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Abstract

Conventional research on large language models (LLMs) has primarily focused on
refining output distributions, while paying less attention to the decoding process
that transforms these distributions into final responses. Recent advances, such as
scaling the computation of inference time with reward models, have underscored
the importance of decoding, but these methods often suffer from high computa-
tional costs and limited applicability. In this paper, we revisit LLM generation
through the lens of recommender systems, conceptualizing the decoding process
as analogous to the ranking stage in recommendation pipelines. From this per-
spective, we observe that both traditional decoding methods and reward models
exhibit clear limitations such as redundancy. Motivated by this insight, we propose
Language Ranker, a novel framework that introduces a lightweight module to
rerank candidate responses using features extracted by the base model. Experiments
across a wide range of tasks show that Language Ranker achieves performance
comparable to large-scale reward models, while requiring only <0.5M additional
parameters, significantly reducing the computational overhead during both train-
ing and inference stages. This highlights the efficiency and effectiveness of our
method, showcasing its potential to fully unlock the capabilities of LLMs. The
implementation is released at https://github.com/chenhengzh/language_ranker.

1 Introduction

Traditional research on enhancing the capabilities of large language models (LLMs) has primarily
focused on improving the quality of output distributions through approaches such as scaling up model
sizes [1]], fine-tuning for specific tasks (SFT) [12}3]], and reinforcement learning with human feedback
(RLHF) [4, 5]]. However, the decoding process, which converts the output distributions into final
responses, has not received sufficient attention. Current decoding strategies, including top-k sampling
[6, [7], self-consistency [8], and contrastive decoding [9], are largely rule-based and task-specific,
limiting their ability to fully exploit the potential of LLMs’ powerful output distributions.

It is found that if an oracle could select the best response from multiple samples generated by a model,
the performance of a 7B model could even surpass that of a 70B model as the sample number increases
[LO] . This finding highlights the tremendous potential of the decoding process in maximizing model
performance. To approximate the oracle, recent studies on inference-time computing [[11} [12} [13]]
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Figure 1: The comparison among existing methods, recommender system and our Language
Ranker. The two charts on the left highlight the limitations of existing decoding strategies and reward
models, in contrast to the recommender system pipeline shown in the top-right. Language Ranker
addresses these limitations by incorporating a feature-shared, learnable, and lightweight ranker.

Table 1: Comparison of parameters and performance between the Language Ranker and reward
models, using Llama3.1-8B-Instruct as the base model.

Training Stage Inference Stage
Method Trainable | GPU-Loaded | Sampling | Ranking Performance
Language Ranker <0.5M <0.5M 8.2B <0.5M 28, 8. ¢
RM (llama8B-LoRA) 176M 8.2B 8.2B 8.4B * %k
RM (gpt2) 137M 137M 8.2B 137M * e

have introduced reward models to select the best response. While these methods demonstrate strong
performance across various tasks, the reliance on auxiliary reward models significantly increases
computational and time overhead during both training and inference, thereby limiting their scalability
and applicability in broader contexts.

To address these limitations, we rethink LLMs through the lens of recommender systems. As
shown in Figure[I]| each LLM can be viewed as a special recommender system, where the input
serves as the user information, and the model’s role is to recommend the most appropriate response
as the “item” tailored to the user’s needs. Therefore, the model backbone, language head, and
decoding process correspond directly to the feature engineering, retriever, and ranker in a traditional
recommender system [14]. When a user provides an input, the model backbone first extracts user
features, represented as the hidden states of the last token. The language head then generates a coarse
response distribution. Finally, a predefined decoding strategy samples several candidate responses
from this distribution and selects the most suitable one among them.

In this analogy, the limitations of both existing decoding strategies and reward models become evident.
As illustrated in Figure[T] current decoding strategies are typically simple and rule-based, neglecting
the crucial role of reranking model responses. Meanwhile, reward models, though effective as rankers,
introduce substantial computational overhead both in training and inference. From the perspective
of recommender systems, these methods essentially redo the feature engineering for ranking from
scratch, ignoring the features already extracted during the recall stage that could have been shared.
This redundancy leads to significant unnecessary computations and inefficiency.

In this paper, we propose Language Ranker, inspired by recommender systems, to address aforemen-
tioned shortcomings of existing methods. The Language Ranker incorporates a carefully designed
lightweight ranker to rerank candidate responses generated by the base model, which constitutes
the only trainable component in our framework. As illustrated in Figure[2] the earlier layers of the
base model can be viewed as shared feature engineering for both the retriever and ranker, similar to
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features. Finally, the ranker selects the most ap-
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Figure 3: Personalized Language Ranker. We
can pair a single base model with different
rankers to enable personalized adaptation for
diverse user needs simultaneously. The base
model runs on high-resource central nodes, while
rankers can be deployed on edge devices or even
local user devices. The CPU-trainability allows
each user’s ranker to perform continual learning

with behavioral data, paving the way for deeper
personalization.

recommender systems. Once the candidate responses are sampled, the ranker utilizes the extracted
features to rerank the candidates and identify the most appropriate response.

