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1. Introduction

Sparse regularization is a powerful and widely adopted strategy for tackling

challenges in high-dimensional machine learning and signal processing problems.

Its effectiveness is well-established through practical applications and rigorous

theoretical investigations, as exemplified by the success of techniques like LASSO5

(Fonti & Belitser, 2017; Kim & Paik, 2019; Celentano et al., 2023).

One of the remarkable strengths of sparse regularization lies in its dual func-

tionality—it simultaneously performs parameter estimation and feature selection.

This unique characteristic produces results that are not only informative but

also highly interpretable, as it identifies critical variables. Moreover, it effectively10

mitigates overfitting by eliminating redundant features. These attributes have

propelled sparse regularization to remarkable achievements across diverse do-

mains, spanning machine learning and signal processing. Additionally, extensive

theoretical research has bolstered its efficacy, complemented by the development

of efficient optimization methods, simplifying its practical implementation.15

Despite its widespread adoption, a plethora of sparse regularizers have been

introduced to facilitate the generation of sparse solutions. The ℓ0 (pseudo-)norm,

which quantifies the number of non-zero elements, serves as the most intuitive

form of sparse regularization, with the primary aim of promoting solution sparsity.

Unfortunately, problems involving ℓ0 norm regularization are typically classified20

as NP-hard (Natarajan, 1995; Hillar & Lim, 2013; Atserias & Müller, 2020;

Hirahara, 2022), posing significant computational challenges. Consequently, the

ℓ1 norm has emerged as the predominant surrogate for the ℓ0 norm [(Candes

et al., 2008; Tsagkarakis et al., 2018; Li et al., 2022b). This convex alternative

substantially simplifies the optimization process, although it is essential to25

recognize that ℓ1 regularization, while advantageous, may not consistently yield

sufficiently sparse solutions and can introduce notable estimation bias (Fan &

Li, 2001; Issa & Gastpar, 2018; Varno et al., 2022).

To overcome these limitations, a multitude of alternative sparse regularizers

have been proposed and systematically analyzed. These include the smoothly30
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clipped absolute deviation (SCAD) (Fan & Li, 2001; Li et al., 2020; Kadhim,

2023), log penalty (Candes et al., 2008; Zhang et al., 2020; Prater-Bennette

et al., 2022), capped ℓ1 (Zhang, 2010; Chen et al., 2019; Sriramanan et al., 2022),

minimax concave penalty (MCP) (Zhang, 2010; Jiang et al., 2019; Liao et al.,

2023), ℓp penalty with p in the range of (0, 1) (Zhang et al., 2014; Bore et al.,35

2019; Li et al., 2022a), and the difference between ℓ1 and ℓ2 norms (Lou et al.,

2015; Wu et al., 2018; Moayeri et al., 2022). It is noteworthy that a majority of

these regularizers operate in a separable manner, potentially limiting their ability

to capture interactions among vector entries and affecting their performance.

In a related context, it is worth mentioning that, to the best of our knowledge,40

existing sparse regularizers are primarily manually designed. This inherent

characteristic raises concerns about their seamless alignment with underlying

models to effectively promote sparsity or their suitability for data characteristics

to achieve optimal performance. Consequently, practical approaches often involve

experimenting with multiple existing sparse regularizers and selecting the most45

effective one, a process that can be cumbersome in practice. The only learning

based sparse regularizer was proposed by Wang et al. (Wang et al., 2021; Ohn &

Kim, 2022). However, the learnt sparse regularizer is separable, hence may not

fully exploit the interaction among the entries of the vector to be regularized,

preventing it from achieving even better performance.50

To address these issues, this paper focuses on learning nonseparable sparse

regularizers. Our main contributions can be summarized as follows:

• Leveraging the proximal gradient algorithm, we establish a bridge between

nonseparable multivariate regularizers and multivariate activation functions.

Notably, a substantial portion of existing sparse regularizers is separable.55

To our knowledge, this work is the first to tackle the challenge of learning

nonseparable (multivariate) sparse regularizers.

• We derive conditions that multivariate activation functions must satisfy

to qualify as proper nonseparable sparse regularizers, offering a principled

framework for effective regularization.60
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• We introduce MAF-SRL, a novel deep network that learns multivariate

activation functions. This approach allows us to implicitly obtain the

desired nonseparable sparse regularizers, seamlessly integrating them into

various machine learning tasks.

Extensive experiments showcase that the nonseparable sparse regularizers65

learned by MAF-SRL significantly outperform all existing representative sparse

regularizers in terms of both classification accuracy and sparsity.

2. Related Works

Sparse regularization has gained significant attention in various research fields

due to its ability to promote sparsity in estimation. One of the most commonly70

used sparse regularizers is the ℓ1 norm (Candes et al., 2008; Tsagkarakis et al.,

2018; Wang et al., 2022). However, it has been observed that estimation with

the ℓ1 norm can be biased (Fan & Li, 2001; Issa & Gastpar, 2018; Wang et al.,

2022) and may not always result in a sufficiently sparse solution. As a result,

researchers have been motivated to design more general sparse regularizers.75

In this regard, previous work (Fan & Li, 2001; Li et al., 2020) has proposed

that an ideal regularizer should possess three desired properties: unbiasedness,

sparsity, and continuity. The smoothly clipped absolute deviation (SCAD) (Fan

& Li, 2001; Li et al., 2020; Kadhim, 2023) was introduced as the first regularizer

to satisfy these properties. For a vector variable x = (x1, x2, . . . , xn)
T ∈ Rn,80

SCAD is defined as L(x;λ, γ) =
∑n

i=1 ℓ (xi;λ, γ) , where

ℓ (xi;λ, γ) =


λ |xi| , if |xi| ≤ λ,

2γλ|xi|−x2
i−λ2

2(γ−1) , if λ < |xi| < γλ,

λ2(γ + 1)/2, if |xi| ≥ γλ,

where λ > 0 and γ > 2. SCAD is a two-parameter function composed of three

pieces. Subsequently, researchers proposed another regularizer called minimax

concave penalty (MCP) in (Zhang, 2010; Jiang et al., 2019; Liao et al., 2023),
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which has two pieces. MCP is formulated as Lγ(x;λ) =
∑n

i=1 ℓγ (xi;λ) , with85

ℓγ (xi;λ) =

 λ |xi| − x2
i /(2γ), if |xi| ≤ γλ,

γλ2/2, if |xi| > γλ,

where parameter γ > 1. Additionally, the log penalty (Candes et al., 2008; Zhang

et al., 2020; Prater-Bennette et al., 2022) was introduced as a generalization of

the elastic net family, defined as L(x; γ) =
∑n

i=1 ℓ (xi, γ), where

ℓ (xi; γ) =
log (γ |xi|+ 1)

log(γ + 1)
,

and γ > 0. The log penalty allows for obtaining the entire continuum of penalties

from ℓ1 (γ → 0+) to ℓ0(γ → ∞) (Mazumder et al., 2011; Xu et al., 2017; Pardo-90

Simon, 2023). Another approximation of the ℓ0 norm is the capped ℓ1 (Zhang,

2008; Chen et al., 2019; Sriramanan et al., 2022), defined as

L(x; a) =
n∑

i=1

min (|xi| , a) ,

where a > 0. Notably, when a → 0,
∑

i min (|xi| , a) /a → ∥x∥0. Furthermore,

some concise forms of other norms, such as ℓp with p ∈ (0, 1) (Xu et al., 2012;

Sharif et al., 2018; Li et al., 2022a), have been considered as alternatives to95

improve ℓ1. The ℓp norm is expressed as

∥x∥p =

(
n∑

i=1

|xi|p
)1/p

.

