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Abstract

Iterative imputation is a prevalent method for completing missing data, which
involves iteratively imputing each feature by treating it as a target variable and
predicting its missing values using the remaining features. However, existing itera-
tive imputation methods exhibit two critical defects: (1) model misspecification,
where a uniform parametric form of model is applied across different features,
conflicting with heterogeneous data generation processes; (2) underuse of oracle
features, where all features are treated as potentially missing, neglecting the valu-
able information in fully observed features. In this work, we propose kernel point
imputation (KPI), a bi-level optimization framework designed to address these
issues. The inner-level optimization optimizes the model form for each feature
in a reproducing kernel Hilbert space, mitigating model misspecification. The
outer-level optimization leverages oracle features as supervision signals to refine
imputations. Extensive experiments on real-world datasets demonstrate that KPI
consistently outperforms state-of-the-art imputation methods. Code is available at
https://github.com/FMLYD/kpi.git.

1 Introduction

Missing data is a ubiquitous challenge in real-world data collection and analytics [24, 45]. For
example, in manufacturing, temperature sensors may fail due to overheating or electrical disruptions,
compromising data integrity and impeding analytical workflows [1]. Similarly, equipment-monitoring
systems can experience lost connectivity in electrical sensors, impeding fault detection and intro-
ducing security risks [36]. These issues highlight the importance of missing data imputation (MDI)
techniques, which aim to recover missing data using observed ones, thereby enhancing the integrity
of collected datasets and the reliability of data-driven applications.

Existing MDI methods can be broadly categorized as discriminative or generative [5]. On the one
hand, discriminative methods, such as statistical imputation (e.g., mean and median imputation [44])
and iterative imputation (which iteratively predicts missing values using univariate models [26, 29]),
have been well developed. On the other hand, generative methods have recently attracted attention
for their capacity to model complex data structures [1]. However, they often encounter training
challenges [18, 25] or rely on strong data assumptions [42, 27]. Empirically, generative methods may
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frequently be outperformed by discriminative methods [45, 23]. Therefore, discriminative methods
remain the preferred choice for MDI in practice [39].

Among discriminative methods, iterative imputation is widely adopted due to its straightforward
implementation and strong empirical performance. It specifies univariate models for each feature
conditioned on the rest and iteratively imputes missing values until convergence [26]. However, this
approach has two limitations. First, it assumes that all features contain missing values, neglecting the
utility of fully observed features, known as oracle features, which can provide strong supervisory
signals for imputation. Second, it applies a fixed-form parametric model to all features, which risks
model misspecification, as different features often exhibit heterogeneous dependencies that cannot be
adequately captured by a fixed-form parametric model [5].

To counteract the two limitations, we reformulate iterative imputation as a bi-level optimization prob-
lem. The inner-level optimization adaptively selects functional forms from reproducing kernel Hilbert
spaces (RKHS) for each feature, reducing model misspecification. The outer-level optimization aligns
the imputed values with oracle features, leveraging them as direct supervision signals. Subsequently,
we propose kernel point imputation (KPI), which expresses the optimal model as a linear combination
of kernel functions, enabling efficient solution via stochastic gradient descent. Furthermore, we
design an adaptive kernel ensemble strategy to dynamically combine kernels, thereby enhancing
model expressiveness and alleviating hyperparameter selection challenge amidst incomplete data.

Contributions. The key contributions of this study are summarized as follows:

• We introduce a bi-level optimization framework for MDI which optimizes model form for each
feature within a RKHS to address model misspecification and exploits oracle features as supervision
to refine imputation results.

• We develop the KPI algorithm, which solves the bi-level optimization problem via stochastic
gradient descent. Additionally, we develop a kernel ensemble method to counteract the difficulty of
kernel parameter selection amidst missing data.

• We conduct extensive experiments to demonstrate the superiority of KPI over existing MDI methods
methods and to highlight the utility of oracle features in enhancing imputation accuracy.

2 Preliminaries

As a preliminary note, this study aims to impute missing values as an end goal—specifically, to
estimate their most probable values. We are not considering imputation as a means to obtain input
for some downstream tasks [5], such as training regression models for label prediction [16, 14] or
pseudo-labeling for unbiased learning [10]. Methods in these scenarios often require joint training to
optimize specific objectives [16]. In this work, we concentrate on the MDI problem.

Suppose X(id) ∈ RN×D is the ideally complete data matrix with N samples and D features. The
presence of missing entries in X(id) is indicated by a binary matrix M ∈ {0, 1}N×D, where each
entry Mn,d is set to 1 if the corresponding entry X

(id)
n,d is missing, and 0 otherwise. Consequently,

the observed dataset X(obs) can be derived using the Hadamard product:

X(obs) := X(id) ⊙ (1−M) + nan⊙M. (1)

The goal of MDI is to recover the missing entries by constructing an imputation matrix X(imp) ∈
RN×D that closely approximates X(id). Different imputation methods vary in how they generate
X(imp) from X(obs) and M.

One prevalent approach is the iterative imputation method, which iteratively imputes each feature by
treating it as a target variable and predicting its missing values using the remaining features as inputs.
Specifically, in the training stage, let the d-th feature as the target feature, denoted as Y(obs)

d = X
(obs)
·,d ,

the method fits an imputation model fθ with parameters θ that learns the relationship between the
target feature and the remaining features:

min
θ

∥∥∥Y(obs)
d − fθ(X(obs)

·,−d )
∥∥∥2
2
, (2)

where X(obs)
·,−d denotes the matrix X(obs) with the d-th column removed. The method cycles the target

feature for D times, training univariate imputation models for all features. In the inference stage,
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(a) The implication of model misspecification.
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(b) The implication of overlooking oracle features.

Figure 1: Case study illustrating the limitations of iterative imputation. In panel (a), circular and
cross markers indicate observed and missing values, respectively, while lines represent imputation
model outputs. In panel (b), “✓” denotes whether a sample can be used for training the imputation
model for Y ; dark areas indicate missing indices in Y at missing ratios of 50% (left) and 75% (right).

imputation proceeds iteratively: for each target feature, its missing values are estimated using the
corresponding univariate model, incorporating previously imputed values of other features. The
imputed columns are concatenated to construct the imputation matrix X(imp).

3 Methodology

3.1 Motivation

Iterative imputation approaches MDI to a canonical regression problem, estimating each feature
using the remaining features. In this section, we demonstrate that this approach leads to model
misspecification and underuse of oracle features, thereby degrading imputation performance.

The first limitation is the risk of model misspecification. Iterative imputation methods typically
employ a single predefined parametric form for all features, such as linear models [26] or decision
trees [29]. However, real-world data often exhibit heterogeneous dependencies among features that
cannot be effectively captured by a single parametric model [5]. For instance, temperature sensor
data in a manufacturing process may have a linear relationship with pressure, while vibration data
may display a nonlinear relationship with pressure. Imposing a uniform parametric form thus fails to
accommodate these diverse dependencies, leading to suboptimal imputation performance.

