

tensive experiments demonstrate that CFR-Pro accurately matches

units across different treatment groups, effectively mitigates treat-

ment selection bias, and significantly outperforms competitors.

Code is available at https://github.com/HowardZJU/CFR-Pro.
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1 Introduction
Estimating heterogeneous treatment effect (HTE) through random-

ized controlled trials is fundamental in causal inference, widely ap-

plied in various domains such as healthcare [37, 48], e-commerce [1,

45, 54], and education [7]. While randomized controlled trials are

considered as the golden standard in HTE estimation [32], their

availability is often limited by significant financial and ethical con-

straints [21, 22]. Consequently, there is increasing reliance on obser-

vational data for HTE estimation, driven by its broader availability

and the feasibility of post-marketing surveillance as a cost-effective

alternative to clinical trials [23, 53].

Estimating HTE from observational data is challenging primarily

due to: (1) the absence of counterfactuals, where only one potential

outcome is observable; and (2) treatment selection bias, where

non-random treatment assignments cause covariate shifts between

treated and untreated groups, thereby affecting the generalizability

of outcome estimators [50, 52]. Traditional meta-learners address

the counterfactual problem by segmenting HTE estimation into

tasks focused on factual outcomes [19]. However, these methods

often struggle with treatment selection bias, resulting in biased

HTE estimations.

Recent methods, such as counterfactual regression, have shown

potential for mitigating selection bias by minimizing distribution

discrepancies in the representation space [5, 14, 38, 58, 59]. How-

ever, current methods for discrepancy calculation overlook two

critical issues. First, they emphasize a global perspective in cal-

culating distribution discrepancies, neglecting the local proximity

between treatment units. Local proximity—where similar units

likely exhibit similar outcomes—is a pivotal factor in accurate HTE

estimation [9, 34, 43]. Ignoring this aspect can lead to misleading

discrepancy estimates and consequently erroneous updates to the

HTE estimator. The second challenge pertains to the curse of di-

mensionality, where a substantial number of units is required to

reliably estimate treatment effects. Often, acquiring a sufficiently

https://github.com/HowardZJU/CFR-Pro
https://doi.org/10.1145/3711896.3737092
https://doi.org/10.1145/3711896.3737092
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large sample of treated units is impractical in real-world settings,

rendering the discrepancy estimation unreliable. Addressing these

limitations is essential for advancing the precision and applicability

of HTE estimations from observational data.

In this work, we propose an effective HTE estimator, namely

Proximity-enhanced CounterFactual Regression (CFR-Pro), which

tackles both local proximity and dimensionality issues through a

generalized optimal transport problem. Specifically, to incorporate

local proximity, CFR-Pro incorporates a pairwise proximity reg-

ularizer (PPR) in the optimal transport formulation to explicitly

maintain local proximity in discrepancy calculation. To mitigate

the curse of dimensionally, CFR-Pro innovatively introduces an in-

formative subspace projector (ISP), which seeks for an informative

subspace to calculate distribution discrepancy with minimal preci-

sion loss. The architecture and computation workflow of CFR-Pro

are detailed in Section 3.3. Extensive experimental results demon-

strate that CFR-Pro accurately matches units across varying treat-

ment groups, effectively mitigates treatment selection bias, and

significantly outperforms its competitors.

Contributions. The contributions are summarized as follows.

• We innovatively investigate the local proximity preservation

and curse of dimensionality issues for causal balancing, which

historically limits the performance of HTE estimation based on

representation learning.

• We propose CFR-Pro, a streamelined approach that employs a

pairwise proximity regularizer and an informative subspace pro-

jector within a unified optimal transport framework to overcome

the above issues.

• Through comprehensive experiments on open benchmarks, we

demonstrate that CFR-Pro outperforms a range of competitors.

We further substantiate its effectiveness via extensive hyperpa-

rameter tuning and ablative studies.

2 Preliminaries
2.1 HTE estimation with observational data
This section outlines the HTE estimation task within the potential

outcome framework [36] and the challenge of treatment selection

bias. The fundamental encapsulated in Definition 2.1
1
. Specifically, a

unit characterized by covariates 𝑥 possesses two potential outcomes:

𝑌1 if treated and 𝑌0 if untreated. The expected difference between

these potential outcomes given covariates, represented as 𝜏 (𝑥) =
E[𝑌1 −𝑌0 | 𝑥], is termed as the conditional average treatment effect

(CATE), and its expectation over all units is termed as the average

treatment effect (ATE).

Definition 2.1. Suppose 𝑋 , 𝑅, 𝑌 , and 𝑇 are random variables

with probability density function 𝜌∗ and support S∗. Typically,
𝑋 represents covariates with the probability density function 𝜌𝑋
and support S𝑋 = {0, 1}. 𝑅 represents induced representations, 𝑌

denotes outcomes, and 𝑇 denotes treatment indicators.

Definition 2.2. Suppose 𝜓 : S𝑋 → S𝑅 is a representation map-

ping with 𝑅 = 𝜓 (𝑋 ). Define 𝜙𝑇 : R × T → Y as an outcome

1
We use uppercase letters, e.g., 𝑋 , to denote a random variable, and lowercase letters,

e.g., 𝑥 , to denote a specific value. Letters in calligraphic font, e.g., X, represent the
empirical distribution, and P( ) represents the probability distribution function, e.g.,

P(𝑋 ) .

mapping that maps the representations and treatment to the corre-

sponding factual outcome: 𝑌1 = 𝜙1 (𝑅) and 𝑌0 = 𝜙0 (𝑅).

Definition 2.3. Suppose X, R, and Y are the empirical distribu-

tions of 𝑋 , 𝑅, and 𝑌 at a minibatch level, respectively. Let X𝑇=1 and
X𝑇=0 be the covariates of treated and untreated units, respectively,

with R𝑇=1
𝜓

and R𝑇=0
𝜓

as the corresponding representations induced

by 𝑅 = 𝜓 (𝑋 ).

The estimation of CATE is the cornerstone in HTE estimation.