Additionally, sparse regularizers can be combined to form new regularizers,

such as the ℓ1−2 penalty (Yin et al., 2015; Ming et al., 2019; Chen et al., 2021;

Liu & Yu, 2023), which is the difference between the ℓ1 and ℓ2 norms, and the

combined group and exclusive sparsity (CGES) (Yoon & Hwang, 2017; Bui et al.,100

2021; Tang et al., 2023).

While all the above sparse regularizers are handcrafted, (Wang et al., 2021)

first proposed a strategy to learn sparse regularizers. They utilized the relation-

ship between regularizers and activation functions via the proximal operator.

Then learning the regularizers can be converted to learning the activation func-105

tions. This paper is a significant extension of (Wang et al., 2021) although

inherits some ingredients from (Wang et al., 2021).
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It is worth noting that except for the ℓp norms where p ̸= 0, 1, all existing

sparse regularizers, including those learnt (Wang et al., 2021), are separable.

This implies that they are composed of sums of functions of individual entries110

of a given vector. While separable regularizers have been widely used, their

inability to fully exploit interactions among the vector entries may limit their

effectiveness in achieving better performance. Therefore, in this paper, we aim

to learn non-separable sparse regularizers.

3. The Proposed MAF-SRL Approach115

3.1. Connection between Sparse Regularizer and Activation Function

When solving a learning model of the form

min
x

ϕ(x), (1)

it is often necessary to add a regularizer g(x) to the objective function and solve

the regularized problem

min
x

[ϕ(x) + g(x)] (2)

instead. This is done to address challenges in solving (1), such as non-unique120

solutions or to incorporate prior information about the desired solution, such as

sparsity. By adding an appropriate regularizer, the original problem becomes

well-posed, allowing us to obtain solutions with desired properties.

When ϕ is L-smooth, meaning that it satisfies the following condition,

∥∇ϕ(x)−∇ϕ(y)∥F ≤ L∥x− y∥F , (3)

where L is called the Lipschitz constant in the sequel, a common algorithm for125

solving problem (2) is the proximal gradient method (Lu et al., 2015). When

applied to (2), the iterations of the proximal gradient method are as follows:

x(k+1) =argmin
x

ϕ
(
x(k)

)
+
〈
∇ϕ

(
x(k)

)
,x− x(k)

〉
+

L

2

∥∥∥x− x(k)
∥∥∥2
F
+ g(x)

= argmin
x

L

2

∥∥∥∥x− x(k) +
1

L
∇ϕ

(
x(k)

)∥∥∥∥2
F

+ g(x).

(4)
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Let r(k) = x(k) − 1
L∇ϕ

(
x(k)

)
, then solving (4) requires solving the following

optimization problem:

Proxαg(r
(k)) = argmin

x

[
1

2
∥x− r(k)∥2F + αg(x)

]
, (5)

where Proxαg(·) is the proximal operator associated with the function g(·) and130

α > 0 is a parameter. Therefore, the solution to (2) can be obtained through

the following iteration:

x(k+1) = ProxL−1g

(
x(k) − 1

L
∇ϕ

(
x(k)

))
. (6)

It is worth noting that proximal operators are monotone (Lu et al., 2015),

regardless of the convexity of g. This property allows them to serve as activation

functions in deep neural networks (DNNs). Conversely, some activation func-135

tions can be viewed as proximal operators of regularizers, although this inverse

correspondence has only been explored in the univariate case (Li et al., 2019;

Bibi et al., 2019; Combettes & Pesquet, 2020). This limitation may arise from

the fact that, up to now, only univariate activation functions have been widely

used.140

In the case of a non-decreasing univariate activation function ξ(x) : R → R,

we can derive the corresponding univariate regularizer as follows (Li et al., 2019):

g(x) =

∫ x

0

(
ξ−1(y)− y

)
dy =

∫ x

0

ξ−1(y)dy − 1

2
x2, (7)

where ξ−1(y) represents the inverse function of ξ(y). This relationship between

univariate regularizers and activation functions is well-known (Li et al., 2019; Bibi

et al., 2019; Combettes & Pesquet, 2020; Wang et al., 2021). However, Equation145

(7) only gives the expression for univariate regularizers. In the following, we

extend this deduction from the univariate case to the multivariate case.

It is worth noting that any multivariate regularizer can be approximated

using the following form (Chen & Chen, 1995):

M∑
i=1

qig
(
aTi x+ bi

)
, (8)
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where M , g, q, A, and b are appropriately chosen parameters. Here, A =150

(a1, · · · ,aM ) , q = (q1, · · · , qM )T , and b = (b1, · · · , bM )T . Equation (8) can be

seen as a neural network with only one hidden layer.

To simplify the computation of parameters in (8) and avoid the need for high

accuracy in modeling the regularizer, we set M = n. Inspired by (7), we propose

a parameterization of the regularizer as follows:155

G(x) =
n∑

i=1

qi

∫ aT
i x+bi

0

ξ̂−1(y)dy − 1

2
∥x∥2, (9)

where ξ̂(y) is a monotonically non-decreasing univariate activation function.

Furthermore, we define a multivariate activation function:

ξ(x) = A−T
[
ξ̂
(
(Adiag(q))−1x

)
− b

]
: Rn → Rn, (10)

where ξ̂ is applied entry-wise to the vector (Adiag(q))−1x. Based on this, we

have the following theorem.

Theorem 1. Given the multivariate activation function ξ in (10), for any160

A = (a1, · · · ,an) , q = (q1, · · · , qn)T , and b = (b1, · · · , bn)T , such that ξ is well

defined, the solution to the proximal operator

y = argmin
y

1

2
∥y − x∥2 + G(y) (11)

with G given in (9) is exactly

y = ξ(x).

Proof: The optimality condition of (11) is:

0 ∈
n∑

i=1

qiξ̂
−1
(
aTi y + bi

)
ai − x. (12)

Since A is invertible, its columns are independent. Furthermore, since all qi’s165

are non-zero, we can uniquely represent x as

x =

n∑
i=1

qiβiai = Adiag(q)β, (13)
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where β = (β1, · · · , βn)
T . Then ξ̂−1

(
aTi y + bi

)
= βi, i = 1, · · · , n, provides a

solution to (12), and we have

aTi y = ξ̂ (βi)− bi, i = 1, · · · , n, (14)

which can be written in matrix form as

ATy = ξ̂(β)− b. (15)

Therefore, the solution to (11) is given by170

y =A−T (ξ̂(β)− b)

=A−T
[
ξ̂
(
(Adiag(q))−1x

)
− b

]
=ξ(x).

(16)

■

Thus, a connection is established between the non-separable multivariate

regularizer G(x) and the multivariate activation function ξ(x) through the mul-

tivariate proximal operator. For instance, by choosing a multivariate regularizer,

we can uniquely determine the multivariate activation function as its proximal175

operator. Conversely, if we choose a multivariate activation function in the

form of (10), where the parameters satisfy certain conditions (to be specified in

Section 3.2 after ξ̂ is parameterized), then the multivariate regularizer is also

uniquely determined. With this analysis, learning a multivariate regularizer G(x)

can be transformed into learning a multivariate activation function ξ(x) that180

satisfies certain conditions.