The second limitation is the underuse of oracle features. Iterative methods, by treating all features
as equally prone to missingness, suffer from limited training data under high missing ratios. Oracle
features, which have minimal missing values, can provide critical supervision for imputing other
variables. For instance, in health records, demographic data often serves as reliable oracle features,
while in industrial settings, catastrophic data can fulfill this role. However, iterative approaches
neglect these reliable features, thereby limiting overall imputation quality.

Case study. To illustrate the above limitations of the existing iterative imputation method, a case study
is conducted. Fig. 1 (a) demonstrates how a fixed model form can lead to model misspecification. In
the left panel, a linear model accurately captures the linear feature (red) but fails to fit the nonlinear
features (blue and green). Conversely, the right panel shows that a nonlinear model fits the sine
feature well but overfits the other features. Therefore, a fixed parametric form risks misspecification
and thereby hampers imputation performance. Fig. 1 (b) illustrates the impact of overlooking oracle
features. To impute missing values in the target column Y , the iterative method constructs a univariate
model using X1, . . . , X4 as inputs. The model is trained using solely samples with non-missing Y
values. With high missing ratios, only a few samples are usable for training (two in the right panel),
which is insufficient to learn a robust model. In contrast, the four fully observed oracle features
(X1,..., X4) are overlooked, forfeiting an opportunity to enhance imputation accuracy.

These limitations underscore the need for an improved iterative approach that effectively leverages
oracle features and mitigates model misspecification for improved imputation performance. In
particular, there are three key questions to be explored: (1) How to adaptively elect different model
forms to each feature to reduce misspecification? (2) How to incorporate oracle features in imputation?
(3) Do model-form adaptation and oracle features indeed boost imputation accuracy?
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3.2 A bi-level optimization framework for iterative imputation

We propose a novel bi-level optimization formulation to overcome the limitations of iterative methods.
This framework customizes model forms for each feature within a reproducing kernel Hilbert space
(RKHS) and integrates oracle features as supervision signals.

Based on the iterative imputation in (2), to mitigate model misspecification, we replace the single
parametric form of the standard iterative approach, expressed as the fθ in (2), with a flexible form in
RKHS. Given the d-th feature as the target: Y(obs) = X

(obs)
·,d , we reformulate the imputation task as:

f∗ = argmin
f∈H

∥∥∥Y(obs) − f(X(obs)
·,−d )

∥∥∥2
2
+ λ∥f∥2H, (3)

where f∗ is the optimal model for that feature. The capacity of RKHS ensures that f∗ can capture
effectively heterogeneous feature relationships, reducing the risk of misspecification.

To exploit oracle features, a natural approach is to incorporate them as supervision signals that guide
imputation. Suppose Y(obs) is an oracle feature and f∗ is the associated optimum estimator; we
update the imputed values as:

min
X(miss)

∥∥∥Y(obs) − f∗(X(miss)
·,−d ,X

(obs)
·,−d )

∥∥∥2
2
. (4)

This approach is based on a perhaps surprising point-of-view: if X(miss) is well-imputed, applying
f∗ should yield outputs consistent with the ground truth. Otherwise, the imputations of X(miss)

deviate from the underlying relationship captured by f∗. Thus, by adjusting X(miss) to minimize this
discrepancy, the imputation process self-corrects, effectively using oracle features as a supervision
mechanism.

Combining (3) and (4) yields our bi-level optimization framework for MDI. Given the d-th feature as
the target, i.e., Y(obs) = X

(obs)
d , X = (X

(miss)
·,−d ,X

(obs)
·,−d ), the optimization problem is formulated as:

min
X(miss)

min
f∈H

∥∥∥Y(obs) − f(X)
∥∥∥2
2
+ λ∥f∥2H. (5)

Similar to the standard iterative method, each feature—both oracle features and those with missing
values-is iteratively treated as the target feature Y(obs). In the inner optimization, the optimal
function f is selected within the RKHS, thereby mitigating model misspecification. In the outer
optimization, the imputed values are refined, effectively incorporating oracle features as supervision
signals. Therefore, this bi-level optimization framework provides a principled approach to MDI,
addressing the limitations of iterative methods.

3.3 Kernel function, universal property and learning objective

To solve the inner loop in (5), we approximate the optimum function f∗ by leveraging Gaussian
kernels in the RKHS. We start by clarifying key kernel properties in Definition 3.1 and 3.2.
Definition 3.1 (Kernel function). Let X be a non-empty set. A function K : X × X → R is a
kernel function if there exists a Hilbert spaceH and a feature map ψ : X → H such that ∀x, x′ ∈ X ,
K(x, x′) := ⟨ψ(x), ψ(x′)⟩H .

Definition 3.2 (Universal kernel). For X compact Hausdorff, A universal kernel ensures that any
continuous function e : X → R can be approximated arbitrarily well within RKHSH. Specifically,
for any ϵ > 0, there exists f ∈ H such that: supx∈X |f(x)− e(x)| ≤ ϵ.

Gaussian kernel is a typical kernel function formulated as:

K(x, x′) = exp

(
−∥x− x

′∥2

2σ2

)
,

which satisfies the universal property in Definition 3.2 [28]. It implies that by using the Gaussian
kernel, the associated RKHS H = span{K(·, x) | x ∈ X} admits uniform approximation of any
continuous function.
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Figure 2: Visualization of the workflow of KPI, where the dataset contains 5 samples and 4 features.
The sampling batch size is set to 2. The last column is the oracle feature without missing values.

Lemma 3.3 (Representer theorem). Suppose h(∥f∥) : R+ → R is a non-decreasing function.
The minimizer of an empirical risk functional regularized by h(∥f∥) admits the form: f∗(·) =∑n

i=1 αiK(·, xi) where α = (α1, . . . , αn)
⊤ and K is the associated kernel function.

Lemma 3.4. Let Ys,Yt ∈ RB×1 be the target feature and Xs, Xt be the corresponding input
features; Suppose f∗ is the optimal model minimizing the empirical risk in the inner optimization of
(5), its output on Xt is given by f∗(Xt) = KXtXs · α, where α = (K+ λI)−1Ys; KXtXs is the
kernel matrix computed with Xt and Xs.

SinceH is potentially infinite-dimensional, directly identifying f∗ is infeasible. Nevertheless, the
representer theorem in Lemma 3.3 provides a finite approximation to f∗. Accordingly, by sampling
two batches of data—target features (Ys, Yt) and input features (Xs, Xt)—Lemma 3.4 yields that
the output of f∗ at Xt can be represented as:

f∗(Xt) = KXtXs(KXsXs + λI)−1Ys, (6)

which analytically expresses the output of the optimum model f∗ as a linear combination of kernel
functions. It enables adaptively selecting the optimum model for each feature, and simplifies the
bi-level optimization problem in (5) to a differentiable loss function:

min
Xs,Xt

∥∥Yt −KXtXs(KXsXs + λI)−1Ys)
∥∥2
2
, (7)

Furthermore, selecting kernel hyperparameters (e.g., Gaussian kernel variance) can be challenging
amidst missing data. To alliviate this problem, we introduce multiple kernels with distinct parameters
and learn to ensemble them adaptively. Suppose K1,K2, ...,KE are E kernel matrices, each with a
different configuration. We define a learnable simplex vector ∆ ∈ RK, and construct the ensembled
kernel as K∆ = K1∆1 + ...+KE∆E. Putting together, the final objective becomes:

P =
∥∥Yt −K∆

XtXs(K∆
XsXs + λI)−1Ys)

∥∥2
2
. (8)

3.4 Overall workflow

While the learning objective is well defined, its role in actual imputation remains unclear. To this end,
we propose the kernel point imputation (KPI) method, which iteratively minimizes the objective (8)
to refine missing value imputations. The core procedure is shown in Fig. 2 and detailed as follows.