Since one of these outcomes is always unobserved in a dataset,

effective CATE estimation typically involves decomposing it into

factual outcome estimation subproblems solvable with supervised

regression methods [19]. An exemplary approach TARNet [38]

employs the representation mapping 𝜓 and outcome mapping 𝜙

from Definition 2.2, which estimates the CATE as

𝜏𝜓,𝜙 (𝑥) = 𝑌 (𝑥, 1) − 𝑌 (𝑥, 0),
𝑌 (𝑥, 1) = 𝜙1 (𝜓 (𝑥)), 𝑌 (𝑥, 0) = 𝜙0 (𝜓 (𝑥)),

(1)

where 𝜓 is trained across all units, while 𝜙1 and 𝜙0 are trained

separately on treated and untreated groups. The training objective

is to minimize the factual outcome estimation error:

L (F) (𝜓, 𝜙) :=
N∑︁
𝑖=1

𝜙1 (R𝑇=1𝜓,𝑖
) − Y𝑇=1

𝑖

2
2

+
M∑︁
𝑗=1

𝜙0 (R𝑇=0𝜓,𝑗
) − Y𝑇=0

𝑗

2
2

,

(2)

where R𝜓 and Y are the empirical distributions of representations

and outcomes as defined in Definition 2.3, and 𝑖 and 𝑗 are sample

indices in the associated empirical distribution. CATE estimators

are evaluated using the precision in estimation of heterogeneous

effect (PEHE) metric:

𝜖PEHE (𝜓, 𝜙) :=
∫ (

𝜏𝜓,𝜙 (𝑥) − 𝜏 (𝑥)
)
2

𝜌 (𝑥) 𝑑𝑥. (3)

Selection bias. As illustrated in Figure 1(a), treatment selection

bias introduces a distribution shift of covariates between groups,

which causes 𝜙1 and 𝜙0 to overfit to their respective group’s char-

acteristics and generalize poorly across the entire population. To

mitigate selection bias, seminal works starting from CFR [38] aug-

ment the learning objective with a distribution discrepancy term

as L (F) + Disc(R𝑇=1
𝜓

,R𝑇=0
𝜓
). This adjustment reduces distribution

shift in the representation space, thereby enabling 𝜙1 and 𝜙0 to

generalize to both treated and untreated groups.

2.2 Local proximity for HTE estimation
Local proximity, quantified as the mutual distance between units

within a distribution, encapsulates the geometric properties of distri-

butions. The assumption that similar units have similar outcomes [58,
59] highlights its critical role in HTE estimation. This principle is

central to various HTE estimators—such as matching techniques

(e.g., KNN [9], propensity score matching [34]) and stratification

methods [43]—that leverage proximity to enhance estimation ac-

curacy. Despite its acknowledged importance, modern HTE ap-

proaches, particularly those based on the Counterfactual Represen-

tation (CFR) paradigm, primarily focus on minimizing a global dis-

crepancy metric, denoted as Disc(·), while neglecting the nuances

of local proximity that can be pivotal for precise causal inference.
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Representations

𝜌 𝑅𝑇=1

𝜌 𝑅𝑇=0
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𝒳𝑇=1
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𝒳𝑇=0
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ℛ𝑇=1

Disc(⋅)

(a) Mitigating selection bias with𝜓 ( ·) .

𝑌(𝑋, 1)

𝑋𝑇=0 𝜓 𝜙0

ℒ (F)

𝜙1

𝑌(𝑋, 0)

𝜓

ℒ (CF) Y

𝑋𝑇=1

Input Representation

𝑅𝑇=1

𝑅𝑇=0

Outcome estimate Factual Outcome

(b) Overall architecture of CFR-Pro.

Figure 1: Overview of handling treatment selection bias with CFR-Pro. The red and blue colors signify the treated and untreated
groups, respectively. (a) The treatment selection bias is illustrated through a distribution shift between treated (𝑋1) and untreated
(𝑋0) units. The curves and scatters indicate the probability density functions and associated empirical distributions, respectively.
(b) CFR-Pro reduces selection bias by aligning units from both treatment groups within a common representation space,
denoted as 𝑅 = 𝜓 (𝑋 ). This alignment facilitates the generalization of the outcome mappings 𝜙1 and 𝜙0 across different groups.

One notable exception is the SITE model [58], which incorpo-

rates the PDDM metric [15] to measure proximity. SITE differs

fundamentally from our work in two respects. Firstly, SITE em-

ploys PDDM merely to align latent and covariate spaces while

using a simplistic middle-point distance as its discrepancy measure,

thereby not integrating local proximity into the discrepancy for

balancing treated and untreated samples. In contrast, we focus on

enhancing the discrepancy by comprehensively incorporating local

proximity. Secondly, SITE quantifies proximity using only six pre-

selected anchor units, which may limit its ability to capture broader

contextual information. Our approach transcends this limitation by

leveraging an optimal transport methodology to construct a more

inclusive and nuanced representation of local proximity.

2.3 Discrete optimal transport
Optimal transport (OT) quantifies distribution discrepancy as the

minimum transport cost [8, 47, 51], offering a tool to quantify the

treatment selection bias in Figure 1(a). An applicable formulation

proposed by Kantorovich [17] is present in Definition 2.4, which

can be seen as a linear programming problem.

Definition 2.4. For empirical distributions 𝛼 and 𝛽 with n and m

units, respectively, the Kantorovich problem aims to find a feasible

plan 𝜋 ∈ R𝑛×𝑚
+ which transports 𝛼 to 𝛽 at the minimum cost:

W(𝛼, 𝛽) := min

𝝅 ∈Π (𝛼,𝛽 )
⟨D, 𝝅⟩ ,

Π(𝛼, 𝛽) :=
{
𝝅 ∈ R𝑛×𝑚

+ : 𝝅1𝑚 = a, 𝝅T1𝑛 = b
}
,

(4)

where W(𝛼, 𝛽) ∈ R is the OT discrepancy; D ∈ R𝑛×𝑚
+ is the unit-

wise Euclidean distance between 𝛼 and 𝛽 ; a and b are the mass of

units in 𝛼 and 𝛽 , respectively; Π is the feasible plan set where the

mass-preserving constraint holds.

3 Proposed method
In this section, we present the Proximity-enhanced CounterFactual

Regression (CFR-Pro) approach, which leverages OT to tackle the

treatment selection bias. We first illustrate the pair-wise proximity

regularizer (PPR) for measuring and maintaining local proximity

in different treatment groups, and demonstrate its efficacy for im-

proving HTE estimation. Subsequently, we propose an informative

subspace projector (ISP) to reduce the sampling complexity and

handle the curse of dimensionality in calculating OT. We finally

open a new thread to summarize the model architecture, learning

objectives, and optimization algorithm.

3.1 Pair-wise proximity regularizer for the
preservation of local proximity

To mitigate treatment selection bias, representation-based methods

align treated and untreated groups in the representation space, the

core of which is the quantification of the distribution discrepancy

Disc(·) between treatment groups. It is plausible to quantify the

discrepancy with OT due to its numerical advantages and flexibil-

ity over competitors [48]. However, standard OT overlooks local

proximity, a crucial aspect in HTE estimation. The treated and

untreated units with similar neighbors for instance should have a

higher probability of matching together since similar units have

similar outcomes [34, 43].