3.2. Structure of the Activation Function

In order to learn the activation function ξ(x), we need to learn the parameters

A, q, and b, as well as the univariate function ξ̂. To ensure that G(x) serves as

a sparse regularizer, the proximal operator ξ(x) should be monotone and map a185

neighborhood of 0 to 0 (i.e., 0 ∈ ξ−1(0)).

For ease of learning, we can first learn

ξ(x) = ÂT [ξ̂(diag(q̂)Âx)− b] (17)
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and then obtain A = Â−1 and q = 1
q̂ , where the reciprocal is computed

entry-wise. By defining x̂ = Âx, we have

⟨ξ(x)− ξ(y),x− y⟩ =
〈
ÂT [ξ̂(diag(q̂)Âx)− b]− ÂT [ξ̂(diag(q̂)Ây)− b],x− y

〉
=⟨ξ̂(diag(q̂)x̂)− ξ̂(diag(q̂)ŷ), x̂− ŷ⟩.

(18)

Since ξ̂ is non-decreasing and entry-wise, the above expression is non-negative190

for all x and y if and only if q̂ > 0. Thus, ξ(x) is monotone if q̂ > 0. However,

even with q̂ > 0, the regularizer G(x) may still be non-convex due to its second

term − 1
2∥x∥

2. If we want G(x) to be convex and ξ̂ is differentiable, we can

require
∑n

i=1
qi

ξ̂′(aT
i y+bi)

aia
T
i ≽ I. However, since convexity is not required for

G(x), this condition is not enforced during the learning process. Actually, we195

only require that G(x) is non-negative. Without loss of generality, we can fix

ξ̂(0) = 0 by allowing b to compensate for the offset of ξ̂.

It is easy to see that if we choose b = 0 and ξ̂(x) = 0 for x ∈ [−b, a],

where a, b > 0, then ξ(x) = 0 when ∥x∥2 ≤ min(a,b)

maxi{|q̂i|∥âi∥2}
, where Â =

(â1, â2, · · · , ân)T . Therefore, it is easy to make ξ(x) all zero. To make part of200

ξ(x) zero, we need u = ξ̂(diag(q̂)Âx) to not be all zeros. Most entries of u

should be zeros to ensure that ξ(x) = ÂTu is sparse. This requires Â to be a

sparse matrix. In summary, the parameters A, q, and b, as well as the function

ξ̂, should satisfy the following conditions:

1. q̂ > 0; (19)

2. Â is sparse and invertible; (20)

3. ξ̂ is non-decreasing and ξ̂(0) = 0; (21)

4. G(x) ≥ 0. (22)

In the following, we investigate how to satisfy conditions (21) and (22).205

Since ξ̂ is a function, we need to parameterize it first. We use a piecewise linear

function to approximate it as (Wang et al., 2021) does, denoted as ξ̂(µ1,µ2)(x)
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with two sets of learnable parameters (µ1, µ2):

ξ̂(µ1,µ2)(x) =



η2 (x− δ2) + η1 (δ2 − δ1) , δ2 ≤ x,

η1 (x− δ1) , δ1 ≤ x < δ2,

0, −δ1 ≤ x < δ1,

η1 (x+ δ1) , −δ2 ≤ x < −δ1,

η2 (x+ δ2) + η1 (δ1 − δ2) , x < −δ2,

(23)

where x ∈ R, 0 ≤ δ1 ≤ δ2, and η1, η2 > 0 are learnable parameters, ensuring that

ξ̂ is non-decreasing. Here, µ1 = (η1, δ1) and µ2 = (η2, δ2). The inverse function210

ξ̂−1
(µ1,µ2)

(y) can be computed as follows:

ξ̂−1
(µ1,µ2)

(y) =



y−η1(δ2−δ1)
η2

+ δ2, η1 (δ2 − δ1) ≤ y,

y
η1

+ δ1, 0 ≤ y < η1 (δ2 − δ1) ,

[−δ, δ], y = 0,

y
η1

− δ1, −η1 (δ2 − δ1) ≤ y < 0,

y−η1(δ2−δ1)
η2

− δ2 y < −η1 (δ2 − δ1) .

(24)

Therefore, the function g(x) in Equation (7), learned by parameterized activation

function ξ̂−1
(µ1,µ2)

(y), can be derived as:

g(x) =



(
1

2η2
− 1

2

)
x2

+
(
δ2 − η1(δ2−δ1)

η2

)
x

+η1(η1−η2)
2η2

(δ2 − δ1)
2
, x ≥ η1 (δ2 − δ1) ,(

1
2η1

− 1
2

)
x2 + δ1x, 0 ≤ x < η1 (δ2 − δ1) ,

g(−x). x < 0.

(25)

It is observed that g(x) is symmetric about the y-axis. When x = 0, g(x) = 0.

To ensure that G(x) is nonnegative, we may require that g(x) ≥ 0. So the215

problem of choosing g(x) is the same as that in (Wang et al., 2021). By the

deduction in (Wang et al., 2021), the conditions for (21) and (22) are as follows:

η1 > 0, 1 ≥ η2 > 0,

δ2 ≥ δ1 ≥ max
{
0, η1−1

η1
δ2

}
.

(26)

Finally, the constraints for the learnable parameters are conditions (19), (20),

and (26).
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3.3. Learning the Activation Function220

Given an objective function ϕ, we can design a neural network architecture

to implicitly learn the regularizer G based on (6) (where g is replaced by G).

By our design, the proximal operator ProxL−1G is equivalent to a multivariate

activation function. We can rewrite (6) as:

x(k+1) = ξ(Â,q̂,b,U)

(
x(k) − 1

L
∇ϕ

(
x(k)

))
. (27)

Here, ξ(Â,q̂,b,U) is a multivariate activation function parameterized by Â, q̂,b,225

and U , where U = {µ1, µ2}, as shown in (17).

Equation (27) represents the k-th layer of our designed network. The pa-

rameters can be learned using the projected gradient method since they are

constrained. Automatic differentiation in deep learning platforms allows us to

compute the gradient efficiently, so we only need to focus on computing the230

projection onto the constraints.

Directly projecting the parameters U = (η1, η2, δ1, δ2)
T
onto (26) is difficult.

Following (Wang et al., 2021), we can first project (η1, η2) and then project

(δ1, δ2) after fixing (η1, η2).

For completeness, we provide the results of how to compute the projections235

in (Wang et al., 2021) below. The projection of (η1, η2) is formulated as:

η1 = max {η1, ϵ} , η2 = min {max {η1, ϵ} , 1} , (28)

where ϵ is a small positive value. After fixing (η1, η2), we can project (δ1, δ2)

onto

Sδ =

{
(δ1, δ2) | δ2 ≥ δ1 ≥ max

{
0,

η1 − 1

η1
δ2

}}
. (29)

More specifically, when 0 < η1 ≤ 1, the projection Proj (δ1, δ2) of (δ1, δ2)

onto Sδ is given by:240

Proj (δ1, δ2) =



(δ1, δ2) , δ1 ≥ 0, δ2 ≥ 0, δ1 ≤ δ2,

(0, δ2) , δ1 < 0, δ2 > 0,

(0, 0), δ2 ≤ min {0,−δ1} ,(
δ1+δ2

2 , δ1+δ2
2

)
, δ1 ≥ |δ2| .