Initialization. Given the incomplete dataset X(obs), we initialize missing entries using the mean
of observed steps, obtaining an initial imputation matrix Ximp. The imputed values are treated as
learnable parameters, and their gradients are tracked throughout training.

Forward Pass. Two batches are sampled from the imputation matrix. In each iteration, a column
is randomly chosen as the target feature (Ys, Yt ∈ RB×1), with the remaining columns as input
features (Xs, Xt ∈ RB×(D−1)), where B represents batch size, s and t differentiates different batches.
The objective P is computed following (8).
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Table 1: Imputation performance in terms of MSE and MAE on 7 datasets.

Datasets
BT CC CBV IS PK QB WQW

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Mean 0.742 0.452 0.837 0.789 0.829 1.165 0.754 4.145 0.740 2.841 0.589 4.682 0.764 1.121

Mode 0.948 0.770 0.935 1.159 1.026 1.749 0.925 7.741 1.254 7.832 0.593 6.240 0.823 1.372

Median 0.706 0.469 0.811 0.884 0.820 1.165 0.713 4.356 0.698 3.029 0.500 5.066 0.756 1.123

MICE 0.580 0.127 0.745 0.474 0.856 1.021 0.733 4.539 0.417 1.312 0.536 3.415 0.824 0.971

Miss.F 0.560 0.241 0.732 0.650 0.764 0.994 0.593 3.277 0.526 1.497 0.436 3.202 0.686 0.898

Sinkhorn 0.835 0.466 0.906 0.796 0.898 1.225 0.848 4.945 0.827 3.233 0.775 6.114 0.857 1.170

TDM 0.730 0.487 0.819 0.769 0.799 1.113 0.726 3.965 0.722 2.792 0.570 4.756 0.752 1.098

CSDI-T 0.726 1.870 0.849 2.683 0.821 3.802 0.761 15.493 0.731 12.291 0.575 19.919 0.780 4.084

MissDiff 0.719 1.332 0.840 1.699 0.816 3.523 0.749 13.432 0.728 14.462 0.564 23.320 0.758 5.184

GAIN 0.730 0.396 0.777 0.688 0.729 0.942 0.572 3.318 0.448 1.413 0.476 4.669 0.754 1.095

MIRACLE 0.795 0.674 0.487 0.305 0.831 1.154 3.208 45.816 3.518 36.784 0.521 3.975 0.555 0.685

MIWAE 0.582 0.266 0.746 0.630 0.807 1.071 0.636 4.118 0.525 1.804 0.475 4.977 0.657 0.844

Remasker 0.439 0.131 0.767 0.750 0.528 0.522 0.599 3.584 0.447 1.268 0.401 2.811 0.546 0.636

NewImp 0.465 0.177 0.412 0.292 0.405 0.401 0.431 2.495 0.320 0.8575 0.332 2.992 0.497 0.692

kpi(Ours) 0.397 0.121 0.347 0.284 0.402 0.394 0.400 2.387 0.319 0.747 0.264 2.131 0.491 0.685

Note: Each entry represents the average results at four missing ratios: 0.1, 0.2, 0.3, and 0.4. The best and
second-best results are bolded and underlined, respectively.

Backward Pass. The gradients of P with respect to Xs, Xt and ∆ are calculated using automatic
differentiation. The imputed values in Xs and Xt as well as ∆ are then updated using gradient
descent with an update rate η:

Xs ← Xs − η∇XsP ⊙Ms,

Xt ← Xt − η∇XtP ⊙Mt,

∆←∆− η∇∆P,
(9)

where only the missing values (with M = 1) are updated, while the observed values (with M = 0)
remain unchanged during this process. Moreover, the gradient of the matrix inverse term is stopped
for numerical stability. KPI iteratively executes the forward and backward passes sampling different
batches until hitting the early-stopping criteria on the validation dataset. In this process, each feature
is iteratively treated as the target feature while the remaining features are treated as the input features.
This ensures that all features—including oracle features—are fully exploited as supervision signals.

4 Empirical Investigation

4.1 Experimental setup

• Datasets: The empirical study is performed on public tabular datasets from [1], incuding Blood
Transfusion(BT) Concrete Compression (CC) Connectionist Bench Vowel (CBV) Ionosphere (IS)
Parkinsons (PS) Qsar Biodegradation (QB) Wine Quality White (QWQ). To simulate missing data
scenarios, we employ a mask matrix generated by a Bernoulli random variable with a preset mean.

• Baselines: The performance of KPI is compared against various imputation methods, including
iterative imputers (MICE [26], Miss.F. [29]), and generative models (GAIN [42], MIWAE [19],
Miss.D [24], CSDI-T [31], ReMasker [2], and NewImp [1]). We also assess methods that do not
conform to these categories, such as MIRACLE [7], Sinkhorn [23], and TDM [45].

• Implementation details: To ensure convergence, we cap the number of iterations at 500 and adopt
an early stopping criterion based on validation performance, with a patience of 10 epochs. The
Adam optimizer is used for training [6]. Key hyperparameters, namely η and B, are determined
by allocating 5% of the training data for validation and finetuning over [0.0001, 0.01] for η and
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(a) The results on the CC dataset.
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(b) The results on the CBV dataset.
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(c) The results on the IS dataset.
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(d) The results on the QB dataset.

Figure 3: The performance of Miss.F and KPI given varying ratios of oracle features.

[64, 512] for B. Performance is assessed using modified mean absolute error (MAE) and mean
squared error (MSE), focusing on the imputed values at missing entries, following [45, 5]. In
addition, we report the distribution discrepancy (WASS), measured as the Wasserstein distance [5].
The experiments are performed on a platform with two Intel(R) Xeon(R) Platinum 8383C CPUs @
2.70GHz and a NVIDIA GeForce RTX 4090 GPU.

4.2 Overall performance

Tab. 1 presents the average imputation results of KPI and baseline methods under missing ratios
pmiss = 0.1, 0.2, 0.3, and 0.4. Key observations are summarized as follows:

• The iterative imputers exhibits promising performance in most cases. For instance, MICE outper-
forms simple imputers by large margin over most datasets. MissForest employs random forest as
the base model, excelling in handling tabular data, which further improves imputation quality.

• The canonical generative imputers [31, 24], originally tailored for time-series data, often falling
behind iterative methods. This can be attributed to the implicit maximization of imputation
entropy in diffusion models, which negatively impacts accuracy [1]. By contrast, recent generative
approaches such as NewImp and Remasker handle this issue and achieve strong results, obtaining
the best results among baseline methods.