As shown in Table[T] by leveraging the representations of base models, our method achieves per-
formance comparable to that of the Llama8B-based reward model, while requiring only <0.5M
additional parameters, significantly reducing the computational overhead during both training and
inference stages. Table [3] shows that the lightweight ranker supports both training and inference
independently on CPUs, demonstrating the potential to build a personalized Language Ranker. As
illustrated in Figure 3] the base model can be paired with different rankers to enhance capabilities
across various dimensions. The base model is expected to run on high-resource central nodes, while
the rankers can be deployed on edge nodes or even on users’ local devices, allowing continual learning
and personalized adaptation to diverse user needs.

In conclusion, the main contributions of this paper are:

* We reinterpret LLMs through the lens of recommender systems, revealing the limitations
of existing decoding strategies and reward models while highlighting the potential of the
decoding process.

* We propose Language Ranker, a novel and lightweight ranking framework for LLMs that is
both efficient and effective. It allows a single base model to be flexibly paired with different
rankers, allowing personalized adaptation to diverse user needs.

* We conduct extensive experiments across diverse tasks and multiple base models, demon-
strating that our framework achieves performance comparable to large-scale reward models
while requiring <0.5M additional parameters, thereby substantially reducing computational
overhead during both training and inference.

2 Decoding as Ranking Mechanisms Design

In this section, we introduce Language Ranker, our lightweight ranking framework for LLMs inspired
by recommender system. This framework addresses the limitations of existing decoding strategies
and reward models by incorporating an efficient and effective ranking mechanism.



2.1 Language Ranker

As shown in Figure 2] we employ a lightweight yet effective ranker to rerank candidate responses
generated by language models. Specifically, a hyperparameter is defined to select a specific layer in
the model, and the hidden states of this layer are used as features for the ranker. || Before inference, the
hidden states of the selected layer corresponding to the final token of the given instruction is recorded
as the instruction feature, denoted as 7. The model then begins the inference process, sampling K
candidate responses. Once each candidate response is fully generated, the hidden state of the chosen
layer corresponding to the final token is recorded as its feature. These features, representing the
candidate responses, are denoted as {rj, }%<_,. These instruction and response features are then fed
into the ranker to identify the most suitable response.

Following common practices in recommender systems [14]], we design both a listwise ranker and a
pointwise ranker to refine candidate responses. Both rankers first project the input features into a
low-dimensional space, compressing information while significantly reducing the parameter count
for subsequent processing. They then process the projected features using their respective blocks and
compute the relevance between each response and the instruction features, which is subsequently
used to rerank the responses.

Specifically, the listwise ranker processes all candidates simultaneously, enabling direct comparisons
between them:

[E,T~1,7:2,"' ,7’}(] = Trans (Proj ([i,r1, - ,7K])), D
[s1,82,--+ 5] = Rele (i, [F1,72, - ,7%]) - )

As illustrated in Figure after projection, the instruction feature 4 and the response features {ry }1<_
interact within a Transformer block. Subsequently, relevance scores between the instruction and each
candidate response are computed, and the candidate with the highest score is selected as the final
output.

The pointwise ranker, in contrast, evaluates each candidate response individually based on the given
instruction feature:

[i,7%] = [MLP (Proj(i)), MLP (Proj(ry))], 3)
sk = Rele (E, Fk) . 4

Each projected feature is independently processed using a shared MLP block. The ranker then
computes a relevance score between the instruction feature and each response feature. The response
with the highest relevance score is selected as the final result.

Notably, the choice of relevance function for both the listwise and pointwise rankers depends on the
form of the response labels. If the labels are binary (0 or 1), cosine similarity is applied, framing the
task as a classification problem. In contrast, if each response is assigned a specific score, a learnable
relevance function is employed to fit these scores:

s = Rele (E, r~k) , (5)
= W % concat (2, Fk) . 6)

The Transformer block in the listwise ranker and the MLP block in the pointwise ranker can both be
extended to multiple blocks. For efficiency, we use a single block in all main experiments, and the
impact of the block number is analyzed in Subsection 3.2}

2.2 Dataset Construction and Ranker Training

The training dataset for our ranker is constructed in a manner similar to that of reward model datasets
[L5], introducing virtually no additional computational or time overhead. For each task, we allow the
base model to perform sampling and generate 100 responses for each instruction in the training set.
During this process, the corresponding instruction features and response features are recorded. These
features are then used to train the ranker effectively. After collecting all responses, we assign labels