An extension of OT that encodes local proximity is the Gromov-

Wasserstein measure, primarily applied to matching objects with

geometric structures [30, 55]. On the basis, inspired by [41], the PPR

fuses the Gromov Wasserstein measure and restates the transport

problem in the representation space as:

F(R𝑇=0
𝜓

, R𝑇=1
𝜓
) := min

𝝅 ∈Π (𝛼,𝛽 )
©«𝜅 ⟨𝝅 ,D⟩ + (1 − 𝜅 )

∑︁
𝑖,𝑗,𝑘,𝑙

P𝑖,𝑗,𝑘,𝑙𝝅𝑖,𝑗𝝅𝑘,𝑙
ª®¬ ,
(5)

where 0 ≤ 𝜅 ≤ 1 controls the relative strength. The first term, fol-

lowing the standard OT formulation in (4), measures the global dis-

crepancy between treatment groups with D𝑖, 𝑗 =

R𝑇=0
𝜓,𝑖
− R𝑇=1

𝜓,𝑗

2
2

.

The second term measures local proximity within each treatment

group as D𝑡
𝑖, 𝑗

=

R𝑇=𝑡
𝜓,𝑖
− R𝑇=𝑡

𝜓,𝑗

2
2

, and incorporates such local prox-

imity via P𝑖, 𝑗,𝑘,𝑙 =
D𝑇=0

𝑖,𝑘
− D𝑇=1

𝑗,𝑙


2

. Specifically, if the distance be-

tween R𝑇=0
𝜓,𝑖

and R𝑇=0
𝜓,𝑘

is close to that between R𝑇=1
𝜓,𝑗

and R𝑇=1
𝜓,𝑙

(i.e.,D𝑇=0
𝑖,𝑘
− D𝑇=1

𝑗,𝑙

2
2

→ 0), a higher volume of mass will be matched,
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Figure 2: Overview of the transport strategies in threeHTE es-
timators: CFR [38] (left), ESCFR [48] (center) and Ours (right).
The upper panels visualize the sample locations of two differ-
ent treatment groups, where different scatter colors indicate
different treatments. The generated transport strategies are
marked with gray lines. The down panels elaborate on the
generated transport strategies by visualizing the transport
matrices 𝝅 . The darkness indicates the mass transported.

indicated by a larger 𝝅𝑖, 𝑗𝝅𝑘,𝑙 . Conversely, less mass will be trans-

ported. The derived transport plan encourages matching units with

similar neighbors, preserving local proximity. Therefore, F quanti-

fies the discrepancy between treatment groups while accommodat-

ing the preservation of local proximity.

Case study. To showcase the importance of preserving local

proximity, a toy dataset is provided in Figure 2. The untreated group

units are simulated from a two-moon distribution (black circles)

and treated group units are generated by rotating these positions

90 degrees (blue circles) and adding a small horizontal shift. This

setup mimics shifts in both mean and covariance across treatment

groups. The ideal transport strategy should align pre- and post-

rotation samples, manifested by a primarily diagonal transport

matrix. We compare the strategies used in CFR [38], ESCFR [48]

and the PPR-enhanced CFR. Key observations are presented below.

• The canonical Wasserstein discrepancy in CFR [38] targets global

alignment between groups. However, it could cause erroneous

matching as it does not account for local proximity, which that

can mislead the update of HTE estimators.

• The unbalanced Wasserstein discrepancy in ESCFR [48] discards

skewed samples and concentrates on aligning units that overlap

between treatment groups. Despite improvements, this strategy

can still produce a noisy and blurred transportation of units.

• Our method integrates PPR to exploit local proximity, effectively

rectifying the transport strategy and ensuring precise matching

of all samples. This property is essential for generating accurate

gradient signals to update representation mappings.

Theoretical investigation. Although PPR has shown practical

efficacy, questions remain regarding its contribution to minimizing

PEHE. Theorem 1 (refer to Appendix A.2 for proof) offers a theo-

retical bound, which demonstrates that PEHE can be optimized by

minimizing the estimation error of factual outcomes and the group

discrepancy with PPR term. Notably, the integration of PPR slightly

expands the theoretical bound compared to that of canonical CFR,

yet it is promising to trade off some tightness of the bound for the

preservation of local proximity, due to its importance to produce a

viable transport strategy, as demonstrated in Figure 2.

Theorem 1. Let𝜓 and 𝜙 be the representation mapping and fac-
tual outcome mapping, respectively; ˆW𝜓 be the group discrepancy at
a mini-batch level. With the probability of at least 1 − 𝛿 , we have:

𝜖PEHE (𝜓, 𝜙) ≤ 2[𝜖𝑇=1
F
(𝜓, 𝜙) + 𝜖𝑇=0

F
(𝜓, 𝜙) + 𝐵𝜓,𝜅F(R𝑇=0𝜓

,R𝑇=1
𝜓
)]

− 4𝜎2𝑌 + O(𝑁
− 2

d ),
(6)

where 𝜖𝑇=1
F

and 𝜖𝑇=0
F

are the expected errors of factual outcome esti-
mation, 𝑁 is the batch size, 𝜎2

𝑌
is the variance of outcomes, 𝐵𝜓,𝜅 is a

constant term, and O(·) is a sampling complexity term.

3.2 Informative subspace projector for the curse
of dimensionality

The curse of dimensionality refers to the phenomenon where the

Euclidean distance between data points tend to be identical [12]. It

renders Euclidean distance difficult to model the proximity in high

dimensional settings due to diminished discrimination.

From a computational view, the diminishing discrimination ne-

cessitates more samples for estimating Euclidean-based discrep-

ancy [29], which is a pivotal component in state-of-the-art HTE esti-
mators such as MMD in [38], PDDM in [58], and EMD in [48]. A

well-known result states, for instance, that the sample complexity

of EMD can grow exponentially with dimension [6]. Similarly, the

sample complexity of F reaches O(𝑁 −
2

𝑑 ), forming the complexity

term in Theorem 3.1. Such large sample complexity necessitates

many treated and untreated units to faithfully estimate the true

discrepancy. However, a large number of treated units is often diffi-

cult to acquire in real-world experiments, underscoring the adverse

impact of the curse of dimensionality on HTE estimation.

To handle the curse of dimensionality, a common strategy in-

volves reducing the dimension of the computational space. A naive

approach is reducing the hidden dimension of the representation

mapping𝜓 . However, it can be counterproductive as it may limit its

capacity, preventing the mapping from capturing complex patterns

and nonlinearities in data. In this study, we propose identifying

an informative subspace and calculating pairwise distances within

this subspace, thus mitigating the curse of dimensionality while

preserving the full capacity of 𝜓 . Specifically, given a projector

𝑈 ∈ R𝑑×𝑘 to transform the data from a high-dimensional space 𝑑 to

a lower-dimensional subspace 𝑘 . The distance between two unit rep-

resentations R𝑖 and R 𝑗 can be computed as D𝑃
𝑖,𝑗

= ∥R1𝑈 − R2𝑈 ∥.
This approach alleviates the curse of dimensionality but introduces

the risk of losing significant information, potentially leading to

overly optimistic discrepancy estimations.