• KPI improves the iterative imputers by adaptively selecting the optimal imputer for each feature and
involving oracle features as supervision signals. This strategy consistently improves performance,
as evidenced by KPI outperforming all baselines across all 7 datasets—often by a substantial
margin, particularly on the CC and QB datasets—demonstrating strong practical effectiveness.

4.3 Impact of oracle features

In this section, we assess the impact of using oracle features as supervision signal on imputation
performance. Specifically, we simulate based on complete datasets to generate varying ratios of oracle
features and evaluate the imputation performance. Two models are considered: KPI and another
canonical iterative imputer: Miss.F.

The results are presented in Fig. 3. As the ratio of oracle features increases, KPI consistently exhibits
lower imputation error, showcasing the utility of oracle features. In contrast, Miss.F shows little
improvement as oracle feature ratio increases. This difference arises because Miss.F only uses oracle
features as inputs, whereas KPI exploits them as supervision signals to refine the imputation results.

7



Table 2: Varying kernel number results.

CC
E MSE ∆MSE WASS ∆WASS MAE ∆MAE
1 0.082 - 0.058 - 0.155 -
3 0.070 14.6%↓ 0.055 5.2%↓ 0.116 25.2%↓
5 0.069 15.9%↓ 0.046 20.7%↓ 0.108 30.3%↓
7 0.065 20.7%↓ 0.039 32.8%↓ 0.091 41.3%↓

CBV
E MSE ∆MSE WASS ∆WASS MAE ∆MAE
1 0.128 - 0.095 - 0.233 -
3 0.110 14.1%↓ 0.085 10.5%↓ 0.226 3.0%↓
5 0.098 23.4%↓ 0.075 21.1%↓ 0.216 7.3%↓
7 0.087 32.0%↓ 0.066 30.5%↓ 0.205 12.0%↓

BT
Distances MSE ∆MSE WASS ∆WASS MAE ∆MAE
1 0.334 - 0.109 - 0.363 -
3 0.318 4.8%↓ 0.101 7.3%↓ 0.352 3.0%↓
5 0.305 8.7%↓ 0.096 11.9%↓ 0.343 5.5%↓
7 0.302 9.6%↓ 0.089 18.3%↓ 0.338 6.9%↓

Table 3: Varying kernel function results.

CC
Kernel MSE ∆MSE WASS ∆WASS MAE ∆MAE
Linear 0.099 - 0.051 - 0.203 -
Poly 0.065 34.3%↓ 0.039 23.5%↓ 0.091 55.2%↓
Laplacian 0.068 31.3%↓ 0.042 17.6%↓ 0.093 54.2%↓
Gaussian 0.076 23.2%↓ 0.035 31.4%↓ 0.082 59.6%↓

CBV
Kernel MSE ∆MSE WASS ∆WASS MAE ∆MAE
Linear 0.089 - 0.087 - 0.219 -
Poly 0.087 2.2%↓ 0.088 1.1% ↑ 0.214 2.3%↓
Laplacian 0.083 6.7%↓ 0.080 8.1%↓ 0.211 3.7%↓
Gaussian 0.087 2.2%↓ 0.066 24.1%↓ 0.205 6.4%↓

BT
Distances MSE ∆MSE WASS ∆WASS MAE ∆MAE
Linear 0.326 - 0.101 - 0.359 -
Poly 0.305 6.4%↓ 0.090 10.9%↓ 0.342 4.7%↓
Laplacian 0.316 3.1%↓ 0.091 9.9%↓ 0.346 3.6%↓
Gaussian 0.302 7.4%↓ 0.089 11.9%↓ 0.338 5.8%↓
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Figure 4: Varying learning rate and batch size results with missing ratios 0.1 and 0.2.

4.4 Impact of kernel strategy

In this section, we analyze the impact of kernel function and kernel amount (E) on imputation
performance. The key observations are summarized as follows.

• The multiple kernel ensembling mechanism has a substantial impact. As shown in Tab. 2, increasing
E from 1 to 7 consistently reduces MSE from 0.082 to 0.065, indicating a relative reduction of
20.7%. This gain is attributed to the increased flexibility in adaptively selecting kernel parameters,
allowing KPI to better represent the optimal imputation model for each feature.

• The performance of different kernel functions showcases the importance of kernel universality. The
linear kernel, which is not universal and has limited RKHS capacity, yields the worst performance.
The polynomial kernel, with a larger RKHS, performs better. The Gaussian kernel exhibits the
best overall performance. The superiority is attributed to its universality, i.e., the associated RKHS
admits uniform approximation of any continuous function. Such extensive RKHS capacity enables
KPI to optimize the imputation model for each feature, thereby enhancing imputation performance.

4.5 Parameter sensitivity analysis

In this section, we examine the influence of critical hyperparameters on the performance of KPI
in Fig. 4. Below are the key observations:
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• The update rate (η) plays a pivotal role in controlling the volume of updates to the imputation
matrix each epoch. As η is reduced from 0.02 to approximately 0.01, both MAE and RMSE
decrease, indicating that a smaller η enhances update stability. However, further reduction of η
to 0.001 results in increased MAE and RMSE, where the meaningful update direction becomes
overshadowed by noise, preventing model convergence within the allocated epochs.

• The batch size (B) affects the scale of the problem in calculating discrepancies, with sizes ranging
from 64 to 1024 examined. There is a weak yet consistent decrease in MAE and RMSE as the
batch size increases to B = 512, enhancing the reliability of estimations. Increasing the batch size
beyond this point yields diminishing returns and may lead to unnecessary computational overhead.

5 Related works

The pervasive presence of missing data undermines the integrity of collected datasets and the reliability
of data-driven applications, underscoring the necessity for effective missing data imputation (MDI).
To achieve accurate MDI, existing approaches can be broadly categorized into two paradigms:
discriminative and generative, each with distinct advantages and limitations [5, 21].

The iterative method [29, 26, 43, 15] is one of the most popular methods in discriminative imputation,
initiated from imputation by chained equations (ICE) [26], which employs specific models to estimate
missing values for each feature based on the remaining observable features. On the basis of ICE, a
line of work advocates for employing modern parametric models, such as neural networks [19, 7],
Bayesian models [26] and random forest [29], which enhances the capacity of imputation models
and thereby accommodating complex missing patterns. In a different line of work, various training
techniques are investigated within the paradigm, such as multiple imputation [26], ensemble learning
[29], and multitask learning [19], which enhances the utility to accommodate diverse contexts.
While this paradigm offers enhanced flexibility and accuracy, it fails to utilize the oracle features
effectively and risks model misspecification, which can lead to suboptimal imputation results in noisy
environments. Our research advances this methodology by handling the two limitations.