3The final layer of the model backbone is often suboptimal for feature extraction; instead, layers located
around 60% from the bottom of the model typically yield better representations, as shown in Subsection@}



depending on the characteristics of the task. These details will be discussed within the context of
specific tasks in Section 3]

The listwise ranker processes a list of candidates simultaneously, allowing for direct comparisons
among them. To prepare the training data, K candidate responses are randomly sampled for each
query from the previously constructed dataset. This process is repeated multiple times, and groups
that do not contain both positive and negative responses are filtered out. Ultimately, N data groups per
query, along with their corresponding hidden states, are collected for training, formally represented

N
as {z’, (r§”), y%”)), RN (T%)7 y%))} v For training process, the loss function is selected based on

the form of the labels. If y,(c”) € {0, 1}, the task is framed as a classification problem, where s,(cn) is
computed using cosine similarity. We optimize the ranker using the following KL divergence loss:

(n) (n)
L) Y L _ _OxP(sy, ) 7

A (n)y
k; Y, kZ—:1 exp(s; )
list __ 1 Y D n)|.-(n) 8
jcls - N Z KL Ty ||7Ts . (3)
n=1
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If y,,” € R, the task is treated as a regression problem, where s, is computed by the learnable
relevance function previously introduced. We apply the mean squared error (MSE) loss:
N K
) 1 1 2
list __ (n) (n)
jreg *NZ?Z(SI:’ 7ykn) . (9)
n=1 k=1

The pointwise ranker is much simpler than the listwise ranker. For each query, it indepen-
dently pairs each candidate response with its corresponding instruction, formally represented as:

[i, (r(™), y("))] N:l. The choice of loss function also depends on the form of the labels. Following
the discussion for the listwise ranker, we summarize the corresponding loss functions for the two
forms of labels below:

(n) _ exp(s(™)

= 10
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N
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3 Experiments

In this section, we conduct experiments on three representative LLM tasks: mathematics, coding,
and function calling. We further perform detailed analyses and ablation studies, as well as evaluate
the transferability of our method. To additionally demonstrate the generality of our approach, we
assess its general instruction-following capability, as described in Appendix [B.1] The full set of
hyperparameters is provided in Appendix [A]

3.1 Main Experiments

Baselines  For each task, we train two reward models of different scales for comparison. The first is
based on GPT-2 [[16], a relatively small model that nevertheless has over 100 times more parameters
than our ranker. The second reward model is trained from the corresponding base model using LoRA.
Although the number of trainable parameters is similar to GPT-2, the full model must be loaded
into GPU memory for both training and inference, resulting in substantially greater computational
overhead. In addition, we use the first sampled response from the base model as a simple baseline



Table 2: The total performance across the three tasks compares our methods with reward models and
common decoding strategies. The RM means reward model. In the Parameter column, we report
the number of trainable parameters for each method. For reward models trained with LoRA, we
additionally report the number of GPU-loaded parameters.

Method \ Parameter MATH MBPP xLAM
Llama3.1-8B-Instruct
ListRanker (ours) 0.30M 46.3 54.5 32.6
PointRanker (ours) 0.28M 458 55.1 30.4
RM (gpt2) 137M 429 47.7 294
RM (Llama8B) 176M / 8.2B 45.1 52.9 32.8
Beam Search — 40.3 42.3 27.0
First Sample — 25.1 41.9 10.6
Qwen2.5-7B-Instruct
ListRanker (ours) 0.27M 74.8 63.2 71.0
PointRanker (ours) 0.25M 75.2 62.7 70.4
RM (gpt2) 137M 71.9 60.2 65.4
RM (Qwen7B) 161M /7.6B 74.6 62.9 70.2
Beam Search — 67.9 62.2 68.0
First Sample — 68.7 60.6 57.0
Qwen2.5-32B-Instruct
ListRanker (ours) 0.36M 81.1 74.2 72.8
PointRanker (ours) 0.34M 81.3 74.6 72.4
RM (gpt2) 137M 78.8 70.6 68.8
RM (Qwen32B) 537M / 32.8B 80.7 75.9 73.6
Beam Search — 78.1 71.4 70.6
First Sample — 75.9 68.2 65.2

and adopt deterministic beam search as a representative decoding strategy. A detailed analysis and
comparison with other decoding strategies are provided in Appendix [B.3]

Ranker Settings  In all experiments, the rankers are implemented using either a single Transformer
block or a single MLP block, and they operate on features extracted from approximately the bottom
60% of the base model’s layers. During both training and evaluation, each data group consists
of 10 candidate responses. The ranker is trained to classify each response as correct or incorrect,
formulating the task as a binary classification problem. Cosine similarity is used to compute the final
logits, and the training objective is defined by the classification loss J;s, as specified in Equations §]

or[I1l

Models We evaluate our method on LLaMA3.1-8B-Instruct [17]], Qwen2.5-7B-Instruct, and
Qwen2.5-32B-Instruct [[18] to demonstrate its generality across different model architectures and
scales. To further validate our approach on a broader range of models, we also conduct experiments
on Gemma3-4B-it [19], as presented in Appendix[B.2] To ensure fairness, all models are evaluated
under the zero-shot setting, with prompts detailed in Appendix