(30)
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When η1 > 1, the projection of (δ1, δ2) onto Sδ becomes:

Proj (δ1, δ2) =



(δ1, δ2) , δ2 ≥ 0, η1−1
η1

δ2 ≤ δ1 ≤ δ2,

(ρ1δ1 + ρ2δ2, ρ2δ1 + ρ3δ2) ,
η1

1−η1
δ2 < δ1 < η1−1

η1
δ2,

(0, 0), δ2 ≥ 0, δ1 ≤ η1

1−η1
δ2,

(0, 0), δ2 ≤ min {0,−δ1} ,(
δ1+δ2

2 , δ1+δ2
2

)
, δ1 ≥ |δ2| ,

(31)

where the parameters {ρ1, ρ2, ρ3} are given by ρ1 = (η1−1)2

η2
1+(η1−1)2

, ρ2 = η1(η1−1)

η2
1+(η1−1)2

,

and ρ3 =
η2
1

η2
1+(η1−1)2

.

When dealing with condition (19), we project q̂ onto the set {v|v ≥ ϵ1} to

ensure its invertibility, where ϵ is a small positive number and 1 is an all-one245

vector. For condition (20), we manually specify the sparsity (percentage of

non-zero weights) of Â to be between 30% and 50%, which guarantees that Â is

both sparse and invertible. The invertibility of Â is not an issue when it is not

too sparse since it is somewhat random.

Since our method for learning the sparse regularizer is based on learning250

a multivariate activation function, we refer to it as MAF-SRL (Multivariate

Activation Functions for Sparse Regularizer Learning). Algorithm 1 summarizes

the MAF-SRL process, where we also make the Lipschitz constant L learnable

instead of manually estimating it. After training, we obtain the optimal solution

x∗, the learned parameters Â, q̂,b,U , as well as the sparse output. Although255

the sparse regularizer can also be obtained as it has the same parameters as the

activation function, we do not explicitly write it down since the sparse solution

has already been obtained.

4. Experiments

4.1. Experimental Analysis on Classification260

To evaluate the performance of our proposed method, we conduct experiments

on several real-world public classification datasets. We begin by selecting a
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Algorithm 1 Sparse Regularizers Learning via Multivariate Activation Functions

(MAF-SRL)

Input: A differentiable function ϕ(x), the number of layers N , a set of

parameters x related to training data that need to be solved.

Output: The optimal solution x∗, learned parameters Â, q̂,b,U .

Initialize learnable parameters Â(0), q̂(0),b(0),U(0), Lipschitz constant L(0),

and the counter l = 0.

Initialize x(0) = ξ(Â,q̂,b,U)
(
x− 1

L(0)∇ϕ(x)
)
.

repeat

for i = 1 to N do

x(i) = ξ(Â(i),q̂(i),b(i),U(i))
(
x(i−1) − 1

L(i−1)∇ϕ
(
x(i−1)

))
.

end for

Update Â(l), q̂(l),b(l),U(l) with projected gradient descent, where the loss

function L(Â, q̂,b,U) = 1
2

∥∥x(N) − x
∥∥2
F
.

Update counter l = l + 1.

until convergent

return x∗ = x(N), Â, q̂,b,U .

backbone network with the ReLU function f(x) = max(0, x) as the univariate

activation function. One-hot encoding is employed to represent different classes.

The softmax activation function is applied to the output layer, and the loss265

function used is the cross entropy. To ensure a fair comparison, we use the same

backbone network on each specific dataset.

The baselines we compare with MAF-SRL are backbone networks with

existing hand-crafted sparse regularizers added to their loss functions. For

MAF-SRL, the ϕ in Algorithm 1 refers to the loss function of the backbone270

network.

We implement the models using Tensorflow. The model weights are initialized

with random values drawn from a normal distribution. The size of the minibatch

depends on the scale of the datasets. We set the number of layers in MAF-SRL
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as N = 16 and fix the learning rate at lr = 0.1. To obtain more reliable results,275

we run the training process five times for each experiment. The experiments

are repeated 20 times, and the average performance is reported. Accuracy and

weight sparsity (the ratio of nonzero weights) are used as evaluation metrics.

4.1.1. Baselines and Datasets

We compare our MAF-SRL with several representative state-of-the-art sparse280

regularizers. ResNet50 is used as the backbone network. The following regulariz-

ers are considered: ℓ1 (Candes et al., 2008; Tsagkarakis et al., 2018), ℓ1−2 (Yin

et al., 2015; Ming et al., 2019), sparse group lasso (SGL) (Simon et al., 2013),

combined group and exclusive sparsity (CGES) (Yoon & Hwang, 2017), smoothly

clipped absolute deviation (SCAD) (Fan & Li, 2001), capped-ℓ1 (Zhang, 2010),285

log-sum penalty (LSP) (Candes et al., 2008), minimax concave penalty (MCP)

(Zhang et al., 2010), and deep sparse regularizer learning (DSRL) (Wang et al.,

2021).

We selected several public classification datasets for our experiments:

• Fashion-MNIST (Xiao et al., 2017): This dataset consists of a training set290

with 60,000 instances and a test set with 10,000 examples. Each example

is a 28×28 grayscale image associated with one of 10 classes.

• MNIST (LeCun et al., 1998): This dataset consists of 70,000 grayscale

images of handwritten digits, which can be classified into 10 classes. It

includes 60,000 training instances and 10,000 test samples.295

• DIGITS (Netzer et al., 2011): This is a toy dataset of handwritten digits,

composed of 1,797 grayscale images.

• CIFAR-10 (Krizhevsky et al., 2009): This dataset consists of 60,000 color

images belonging to 10 classes, with 6,000 images per class.

• CIFAR-100 (Krizhevsky et al., 2009): This dataset is similar to CIFAR-10300

but contains 100 categories instead. It consists of 60,000 color images

divided into 100 classes, with 600 images per class.
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• Sensorless Drive Diagnosis (SDD) (Bayer et al., 2013): This dataset

is downloaded from the UCI repository and contains 58,508 examples

obtained under 11 different operating conditions.305

• PENDIGITS (Alimoglu & Alpaydin, 1997): This dataset is composed

of 10,992 grayscale images of handwritten digits 0-9. It includes 7,494

training instances and 3,498 test samples.

• Caltech-101 (Fei-Fei et al., 2004): This dataset consists of images from

101 object categories, with a varying number of images per category. Most310

images are of medium resolution, around 300×300 pixels.

4.1.2. Experimental Results and Analysis

To evaluate the effectiveness of different regularization methods for deep neu-

ral networks, we use two key metrics: prediction accuracy and weight sparsity in

the backbone network. In general, a higher accuracy reflects better classification315

performance, while a lower weight sparsity indicates stronger regularization that

helps to prevent overfitting.

Table 1 provides a comprehensive comparison of all tested models on vari-

ous datasets. The results demonstrate that our proposed MAF-SRL method

consistently outperforms other baseline methods in terms of both accuracy and320

sparsity. Specifically, MAF-SRL achieves the highest accuracy and the lowest

weight sparsity on all tested datasets, demonstrating its effectiveness in improving

the generalization and interpretability of deep neural networks.