The central problem is how to find the informative subspace

projector. To reduce the information loss caused by naive dimension

reduction, it is feasible to determine the projector in a adversarial
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manner as follow:

min

𝝅 ∈Π (R𝑇=0
𝜓

,R𝑇=1
𝜓
)

max

𝑈𝑈 ⊤=𝐼

©«𝜅 · ⟨𝝅 ,D𝑈 ⟩ + (1 − 𝜅 ) ·
∑︁
𝑖,𝑗,𝑘,𝑙

P𝑈
𝑖,𝑗,𝑘,𝑙

𝝅𝑖,𝑗𝝅𝑘,𝑙
ª®¬ ,

where D𝑈
𝑖,𝑗

=

R𝑇=0
𝜓,𝑖

𝑈 − R𝑇=1
𝜓,𝑗

𝑈

2
2

is the distance measured in

the reduced k-dimensional space; P𝑈
𝑖,𝑗,𝑘,𝑙

=

D𝑈 ,𝑇=0

𝑖,𝑘
− D𝑈 ,𝑇=1

𝑗,𝑙


2

.

However, this optimization problem proves difficult to solve [29].

An effective compromise involves projecting the data into a k-

dimensional subspace through an ISP module that maximally pre-

serves the information, and then compute discrepancy in the sub-

space. Built upon this idea, the transport problem modified with

the ISP module is formulated in Definition 3.1.

Definition 3.1. Suppose𝑈 ∗ ∈ R𝑑×𝑘 is an informative subspace

projector that is obtained by:

𝑈 ∗ = arg min

𝑈 ,𝑈𝑈 ⊤=𝐼

R − R𝑈𝑈⊤2
2
, (7)

where P = 𝑘/𝑑 denotes the ratio of dimensionality reduction. The

distribution discrepancy equipped with PPR and ISP modules is

formulated as

P𝜅,P (𝜓 ) := min

𝝅 ∈Π (R𝑇=0
𝜓

,R𝑇=1
𝜓
)

©«𝜅 · ⟨𝝅 ,D𝑈 ∗ ⟩ + (1 − 𝜅 ) ·
∑︁
𝑖,𝑗,𝑘,𝑙

P𝑈
∗

𝑖,𝑗,𝑘,𝑙
𝝅𝑖,𝑗𝝅𝑘,𝑙

ª®¬ .
(8)

3.3 Overall workflow of CFR-Pro
The architecture of CFR-Pro is presented in Figure 1(b), where the

covariate 𝑋 is first mapped to the representations 𝑅 with𝜓 (·), and
then to the potential outcomes with 𝜙 (·). The learning objective is

to minimize the risk of factual outcome estimation and the group

discrepancy. Given mini-batch distributions X𝑇=1 and X𝑇=0, the
risk of factual outcome estimation can be estimated as (2). After-

wards, the group discrepancy is calculated as P𝜅,P (𝜓 ). Finally, the
overall learning objective of CFR-Pro is

L (CFR−Pro)
𝜆,𝜅,P

:= L (F) (𝜓, 𝜙) + 𝜆 · P𝜅,P (𝜓 ), (9)

where 𝜆 controls the strength of distribution alignment, 𝜅 controls

PPR in (5), and P controls the ratio of dimension reduction in Defi-

nition 3.1. The learning objective above mitigates the selection bias

following Theorem 1 while handling the issues of local proximity

and curse of dimensionality.

The optimization procedure of CFR-Pro is encapsulated in Algo-

rithm 1. First, we compute the latent space representations using the

representation mapping𝜓 . Second, we determine the informative

subspace projector𝑈 ∗ by solving the dimension reduction problem

in (7), which can be solved via the well-established principal com-

ponent analysis. Then, we calculate the pair-wise distance matrix

D𝑈
and P𝑈 in the subspace induced by𝑈 ∗. Subsequently, compute

the distribution discrepancy term P by solving the OT problem in

Definition 3.1. The solution process is available in [41]. Finally, we

compute the overall loss in (9) and update𝜓 and 𝜙 with stochastic

gradient methods.

4 Experiments
We validate CFR-Pro by investigating the aspects as follows:

Algorithm 1 The computation workflow of CFR-Pro.

Input: covariates X; factual outcomes Y; outcome mapping 𝜙 ;

treatments T ; representation mapping𝜓 .

Parameter: 𝜆: strength of discrepancy alignment; 𝜅: strength of

proximity preservation in PPR; P: ratio of dimension reduction.

B: batch size

Output: L (CFR−Pro)
𝜆,𝜅,P

: the learning objective of CFR-Pro.

1: R ← 𝜓 (X).
2: 𝑈 ∗ = argmin𝑈 ,𝑈𝑈 ⊤=𝐼

R − R𝑈𝑈⊤2
2
.

3: D𝑈 ∗
𝑖, 𝑗
← ∥R𝑇=0

𝑖
𝑈 ∗ − R𝑇=1

𝑗
𝑈 ∗∥2

2
for 1 ≤ 𝑖, 𝑗 ≤ B.

4: D𝑈 ∗,𝑇=0
𝑖,𝑘

← ∥R𝑇=0
𝑖

𝑈 ∗ − R𝑇=0
𝑘

𝑈 ∗∥2
2

for 1 ≤ 𝑖, 𝑘 ≤ B.

5: D𝑈 ∗,𝑇=1
𝑗,𝑙

← ∥R𝑇=1
𝑗

𝑈 ∗ − R𝑇=1
𝑙

𝑈 ∗∥2
2

for 1 ≤ 𝑗, 𝑙 ≤ B.

6: P𝑈
∗

𝑖, 𝑗,𝑘,𝑙
←

D𝑈 ∗,𝑇=0
𝑖,𝑘

− D𝑈 ∗,𝑇=1
𝑗,𝑙


2

for 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ B.

7: Calculate P𝜅,P (𝜓 ) following Eq. (8).
8: L (F) (𝜓, 𝜙) ← ∥𝜙 (R,T) − Y∥2

2
.

9: L (CFR−Pro)
𝜆,𝜅,P

← L (F) (𝜓, 𝜙) + 𝜆 · P𝜅,P (𝜓 ).

(1) Performance: Does CFR-Pro work? Section 4.2 compares CFR-

Pro against established CATE estimators on real-world public

benchmarks, where CFR-Pro achieves the best performance.

(2) Efficacy: How does it work? Section 4.3 conducts an ablative

study to investigate the contribution of PPR and ISP, where

both components are beneficial to improve canonical CFR and

cooperate well.