Datasets For the mathematics task, we use the MATH dataset [20], which contains 12,500
competition-level problems spanning seven topics and five difficulty levels. To ensure coverage while
maintaining efficiency, we uniformly sample 1,000 problems each for training and testing across
different topics and difficulty levels. For the coding task, we use the complete MBPP dataset [21],
which consists of short Python programming problems, 374 for training and 500 for testing, each
paired with test cases to evaluate the correctness of the generated solutions. For the function calling
task, we adopt the xlam-function-calling-60k dataset [22], which comprises 60,000 high-quality
function calling problems and answers. We randomly sample 1,500 more challenging problems with
more than three APIs, and split them into 1,000 training and 500 testing examples.

Metrics  For the mathematics, coding, and function calling tasks, we design task-specific labeling
criteria to ensure consistent and fair evaluation. For the mathematics task, we extract the final answer
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Figure 4: The performance of the Language Ranker built on Llama3.1 improves consistently across
all three tasks as the number of candidate responses increases.

Table 3: The total training time on the MBPP  Table 4: Comparison of performance and param-
dataset for both CPU and GPU settings, includ-  eter on MATH under different ranker architecture

ing data loading stages. ablations, using Llama3.1-8B as the base model.
Method CPU A100 Ranker Setting Accuracy Parameter
Listwise Ranker 67s 44s Listwise Ranker 46.3 0.30M
Pointwise Ranker 71s 42s — remove projection 46.4 192M
RM (p2) ~1h 728 — remove instruction 442 0.30M
RM (Llama8b) too long  24min Pointwise Ranker 45.8 0.28M
— remove projection 46.0 128M
— remove instruction 44.1 0.28M

—remove MLP block  42.5 0.25M

from each response and compare it with the ground-truth answer. A response is labeled as correct if
the extracted answer matches exactly; responses that are incorrect or from which the answer cannot
be extracted (e.g., due to formatting errors) are labeled as incorrect. For the coding task, we extract
the generated code segment and execute it on a set of predefined test cases. A response is labeled as
correct only if all test cases pass; otherwise, it is labeled as incorrect. For the function calling task, we
extract the function calls from each response and use regular expressions to parse the function names
and parameter values. The response is labeled as correct only if both the function and all arguments
match the ground-truth function calls.

Results  Both the listwise and pointwise rankers significantly improve model performance across all
tasks. Our lightweight method consistently outperforms the reward model (gpt2), despite being over
100 times smaller in scale, and even achieves performance comparable to reward models trained from
the base model. Specifically, for Llama3.1-8B-Instruct, our approach improves over the first-sample
baseline by more than 20% on MATH and 12% on MBPP, substantially outperforming both larger
reward models. On the function calling task, it trails the Llama8B-based reward model by only
0.2%. For Qwen2.5-7B-Instruct, the Language Ranker outperforms all baselines. For Qwen2.5-32B-
Instruct, rankers with fewer than 0.5M parameters achieve performance comparable to 32B-scale
reward models, demonstrating remarkable potential. This suggests that rankers can adapt to even
larger base models, as the extracted features they rely on become increasingly expressive—allowing
them to stand on the shoulders of giants.

3.2 Analysis and Ablation Study

Ranker Scaling Law  Figure[]illustrates the relationship between the performance of the Language
Ranker and the number of candidate responses provided to the ranker. We found that performance
improves across diverse tasks as the number of candidates increases, demonstrating the Ranker Scaling
Law. A key open problem in current research is how to effectively scale inference-time computation
in large language models to enhance their performance. Most existing work has focused on optimizing
inference configurations during the sampling stage, often relying on traditional reward models for



Table 5: Performance comparison across different ranker configurations in MATH for Llama3.1-8B-
Instruct.

Hidden States Layer Block Number

0.1 03 06 1.0 1 2 3 4

Llama3.1-8B-Instruct
Listwise Ranker | 41.2 44.6 463 449 | 463 46.7 466 469
Pointwise Ranker | 40.6 43.6 458 44.0 | 458 462 464 463
Qwen2.5-7B-Instruct
Listwise Ranker | 70.6 72.7 74.8 73.6 | 748 749 752 754
Pointwise Ranker | 71.4 73.1 752 739 | 752 751 75.6 755

Ranker Type

Table 6: Performance across different hyperparameter configurations for Llama3.1-8B-Instruct on the
MATH dataset. Green indicates the best resuls, while red indicates the worst results.