This superior performance can largely be attributed to the learned multi-

variate sparse regularizer adopted in MAF-SRL. Unlike traditional hand-crafted325

regularization methods, this flexible approach can effectively capture the intrinsic

correlations among different features and reduce their redundancy while retaining

their discriminative power. Moreover, MAF-SRL has the capability to adaptively

adjust the strength of regularization based on the complexity and characteristics

of different datasets, resulting in better generalization of the model. Furthermore,330

our proposed method can significantly reduce the number of parameters in the
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Table 1: Performance of different methods on the datasets. The weight sparsity is the ratio of

nonzero weights in the backbone network.

Dataset Measure ℓ1 ℓ1−2 SGL CGES SCAD capped-ℓ1 LSP MCP DSRL MAF-SRL (ours)

Fashion-MNIST accuracy 0.9124 0.9281 0.8924 0.8873 0.8671 0.8982 0.9031 0.9127 0.9358 0.9421

weight sparsity 0.2398 0.4363 0.4218 0.2819 0.5728 0.6629 0.2763 0.3397 0.2546 0.1537

MNIST accuracy 0.9642 0.9538 0.9863 0.9837 0.9824 0.9563 0.9563 0.9623 0.9816 0.9921

weight sparsity 0.1727 0.2735 0.1029 0.2013 0.1197 0.1126 0.0928 0.3328 0.1596 0.0629

DIGITS accuracy 0.8638 0.8837 0.8542 0.8837 0.8682 0.8538 0.8772 0.8831 0.8941 0.9028

weight sparsity 0.3387 0.2928 0.2901 0.4283 0.4419 0.2765 0.5319 0.4019 0.2079 0.1774

CIFAR-10 accuracy 0.8238 0.8188 0.8092 0.8542 0.8452 0.8562 0.8458 0.8229 0.8643 0.8759

weight sparsity 0.6784 0.5829 0.5429 0.4492 0.5186 0.6294 0.5529 0.3165 0.3081 0.2396

CIFAR-100 accuracy 0.7329 0.7219 0.6872 0.7239 0.6549 0.7129 0.7278 0.7362 0.7511 0.7769

weight sparsity 0.5587 0.4982 0.8829 0.7623 0.4927 0.6549 0.5498 0.4892 0.4672 0.3225

SDD accuracy 0.9829 0.9669 0.9539 0.9827 0.9567 0.9632 0.9862 0.9685 0.9846 0.9941

weight sparsity 0.3092 0.4294 0.2397 0.4962 0.2981 0.3982 0.5729 0.4839 0.2153 0.1703

PENDIGITS accuracy 0.9852 0.9902 0.9762 0.9683 0.9719 0.9629 0.9739 0.9827 0.9816 0.9958

weight sparsity 0.6931 0.3397 0.6791 0.3018 0.2973 0.7538 0.5392 0.4492 0.2371 0.1778

Caltech-101 accuracy 0.9733 0.9758 0.9883 0.9901 0.9632 0.9857 0.9683 0.9775 0.9816 0.9949

weight sparsity 0.3679 0.4133 0.5582 0.6271 0.3036 0.2279 0.3864 0.4272 0.2361 0.1762

backbone network, thereby improving the computational efficiency of the model,

which is particularly important for practical applications where computational

resources are often limited.

In addition to evaluating the performance of different regularization methods,335

we also provide visualizations and further analysis to gain insights into our

proposed MAF-SRL method.

Figure 1 showcases the learned univariate function g(x) for various datasets.

We also report the learned parameters in ξ̂(η1,η2,δ1,δ2)(x), highlighting the points

x = ±η1(δ2 − δ1) in red. It is interesting to observe that g exhibits non-340

convex behavior, particularly within the interval [−η1(δ2− δ1), η1(δ2− δ1)]. This

characteristic suggests that our learned sparse regularizer possesses a flexible

and adaptive nature, allowing it to effectively capture complex relationships in

the data.

Furthermore, we delve into the effect of the number of layers N on the345

performance of our learned sparse regularizer, as shown in Figure 2. By varying

the layer number from 2 to 30 while keeping the learning rate fixed at 0.1, we

17



-3 -2 -1 0 1 2 3

x

0.5

1

1.5

2

g(x)

(a) Fashion-MNIST

-3 -2 -1 0 1 2 3

x

0.5

1

1.5

2

g(x)

(b) MNIST

-3 -2 -1 0 1 2 3

x

0.5

1

1.5

2

g(x)

(c) DIGITS

-3 -2 -1 0 1 2 3

x

0.5

1

1.5

2

g(x)

(d) CIFAR-10

-3 -2 -1 0 1 2 3

x

0.5

1

1.5

2

g(x)

(e) CIFAR-100

-3 -2 -1 0 1 2 3

x

0.5

1

1.5

2

g(x)

(f) SDD

-3 -2 -1 0 1 2 3

x

0.5

1

1.5

2

g(x)

(g) PENDIGITS

-3 -2 -1 0 1 2 3

x

0.5

1

1.5

2

g(x)

(h) Caltech-101

Figure 1: The learned univariate function g(x) given in (25) on different datasets for clas-

sification tasks. Its associated parameters are as follows: (a) η1 = 1.37, η2 = 0.22, δ1 =

0.46, δ2 = 1.57. (b) η1 = 1.46, η2 = 0.24, δ1 = 0.44, δ2 = 1.48. (c) η1 = 1.35, η2 =

0.34, δ1 = 0.36, δ2 = 1.31. (d) η1 = 1.41, η2 = 0.62, δ1 = 0.62, δ2 = 1.49. (e) η1 =

1.33, η2 = 0.36, δ1 = 0.48, δ2 = 1.47. (f) η1 = 1.51, η2 = 0.64, δ1 = 0.89, δ2 = 1.77. (g)

η1 = 1.34, η2 = 0.45, δ1 = 0.33, δ2 = 1.33. (h) η1 = 1.44, η2 = 0.27, δ1 = 0.47, δ2 = 1.53.

analyze how increasing the depth impacts the model’s accuracy. The results

reveal a general trend where the accuracy improves with a greater number of

layers and stabilizes when N > 16. Consequently, we have chosen N = 16 as the350

optimal layer number for our previous experiments.

These additional visualizations and analyses provide valuable insights into the

behavior and adaptability of our proposed MAF-SRL method. They demonstrate

the unique characteristics of the learned sparse regularizer and its ability to

capture intricate patterns within diverse datasets. Such understanding enables355

us to leverage the strengths of MAF-SRL for improved regularization and

performance enhancement in deep neural networks.

4.2. Exploring Multi-View Clustering with MAF-SRL

To address the task of multi-view clustering, we apply our proposed MAF-

SRL algorithm to the task of multi-view clustering, using the experimental setup360

and datasets described in (Wang et al., 2021). The aim of multi-view clustering

is to cluster data based on multiple views of the same set of objects. We consider
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Figure 2: The relationship between classification performance (accuracy) and the number of

layers N in the proposed MAF-SRL.

multi-view data X = {xi}vi=1, where each view xi has n samples and di features,

and we aim to learn a cluster indicator y ∈ {0, 1}n by optimizing an affinity

matrix W from the multi-view similarity matrices W = {Wi}vi=1.365

To solve this problem, we use a simple optimization framework that minimizes

the Frobenius norm between W and a convex combination of the individual

view affinity matrices, subject to a learned sparse regularizer g(·). We separately

optimize the weights α using the ADMM algorithm, and then compute the

optimal solution for W using the MAF-SRL framework.370

Our proposed MAF-SRL method employs an activation function, as described

in equation (10), to facilitate the effective modeling of non-linear relationships

within the data. To ensure optimal performance, we carefully initialize the

parameterized activation function by tuning the values of η1 and η2 to 1.0, while

setting δ1 and δ2 to 1.0 and 2.0 respectively. It is worth noting that these375

initialization values may vary across different datasets, as the sparse regularizers

are learned in a data-driven manner.