(3) Sensitivity: Is it sensitive to hyperparameters? Section 4.4 con-

ducts a sensitivity study on the hyperparameters introduced

by PPR and ISP, respectively, and give further insights on the

rational they work.

4.1 Experimental setup
Datasets. The evaluation of PEHE is challenged by the absence

of counterfactuals in observational data. To address this challenge,

experiments are conducted using two semi-synthetic datasets: the

Infant Health and Development Program (IHDP) and the Atlantic

Causal Inference Conference (ACIC) competition data [38, 58]. The

IHDP dataset evaluates the effect of specialist home visits on in-

fants’ cognitive development, comprising 747 observations with

25 covariates. The ACIC dataset, derived from the Collaborative

Perinatal Project [31], includes 4802 observations and 58 covariates.

All datasets are randomly shuffled and partitioned into training,

validation, and test sets in a 0.7:0.15:0.15 ratio, maintaining the

same proportion of treated units across all splits to ensure numeri-

cal reliability. To increase the distinguishability of results, we omit

dataset scaling to heighten the impact of selection bias.

Baselines. The baselines can be categorized into three groups.

(1) Direct estimators: R.Forest [44], S.learner [19], T.learner [19],
TARNet [38], DESCN [63]; (2) Matching estimators: PSM [34],

k-NN [9], O.Forest [43]; (3) Representation-based estimators:
CFR-MMD [38], CFR-WASS [38], ESCFR [48], and SITE [58].

Implementation details. CFR-Pro is implemented with a fully

connected neural network architecture comprising two hidden

layers with 16-16 and 32-32 nodes, respectively. It is trained using
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Table 1: Out-of-sample performance (mean±std) on the ACIC and IHDP datasets. “*” marks the baseline estimators that CFR-Pro
outperforms significantly at p-value < 0.05 over paired samples t-test.

Dataset ACIC IHDP

Metric 𝜖PEHE 𝜖ATE 𝜖ATT 𝜖PEHE 𝜖ATE 𝜖ATT

R.Forest 3.3908±0.1811∗ 0.8347±0.3635 0.7785±0.3816 4.6697±9.2920 0.4544±0.8308 0.8353±1.2413
S.Learner 4.8835±0.7933∗ 3.0913±0.7731∗ 3.1213±0.6372∗ 4.7408±3.9688∗ 2.5785±1.8521∗ 2.7951±1.6036∗

T.Learner 4.2749±0.6793∗ 2.2176±1.2131∗ 2.3940±1.1964∗ 2.5257±3.3643∗ 0.5818±1.2177 0.6642±1.2197
TARNet 3.5331±0.9556∗ 1.5308±1.0469∗ 1.6601±1.0670∗ 1.7781±3.4467 0.2814±0.3193 0.3338±0.3349
DESCN 2.6420±0.2614∗ 0.4548±0.1693 0.4987±0.1881 4.0128±6.1409∗ 1.2219±1.7453 0.7917±1.3185

k-NN 5.8977±0.1400∗ 1.5773±0.3075∗ 1.9068±0.2870∗ 4.3191±7.3361 0.8316±1.6911 1.8118±3.2342
O.Forest 2.7451±0.3379∗ 0.6003±0.1879 0.6597±0.2013 3.1888±5.6657 0.3150±0.3696 0.6539±0.5370∗

PSM 5.1014±0.2987∗ 0.6468±0.3478 0.6231±0.3465 4.6347±8.5748 0.2129±0.3362 0.9353±2.7094

CFR-MMD 3.8514±0.4558∗ 1.7379±0.9133∗ 1.9060±0.9290∗ 1.9398±2.9029 0.5870±1.2231 0.6678±1.2207
CFR-WASS 3.3187±0.7622∗ 1.3581±1.0325∗ 1.4682±1.0636∗ 1.9252±2.9323 0.5578±1.2455 0.6532±1.2544
SITE 3.4910±0.7799∗ 1.3425±1.1929 1.5443±1.2128∗ 1.7339±3.1709 0.2271±0.3140 0.2525±0.2805
ESCFR 2.6780±0.6566 1.1468±0.8146∗ 1.2365±0.8689∗ 1.6299±3.0344 0.2135±0.3788 0.2319±0.2488

CFR-Pro 2.0413±0.6646 0.4551±0.3845 0.5034±0.4221 1.4601±2.6607 0.1079±0.1087 0.2224±0.2472

Table 2: Ablation study (mean±std) on the ACIC benchmark. “*” marks the variants that CFR-Pro outperforms significantly at
p-value < 0.01 over paired samples t-test.

In-sample Out-sample

Model PPR ISP 𝜖PEHE 𝜖ATE 𝜖ATT 𝜖PEHE 𝜖ATE 𝜖ATT

CFR % % 3.4288±0.3952∗ 1.1796±0.6443∗ 1.9186±0.8632∗ 3.3187±0.7622∗ 1.3581±1.0325∗ 1.4682±1.0636∗

CFR
† ! % 2.9668±0.9142 0.9162±0.5930 1.3961±0.9425 2.5193±0.7771 0.9164±0.8203 1.0020±0.8903

CFR
‡ % ! 2.9341±0.7583 0.7825±0.5363 1.2473±0.7007 2.5983±0.7378∗ 0.8303±0.7695 0.9080±0.8328

CFR-Pro ! ! 2.6091±0.7673 0.5384±0.3932 1.0313±0.7206 2.0413±0.6640 0.4551±0.3845 0.5034±0.4221

the Adam optimizer for a maximum of 400 epochs, with an early

stopping patience set to 30 epochs. The learning rate and weight

decay parameters are set at 1𝑒−3 and 1𝑒−4, respectively. Other
optimization settings followKingma and Ba [18]. Hyper-parameters

are tuned on the validation set within the ranges in Section 4.4,

with model performance validation conducted every epoch.

4.2 Overall performance
Table 1 provides a comprehensive comparison of the CFR-Pro frame-

work with various baseline methodologies. Key observations from

this comparative analysis are outlined below:

• Direct estimators exhibit strong performance on the PEHEmetric.

Neural network-based estimators particularly excel, surpassing

linear models and random forests due to their enhanced ability

to capture nonlinear relationships. Among them, TARNet, which

integrates the strengths of both T-learner and S-learner, achieves

superior and stable performance on both datasets. However, the

limitations in addressing treatment selection bias hamper their

performance in certain scenarios.

• Matching methods such as PSM and O.Forest show robust capa-

bilities in estimating average treatment effects, which contributes

to their widespread adoption in policy evaluation contexts. How-

ever, their efficacy diminishes on the PEHE metric, restricting

their suitability for applications requiring personalized treat-

ments (e.g., advertising).