Optimizer SGD AdamW Optimizer AdamW

Learning Rate [0.05 0.1 0.5 1.0 |le-5 le-4 Learning Rate |5e-5 le-4 2e-4 5e-4
Batch Size=256 |46.2 46.1 45.8 45.7|46.2 46.1 Batch Size=64 [41.2 42.2 45.1 43.6
Batch Size=1024{46.1 45.9 46.3 45.9|45.9 46.1 Batch Size=256|43.2 41.9 42.8 44.7

(a) Listwise Ranker (b) Reward Model (Llama8B)

response reranking [12} (11, [23]]. In contrast, our approach focuses on the ranking stage, providing
an efficient, effective, and scalable alternative. This distinction underscores the complementarity
between our method and sampling-based techniques, suggesting that they can be integrated to further
improve model performance.

CPU Trainability ~ As shown in Table[3] the lightweight rankers can be efficiently run on CPUs,
demonstrating the potential of constructing a personalized Language Ranker. As illustrated in Table[3]
the base model can be paired with different rankers to enhance capabilities across various dimensions.
The hidden states of the final token ( 8KB) are compact enough to be transmitted over the internet. In
this setup, the base model runs on high-resource central nodes, while rankers can be deployed on
edge devices or even local user devices, enabling flexible adaptation to diverse user needs. Moreover,
the CPU-trainability allows each user’s ranker to perform continual learning with behavioral data,
paving the way for deeper personalization.

Ablation Study To better understand the design of our ranker, we conduct ablation studies on all
key components of both the listwise and pointwise architectures. As shown in Table[d] the projection
layer compresses high-dimensional features into a lower-dimensional space, playing a critical role in
keeping the ranker lightweight. Removing this layer results in a much larger ranker with minimal
performance gain. Additionally, we examine the role of the instruction feature, which is used to
compute relevance scores with each candidate for ranking. Replacing this feature with a learnable
vector leads to a noticeable drop in performance, underscoring the its importance as a form of user
information, consistent with our perspective of recommender system.

Ranker Configurations The last layer of the model backbone is often not the best choice for
providing features. Since the backbone is trained for next-token prediction, the final layers tend to
overfit to this specific task. In contrast, intermediate layers typically provide more comprehensive
representations of the preceding context, making them better suited for capturing the overall features
required for ranking [24]. As shown in the Hidden States Layer part of Table[5] the most effective
features for the rankers are extracted from the 60% from the bottom of the model layers. As shown in
the Block Number part of Table 5] increasing the ranker’s scale has only a marginal impact. Since the
base model has already extracted high-quality features, the ranker’s task remains relatively simple,
making further scaling unnecessary.

Hyperparameter Robustness Table [6] presents the hyperparameter robustness of our method,
particularly in comparison with reward models. We uniformly sample a series of hyperparameter con-
figurations for both approaches. For the listwise ranker, the accuracy range across 12 configurations
is only 0.6%, with the best and worst performances at 46.3% and 45.7%, respectively. In contrast, the



Table 7: The Transfer Performance of a Ranker Trained on a Single Task. All results are tested with
Llama3.1-8B-Instruct on the MATH dataset. For task types, we use abbreviations in the table due to
space constraints: Prealgebra (PA), Algebra (A), Number Theory (NT), Counting and Probability
(CP), Geometry (G), Intermediate Algebra (IA), Precalculus (PC).

Target Task
PA A NT CP G 1A PC
675 613 382 437 334 219 322

Source Task

PA — = = = — — —
0.0 -0.4 -0.5 -0.2 0.0 -0.8 -1.7
66.0 61.7 38.5 42.0 34.7 223 31.1
A 5 00 02 19 40 04 28
64.9 60.2 38.7 41.4 35.7 20.7 31.0
NT 26 15 00 25 27 20 29
66.5 61.3 374 43.9 35.3 22.2 32.6
cr 0 04 13 00 21 05 13
66.0 60.5 36.7 41.4 374 224 31.1
G 05 12 18 25 00 03 28
64.3 58.8 35.7 38.6 32.4 22.7 31.3
1A 32 29 28 53 S0 00 26
pC 63.0 59.1 35.6 41.1 34.5 22.3 33.9

45 26 29 29 29 -04 00

reward model is much more sensitive to hyperparameters, showing a larger variation of 3.9% across
8 configurations (best: 45.1%, worst: 41.2%).

3.3 Cross-Domain and Cross-Task Transfer

To assess the generalization capability of the Language Ranker, we conduct transfer experiments
on the MATH dataset, which contains seven distinct problem types. We train the ranker on a single
problem type and evaluate its generalization to the remaining domains (see Table[7). The results
show that rankers trained on any individual domain maintain robust performance across all others.
Remarkably, in some cases, the transfer performance approaches that of domain-specific rankers,
demonstrating the system’s adaptability to unseen domains.