The activation function ξ(x) beautifully encapsulates the essence of our

approach. By leveraging the learned parameters {η1, η2, δ1, δ2}, which adapt to

the characteristics of individual datasets, we can effectively capture the intricate380

relationships and patterns present in the data. Figure 3 visually demonstrates

the remarkable power of the activation function ξ(x), showcasing the learned

univariate function g(x). These visualizations provide valuable insights into

the behavior and effectiveness of the MAF-SRL approach across a range of test
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Figure 3: The learned univariate function g(x) on different datasets for multi-view clustering.

Its associated parameters are as follows: (a) η1 = 1.16, η2 = 0.11, δ1 = 0.13, δ2 = 1.18. (b)

η1 = 1.15, η2 = 0.18, δ1 = 0.15, δ2 = 1.14. (c) η1 = 1.22, η2 = 0.21, δ1 = 0.19, δ2 = 1.17. (d)

η1 = 1.49, η2 = 0.68, δ1 = 0.81, δ2 = 1.71. (e) η1 = 1.22, η2 = 0.15, δ1 = 0.27, δ2 = 1.38. (f)

η1 = 1.28, η2 = 0.31, δ1 = 0.28, δ2 = 1.35. (g) η1 = 1.28, η2 = 0.21, δ1 = 0.26, δ2 = 1.25. (h)

η1 = 1.12, η2 = 0.33, δ1 = 0.26, δ2 = 1.11.

datasets specifically designed for clustering tasks.385

It’s worth emphasizing that all the learned parameters of the activation

functions strictly adhere to the conditions specified in equation (26). This

ensures the validity and reliability of our approach in generating meaningful

and accurate clustering results. By diligently adhering to these conditions, we

guarantee that our activation function effectively captures the intrinsic structure390

of the data, ultimately leading to improved clustering performance.

In order to thoroughly evaluate the performance of our proposed MAF-SRL

method, we conducted extensive experiments on various test datasets. Table 2

presents the comprehensive results of these experiments, showcasing the clustering

accuracy metrics ACC, NMI, and ARI for different sparse regularizers. Notably,395

our MAF-SRL approach consistently outperforms all the manually designed

sparse regularizers that were included in the comparison. This remarkable

improvement in performance highlights the effectiveness and superiority of our

proposed method.

Another significant aspect of our approach is the sparsity of the learned400

sparse regularizers, which directly influences the efficiency and interpretability of
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Table 2: Clustering accuracy with different sparse regularizers, where the best performance is

highlighted in bold.

Dataset Metrics ℓ1 ℓ1−2 SGL CGES SCAD capped-ℓ1 LSP MCP DSRL MAF-SRL (ours)

ALOI ACC 0.6538 0.7146 0.6637 0.7129 0.6329 0.7792 0.7349 0.7839 0.7871 0.8374

NMI 0.7473 0.7639 0.6993 0.7742 0.6395 0.7983 0.7539 0.7439 0.7872 0.8849

ARI 0.6521 0.6029 0.5983 0.6849 0.6175 0.6844 0.6833 0.5948 0.6172 0.7219

Caltech101-7 ACC 0.7129 0.6674 0.8129 0.7749 0.8022 0.7375 0.8355 0.7983 0.8382 0.8935

NMI 0.6639 0.7174 0.6893 0.7112 0.7329 0.7121 0.6899 0.7019 0.6162 0.7495

ARI 0.5948 0.6849 0.5584 0.6439 0.5992 0.6217 0.6549 0.6493 0.6192 0.7042

Caltech101-20 ACC 0.7753 0.6139 0.7399 0.6539 0.6926 0.7893 0.7837 0.8127 0.7292 0.8539

NMI 0.6783 0.6648 0.7129 0.7583 0.6929 0.6327 0.6349 0.6649 0.6823 0.8003

ARI 0.6938 0.7093 0.6928 0.5947 0.6548 0.7326 0.7133 0.7247 0.7381 0.7749

MNIST ACC 0.8031 0.7749 0.7388 0.6928 0.7449 0.8022 0.7837 0.7762 0.8563 0.8636

NMI 0.7233 0.6649 0.6538 0.6644 0.6291 0.7129 0.7459 0.7837 0.7562 0.8329

ARI 0.7749 0.6938 0.6554 0.7034 0.7592 0.7783 0.6846 0.7206 0.7541 0.8022

NUS-WIDE ACC 0.5053 0.4927 0.4872 0.4551 0.4029 0.3993 0.4892 0.4463 0.4032 0.5339

NMI 0.1948 0.2984 0.3336 0.2841 0.3083 0.2943 0.2988 0.2875 0.2651 0.3992

ARI 0.3294 0.3847 0.2998 0.3736 0.2988 0.4539 0.3352 0.4029 0.1551 0.4873

MSRC-v1 ACC 0.8392 0.7539 0.7733 0.8024 0.7938 0.8147 0.8473 0.7939 0.8343 0.8893

NMI 0.6547 0.7749 0.7328 0.7459 0.7201 0.6993 0.7023 0.6994 0.7701 0.7938

ARI 0.6839 0.7055 0.7649 0.7351 0.6694 0.7639 0.7627 0.6891 0.6963 0.8036

ORL ACC 0.8732 0.7793 0.8265 0.8004 0.8501 0.8837 0.7322 0.7837 0.8362 0.9038

NMI 0.7935 0.8118 0.7894 0.8227 0.8092 0.7684 0.8106 0.7787 0.9132 0.8547

ARI 0.6839 0.7128 0.8005 0.7739 0.6845 0.7493 0.6949 0.7239 0.7571 0.8458

Youtube ACC 0.4297 0.4471 0.5076 0.5309 0.4727 0.5574 0.5157 0.6029 0.4213 0.6249

NMI 0.4893 0.5092 0.4474 0.3981 0.4983 0.5427 0.4971 0.4925 0.2703 0.5882

ARI 0.1939 0.3742 0.2947 0.3903 0.3131 0.2992 0.3832 0.3981 0.1833 0.4585

the backbone network. Table 3 specifically quantifies the sparsity by calculating

the ratio of nonzero weights in the backbone network. This metric provides

valuable insights into the degree of compactness and simplicity achieved by our

approach.405

Our experimental results clearly demonstrate that the MAF-SRL method

attains superior clustering accuracy while simultaneously ensuring a reasonable

level of sparsity within the learned regularizers. This balance between accuracy

and sparsity is crucial, as it allows us to effectively capture the essential charac-

teristics of the data while maintaining the interpretability and efficiency of the410

model.
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Table 3: The weight sparsity of different methods on the datasets for multi-view clustering.