• Representation-based methods effectively address treatment se-

lection bias and enhance HTE estimation performance. However,

their oversight of local proximity and curse of dimensionality

restricts their effectiveness in overcoming selection bias.

• CFR-Pro surpasses other prevalent baselines with significant im-

provements across most metrics. This superiority is attributed to

the innovative PPR and ISP modules. These components coop-

erate to enable CFR-Pro to adeptly harness the local proximity

and mitigate the curse of dimensionality, which facilitates more

accurate alignment of treatment groups and thereby handling of

selection bias.

4.3 Ablation study
In Table 2, we examine the contributions of individual compo-

nents of CFR-Pro on the ACIC benchmark. Our study builds upon

the CFR-Wass model [38], a canonical approach that employs the

Wasserstein discrepancy to align treatment groups within the rep-

resentation space.

• In CFR
†
, we enhance CFR by involving PPR, where the Wasser-

stein discrepancyW is replaced by the fused GromovWasserstein

discrepancy in (5). A significant performance improvement is

observed, where the out-of-sample 𝜖PEHE decreases from 3.3187
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Figure 3: Parameter sensitivity of the PPR module on the ACIC dataset, with focus on 𝜆 and 𝜅. The lines and shaded areas
indicate the mean values and 90% confidence intervals, respectively.
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Figure 4: Parameter sensitivity of the ISP module on the ACIC dataset, where P stands for the ratio of dimensionality reduction.
The lines and shaded areas indicate the mean values and 90% confidence intervals, respectively.

to 2.5193, underscoring the utility of local proximity when con-

structing balanced representations.

• In CFR
‡
, we enhance CFR by incorporating ISP. Similarly, a huge

performance improvement is observed. For instance, the out-of-

sample 𝜖PEHE decreases from 3.3187 to 2.5983, 𝜖ATE decreases

from 1.3581 to 0.4551. These performance improvements show-

case the utility of ISP to mitigate the curse of dimensionality and

generate reliable discrepancy estimates.

• In CFR-Pro, we synthesize PPR and ISP into a unified framework.

It maintains the advantages of each individual component and

achieves the best overall performance compared to other variants.

4.4 In-depth analysis
Analysis on PPR.We analyze the performance of the PPR com-

ponent focusing on its two main hyperparameters: 𝜆 and 𝜅, which

respectively control the strength of distribution alignment and

proximity preservation as detailed in (5). The results of a sensitivity

study for these parameters are depicted in Figure 3, and the key

findings are summarized below.

• Increasing the value of 𝜆 from 0.1 to 1.5 leads to a notable de-

crease in the out-of-sample 𝜖PEHE, from approximately 3.0 to

2.2. However, further increases in 𝜆 result in a rise in estima-

tion error. The phenomenon indicates that proper distribution

alignment is effective to enhance the performance of HTE estima-

tors. However, overly emphasizing distribution balancing within

a multi-task learning framework can degrade the accuracy of

factual outcomes and, consequently, treatment effect estimates

within a multi-task learning framework.

• A similar trend is observed for the strength of proximity preser-

vation. Increasing 𝜅 from 0 to 0.1 renders a huge performance

improvement. The performance gain is consistent in a broad

range from 0.1 to 0.7. However, further increasing 𝜅 beyond this

range leads to performance reduction. It results from an excessive

emphasis on the local proximity in OT formulation, which re-

duces the focus on global discrepancy and hinders the reduction

of selection bias.

Analysis on ISP. The characteristics of ISP are governed by

the hyperparameter P, which controls the extent of dimensionality

reduction. We conduct a hyperparameter study for P in Figure 4,

and the key observations are summarized below.

• Dimensionality reduction effectively enhances model perfor-

mance. Specifically, as P is decreased from 1 to 0.7, there is a

notable improvement in the estimation accuracy, with the out-

of-sample 𝜖ATE diminishing from approximately 0.8 to about 0.5.

This improvement is primarily due to effective handling of the

curse of dimensionality, which in turn facilitates a more accurate

estimation of discrepancies using minibatch samples. However,

excessive reduction in dimensionality can lead to substantial

information loss, and thereby suboptimal estimates.

• Interestingly, there is a relationship between the weight of PPR

(𝜅) and the optimal setting for P. As 𝜅 increases, which shifts the

discrepancy measure P closer to the Gromov-Wasserstein discrep-

ancy, the curse of dimensionality becomes more pronounced: the

Gromov term relies heavily on unit-wise distances to compute

local proximity, making dimensionality reduction increasingly

crucial. Consequently, the optimal P value tends to decrease with
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larger 𝜅 , underscoring the need to balance dimensionality reduc-

tion against the risk of significant information loss.

5 Related works
5.1 Overview of HTE estimation
The central challenge of HTE estimation is mitigating treatment

selection bias by balancing treated and untreated groups. Current so-

lutions include three main categories: reweighting-based, matching-

based, and representation-based methods [25].

Reweighting-based methods primarily utilize propensity scores

to achieve global balance between groups, which entails the es-

timation of propensity scores and the construction of unbiased

estimators [24, 52]. Propensity scores are typically estimated using

logistic regression [4, 10, 20, 61], with improvements via feature

selection [39, 49, 50], joint optimization [21, 61, 62], and alterna-

tive training techniques [64]. The inverse propensity score method

exemplifies the construction of unbiased estimator [35]. However,

it suffers from high variance at low propensity scores and bias

with incorrect estimates [46]. To handle these issues, doubly robust

estimators and variance reduction techniques have been devel-

oped [13, 33].

Matching-basedmethods construct locally balanced distributions

by matching comparable units from different groups. These meth-

ods mainly differ in terms of the incorporated similarity measures.

Propensity score matching for instance uses estimated propensity

scores for calculating unit (dis)similarity [34]. Tree-based methods,

such as CausalForest [43], can also viewed as a matching-based

method employing adaptive similarity measures. Despite their ef-

fectiveness, the computational intensity of these methods restricts

their scalability in large-scale applications [2, 28, 52].

Representation-based methods seeks for a mapping to a latent

space where distributional discrepancies are minimized. Initial ap-

proaches advocate maximummean discrepancy and vanilla Wasser-

stein discrepancy [16, 38]. Enhancements have been made by inte-

grating feature selection [5, 14], representation decomposition [14,

53], and adversarial training [60]. However, local proximity is a

critical yet scarcely investigated aspect to facilitate learning rep-

resentation. A notable pioneer is SITE [58], which employs the

PDDM metric [15] to depict local proximity.

5.2 Optimal transport for HTE estimation
Recent advances in optimal transport (OT) have significantly im-

pacted causality studies, leading to the development of innovative

HTE estimators [40]. One research direction involves using OT

to enhance reweighting [11, 56, 57] and matching [3] strategies.