Apart from the iterative methods, there are other notable approaches in the discriminative paradigm.
The simple direct paradigm employs elementary statistical measures like mean, median, and mode to
replace missing values, offering quick and straightforward solutions. However, this approach lacks
the capacity to accommodate complex relationships [17, 20], often producing trivial and inadequate
imputation results that fail to meet the expectation in practice. Another notable approach is matrix
factorization, which decomposes the data matrix into two low-rank matrices, capturing the latent
structure of the data for imputation [8, 4]. This method is particularly effective in collaborative
filtering and recommendation systems [12, 37]. Recent advances explore a novel methodology based
on distribution discrepancy minimization[45, 23]. This approach builds on the assumption that, under
the independent and identically distributed (i.i.d.) condition, any two data batches should share
the same underlying distribution, thereby exhibiting minimal discrepancy. Subsequent studies have
extended this idea by refining discrepancy measures to accommodate different data characteristics
such as neighboring effects [40, 35], noisy observations [36], and temporal dependencies [39].

The generative paradigm restates imputation as a conditional generation problem, using advanced
neural architectures and generative training strategies, such as generative adversarial networks
[42, 30, 13] and diffusions [31, 41, 1], to approximate data distributions and perform imputation. This
strategy incorporates the strengths of generative models, capturing and utilizing complex relationships,
which potentially enhances the imputation quality when ample data is available. However, it also
bears the defects with generative models, such as the instability associated with adversarial training
and the operational complexity of diffusions [18, 25], hampering their use in practice.

6 Conclusion

Iterative imputation methods are widely used for handling missing data, yet existing approaches
are often limited by model misspecification and underuse of oracle features. To overcome these
challenges, we introduce KPI, a bi-level optimization framework which optimizes model form within
RKHS for each feature, reducing model misspecification, and exploits oracle features as effective
supervision. Extensive experiments on real-world datasets demonstrate that KPI achieves superior
imputation performance and effectively leverages oracle features.
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Limitations & future work. In this work, we do not accommodate potential noise in datasets,
which is a prevalent challenge in industrial settings [4, 3]. Future research could incorporate robust
optimization techniques and truncate outliers in the kernel matrix which has potential to improve
noise robustness. Additionally, this work mitigates the difficulty of concise kernel parameter selection
via adaptive ensembling, which is an heuristic approach. Subsequent work may explore meta-learning
strategies with theoretical guarantees for accurate kernel parameter selection.
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A Theoretical justification

Building upon the foundational theorems established earlier, we delve deeper into the theoretical as-
pects of our kernel ridge regression-based imputation framework. By leveraging advanced properties
of kernel functions—such as universality, injective mappings, and the reproducing property—we
further substantiate the advantages and robustness of our method. This section introduces additional
theorems and proofs that highlight these properties and their implications for the imputation problem.

Lemma A.1 (Representer theorem). Suppose h(∥f∥) : R+ → R is a non-decreasing function.
The minimizer of an empirical risk functional regularized by h(∥f∥) admits the form: f∗(·) =∑n

i=1 αiK(·, xi) where α = (α1, . . . , αn)
⊤ and K is the associated kernel function.

Proof. The proof can be found in Theorem 6.11 of Mohri et al. [22].

Theorem A.2 (Lemma 3.4 in the main text). Let Ys,Yt ∈ RB×1 be the target feature and Xs,
Xt be the corresponding input features; Suppose f∗ is the optimal model minimizing the empirical
risk in the inner optimization of (5), its output on Xt is given by f∗(Xt) = KXtXs · α, where
α = (K+ λI)−1y; KXtXs is the kernel matrix computed with Xt and Xs.

Proof. Consider the samples Xs and Ys where Ys is the observed target, and Xs comprises the
input features. The empirical risk minimization objective with ℓ2 regularization to select the optimal
functional form is

min
f∈H
∥Ys − f(Xs)∥22 + λ∥f∥2H, (10)

which corresponds precisely to the inner loop of (5). According to Lemma A.1, when h is an identity
function (in (10)) and H is a RKHS associated with kernel K, the minimizer f∗ must admit the
explicit form

f∗(x) =

B∑
i=1

αiK(x, xsi), (11)

for some coefficients α1, . . . , αB.

Substituting this form into the empirical risk (10), the optimization problem becomes

min
α∈RB

∥Ys −KXsXsα∥22 + λα⊤KXsXsα, (12)

where KXsXs is the B × B Gram matrix, with (i, j)-th entry K(xsi , x
s
j), Y

s is the length-B target
vector, and α is the vector of coefficients.

Expanding the loss function in matrix notation yields

(Ys −KXsXsα)
⊤
(Ys −KXsXsα) + λα⊤KXsXsα. (13)

Due to symmetry of KXsXs , this simplifies to

Ys⊤Ys − 2Ys⊤KXsXsα+α⊤(K2
XsXs + λKXsXs)α. (14)

According to the first-order condition, setting the derivative with respect to α to zero and solving for
α gives

−2K⊤
XsXsYs + 2(K2

XsXs + λKXsXs)α = 0, (15)

which is equivalent to:
KXsXs(KXsXs + λI)α = KXsXsYs. (16)

Assuming KXsXs is invertible, we have:

(KXsXs + λI)α = Ys. (17)

which immediately follows from multiplying both sides by K−1
XsXs . Solving for α gives:

α = (KXsXs + λI)−1Ys. (18)
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Substituting (18) into (11) leads to

f∗(x) =

B∑
i=1

αiK(x, xsi) = K(x)(KXsXs + λI)−1Ys, (19)

where K(x) is the 1× B vector [K(x, xs1), · · · ,K(x, xsB)]. For a (possibly distinct) batch of inputs
Xt, evaluating f∗ at each xtj gives

f∗(xt1) =

B∑
i=1

αiK(xt1, x
s
i) =

[
K(xt1, x

s
1),K(xt1, x

s
2), ...,K(xt1, x

s
B)
]
(KXsXs + λI)−1Ys,

f∗(xt2) =

B∑
i=1

αiK(xt2, x
s
i) =

[
K(xt2, x

s
1),K(xt2, x

s
2), ...,K(xt2, x

s
B)
]
(KXsXs + λI)−1Ys,

...

f∗(xtB) =

B∑
i=1

αiK(xtB, x
s
i) =

[
K(xtB, x

s
1),K(xtB, x

s
2), ...,K(xtB, x

s
B)
]
(KXsXs + λI)−1Ys,

(20)
which may be stacked to give the vector-valued expression

f∗(Xt) = KXtXs(KXsXs + λI)−1Ys, (21)

where KXtXs is the matrix with entries [KXtXs ]ij = K(xti, x
s
j). The proof is completed.

Definition A.3 (Kernel Functions). Let x,x′ ∈ RD be two vectors in the input feature space. A
kernel function K : RD ×RD → R is a symmetric, positive semi-definite function that quantifies the
similarity between x and x′. Commonly used kernel functions include:

1. Linear Kernel: Klinear(x,x
′) = x⊤x′, which computes the inner product between two vectors

and corresponds to the case where no explicit feature transformation is applied.

2. Polynomial Kernel: Kpoly(x,x
′) =

(
x⊤x′ + c

)d
, where c ≥ 0 is a constant coefficient trading

off the influence of higher-order versus lower-order terms, and d ∈ N is the degree of the
polynomial. It enables learning non-linear relationships by implicitly mapping the input features
into a higher-dimensional polynomial feature space.