Dataset ℓ1 ℓ1−2 SGL CGES SCAD capped-ℓ1 LSP MCP DSRL MAF-SRL (ours)

ALOI 0.2849 0.2283 0.2937 0.2827 0.2948 0.2301 0.2529 0.2729 0.0817 0.0803

Caltech101-7 0.2039 0.2312 0.2574 0.2739 0.2029 0.2938 0.2993 0.2395 0.0827 0.0901

Caltech101-20 0.2648 0.2947 0.2357 0.3003 0.2995 0.3021 0.2854 0.2836 0.0782 0.0715

MNIST 0.2029 0.2227 0.2518 0.2922 0.1988 0.2022 0.2837 0.1962 0.0666 0.0588

NUS-WIDE 0.2936 0.3315 0.3079 0.3128 0.2975 0.3287 0.3762 0.3529 0.1187 0.1125

MSRC-v1 0.2531 0.3128 0.2483 0.2839 0.2617 0.2491 0.2148 0.2455 0.0820 0.0802

ORL 0.1321 0.1732 0.1206 0.1995 0.2012 0.1883 0.1381 0.1937 0.0287 0.0262

Youtube 0.2947 0.2348 0.2865 0.2917 0.2649 0.2833 0.2846 0.2753 0.0709 0.0851

An important aspect of our research is the investigation of the performance

of the MAF-SRL method for clustering tasks with varying numbers of layers.

To thoroughly evaluate the impact of layer number on clustering accuracy, we

conducted experiments and obtained insightful results, as illustrated in Figure415

4. In these experiments, we examined the clustering performance metrics ACC,

NMI, and ARI while systematically varying the number of layers in the MAF-

SRL model. The layer number was incrementally increased from 2 to 30, and

a fixed learning rate lr of 0.15 was utilized throughout. Notably, the results

demonstrate a significant pattern: as the number of layers increases, the clustering420

accuracy generally improves. This observation aligns with our expectations, as the

successive addition of layers allows for more complex and abstract representations

to be learned by the model. Consequently, the model becomes increasingly

capable of capturing intricate patterns and relationships within the data, leading

to enhanced clustering accuracy. However, it is noteworthy that there is a point425

of saturation in the accuracy improvement trend. Specifically, the performance

stabilizes when the number of layers exceeds 16. Beyond this point, the additional

layers do not contribute significantly to further accuracy improvements. This

finding suggests that there is an optimal point of layer number for achieving the

best clustering performance with the MAF-SRL method.430

The MAF-SRL approach excels at clustering tasks by utilizing data-driven

sparse regularizers and our proposed multivariate activation functions. Our

experimental results show that the best clustering accuracy is achieved with
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(b) Caltech101-7

0 10 20 30
0.5

0.6

0.7

0.8

0.9

1

Layer number N

C
lu

s
te

ri
n

g
 a

c
c
u

ra
c
y

 

 

ACC

NMI

ARI

(c) Caltech101-20
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(d) MNIST
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(f) MSRC-v1
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Figure 4: The relations among clustering accuracy (ACC, ARI and NMI) and layer number in

{2, 4, · · · , 30} of the proposed method MAF-SRL.

the most sparse outputs (lowest percentage of nonzero weights), demonstrating

the effectiveness of the learned sparse regularizers. These regularizers are more435

robust when applied to various datasets due to their ability to learn a data-

driven sparse representation of similarity matrices. MAF-SRL’s adaptability and

efficiency in learning such sparse representations using multivariate activation

functions make it a promising solution for tackling complex clustering tasks

across different domains. Furthermore, the learned sparse regularizer exhibits440

strong generalization capability, which makes MAF-SRL practical for real-world

applications.

5. Conclusion

In this paper, we propose MAF-SRL, a method for learning non-separable

multivariate sparse regularizers implicitly. Following (Wang et al., 2021), we445

establish a correspondence between multivariate sparse regularizers and multi-

variate activation functions through the proximal operator, thereby converting

the learning of a multivariate sparse regularizer into the learning of a multivari-

ate activation function. We derive the conditions that the parameters of the

multivariate activation function should satisfy and employ the projected gradient450

method to train these parameters. Experimental results demonstrate that our

MAF-SRL framework achieves higher accuracy and sparser weights compared to
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existing hand-crafted sparse regularizers.

References

Alimoglu, F., & Alpaydin, E. (1997). Combining multiple representations and455

classifiers for pen-based handwritten digit recognition. In Proceedings of the

Fourth International Conference on Document Analysis and Recognition (pp.

637–640 vol.2). volume 2.

Atserias, A., & Müller, M. (2020). Automating resolution is NP-hard. Journal

of the ACM , 67 , 1–17.460

Bayer, C., Enge-Rosenblatt, O., Bator, M., & Mönks, U. (2013). Sensorless

drive diagnosis using automated feature extraction, significance ranking and

reduction. In 2013 IEEE 18th Conference on Emerging Technologies Factory

Automation (ETFA) (pp. 1–4).

Bibi, A., Ghanem, B., Koltun, V., & Ranftl, R. (2019). Deep layers as stochastic465

solvers. In 7th International Conference on Learning Representations, ICLR.

Bore, J. C., Ayedh, W. M. A., Li, P., Yao, D., & Xu, P. (2019). Sparse

autoregressive modeling via the least absolute LP-norm penalized solution.

IEEE Access, 7 , 40959–40968.

Bui, K., Park, F., Zhang, S., Qi, Y., & Xin, J. (2021). Structured sparsity470

of convolutional neural networks via nonconvex sparse group regularization.

Frontiers in applied mathematics and statistics, 6 , 529564.

Candes, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by

reweighted L1 minimization. Journal of Fourier Analysis and Applications,

14 , 877–905.475

Celentano, M., Montanari, A., & Wei, Y. (2023). The lasso with general gaussian

designs with applications to hypothesis testing. The Annals of Statistics, 51 ,

2194–2220.

24



Chen, M., Wang, Q., Chen, S., & Li, X. (2019). Capped l1-norm sparse

representation method for graph clustering. IEEE Access, 7 , 54464–54471.480

Chen, T., & Chen, H. (1995). Universal approximation to nonlinear operators

by neural networks with arbitrary activation functions and its application to

dynamical systems. IEEE Transactions on Neural Networks, 6 , 911–917.

Chen, Y., Yamagishi, M., & Yamada, I. (2021). A generalized moreau enhance-

ment of l12-norm and its application to group sparse classification. In 2021485

29th European Signal Processing Conference (EUSIPCO) (pp. 2134–2138).

IEEE.

Combettes, P. L., & Pesquet, J.-C. (2020). Deep neural network structures

solving variational inequalities. Set-Valued and Variational Analysis, (pp.

1–28).490

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood

and its oracle properties. Journal of the American Statistical Association, 96 ,

1348–1360.

Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models

from few training examples: An incremental bayesian approach tested on495

101 object categories. In 2004 Conference on Computer Vision and Pattern

Recognition Workshop (pp. 178–178). IEEE.

Fonti, V., & Belitser, E. (2017). Feature selection using lasso. VU Amsterdam

Research Paper in Business Analytics, 30 , 1–25.

Hillar, C. J., & Lim, L.-H. (2013). Most tensor problems are NP-hard. Journal500

of the ACM , 60 , 1–39.

Hirahara, S. (2022). Np-hardness of learning programs and partial mcsp. In

2022 IEEE 63rd Annual Symposium on Foundations of Computer Science

(FOCS) (pp. 968–979). IEEE.

25



Issa, I., & Gastpar, M. (2018). Computable bounds on the exploration bias.505

In 2018 IEEE International Symposium on Information Theory (ISIT) (pp.