To further evaluate its transferability across broader task domains, we perform cross-task transfer
experiments, following a similar experimental setup. Specifically, we train the ranker on a single
task type (math or code) and evaluate its generalization ability on the other task. Table [8|shows that
rankers trained on any individual task maintain robust performance on the other one. Notably, the
transfer performance even surpasses in-domain performance of GPT-2-based reward model (43.4 vs.
42.9 on MATH and 51.2 vs. 47.7 on MBPP), further highlighting our adaptability to unseen domains.

Moreover, unlike recent general reward models, our ranker is highly efficient and easy to train.
Its lightweight design allows a single base model to be paired with multiple task-specific rankers,
enabling flexible deployment with minimal overhead. This makes the proposed Language Ranker
framework a practical and scalable solution for adapting to diverse downstream tasks under real-world
resource constraints.

4 Related Work

Decoding Methods A variety of rule-based decoding methods have been proposed to improve
language model performance, including top-k sampling [6 [7]], temperature-based sampling [25]], and
nucleus sampling [26]. Beyond these, more refined algorithms have been developed for specific tasks.
Self-consistency has been introduced as a method to improve Chain-of-Thought (CoT) reasoning by



Table 8: Cross-task generalization between math and code tasks. Each ranker is trained on one task
and evaluated on both to assess transferability.

Method To MATH To MBPP
Ranker From MATH 46.3 51.2 (-3.3)
Ranker From MBPP 43.4 (-2.9) 54.5

RM (gpt2) 42.9 (-3.4) 47.7 (-6.8)

majority voting [8} 27]. Other approaches leverage an auxiliary model either selected or fine-tuned to
assist in generating responses that better align with desired requirements [28 9, 29]. However, these
methods are typically rule-based or task-specific, which limits both their performance ceiling and
application scope. We propose a more general ranking framework to address these limitations.

Reward Models Reward models have been widely adopted for the enhancements of LLMs. They
serve as learned proxies for human preferences in RLHF [30} 31], and have also been applied to
guide multi-step reasoning processes [32,133]. While effective in a range of scenarios, reward models
typically introduce significant computational overhead, limiting their practical deployment in real-
world systems. To address this issue, some efforts aim to teach models to act as self-critics [34}135]],
but their performance remains suboptimal. An embedding-based alternative has been proposed to
simplify reward model training [36]], but it primarily targets RLHF settings and still requires an
additional forward pass during both training and inference to extract embeddings. Another line of
work proposes scoring all candidate tokens simultaneously to reduce call frequency, but relying more
heavily on large-scale models [37].

Inference-Time Computing Recently, there has been growing interest in scaling inference-time
computation to improve the performance of LLMs. Most existing approaches focus on optimizing
configurations at the sampling stage, often relying on traditional reward models to evaluate and rerank
generated responses [13} 38} 23 |15} [39]], or specific design on extending CoT length [40, 41, 42]. In
contrast, our method shifts the focus to the ranking stage and introduces a lightweight architecture
that operates directly on features already extracted by the base model. This design eliminates the need
for additional forward passes, providing a scalable, efficient, and effective alternative. We believe our
approach complements sampling-based strategies and can be combined with them to further improve
model performance.

5 Conclusion and Discussion

In this paper, we have introduced the Language Ranker, a novel lightweight ranking framework for
enhancing the LLMs. By rethinking LLMs through the lens of recommender systems, we identified
the limitations of existing decoding strategies and reward models, particularly their limitations on
rule-based methods and computationally expensive reranking. Our approach integrates a lightweight
ranker that leverages features extracted by the base model, enabling more efficient, effective and
scalable reranking with minimal computational overhead.

Moreover, the separability of the ranker from the base model further enhances the flexibility of our
approach. This decoupling allows for the independent optimization of the ranker, enabling a base
model to be paired with multiple rankers that enhance different aspects of its capabilities, making it
adaptable to various domains. We hope that our approach can offer new perspectives for the future of
language model inference and contribute to the development of more resource-efficient Al systems.
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A Hyperparameter settings

In sampling process, we set temperature as 1.5 for diverse responses and max_new_tokens as 1024
to make sure completed answers. We sample 100 responses for each problem. During training, we
perform a grid search over the parameter ranges specified in Table[9]

Table 9: The hyperparameter list

Hyperparameter Value
Sampling

Sampling Temperature 1.5
Sampling Max New Tokens 1024
Ranker Training

Batch Size [256, 1024]
Epoch 1
Optimizer [SGD, AdamW]
SGD LR [0.05, 0.1, 0.5, 1.0]
SGD Momentum [0.0, 0.9]
AdamW LR [1e-5, 1e-4]
AdamW Betas (0.9, 0.999)
Weight Decay le-4

LR Schedule [Constant, Cosine Decay]
Projection Dimension 64
Reward Model Training

Batch Size [64, 256]
Epoch 1
Optimizer AdamW
AdamW LR [Se-5, Se-4]
AdamW Betas (0.9, 0.999)
Weight Decay le-4

LR Schedule [Constant, Cosine, Decay]
LoRA T 64

LoRA alpha [64, 128]

B Additional Experimental Results

B.1 Instruction-Following Task

Our framework performs well on the three tasks presented in Section 3] To further demonstrate its
general applicability, we also evaluate it on a mixed instruction-following task.