3. Gaussian Kernel: Kgauss(x,x
′) = exp

(
−∥x−x′∥2

2σ2

)
, where ∥x − x′∥2 denotes the squared

Euclidean distance between x and x′, and σ > 0 is a scale parameter controlling the width of
the kernel. The Gaussian kernel is widely used due to its ability to model localized and highly
non-linear interactions.

B Implementation details

B.1 Dataset description and process strategy

In this paper, we use datasets from the UCI repository for model validation, in alignment with the a
recent NeurIPS-24 publication [1]. Detailed statistics for all selected datasets are provided in Tab. 4.

To simulate missing data, we first construct a binary mask matrix M. The observed data matrix,
denoted as X(obs), is derived by element-wise application of the complement mask 1 −M to the
fully observed data matrix X(id). Specifically, each entry x(obs)nd in X(obs) is given by x(obs)nd = x

(id)
nd

if mnd = 0; otherwise, x(obs)nd is assigned the value Null. On the generation of M, we consider three
canonical missing data mechanisms:

• Missing Completely at Random (MCAR): The probability of entry-wise missingness is indepen-
dent of both observed and unobserved data. To simulate MCAR, each entry of M is independently
set to 1 (missing) with probability pmiss, and to 0 (observed) with probability 1− pmiss.
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Table 4: The statistics of involved datasets.

Abbreviation Dataset Name Number (N) Dimension (D)

BT Blood Transfusion 748 4
CC Concrete Compression 1030 7
CBV Connectionist Bench Vowel 990 10
IS Ionosphere 351 34
PK Parkinsons 195 23
QB QSAR Biodegradation 1055 41
WQW Wine Quality White 4898 11

Note. The column ‘Dimension’ and ‘Number’ denotes the number of variables and samples in each
dataset, respectively.

• Missing at Random (MAR): The missingness of a variable depends only on values of observed
variables [33, 32, 9]. To generate MAR scenarios, we randomly select a subset of features to be
always observed. The missingness in the remaining features is simulated using a logistic regression
model, where the observed features act as predictors. The model parameters are randomly initialized,
and the intercept (bias) is calibrated to yield the desired missingness rate.

• Missing Not at Random (MNAR): The probability that a value is missing depends on the
unobserved (missing) values themselves [34, 38, 11]. For MNAR simulation, we adopt the
procedure in [1, 5]: the logistic model used for MAR is repurposed, but its inputs are themselves
masked by an independent MCAR mechanism, making the missingness dependent on both observed
and unobserved features.

B.2 Training protocols

To ensure reliable convergence, we set a maximum of 500 training iterations and adopt early stopping
based on validation performance, using a patience parameter of 10 epochs. Optimization throughout
is conducted using the Adam optimizer [6]. The kernel function is specified as the Gaussian kernel.
The main hyperparameters, specifically the update rate η, batch size B, kernel number E and variance
σ are determined by allocating 5% of the training data as a validation set and tuning over the intervals
η ∈ [0.0001, 0.01], B ∈ [64, 512], E ∈ [1, 7] and σ ∈ [0.01, 10]. All experiments are conducted on
a hardware platform comprising two Intel(R) Xeon(R) Platinum 8383C CPUs (2.70GHz) and an
NVIDIA GeForce RTX 4090 GPU.

On the implementation of baseline methods, we closely follow the implementation details in
NewImp [1]. Hyperparameter reproducibility was confirmed in our environment, and we adopted the
provided settings to run the baseline scripts and report the corresponding results of NewImp. The
reproduction of other models also follows NewImp. Specifically, the batch size for ReMasker is set
to 64, whereas for all other baseline models it is fixed at 512. The MIWAE model is configured
with a latent dimension of 16 and 32 hidden units. The TDM model is implemented with two layers,
each containing 16 hidden units. For the MIRACLE model, the number of hidden units is set to
32. ReMasker is implemented with an embedding dimension of 32, a depth of 6, a mask ratio of
0.5, encoder and decoder depths of 6 and 4 respectively, and uses 4 attention heads. Both MissDiff
and CSDI-T are set with a channel size of 16, an embedding dimension of 128, and two layers. The
diffusion step parameter is set to 100 for these models, and the number of particles is set to 50.

B.3 Evaluation metrics

The imputed data matrix X(imp) is evaluated to assess imputation quality. Following the protocol
in [45], we primarily employ the modified mean absolute error (MAE) and root mean squared error
(RMSE) for evaluation:

MAE :=
1∑N

n=1

∑D
d=1 m̄nd

N∑
n=1

D∑
d=1

∣∣∣x(imp)
nd − x(obs)nd

∣∣∣ m̄nd, (22)

RMSE :=

√√√√ 1∑N
n=1

∑D
d=1 m̄nd

N∑
n=1

D∑
d=1

∥∥∥x(imp)
nd − x(obs)nd

∥∥∥2
2
m̄nd, (23)
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(b) Computation time with different feature amounts.

Figure 5: Running time of the forward pass (left panels) and backward pass (right panels) given
varying settings. Different colors indicate different kernel functions. The colored lines and the
shadowed areas indicate the mean values and the 99.9% confidence intervals.

where m̄nd ∈ M̄ indicates positions of imputed (originally missing) values with m̄nd = 1−mnd,
and x(obs)nd ∈ X(obs) is the ground-truth value from the fully observed data. As only the originally
missing entries are imputed, we restrict the calculation of error metrics to the indices where m̄nd = 1.

In addition to the point-wise error metrics above, we also consider the squared Wasserstein distance
(abbreviated as WASS) [1], which quantifies the discrepancy between the distributions of the imputed
values and the corresponding ground-truth values at the missing positions (M = 1).

C Additional experimental results

C.1 An empirical analysis on complexity

In this section, we examine the practical computational complexity of KPI. While the overall
convergence was analyzed in Theorem ??, the computational cost per iteration, which includes
both the forward and backward passes, has not been thoroughly discussed. To address this gap, we
conducted experiments using Intel® Xeon® Gold 6140 CPUs and Nvidia RTX 4090 GPUs, with
each experiment repeated 100 times to ensure reliability.

The results are presented in Fig. 5. The running time per iteration remains limited (within 4 ms)
across a diverse range of hyperparameters, demonstrating the feasibility of KPI for real-world
applications. Other key observations are summarized as follows:

• To explore the impact of batch size (B), we vary B within a wide range from 32 to 1024 while
keeping the feature amount (D) to 8. The running cost of the forward pass increased with the batch
size, as expected. This is attributed to the larger matrix inversion in (8), which cannot be efficiently
accelerated by GPUs. In contrast, the backward pass cost was weakly correlated with B, since
gradient computations after constructing the computation graph can be parallelized.

• To investigate the impact of feature amount (D), we maintain a constant batch size of 64. A weak
correlation between D and the running time is observed. This is because varying D primarily
affects the complexity of each kernel matrix computation, which can be effectively mitigated by
GPU acceleration. This highlights a practical advantage of KPI: its efficiency in handling datasets
with a large number of features.

• We observe that the type of kernel function also affects the running cost. The gaussian kernel
exhibits the largest running time compared to other kernel functions, in terms of both forward pass
and the backward pass.