A related work proposed by Yan et al. [56] uses Gromov discrep-

ancy to adjust the transport matrix for HTE estimation. However,

they focuses on reweighting samples within the covariate space,

which contrasts with our approach that focuses on aligning rep-

resentations in the latent space. Additionally, the issue of curse

of dimensionality remains a limitation of [56] but handled in our

work. These factors differentiate our work with Yan et al. [56].

Another line of works, which are typically related to us, advo-

cates building balanced representations with OT [26, 27, 48]. Li

et al. [27] for instance use OT to align factual and counterfactual

distributions; Wang et al. [48] apply OT to achieve HTE estima-

tion while minigating noise and unobserved confounding effects.

Despite this progress, these approaches generally adhere to the

traditional Kantorovich problem, similar to [38], focusing on global

alignment while often neglecting both local proximity and the curse

of dimensionality. Therefore, developing OT formulations for HTE

estimation remains a fruitful avenue for future research.

6 Conclusion
Representation learning has emerged as a pivotal approach for HTE

estimation. However, current methods often overlook crucial as-

pects such as local proximity and the curse of dimensionality, which

are essential for adequately addressing treatment selection bias. To

bridge this gap, a principled approach known as CFR-Pro, based on

a generalized OT problem, has been developed. Extensive experi-

ments validate that CFR-Pro handles both problems effectively and

outperforms prevalent baseline models.

There are two promising research avenues for further investi-

gation. The first involves the integration of normalizing flows for

representation mapping, since their invertibility effectively aligns

with the foundational assumptions of counterfactual regression

[38]. The second avenue focuses on the practical application of our

methodology to industrial contexts, specifically for bias mitigation

in recommendation systems [45].
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A Theoretical Justification
A.1 Notations and preliminaries on HTE estimation
Here, we formalize the definitions, assumptions, and pertinent lemmas in the domain of HTE estimation from observational data. Building

on the notations introduced in Section 2.1, consider an individual with covariates 𝑥 exhibiting two potential outcomes: 𝑌1 (𝑥) if treated and

𝑌0 (𝑥) otherwise; CATE is defined as the difference between these outcomes, interpreted as 𝜏 (𝑥) := E [𝑌1 − 𝑌0 | 𝑥].

Definition A.1. Let𝜓 : S𝑋 → S𝑅 denote a representation mapping that transforms covariates 𝑋 into a representation space 𝑅 = 𝜓 (𝑋 ).
Define 𝜙𝑇 : R × T → Y as an outcome mapping that correlates these representations and treatment states to their respective factual

outcomes, with 𝑌1 = 𝜙1 (𝑅) and 𝑌0 = 𝜙0 (𝑅).

Definition A.2. The expected loss for the units with covariates 𝑥 and treatment indicator 𝑡 is: 𝑙𝜓,𝜙 (𝑥, 𝑡) :=
∫
(𝑌𝑡 −𝜙𝑡 (𝜓 (𝑥)))2 · 𝜌 (𝑌𝑡 | 𝑥) 𝑑𝑌𝑡 .

Then, the expected factual outcome estimation error for treated, untreated and all units are:

𝜖T=1
F
(𝜓, 𝜙) :=

∫
𝑙𝜓,𝜙 (𝑥, 1) · 𝜌T=1 (𝑥) 𝑑𝑥, 𝜖T=0

F
(𝜓, 𝜙) :=

∫
𝑙𝜓,𝜙 (𝑥, 0) · 𝜌T=0 (𝑥) 𝑑𝑥, 𝜖F (𝜓, 𝜙) :=

∫
𝑙𝜓,𝜙 (𝑥, 𝑡) · 𝜌 (𝑥, 𝑡) 𝑑𝑥𝑑𝑡 . (10)

An exemplar approach to CATE estimation is TARNet [38]. Based on the elements in A.1, it involves a representation mapping𝜓 that is

shared across the treated and untreated units, and outcome mappings 𝜙1 and 𝜙0 for treated and untreated units, respectively. It estimates the

CATE as 𝜏𝜓,𝜙 (𝑋 ) := 𝑌1 − 𝑌0, where 𝑌1 = 𝜙1 (𝜓 (𝑋 )), 𝑌0 = 𝜙0 (𝜓 (𝑋 )). The quality of CATE estimation is evaluated via the PEHE metric

𝜖PEHE (𝜓, 𝜙) :=
∫ (

𝜏𝜓,𝜙 (𝑥) − 𝜏 (𝑥)
)
2

𝜌 (𝑥) 𝑑𝑥 . (11)

During training, the factual error 𝜖F (𝜙,𝜓 ) in Definition A.2 is optimized. However, treatment selection bias results in covariate distribution

differences between treated and untreated groups, impeding model generalization across these groups. For example, an estimator 𝜙1
trained solely on treated units may yield biased estimates of 𝜏 when applied to untreated units, as shown in Figure 1(a). To mitigate this

bias, representation-based methods [16, 38] advocate for minimizing distribution discrepancies in the representation space and construct

generalization bounds (see Theorem 2). However, the IPM term in Theorem 2 is intractable for complex distributions. A common approach is

to re-express IPM as the Wasserstein distance, as detailed in Lemma 1.

Definition A.3. Let 𝜌T=1 (𝑥) and 𝜌T=0 (𝑥) denote the covariate distributions for the treated and untreated groups, respectively. Define

𝜌T=1
𝜓
(𝑟 ) and 𝜌T=0

𝜓
(𝑟 ) as the distributions of the representations 𝑟 = 𝜓 (𝑥), where𝜓 is the representation mapping detailed in Definition 2.2.

Definition A.4. Given two distribution functions 𝜌T=1 (𝑥) and 𝜌T=0 (𝑥) supported over X, and a sufficiently large function family F , the
Integral Probability Metric (IPM) induced by F is defined as: IPMF

(
𝜌T=1, 𝜌T=0

)
= sup𝑓 ∈F

���∫ 𝑓 (𝑥)
(
𝜌T=1 (𝑥) − 𝜌T=0 (𝑥)

)
𝑑𝑥

��� .
Theorem 2. Suppose F is a function family sufficiently large to include 1

𝐵𝜓
· 𝑙𝜓,𝜙 (𝑥, 𝑡) for 𝑡 ∈ {0, 1}, Shalit et al. [38] demonstrate that:

𝜖PEHE (𝜓, 𝜙) ≤ 2

(
𝜖T=0
F
(𝜓, 𝜙) + 𝜖T=1

F
(𝜓, 𝜙) + 𝐵𝜓 IPMF

(
𝜌T=1
𝜓

, 𝜌T=0
𝜓

)
− 2𝜎2𝑌

)
, (12)

where 𝜖T=0
F

and 𝜖T=1
F

are defined according to Definition A.2, and 𝜌T=1
𝜓
(𝑟 ) and 𝜌T=0

𝜓
(𝑥) are specified in Definition A.3.