Models Considering that instruct models are specifically fine-tuned for instruction-following tasks,
we conduct evaluations on this task with Llama3.1-8B-Base [[17] and Qwen2.5-7B-Base [[18]]. For
fairness, all models are evaluated using zero-shot prompts, as shown in Appendix

Datasets We use the first 1,000 queries from the Databricks-Dolly-15k dataset [43] for training.
For evaluation, we adopt AlpacaEval [44], a widely recognized benchmark for assessing instruction-
following capabilities in LLMs. It consists of diverse test queries sourced from Self-Instruct, OASST,
Anthropic’s Helpful dataset, Vicuna, and Koala.

Metrics Unlike tasks such as mathematics, instruction-following lacks objective ground-truth
answers, making rule-based evaluation infeasible. To address this, we follow the AlpacaFarm [44]]
method and prompt DeepSeek-V3 to simulate human judgment by assigning scores from 0 to 5 to
all sampled responses. These responses are then used to train both our ranker and reward models.
For evaluation, we adopt the official AlpacaEval evaluator to compute the Length-Controlled Win
Rate metric [45]], a relative measure based on a reference model. For each base model, we use its
corresponding instruct variant as the reference—for example, Llama3.1-8B-Instruct for Llama3.1-
8B-Base.
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Table 10: The evaluation on general instruction-following tasks compares our method against reward
models and common decoding strategies. We conduct experiments on Llama3.1-8B-Base and
Qwen2.5-7B-Base, reporting the win rate using the corresponding Instruct model as the reference.
RM (base) refers to reward models trained from the respective base model.

Method Parameter Llama3.1-8B-Base Qwen2.5-7B-Base
ListRanker (ours) <0.3M 30.7 46.3
PointRanker (ours) <0.3M 27.1 45.8
RM (gpt2) 137M 27.1 429
RM (base) ~170M/8B 31.6 45.3
First Sample — 19.0 25.1
Beam Search — 20.4 40.3

Table 11: Comparison between our methods and reward models on math and code tasks. The RM
denotes reward model. The Parameter column reports the number of trainable parameters for each
method. For reward models trained with LoRA, we also report the number of GPU-loaded parameters.

Method | Parameter | MATH MBPP
Gemma3-4B-it
ListRanker (ours) 0.20M 72.2 514
PointRanker (ours) 0.19M 72.4 51.7
RM (gpt2) 137M 69.2 50.3
RM (Gemma3) 161M /7.6B 69.1 50.9
Beam Search — 67.4 49.2
First Sample — 63.5 48.8

Results  As shown in Table[2] the performance of our methods far exceeds that of vanilla decoding
strategies and is comparable to the reward models trained from base models. Notably, with the
assistance of a 0.3M-level ranker, Qwen2.5-7B-Base achieves a 46.3% win rate compared to Qwen?2.5-
7B-Instruct, which has undergone extensive fine-tuning on various instruction-following tasks.

B.2 Experimental Results on Gemma3-4B-it

We conduct experiments across a wide range of tasks using both 7B and 32B base models, covering
two prevalent architectures: LLaMA and Qwen. To further validate the generality of our approach,
we additionally include results on Gemma3-4B-it [19]], thereby expanding the evaluation across both
model scales and backbone architectures. The results for the math and code tasks are presented in
Table [Tl

Consistent with the findings in Section [3] both the listwise and pointwise rankers substantially
improve performance on the math and code tasks with Gemma3-4B-it. These experiments further
confirm the effectiveness and robustness of our method across different model sizes and architectures.

B.3 Detailed Comparison with Existing Decoding Methods

We clarify that decoding methods generally fall into two broad categories: (i) reranking-based
methods, which operate on sampled responses as our method does, and (ii) methods that modify the
model’s output probability distribution during generation.

The first category often relies on auxiliary reward models like our baselines, or is task-specific. For
example, self consistency [[8] improves reasoning performance by aggregating multiple sampled
answers via majority voting. This technique is particularly effective in tasks like math, where the
final answer is often a short, well-defined value—making consensus across candidates meaningful.