C.2 Additional overall performance results given different missing ratios

Tab. 5-8 detail the imputation performance of KPI and baselines, with results for different missing
ratios: 0.1, 0.2, 0.3, and 0.4 listed separately. The results demonstrate that KPI consistently outper-
forms the baselines in all settings, achieving superior performance in terms of both MAE and WASS.
This consistent superiority across varying missing ratios underscores the effectiveness and robustness
of KPI for missing data imputation.
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Table 5: Imputation performance comparison with missing ratio of 0.1.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MICE 0.118 0.027 0.155 0.075 0.196 0.16 0.175 0.406 0.097 0.133 0.122 0.271 0.192 0.151

Miss.F 0.123 0.037 0.172 0.111 0.185 0.149 0.141 0.295 0.128 0.163 0.102 0.284 0.164 0.129

Sinkhorn 0.840 0.434 0.903 0.614 0.896 0.837 0.850 2.047 0.841 1.513 0.784 2.622 0.856 0.755

TDM 0.724 0.415 0.815 0.545 0.787 0.690 0.720 1.592 0.731 1.295 0.565 1.977 0.745 0.650

CSDI-T 0.727 1.914 0.850 2.680 0.815 3.753 0.766 16.714 0.743 12.939 0.578 20.407 0.775 4.022

MissDiff 0.718 1.446 0.847 1.803 0.812 4.101 0.750 13.640 0.744 16.209 0.566 25.062 0.755 6.037

GAIN 0.739 0.355 0.759 0.479 0.690 0.541 0.532 1.137 0.399 0.460 0.409 1.192 0.736 0.621

MIRACLE 0.528 0.174 0.382 0.161 0.778 0.682 3.723 26.666 3.777 18.544 0.461 1.103 0.485 0.364

MIWAE 0.539 0.226 0.698 0.436 0.782 0.668 0.603 1.638 0.526 0.861 0.450 2.044 0.626 0.507

Remasker 0.365 0.099 1.041 0.830 0.448 0.249 0.715 1.775 0.500 0.739 0.489 1.737 0.503 0.364

NewImp 0.383 0.091 0.273 0.110 0.231 0.101 0.423 1.013 0.251 0.281 0.305 1.067 1.045 0.834

KPI(Ours) 0.084 0.022 0.023 0.01 0.051 0.016 0.093 0.217 0.071 0.066 0.05 0.219 0.082 0.058

Table 6: Imputation performance comparison with missing ratio of 0.2.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MICE 0.145 0.027 0.171 0.097 0.208 0.218 0.186 0.915 0.102 0.243 0.13 0.589 0.2 0.211

Miss.F 0.141 0.058 0.173 0.131 0.187 0.206 0.144 0.589 0.133 0.316 0.106 0.579 0.168 0.181

Sinkhorn 0.834 0.428 0.907 0.711 0.902 1.079 0.842 3.908 0.819 2.572 0.773 5.036 0.854 1.030

TDM 0.725 0.431 0.812 0.659 0.800 0.939 0.720 3.097 0.710 2.167 0.567 3.855 0.750 0.927

CSDI-T 0.724 1.808 0.847 2.674 0.823 3.760 0.759 15.642 0.724 12.409 0.574 19.999 0.777 4.057

MissDiff 0.714 1.282 0.835 1.707 0.818 3.658 0.746 13.473 0.718 14.872 0.562 23.777 0.757 5.526

GAIN 0.727 0.350 0.759 0.585 0.701 0.739 0.526 2.231 0.409 0.830 0.407 2.292 0.724 0.853

MIRACLE 0.637 0.271 0.443 0.234 0.878 1.102 3.361 43.583 3.612 31.612 0.487 2.558 0.533 0.556

MIWAE 0.569 0.223 0.730 0.535 0.801 0.904 0.620 3.198 0.511 1.398 0.465 4.102 0.653 0.728

Remasker 0.403 0.108 0.412 1.223 0.488 0.392 0.613 2.959 0.450 1.077 0.397 2.482 0.523 0.531

NewImp 0.441 0.141 0.360 0.201 0.310 0.221 0.411 1.937 0.283 0.592 0.329 2.273 0.468 0.265

KPI(Ours) 0.095 0.032 0.077 0.051 0.085 0.064 0.098 0.436 0.075 0.128 0.062 0.322 0.103 0.11

Table 7: Imputation performance comparison with missing ratio of 0.3.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

mice 0.156 0.043 0.195 0.133 0.219 0.289 0.186 1.393 0.107 0.387 0.134 1.064 0.21 0.28

missforest 0.14 0.064 0.189 0.182 0.2 0.292 0.154 1.049 0.131 0.423 0.113 1.085 0.176 0.262

sink 0.828 0.475 0.911 0.853 0.904 1.368 0.851 6.014 0.828 3.898 0.774 7.291 0.859 1.313

tdm 0.733 0.506 0.825 0.834 0.809 1.260 0.730 4.796 0.723 3.337 0.571 5.629 0.754 1.240

CSDI-T 0.717 1.905 0.851 2.684 0.826 3.816 0.761 14.942 0.729 12.044 0.574 19.732 0.782 4.093

MissDiff 0.718 1.317 0.842 1.656 0.822 3.313 0.751 13.341 0.725 13.806 0.563 22.714 0.759 4.894

gain 0.742 0.413 0.780 0.729 0.736 1.041 0.566 3.702 0.460 1.656 0.434 3.637 0.730 1.140

miracle 0.951 0.850 0.535 0.371 0.841 1.302 3.036 54.592 3.432 43.764 0.542 4.814 0.582 0.792

miwae 0.593 0.273 0.769 0.692 0.818 1.210 0.650 4.974 0.527 2.113 0.480 5.810 0.667 0.955

remasker 0.459 0.134 0.552 0.371 0.541 0.586 0.534 3.949 0.415 1.365 0.349 2.928 0.557 0.724

NewImp 0.481 0.181 0.472 0.341 0.423 0.443 0.442 3.066 0.321 1.015 0.350 3.666 0.558 0.379

KPI(Ours) 0.104 0.028 0.116 0.088 0.122 0.122 0.102 0.712 0.083 0.217 0.069 0.562 0.148 0.215
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Table 8: Imputation performance comparison with missing ratio of 0.4.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MICE 0.162 0.03 0.223 0.168 0.233 0.354 0.186 1.824 0.111 0.549 0.15 1.491 0.222 0.329

MISS.F 0.156 0.083 0.198 0.226 0.192 0.346 0.154 1.346 0.133 0.595 0.114 1.254 0.177 0.326

Sinkhorn 0.837 0.530 0.904 1.008 0.889 1.616 0.847 7.810 0.821 4.948 0.768 9.508 0.860 1.582

TDM 0.737 0.596 0.824 1.037 0.802 1.561 0.733 6.376 0.724 4.367 0.578 7.565 0.758 1.574

CSDI-T 0.735 1.851 0.847 2.694 0.817 3.877 0.757 14.671 0.727 11.771 0.577 19.537 0.786 4.164

MissDiff 0.726 1.284 0.837 1.628 0.812 3.019 0.750 13.272 0.723 12.960 0.566 21.728 0.761 4.278