576–580). IEEE.

Jiang, H., Zheng, W., Luo, L., & Dong, Y. (2019). A two-stage minimax concave

penalty based method in pruned adaboost ensemble. Applied Soft Computing ,

83 , 105674.510

Kadhim, A. A. S. (2023). The smoothly clipped absolute deviation (scad) penalty

variable selection regularization method for robust regression discontinuity

designs. In AIP Conference Proceedings. AIP Publishing volume 2776.

Kim, G.-S., & Paik, M. C. (2019). Doubly-robust lasso bandit. Advances in

Neural Information Processing Systems, 32 , 5877–5887.515

Krizhevsky, A., Hinton, G. et al. (2009). Learning multiple layers of features

from tiny images.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE , 86 , 2278–2324.

Li, G., Ma, C., & Srebro, N. (2022a). Pessimism for offline linear contextual520

bandits using lp confidence sets. Advances in Neural Information Processing

Systems, 35 , 20974–20987.

Li, J., Fang, C., & Lin, Z. (2019). Lifted proximal operator machines. In

Proceedings of the AAAI Conference on Artificial Intelligence (pp. 4181–4188).

volume 33.525

Li, X. P., Shi, Z.-L., Liu, Q., & So, H. C. (2022b). Fast robust matrix completion

via entry-wise l0-norm minimization. IEEE Transactions on Cybernetics, .

Li, Z., Wan, C., Tan, B., Yang, Z., & Xie, S. (2020). A fast DC-based dictionary

learning algorithm with the scad penalty. Elsevier.

26



Liao, X., Wei, X., & Zhou, M. (2023). Minimax concave penalty regression530

for superresolution image reconstruction. IEEE Transactions on Consumer

Electronics, .

Liu, Z., & Yu, S. (2023). Alternating direction method of multipliers based

on l20-norm for multiple measurement vector problem. arXiv preprint

arXiv:2303.10616 , .535

Lou, Y., Yin, P., He, Q., & Xin, J. (2015). Computing sparse representation

in a highly coherent dictionary based on difference of L1 and L2. Journal of

Scientific Computing , 64 , 178–196.

Lu, C., Zhu, C., Xu, C., Yan, S., & Lin, Z. (2015). Generalized singular value

thresholding. In Proceedings of the AAAI Conference on Artificial Intelligence.540

volume 29.

Mazumder, R., Friedman, J. H., & Hastie, T. (2011). Sparsenet: Coordinate

descent with nonconvex penalties. Journal of the American Statistical Associ-

ation, 106 , 1125–1138.

Ming, D., Ding, C., & Nie, F. (2019). A probabilistic derivation of LASSO545

and L1-2-norm feature selections. In Proceedings of the AAAI Conference on

Artificial Intelligence (pp. 4586–4593). volume 33.

Moayeri, M., Banihashem, K., & Feizi, S. (2022). Explicit tradeoffs between

adversarial and natural distributional robustness. Advances in Neural Infor-

mation Processing Systems, 35 , 38761–38774.550

Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM

Journal on Computing , 24 , 227–234.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011).

Reading digits in natural images with unsupervised feature learning.

Ohn, I., & Kim, Y. (2022). Nonconvex sparse regularization for deep neural555

networks and its optimality. Neural computation, 34 , 476–517.

27



Pardo-Simon, L. (2023). Splitting hairs with transcendental entire functions.

International Mathematics Research Notices, 2023 , 13387–13425.

Prater-Bennette, A., Shen, L., & Tripp, E. E. (2022). The proximity operator of

the log-sum penalty. Journal of Scientific Computing , 93 , 67.560

Sharif, M., Bauer, L., & Reiter, M. K. (2018). On the suitability of Lp-norms

for creating and preventing adversarial examples. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops .

Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2013). A sparse-group

lasso. Journal of Computational and Graphical Statistics, 22 , 231–245.565

Sriramanan, G., Gor, M., & Feizi, S. (2022). Toward efficient robust training

against union of lp threat models. Advances in Neural Information Processing

Systems, 35 , 25870–25882.

Tang, A., Niu, L., Miao, J., & Zhang, P. (2023). Training compact dnns with

l-12 regularization. Pattern Recognition, 136 , 109206.570

Tsagkarakis, N., Markopoulos, P. P., Sklivanitis, G., & Pados, D. A. (2018).

L1-norm principal-component analysis of complex data. IEEE Transactions

on Signal Processing , 66 , 3256–3267.

Varno, F., Saghayi, M., Rafiee Sevyeri, L., Gupta, S., Matwin, S., & Havaei, M.

(2022). Adabest: Minimizing client drift in federated learning via adaptive575

bias estimation. In European Conference on Computer Vision (pp. 710–726).

Springer.

Wang, G., Donhauser, K., & Yang, F. (2022). Tight bounds for minimum

l1-norm interpolation of noisy data. In International Conference on Artificial

Intelligence and Statistics (pp. 10572–10602). PMLR.580

Wang, S., Chen, Z., Du, S., & Lin, Z. (2021). Learning deep sparse regularizers

with applications to multi-view clustering and semi-supervised classification.

28



IEEE Transactions on Pattern Analysis and Machine Intelligence, 44 , 5042–

5055.

Wu, S., Li, G., Deng, L., Liu, L., Wu, D., Xie, Y., & Shi, L. (2018). L1-norm585

batch normalization for efficient training of deep neural networks. IEEE

Transactions on Neural Networks and Learning Systems, 30 , 2043–2051.

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms.

Xu, J., Chi, E., & Lange, K. (2017). Generalized linear model regression590

under distance-to-set penalties. In Advances in Neural Information Processing

Systems (pp. 1385–1395).

Xu, Z., Chang, X., Xu, F., & Zhang, H. (2012). l {1/2} regularization: A

thresholding representation theory and a fast solver. IEEE Transactions on

Neural Networks and Learning Systems, 23 , 1013–1027.595

Yin, P., Lou, Y., He, Q., & Xin, J. (2015). Minimization of L2 for compressed

sensing. SIAM Journal on Scientific Computing , 37 , A536–A563.

Yoon, J., & Hwang, S. J. (2017). Combined group and exclusive sparsity for

deep neural networks. In International Conference on Machine Learning (pp.

3958–3966).600

Zhang, C.-H. et al. (2010). Nearly unbiased variable selection under minimax

concave penalty. The Annals of statistics, 38 , 894–942.

Zhang, M., Ding, C., Zhang, Y., & Nie, F. (2014). Feature selection at the

discrete limit. In Proceedings of the AAAI Conference on Artificial Intelligence.

volume 28.605

Zhang, T. (2008). Multi-stage convex relaxation for learning with sparse regular-

ization. Advances in Neural Information Processing Systems, 21 , 1929–1936.

Zhang, T. (2010). Analysis of multi-stage convex relaxation for sparse regular-

ization. volume 11.

29



Zhang, Y., Zhang, H., & Tian, Y. (2020). Sparse multiple instance learning with610

non-convex penalty. Elsevier.

30



Declaration of interests 
  
☒ The authors declare that they have no known competing financial interests or personal relationships 
that could have appeared to influence the work reported in this paper. 
  
☐ The authors declare the following financial interests/personal relationships which may be considered 
as potential competing interests: 
 

 
  
  
  
 