Lemma 1. Given two distribution functions 𝜌1 (𝑥) and 𝜌2 (𝑥) supported over X, and letting F be the family of 1-Lipschitz functions, we have
IPMF (𝜌1, 𝜌2) = W (𝜌1, 𝜌2), i.e., the IPM induced by F is equivalent to the Wasserstein distanceW [42].

A.2 Theoretical results
Theorem 2 assumes access to the entire populations of treated and untreated groups to calculate the distribution discrepancy. However, in

training neural networks, parameters are typically updated using stochastic gradient methods on mini-batches rather than the full dataset.

This raises concerns about the validity of Theorem 2 when applied at the mini-batch level. Recent studies have investigated the sample

complexity of various discrepancy measures, such as the Wasserstein distance (see Lemma 2) and Gromov discrepancy (see Lemma 3).

Building on these insights, we propose Theorem 3, which extends Theorem 2 to the specific Fused Gromov-Wasserstein (FGW) discrepancy

used in this work. This theorem examines the sample complexity of FGW when only a small mini-batch sample is available.

Lemma 2. Consider two measures 𝛼 and 𝛽 with compact supports S𝛼 ∈ Rd and S𝛽 ∈ Rd. Let 𝐶 = diam(S𝛼 ) ∨ diam(S𝛽 ), considering the
case where d > 4, we have:

E
[����W(𝛼, 𝛽)2 −W (

𝛼𝑛, ˆ𝛽𝑛

)
2

����] ≲ 𝑛−
2

d , (13)

where the notation ≲ hides constants that is independent to the number of samples 𝑛. 𝛼𝑛 and 𝛽𝑛 are empirical distributions of 𝛼 and 𝛽 with 𝑛
i.i.d. samples.
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Lemma 3. Consider two measures 𝛼 and 𝛽 with compact supports S𝛼 ∈ Rd and S𝛽 ∈ Rd. Let 𝐶 = diam(S𝛼 ) ∨ diam(S𝛽 ), considering the
case where d > 4, we have:

E
[����G(𝛼, 𝛽)2 − G (

𝛼𝑛, ˆ𝛽𝑛

)
2

����] ≲ 𝐶4

√
𝑛
+
(
1 +𝐶4

)
𝑛−

2

d , (14)

where the notation ≲ hides constants that is independent to the number of samples 𝑛. 𝛼𝑛 and 𝛽𝑛 are empirical distributions of 𝛼 and 𝛽 with 𝑛
i.i.d. samples.

Theorem 3. Let 𝜓 and 𝜙 be the representation mapping and factual outcome mapping, respectively; ˆW𝜓 be the group discrepancy at a
mini-batch level. With the probability of at least 1 − 𝛿 , we have:

𝜖PEHE (𝜓, 𝜙) ≤ 2[𝜖𝑇=1
F
(𝜓, 𝜙) + 𝜖𝑇=0

F
(𝜓, 𝜙) + 𝐵𝜓,𝜅F(R𝑇=0𝜓

,R𝑇=1
𝜓
) − 2𝜎2𝑌 + O(𝑁

− 2

d )], (15)

where 𝜖𝑇=1
F

and 𝜖𝑇=0
F

are the expected errors of factual outcome estimation, 𝑁 is the batch size, 𝜎2
𝑌
is the variance of outcomes, 𝐵𝜓,𝜅 is a constant

term, and O(·) is a sampling complexity term.

Proof. According to Theorem 2 we have:

𝜖PEHE (𝜓, 𝜙) ≤ 2

(
𝜖T=0
F
(𝜓, 𝜙) + 𝜖T=1

F
(𝜓, 𝜙) + 𝐵𝜓 IPMF

(
𝜌T=1
𝜓

, 𝜌T=0
𝜓

)
− 2𝜎2𝑌

)
. (16)

Assuming that there exists a constant 𝐵𝜓 > 0, such that for 𝑡 ∈ {0, 1}, 1

𝐵𝜓
· 𝑙𝜓,𝜙 (𝑥, 𝑡) belongs to the family of 1-Lipschitz functions.

According to Lemma 1, we have

𝜖PEHE (𝜓, 𝜙) ≤ 2

(
𝜖T=0
F
(𝜓, 𝜙) + 𝜖T=1

F
(𝜓, 𝜙) + 𝐵𝜓W

(
𝜌T=1
𝜓

, 𝜌T=0
𝜓

)
− 2𝜎2𝑌

)
. (17)

Following Definition 2.3, let R𝑇=1
𝜓

and R𝑇=0
𝜓

be the empirical distributions of representations at a mini-batch level, both containing 𝑛

units. Then, according to Lemma 2 and 3, we have:

W
(
𝜌T=1
𝜓

, 𝜌T=0
𝜓

)
≤ 1

𝜅

(
𝜅 ∗W

(
𝜌T=1
𝜓

, 𝜌T=0
𝜓

)
+ (1 − 𝜅) ∗ G

(
𝜌T=1
𝜓

, 𝜌T=0
𝜓

))
≤ 1

𝜅

(
𝜅 ∗W

(
R𝑇=1
𝜓

,R𝑇=0
𝜓

)
+ (1 − 𝜅) ∗ G

(
R𝑇=1
𝜓

,R𝑇=0
𝜓

)
+ 𝐶4

√
𝑛
+
(
2 +𝐶4

)
𝑛−

2

d

)
≤ 1

𝜅

(
F
(
R𝑇=1
𝜓

,R𝑇=0
𝜓

)
+ 𝐶4

√
𝑛
+
(
2 +𝐶4

)
𝑛−

2

d

)
,

(18)

where W denotes the Wasserstein discrepancy, G denotes the Gromov discrepancy, F denotes the fused Wasserstein discrepancy. These

discrepancies will be introduced in the next section. Notably, there are two terms in the cost function of F as per (5), which corresponding

to the cost functions ofW and G, respectively. Therefore,W and G can be viewed as minimizing the two terms of the cost function of F
individually, which often yields smaller values.

Denote 𝐵𝜓,𝜅 = 𝐵𝜓 /𝜅. Combing (18) and (17), we have

𝜖PEHE (𝜓, 𝜙) ≤ 2[𝜖𝑇=1
F
(𝜓, 𝜙) + 𝜖𝑇=0

F
(𝜓, 𝜙) + 𝐵𝜓,𝜅F(R𝑇=0𝜓

,R𝑇=1
𝜓
) − 2𝜎2𝑌 + O(𝑛

− 2

d )], (19)

where O(𝑛−
2

d ) = 1

𝜅

(
𝐶4

√
𝑛
+
(
2 +𝐶4

)
𝑛−

2

d

)
. The proof is completed. □
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