However, for tasks such as code generation, function calling, or even general instruction-following,
the outputs tend to be long, diverse, and semantically equivalent in multiple ways. In these settings,
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Table 12: Comparison between our ListRanker and self consistency methods across different tasks.
Self consistency improves reasoning tasks like math but performs weakly on code, function calling,
and instruction-following tasks.

Method MATH MBPP xLAM AlpacaEval
ListRanker (ours) 46.3 54.5 32.6 30.7
Self-Consistency 44.9 41.9 24.6 20.4
First Sample 25.1 41.9 10.6 20.4

candidate responses often differ significantly in surface form, making majority voting unreliable and
diminishing the effectiveness of self consistency. As shown in Table [I2] self consistency indeed
improves performance on MATH, but shows much weaker performance on function calling, and
negligible gains on code and instruction-following tasks.

The second category includes methods such as Contrastive Decoding [9]] and DoLa [46], which refine
the model’s output distribution during generation. These approaches are orthogonal to ours, which
focuses on post-sampling ranking. They are complementary to our method and baselines, and can be
integrated independently; therefore, we do not include them as direct comparisons in our evaluation.

C Limitations

The proposed ranker demonstrates strong effectiveness, efficiency, and transferability. However, it
operates on the hidden states of the base model, requiring access to the final-token representations
during inference. This requirement introduces no computational overhead theoretically, and storing
the representation of only the final token incurs minimal memory usage. Nevertheless, it is not yet
fully supported by widely used inference frameworks such as vLLM. We believe that, with the rapid
progress of representation-based methods, this limitation will be gradually alleviated in the near
future.
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D Prompts for Each Task

Prompt for mathematics task

system:
You are a math expert.

user:
Please solve the given math problem step by step and present the answer in the following
format: "\boxed{X}", where X is the answer.

{Question}

Prompt for coding task

system:
You are an expert Python programmer.

user:

Write a Python function based on the following instructions and test example. Please ensure
that the function is clearly marked with a start and end so I can easily extract it from your
output.

Instructions:
{question}

Test Example:
{test_list[0]}

Please provide your code with clear start and end markers, like so:

#START OF CODE

def {function_name(input) }:
... function code ...
return result

#END OF CODE

Prompt for function calling task

system:

You are a function-calling assistant. Your role is to complete tasks solely through correct
function calls, without generating any additional text. For each task, directly output the func-
tion call(s) required to complete it. If the task involves multiple steps, you may issue multiple
function calls sequentially. Each function call must be formatted as a JSON object. For
example: [{"name": "functionA", "arguments": {"paraml1": "valuel", "param2": "value2"}},

"name": "functionB", "arguments":{"param1": "valuel", "param2": "value2"}}]

The following are the available functions: {function_list}

Now, use the appropriate function(s) to complete the given task.
user:

{Question}
Please directly output the function call(s) to solve the task without any other text.
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Prompt for instruction-following task

system:
You are an assistant.

user:
Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

{Instruction} Begin!

Scoring criteria in instruction-following task

Review the user’s question and the corresponding response using the additive 5-point scoring
system described below

The user’s question is between <question>and </question>The response of the Al Assistant
is between <response>and </response>

Points are accumulated based on the satisfaction of each criterion: - Add 1 point if the
response is relevant and provides some information related to the user’s inquiry, even if it is
incomplete or contains some irrelevant content. - Add another point if the response addresses
a substantial portion of the user’s question, but does not completely resolve the query or
provide a direct answer. - Award a third point if the response answers the basic elements
of the user’s question in a useful way, regardless of whether it seems to have been written
by an Al Assistant or if it has elements typically found in blogs or search results. - Grant a
fourth point if the response is clearly written from an Al Assistant’s perspective, addressing
the user’s question directly and comprehensively, and is well-organized and helpful, even if
there is slight room for improvement in clarity, conciseness or focus. - Bestow a fifth point
for a response that is impeccably tailored to the user’s question by an Al Assistant, without
extraneous information, reflecting expert knowledge, and demonstrating a high-quality,
engaging, and insightful answer. - If the response repeats itself or is not concise and to the
point, score the response 0.

<question>prompt</question>
<response>response</response>

After examining the user’s instruction and the response: - output the score of the evaluation
using this exact format: "score: <total points>", where <total points>is between 0 and 5 -
Briefly justify your total score, up to 100 words.

18



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Abstract and Introduction, where enumerates the contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: see Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theory
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided sufficient details and instructions for the repreduction of the
main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20



Answer:

Justification: We promise to release the code after publication. We have provided sufficient
details and instructions for the repreduction of the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: see Experiments and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We tune the learning rate for most our experiments. Due to limited computing
resources, we are not able to run the experiments many times to derive the error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: see Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: This paper only include experiments on public open datasets.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: No societal impact
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: see experiment setup
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: We introduce new assets. However, we do not release them at submission time.
We commit to releasing the codebase upon publication.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLM for writing and formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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