GAIN 0.712 0.464 0.812 0.960 0.791 1.448 0.665 6.203 0.522 2.708 0.653 11.553 0.826 1.767

Miracle 1.066 1.401 0.602 0.483 0.826 1.529 2.714 58.421 3.250 53.215 0.595 7.425 0.620 1.027

MIWAE 0.629 0.344 0.786 0.856 0.828 1.502 0.670 6.663 0.535 2.842 0.504 7.952 0.683 1.185

Remasker 0.528 0.182 1.022 1.541 0.636 0.860 0.534 5.653 0.424 1.891 0.368 4.096 0.601 0.926

NewImp 0.563 0.301 0.553 0.520 0.542 0.743 0.451 4.035 0.351 1.563 0.378 4.989 1.022 1.542

KPI(Ours) 0.113 0.039 0.132 0.134 0.144 0.191 0.107 1.022 0.09 0.337 0.084 1.028 0.159 0.303

C.3 Additional overall performance results given different missing mechanisms

Tab. 9 and 10 provide a detailed evaluation of the imputation performance of KPI and various
baselines under MAR and MNAR mechanisms, respectively. These missing mechanisms are more
complex and challenging compared to the MCAR setting reported in Tab. 1, but they are also more
representative of real-world scenarios.

The results demonstrate that KPI consistently outperforms the baselines in all settings, achieving
superior performance in terms of both metrics. This consistent superiority across different missing
mechanisms highlights the effectiveness and robustness of KPI for missing data imputation, making
it a reliable choice for diverse real-world applications.

C.4 Additional hyperparameter sensitivity results

Fig. 6 presents an extended analysis of hyperparameter sensitivity under higher missing ratios of 0.3
and 0.4, building upon the scenarios explored in Fig. 4 with missing ratios of 0.1 and 0.2. These
additional experiments provide insights into the model’s behavior under more challenging conditions.

Overall, the model exhibits greater sensitivity to hyperparameter choices at higher missing ratios. This
indicates that hyperparameter tuning becomes increasingly important as the missing ratio increases.
However, despite the heightened sensitivity, the trends observed across different missing ratios remain
consistent. For instance, the optimal update rate is found to be 0.01 for both CC and CBV across all
four missing ratios. This consistency reduces the complexity of tuning the model for each specific
missing ratio and implies that the selected hyperparameters for KPI are reliable and robust across a
range of missing data scenarios.
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Table 9: Imputation performance comparison under MAR missing mechanism.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS
MICE 0.481 0.109 0.626 0.349 0.839 0.652 0.677 1.113 0.492 0.946 0.604 2.42 0.824 0.775

MISS.F 0.718 0.727 0.632 0.404 0.783 0.572 0.58 1.261 0.797 1.517 0.58 2.671 0.709 0.63

CSDI-T 1.094 5.465 0.894 3.212 0.826 4.286 0.707 15.194 1.262 19.116 0.782 23.176 0.815 4.919

MissDiff 1.019 2.835 0.888 2.189 0.852 6.008 0.704 13.233 1.219 22.773 0.762 34.125 0.805 6.919

gain 1.082 1.187 0.782 0.570 0.700 0.503 0.456 0.609 0.709 1.383 0.552 1.716 0.729 0.672

MIRACLE 0.699 0.510 0.356 0.141 0.710 0.530 3.837 19.874 4.518 23.842 0.605 1.636 0.494 0.385

MIWAE 0.747 0.784 0.735 0.517 0.788 0.617 0.474 0.811 0.758 1.674 0.660 2.892 0.629 0.575

Remasker 0.598 0.689 1.023 0.854 0.467 0.235 0.691 1.149 0.668 1.062 0.557 1.563 0.489 0.397

Sinkhorn 1.106 1.319 0.958 0.718 0.923 0.804 0.829 1.350 1.257 3.392 0.904 3.032 0.905 0.912

TDM 1.015 1.313 0.855 0.614 0.823 0.653 0.691 0.995 1.194 3.311 0.752 2.739 0.794 0.776

NewImp 0.401 0.171 0.232 0.111 0.221 0.070 0.331 0.504 0.462 0.745 0.560 3.330 0.372 0.293

multikip 0.367 0.107 0.199 0.121 0.225 0.115 0.345 0.864 0.457 0.68 0.339 1.965 0.362 0.311

Table 10: Imputation performance comparison under MNAR missing mechanism.

Datasets BT CC CBV IS PK QB WQW

Metrics MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS MAE WASS

MICE 0.696 0.411 0.66 0.384 0.832 0.734 0.708 1.831 0.499 0.98 0.589 2.377 0.807 0.724

MISS.F 0.731 0.579 0.697 0.483 0.748 0.631 0.587 1.944 0.726 1.513 0.5 2.291 0.667 0.567

CSDI-T 0.885 3.105 0.885 2.923 0.838 3.922 0.759 16.833 1.016 14.173 0.683 20.330 0.795 4.275

GAIN 0.846 0.595 0.782 0.545 0.698 0.570 0.529 1.151 0.571 1.305 0.474 1.943 0.730 0.684

MIRACLE 0.655 0.319 0.371 0.163 0.842 0.802 3.725 27.093 4.196 25.052 0.576 2.249 0.518 0.437

MIWAE 0.658 0.424 0.735 0.508 0.808 0.731 0.559 1.535 0.628 1.400 0.561 3.318 0.641 0.577

Remasker 0.481 0.297 1.028 0.886 0.487 0.296 0.660 1.701 0.586 1.059 0.516 2.128 0.519 0.434

Sinkhorn 0.967 0.752 0.940 0.698 0.925 0.911 0.854 2.121 1.049 2.906 0.844 3.755 0.880 0.859

TDM 0.858 0.732 0.849 0.620 0.821 0.756 0.724 1.640 0.969 2.713 0.661 3.202 0.772 0.744

NewImp 0.645 0.461 0.585 0.593 0.562 0.837 0.442 3.945 0.434 2.328 0.441 7.161 0.601 1.102

multikip 0.573 0.257 0.271 0.22 0.357 0.352 0.391 1.344 0.423 0.769 0.286 1.967 0.458 0.563
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Figure 6: Varying learning rate and batch size results with missing ratios 0.3 and 0.4.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction correctly summarize the theoretical
and empirical contributions of the paper. They are well-aligned with the scope, methods,
and results presented in the main text.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a separate "Limitations" section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: In appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, it is already provided. We will release our code soon.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code is not yet publicly released at submission time. We plan to make the
codebase and data processing scripts publicly available soon.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting is detailed. Additional training configurations are
provided in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient details on computational resources in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work complies fully with the NeurIPS Code of Ethics. It uses only public
datasets and poses no foreseeable ethical risks.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This work does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This work does not release any new asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This study does not involve any human participants or crowdsourcing tasks.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects or crowdsourced data were involved in this study; all
experiments used public datasets. IRB approval is thus not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not involve any LLMs in its core algorithmic design or
empirical methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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